Environmental Externalities and Intrahousehold Inefficiencies

Kelsey Jack (Tufts) Seema Jayachandran (Northwestern) Sarojini Rao (University of Chicago)

March 2017

・ロン ・四と ・日と ・日

1/45

This paper = Chiappori + Pigou

Intrahousehold decision making Environmental externalities & corrective pricing

• Individuals within a household do not usually have identical preferences or full altruism toward each other

- Individuals within a household do not usually have identical preferences or full altruism toward each other
- Who holds the bargaining power in HH has societal implications, e.g., children's human capital

- Individuals within a household do not usually have identical preferences or full altruism toward each other
- Who holds the bargaining power in HH has societal implications, e.g., children's human capital
 - Mothers spend more on children (conventional wisdom, at least), but fathers tend to have more bargaining power

- Individuals within a household do not usually have identical preferences or full altruism toward each other
- Who holds the bargaining power in HH has societal implications, e.g., children's human capital
 - Mothers spend more on children (conventional wisdom, at least), but fathers tend to have more bargaining power
- Policies have been designed to address the problem, e.g., make mothers recipients of cash transfers

- Individuals within a household do not usually have identical preferences or full altruism toward each other
- Who holds the bargaining power in HH has societal implications, e.g., children's human capital
 - Mothers spend more on children (conventional wisdom, at least), but fathers tend to have more bargaining power
- Policies have been designed to address the problem, e.g., make mothers recipients of cash transfers
- \Rightarrow We study another societal implication: Environmental externalities from consumption, specifically water use

- Individuals within a household do not usually have identical preferences or full altruism toward each other
- Who holds the bargaining power in HH has societal implications, e.g., children's human capital
 - Mothers spend more on children (conventional wisdom, at least), but fathers tend to have more bargaining power
- Policies have been designed to address the problem, e.g., make mothers recipients of cash transfers
- ⇒ We study another societal implication:
 Environmental externalities from consumption, specifically water use
 - Specific context: HHs in urban Zambia with piped water connections

Intrahousehold inefficiency

- Household achieves Pareto efficient outcomes in collective model
- But households might have limited information or limited enforcement, leading to inefficiency
- Our work fits into this part of literature
- Household cannot achieve optimal outcome even for themselves, and this exacerbates negative externality on the environment

• Individuals consume water, but bill is for total household water consumption

- Individuals consume water, but bill is for total household water consumption
- They cannot easily observe person-specific water consumption

- Individuals consume water, but bill is for total household water consumption
- They cannot easily observe person-specific water consumption
- Generates a free-riding problem: Over-consume water
 - Each person enjoys the benefits of her consumption but shares the cost with others

- Individuals consume water, but bill is for total household water consumption
- They cannot easily observe person-specific water consumption
- Generates a free-riding problem: Over-consume water
 - Each person enjoys the benefits of her consumption but shares the cost with others
 - Analogous to moral hazard in teams or overgrazing of shared land

- Individuals consume water, but bill is for total household water consumption
- They cannot easily observe person-specific water consumption
- Generates a free-riding problem: Over-consume water
 - Each person enjoys the benefits of her consumption but shares the cost with others
 - Analogous to moral hazard in teams or overgrazing of shared land
- Implication: More inefficient households are less price sensitive
 - Inefficient = internalizes less of externality due to (a) less observability
 (b) weaker enforcement (c) less altruism

Environmental externalities

- Individual actions generate externalities, e.g., when I drive my car, I generate air pollution
- Standard policy prescription: Corrective pricing

Environmental externalities

- Individual actions generate externalities, e.g., when I drive my car, I generate air pollution
- Standard policy prescription: Corrective pricing
- For home water and electricity use, the price is applied to household consumption

Environmental externalities

- Individual actions generate externalities, e.g., when I drive my car, I generate air pollution
- Standard policy prescription: Corrective pricing
- For home water and electricity use, the price is applied to household consumption
- Pigouvian tax needs to correct for 2 externalities: (1) intrahh problem causes household to consume more than its first best (2) household's first best exceeds societally optimal consumption

- Intrahousehold inefficiency arises even if men and women are "symmetric"
 - Equal bargaining power (income net of water bill is shared equally)
 - Consume same amount of water

- Intrahousehold inefficiency arises even if men and women are "symmetric"
 - Equal bargaining power (income net of water bill is shared equally)
 - Consume same amount of water
- In fact, women consume most of the water (cooking, cleaning, bathing children, etc.)

- Intrahousehold inefficiency arises even if men and women are "symmetric"
 - Equal bargaining power (income net of water bill is shared equally)
 - Consume same amount of water
- In fact, women consume most of the water (cooking, cleaning, bathing children, etc.)
- Plus, men at least in our context in Zambia are the residual claimant when water bills increase or decrease

- Intrahousehold inefficiency arises even if men and women are "symmetric"
 - Equal bargaining power (income net of water bill is shared equally)
 - Consume same amount of water
- In fact, women consume most of the water (cooking, cleaning, bathing children, etc.)
- Plus, men at least in our context in Zambia are the residual claimant when water bills increase or decrease
- Thus, the person who consumes most of the water has very weak incentives to conserve

• Test if water use is more price sensitive in more efficient households

- Test if water use is more price sensitive in more efficient households
- Compare price sensitivity when different household members are made the residual claimant on price changes

- Test if water use is more price sensitive in more efficient households
- Compare price sensitivity when different household members are made the residual claimant on price changes
- How do we change water prices?

- Test if water use is more price sensitive in more efficient households
- Compare price sensitivity when different household members are made the residual claimant on price changes
- How do we change water prices? Randomly offer prize for reducing water bill; acts like a price increase

- Test if water use is more price sensitive in more efficient households
- Compare price sensitivity when different household members are made the residual claimant on price changes
- How do we change water prices? Randomly offer prize for reducing water bill; acts like a price increase
- How do we change residual claimant?

- Test if water use is more price sensitive in more efficient households
- Compare price sensitivity when different household members are made the residual claimant on price changes
- How do we change water prices? Randomly offer prize for reducing water bill; acts like a price increase
- How do we change residual claimant? Vary whether we tell and give prize to (a) just wife (b) just husband (c) wife and husband together

- Test if water use is more price sensitive in more efficient households
- Compare price sensitivity when different household members are made the residual claimant on price changes
- How do we change water prices? Randomly offer prize for reducing water bill; acts like a price increase
- How do we change residual claimant? Vary whether we tell and give prize to (a) just wife (b) just husband (c) wife and husband together
- How do we measure household efficiency?

- Test if water use is more price sensitive in more efficient households
- Compare price sensitivity when different household members are made the residual claimant on price changes
- How do we change water prices? Randomly offer prize for reducing water bill; acts like a price increase
- How do we change residual claimant? Vary whether we tell and give prize to (a) just wife (b) just husband (c) wife and husband together
- How do we measure household efficiency? Lab-in-the-field game that measures combo of altruism and enforcement between spouses

- Test if water use is more price sensitive in more efficient households
- Compare price sensitivity when different household members are made the residual claimant on price changes
- How do we change water prices? Randomly offer prize for reducing water bill; acts like a price increase
- How do we change residual claimant? Vary whether we tell and give prize to (a) just wife (b) just husband (c) wife and husband together
- How do we measure household efficiency? Lab-in-the-field game that measures combo of altruism and enforcement between spouses
- Two other interventions
 - Information about price of water
 - Information on how water utility measures quantity and sets bills

Preview of results

- Consumption responds to price incentives: average short run price elasticity is -0.3
- Consumption response is larger among more efficient households:
 - Elasticity is 3 times as large for HHs with above-median efficiency compared to below median
- Price incentives are more effective if they target spouse that is not usually the residual claimant

Outline of rest of talk

- Model of household decision making about water
- Setting, study design, and data
- Empirical specification and results
- Next steps and conclusions

Model setup

- Non-cooperative decision: Nash equilibrium
- Individual *i* chooses own water use w_i, taking spouse's water use w_{-i} as given
- w_{-i} is not observable
- Water utility observes and bills for household consumption, $W = w_A + w_B$, and charges the household pW

Individual decision problem

- Bargaining weight λ_i
- Division of after-bill income: $\lambda_i(Y pW)$
- Individual utility from water use and income for other consumption

$$v_i = f(w_i) + c = f(w_i) + \lambda_i(Y - pW)$$

- Altruism toward spouse α_i < 1 determines how much *i* internalizes -*i*'s utility: u_i = v_i + α_iv_{-i}
- α_i could also reflect contract enforcement (which we do not model)

Individual decision problem

- Bargaining weight λ_i
- Division of after-bill income: $\lambda_i(Y pW)$
- Individual utility from water use and income for other consumption

$$v_i = f(w_i) + c = f(w_i) + \lambda_i (Y - pW)$$

- Altruism toward spouse α_i < 1 determines how much *i* internalizes

 i's utility: u_i = v_i + α_iv_{-i}
- α_i could also reflect contract enforcement (which we do not model)
- First order condition: $f'(w_i^*) = p(\lambda_i + \alpha_i \lambda_{-i})$
- Consume less water if
 - Larger residual claim on after-water income
 - More altruistic toward spouse

Effects of a price change

- Response to a change in p depends on α_i and λ_i
- **Result 1:** $\left|\frac{\partial w_i^*}{\partial p}\right|$ is increasing in α_i
 - More efficient households are more price sensitive
Effects of a price change

- Response to a change in p depends on α_i and λ_i
- **Result 1:** $\left|\frac{\partial w_i^*}{\partial p}\right|$ is increasing in α_i
 - More efficient households are more price sensitive
- **Result 2:** $\left|\frac{\partial w_i^*}{\partial p}\right|$ is increasing in λ_i
 - When bill is to the household, individual who is larger residual claimant is more price sensitive

Effects of a price change

- Response to a change in p depends on α_i and λ_i
- **Result 1:** $\left|\frac{\partial w_i^*}{\partial p}\right|$ is increasing in α_i
 - More efficient households are more price sensitive
- **Result 2:** $\left|\frac{\partial w_i^*}{\partial p}\right|$ is increasing in λ_i
 - When bill is to the household, individual who is larger residual claimant is more price sensitive
- Meanwhile, when we target prices to specific people, person who is not residual claimant in status quo is more price sensitive

Effects of a price change

- Response to a change in p depends on α_i and λ_i
- **Result 1:** $\left|\frac{\partial w_i^*}{\partial p}\right|$ is increasing in α_i
 - More efficient households are more price sensitive
- **Result 2:** $\left|\frac{\partial w_i^*}{\partial p}\right|$ is increasing in λ_i
 - When bill is to the household, individual who is larger residual claimant is more price sensitive
- Meanwhile, when we target prices to specific people, person who is not residual claimant in status quo is more price sensitive
- There are also predictions on interactive effects (e.g., HH is more price sensitive if large water user is primary residual claimant)

What's special about water?

Spouse's water consumption is difficult to observe

- mTurk survey of US couples (we are replicating it in Zambia)
- "Suppose you were trying to estimate your spouse/partner's consumption. Among the following categories, which 3 would you be LEAST confident in your estimate of the \$ value for his or her consumption in a typical week?"

Spouse's consumption

15/45

Own water consumption is also difficult to observe

16 / 45

Outline

- Model of household decision making about water
- Setting, study design, and data
- Empirical specification and results
- Next steps and conclusions

Study setting

- Study location: Livingstone, Zambia
- Collaborated with regional water utility, Southern Water and Sewerage Company (SWSC)
- Use their account data for sampling and outcome measure (water use)
- $\bullet\,$ Water bill ${\sim}5\%$ monthly household expenditure for our sample, about 10 USD
 - \blacktriangleright US EPA's affordability threshold is 2% and UNDP's is 3%
- Water shortages during dry season

Sampling

- Used data as of April 2015
- Obtained monthly billing and payment records for all metered residential customers in Livingstone since 2012 (N=9800)
- Excluded households with suggestive evidence of meter tampering, very low or high users, those with large debts (N=7425)
- Screening visits to restrict sample to: (a) married couples, (b) tenancy > 6 months, (c) non-shared meter (N=2051)
- Return visit to survey household; surveyed 1282 households
 - \blacktriangleright Include all screened households in analysis to improve precision \rightarrow 6594 hh in analysis

- Sample: 1,282 married couples
- Surveyed households on a rolling basis from May-December 2015
 - Treatment delivered with survey so turns on at different times for different households

- Sample: 1,282 married couples
- Surveyed households on a rolling basis from May-December 2015
 - Treatment delivered with survey so turns on at different times for different households
- Simultaneous but separate survey of husband and wife (two-surveyor teams)

- Sample: 1,282 married couples
- Surveyed households on a rolling basis from May-December 2015
 - Treatment delivered with survey so turns on at different times for different households
- Simultaneous but separate survey of husband and wife (two-surveyor teams)
- Collect data on perceived price water use, decision-making, household characteristics

- Sample: 1,282 married couples
- Surveyed households on a rolling basis from May-December 2015
 - Treatment delivered with survey so turns on at different times for different households
- Simultaneous but separate survey of husband and wife (two-surveyor teams)
- Collect data on perceived price water use, decision-making, household characteristics
- Measure of intrahousehold altruism/efficiency: Dictator game with sharing multiplier between spouses

Modified dictator game between spouses

• Spouses play separately

- Spouses play separately
- Receive endowment, decide how much to send to spouse

- Spouses play separately
- Receive endowment, decide how much to send to spouse
- Amount sent is doubled; sending everything maximizes total household income

- Spouses play separately
- Receive endowment, decide how much to send to spouse
- Amount sent is doubled; sending everything maximizes total household income
- Opportunity to conceal income

- Spouses play separately
- Receive endowment, decide how much to send to spouse
- Amount sent is doubled; sending everything maximizes total household income
- Opportunity to conceal income
 - Randomize size of endowment

- Spouses play separately
- Receive endowment, decide how much to send to spouse
- Amount sent is doubled; sending everything maximizes total household income
- Opportunity to conceal income
 - Randomize size of endowment
 - Two decisions: Transfer to spouse and transfer to water NGO; randomize which decision is paid out

- Spouses play separately
- Receive endowment, decide how much to send to spouse
- Amount sent is doubled; sending everything maximizes total household income
- Opportunity to conceal income
 - Randomize size of endowment
 - Two decisions: Transfer to spouse and transfer to water NGO; randomize which decision is paid out
 - Spouse only learns payoff to him/her

- Spouses play separately
- Receive endowment, decide how much to send to spouse
- Amount sent is doubled; sending everything maximizes total household income
- Opportunity to conceal income
 - Randomize size of endowment
 - Two decisions: Transfer to spouse and transfer to water NGO; randomize which decision is paid out
 - Spouse only learns payoff to him/her
- Will send more money to spouse if you value spouse having income (altruism) or expect to recoup money from spouse (enforcement)

- Spouses play separately
- Receive endowment, decide how much to send to spouse
- Amount sent is doubled; sending everything maximizes total household income
- Opportunity to conceal income
 - Randomize size of endowment
 - Two decisions: Transfer to spouse and transfer to water NGO; randomize which decision is paid out
 - Spouse only learns payoff to him/her
- Will send more money to spouse if you value spouse having income (altruism) or expect to recoup money from spouse (enforcement)
- Interpret share of endowment sent to spouse as a measure of α_i

Amount shared in dictator game

- Considerable variation in how much is sent
- Husbands send more on average than wives

Prize for reducing water use

• Half of the sample receive a price incentive to conserve water

Prize for reducing water use

- Half of the sample receive a price incentive to conserve water
- In months after survey, if month's consumption is <70% of reference period's monthly consumption
 - Entered into lottery with 1-in-20 chance of winning
 - Winner receives 30 USD
 - Between 3 and 8 eligible months for households

Prize for reducing water use

- Half of the sample receive a price incentive to conserve water
- In months after survey, if month's consumption is <70% of reference period's monthly consumption
 - Entered into lottery with 1-in-20 chance of winning
 - Winner receives 30 USD
 - Between 3 and 8 eligible months for households
- Incentive sub-treatments: (a) couple informed together at end of survey, (b) husband informed alone, (c) wife informed alone

Prize for reducing water use

- Half of the sample receive a price incentive to conserve water
- In months after survey, if month's consumption is <70% of reference period's monthly consumption
 - Entered into lottery with 1-in-20 chance of winning
 - Winner receives 30 USD
 - Between 3 and 8 eligible months for households
- Incentive sub-treatments: (a) couple informed together at end of survey, (b) husband informed alone, (c) wife informed alone
- Couple's treatment: $v_i = f(w_i) + \lambda_i (Y pW) + \lambda_i R \times \mathbf{1}(W < \overline{W})$

23/45

• Can think of this like $p \rightarrow p'$ where p' > p

Prize for reducing water use

- Half of the sample receive a price incentive to conserve water
- In months after survey, if month's consumption is <70% of reference period's monthly consumption
 - Entered into lottery with 1-in-20 chance of winning
 - Winner receives 30 USD
 - Between 3 and 8 eligible months for households
- Incentive sub-treatments: (a) couple informed together at end of survey, (b) husband informed alone, (c) wife informed alone
- Couple's treatment: $v_i = f(w_i) + \lambda_i (Y pW) + \lambda_i R \times \mathbf{1}(W < \overline{W})$
 - Can think of this like $p \rightarrow p'$ where p' > p
- Individual treatment: $v_i = f(w_i) + \lambda_i(Y \rho W) + \underbrace{R \times \mathbf{1}(W < \overline{W})}_{R \to \infty}$

not multiplied by λ_i

• Individuals often do not know the price of water

- Individuals often do not know the price of water
- Might systematically underestimate the price of water because of increasing block tariff – marginal price of water exceeds average price of water

- Individuals often do not know the price of water
- Might systematically underestimate the price of water because of increasing block tariff – marginal price of water exceeds average price of water
- Reason #1 for providing price info: Alternative way to change (perceived) price

- Individuals often do not know the price of water
- Might systematically underestimate the price of water because of increasing block tariff – marginal price of water exceeds average price of water
- Reason #1 for providing price info: Alternative way to change (perceived) price
- Reason #2: Allows us to convert effect of price incentive into price elasticity

- Individuals often do not know the price of water
- Might systematically underestimate the price of water because of increasing block tariff – marginal price of water exceeds average price of water
- Reason #1 for providing price info: Alternative way to change (perceived) price
- Reason #2: Allows us to convert effect of price incentive into price elasticity
- All households that received price incentive also received price information (but not vice versa)

- Individuals often do not know the price of water
- Might systematically underestimate the price of water because of increasing block tariff – marginal price of water exceeds average price of water
- Reason #1 for providing price info: Alternative way to change (perceived) price
- Reason #2: Allows us to convert effect of price incentive into price elasticity
- All households that received price incentive also received price information (but not vice versa)
- Brought couple together at end and gave them this information

WANT TO SAVE MONEY ON YOUR MONTHLY WATER BILL?

NANGA MUFUNA KUCHEPESA NDALAMA ZIMENE MUMA LIPILA BILL YANU YA MANZI YAPA MWEZI?

TURN OFF THE TAP! VALANI POPI YANU!

Save 10 Kwacha per month with 10 minutes less tap use per day. Sungani K10 pamwezi paku chepesako 10 minetisi yosebenzesa tap yamanzi pa siku imodzi.

Save 20 Kwacha per month with 20 minutes less tap use per day. Sungani K20 pamwezi paku chepesako 20 minetisi yosebenzesa tap yamanzi pa siku imodzi.

These reductions are for your entire household, not any particular individual. These are typical savings. Depending on your water pressure, your situation may be slightly different. Uku kuchepesa nikwa nyumba yanu yonse osati muntu umodzi. Aka kachepesedwe nikapindu. Kulingana na mphamvu yakachokedwe ka marci yanu, mbali yanu ingakale yosianako. Other intervention: SWSC credibility on billing

• Another factor that might dampen price elasticity: Consumers think amount they are billed for is pulled out of thin air
- Another factor that might dampen price elasticity: Consumers think amount they are billed for is pulled out of thin air
- In our sample, 40% blame SWSC, not their usage when bill is high

- Another factor that might dampen price elasticity: Consumers think amount they are billed for is pulled out of thin air
- In our sample, 40% blame SWSC, not their usage when bill is high
- Meter readers might shirk and make up reading

- Another factor that might dampen price elasticity: Consumers think amount they are billed for is pulled out of thin air
- In our sample, 40% blame SWSC, not their usage when bill is high
- Meter readers might shirk and make up reading
- Or meter might be unreadable because of condensation

- Another factor that might dampen price elasticity: Consumers think amount they are billed for is pulled out of thin air
- In our sample, 40% blame SWSC, not their usage when bill is high
- Meter readers might shirk and make up reading
- Or meter might be unreadable because of condensation
- But mistakes should net out with next accurate reading; meter records cumulative amount

- Another factor that might dampen price elasticity: Consumers think amount they are billed for is pulled out of thin air
- In our sample, 40% blame SWSC, not their usage when bill is high
- Meter readers might shirk and make up reading
- Or meter might be unreadable because of condensation
- But mistakes should net out with next accurate reading; meter records cumulative amount
- Cross-randomized info: Explain to couple why there are estimated readings and how subsequent bills account for under- or over-charges

- Another factor that might dampen price elasticity: Consumers think amount they are billed for is pulled out of thin air
- In our sample, 40% blame SWSC, not their usage when bill is high
- Meter readers might shirk and make up reading
- Or meter might be unreadable because of condensation
- But mistakes should net out with next accurate reading; meter records cumulative amount
- Cross-randomized info: Explain to couple why there are estimated readings and how subsequent bills account for under- or over-charges
- Interesting hypothesis but intervention had no effect (cheap talk?)

Summary of study design

Outcome data

- Monthly water consumption in cubic meters from SWSC bills
- Household average usage is 20 cubic meters/month
- Based on physical water meter readings collected monthly between the 20th and 25th of each calendar month
- Keep only successful meter readings (i.e., drop months in which meter reading is estimated or meter reported as broken)
- Data from January 2012 through September 2016

Sample characteristics

	Only screened HHs	No incentive HHs	Incentive HHs	P-val (2)=(3)
_	(1)	(2)	(3)	(4)
Quantity consumed	20.940	18.995	18.247	0.239
	(14.525)	(12.097)	(10.515)	
Any payment	0.738	0.764	0.769	0.566
	(0.195)	(0.166)	(0.166)	
Missing meter reading	0.137	0.100	0.112	0.210
	(0.188)	(0.157)	(0.170)	
Total monthly bill	99.848	92.925	87.309	0.124
_	(88.152)	(69.044)	(60.949)	
Households	5312	664	618	

◆□> ◆□> ◆臣> ◆臣> ─ 臣

Sample characteristics

	No incentive HHs (1)	Incentive HHs (2)	P-val (1)=(2) (3)
Share sent to spouse by husband	0.702	0.690	0.398
	(0.269)	(0.254)	
Share sent to spouse by wife	0.520	0.513	0.597
	(0.262)	(0.260)	
W: Residual claimant	0.307	0.316	0.749
	(0.462)	(0.465)	
W: Bigger user	0.795	0.838	0.047
	(0.404)	(0.369)	
Households	664	618	

Pre-intervention water use

Outline

- Model of household decision making about water
- Setting, study design, and data
- Empirical specification and results
- Next steps and conclusions

Regression model

• Estimating equation:

 $y_{it} = \alpha + \beta_1 PriceIncentive_{it} + \beta_2 PostSurvey_{it}$ $+ \delta_1 PriceInfo_{it} + \delta_2 BillingCredibility_{it} + \gamma_i + \tau_t + \epsilon_{it}$

- *PriceIncentive_{it}* equals 1 for treated HHs after survey/intervention
- PostSurvey_{it} equals 1 after HH is surveyed
- γ_i are HH fixed effects; τ_t are year-month FEs

Regression model

• Estimating equation:

 $y_{it} = \alpha + \beta_1 PriceIncentive_{it} + \beta_2 PostSurvey_{it} \\ + \delta_1 PriceInfo_{it} + \delta_2 BillingCredibility_{it} + \gamma_i + \tau_t + \epsilon_{it}$

- *PriceIncentive_{it}* equals 1 for treated HHs after survey/intervention
- PostSurvey_{it} equals 1 after HH is surveyed
- γ_i are HH fixed effects; τ_t are year-month FEs
- Include screened out households; *PostSurvey* based on when their neighborhood was surveyed

 $y_{it} = \alpha + \beta_1 PriceIncentive_{it} + \beta_2 PostSurvey_{it} + \beta_3 Post_{it} + \delta_1 PriceInfo_{it} + \delta_2 BillingCredibility_{it} + \gamma_i + \tau_t + \epsilon_{it}$

• Cluster standard errors by household

Predictions

• Price incentive lowers average consumption

Predictions

- Price incentive lowers average consumption
- Effect is larger for more efficient households, i.e., those with more sharing in the dictator game

Predictions

- Price incentive lowers average consumption
- Effect is larger for more efficient households, i.e., those with more sharing in the dictator game
- Effect is larger if person-specific incentive is directed toward:
 - Spouse who is not usually the residual claimant
 - Spouse who is the larger water user

Price incentive average effect

Outcome: log (quantity)			
0 (11 - 3)	(1)	(2)	(3)
Assigned incentive x Post	-0.076*** [0.026]	-0.068*** [0.025]	-0.067*** [0.025]
Survey sample x Post	0.054*** [0.019]	0.033* [0.018]	0.022 [0.018]
Assigned incentive treatment	-0.009 [0.033]		
Survey sample	-0.087*** [0.025]		
HH FE		x	х
Month-Year FE			х
Observations (HH)	6,594	6,594	6,594
Observations (HH-months)	129,899	129,899	129,899

Implied price elasticity: -0.28

Price incentive effect

35 / 45

Price incentive effect

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Heterogeneity by intrahousehold efficiency

Outcome: log (quantity)			
	(1)	(2)	(3)
Incentive treatment	-0.034 [0.032]	-0.058* [0.033]	-0.093** [0.044]
Incentive \boldsymbol{x} Sent above median on average	-0.071 [0.050]		
Incentive \boldsymbol{x} Husband sent above median		-0.022 [0.051]	-0.011 [0.066]
Incentive ${\sf x}$ Wife sent above median		-0.003 [0.058]	-0.079 [0.075]
Total effect	-0.105*** [0.038]		
Total effect, husband		-0.079* [0.043]	-0.104* [0.055]
Total effect, wife		-0.061 [0.055]	-0.172** [0.072]
Sample	Full	Full	Gender roles
Observations (HH) Observations (HH-months)	6,587 129,775	6,587 129,775	6,038 118,452

37 / 45

Heterogeneity by intrahousehold efficiency

Price incentives for man, woman, and couple

Outcome: log (quantity)	
	(1)
Couple incentive	-0.050 [0.041]
Husband incentive	-0.043 [0.037]
Wife incentive	-0.095** [0.037]
Observations (HH) Observations (HH-months)	6,594 129,899

Heterogeneity by residual claimant and big water user

Outcome: log (quantity)				
0(1),	(1)	(2)	(3)	(4)
Individual incentive	-0.030 [0.033]	-0.054 [0.033]	-0.026 [0.035]	-0.024 [0.036]
Incentive to non-resid claimant	-0.091** [0.043]		-0.087* [0.046]	-0.084* [0.046]
Incentive to bigger user		-0.045 [0.043]	-0.013 [0.046]	
Wife incentive				-0.018 [0.046]
Total effect claimant	-0.121*** [0.035]		-0.113** [0.046]	-0.108**
Total effect user	[1.500]	-0.099*** [0.036]	-0.039 [0.048]	[1.0.10]
Observations (HH) Observations (HH-months)	6,412 126,136	6,412 126,136	6,412 126,136	6,412 126,136

40 / 45

• Seemingly easy solution: Make the larger water user the residual claimant

- Seemingly easy solution: Make the larger water user the residual claimant
- Only 30% of households have aligned incentives this way

- Seemingly easy solution: Make the larger water user the residual claimant
- Only 30% of households have aligned incentives this way
- Suggests some other barrier

- Seemingly easy solution: Make the larger water user the residual claimant
- Only 30% of households have aligned incentives this way
- Suggests some other barrier
 - Larger user is more risk averse

- Seemingly easy solution: Make the larger water user the residual claimant
- Only 30% of households have aligned incentives this way
- Suggests some other barrier
 - Larger user is more risk averse
 - Factors other than household usage affect bill

- Seemingly easy solution: Make the larger water user the residual claimant
- Only 30% of households have aligned incentives this way
- Suggests some other barrier
 - Larger user is more risk averse
 - Factors other than household usage affect bill
 - Husband is responsible for fixing leaky faucets

- Seemingly easy solution: Make the larger water user the residual claimant
- Only 30% of households have aligned incentives this way
- Suggests some other barrier
 - Larger user is more risk averse
 - Factors other than household usage affect bill
 - Husband is responsible for fixing leaky faucets
 - Existing norm hasn't been updated as the environment has changed

Heterogeneity by observability

Outcome: log (quantity)			
	(1)	(2)	(3)
Incentive treatment	-0.055** [0.027]	-0.038 [0.030]	-0.054 [0.034]
Incentive x Know bill quantity	-0.081 [0.068]		
Incentive ${\sf x}$ Know spouse's water use		-0.080 [0.051]	
Incentive x Observability PCA			-0.028 [0.049]
Total effect	-0.137** [0.063]	-0.118*** [0.041]	-0.081** [0.035]
Observations (HH) Observations (HH-months)	6,594 129,899	6,594 129,899	6,594 129,899

Outline

- Model of household decision making about water
- Setting, study design, and data
- Empirical specification and results
- Next steps and conclusions

Next steps

• Test other predictions, e.g., based on person-specific altruism (dictator-game sharing)

Next steps

- Test other predictions, e.g., based on person-specific altruism (dictator-game sharing)
- Conduct small survey in Zambia to assess how observable water consumption is

Next steps

- Test other predictions, e.g., based on person-specific altruism (dictator-game sharing)
- Conduct small survey in Zambia to assess how observable water consumption is
- Carry out open-ended interviews to ask households why they do not make women the residual claimant on water bills
 - Findings beg question of why couples don't give the woman more residual claim on water expenses
Next steps

- Test other predictions, e.g., based on person-specific altruism (dictator-game sharing)
- Conduct small survey in Zambia to assess how observable water consumption is
- Carry out open-ended interviews to ask households why they do not make women the residual claimant on water bills
 - Findings beg question of why couples don't give the woman more residual claim on water expenses
- Discussion of normative implications
 - Pigouvian tax helps HHs fix intraHH inefficiency
 - But, due to their high water use, they have marginal utility of income so tax hurts more

- Transactions for water and electricity are with the HH, not individual
- HHs cannot observe own and spouse's consumption of water, leading to over-consumption relative to their own first best

- Transactions for water and electricity are with the HH, not individual
- HHs cannot observe own and spouse's consumption of water, leading to over-consumption relative to their own first best
- We find that more efficient HHs those that internalize one another's welfare or can enforce informal contracts are more price elastic

- Transactions for water and electricity are with the HH, not individual
- HHs cannot observe own and spouse's consumption of water, leading to over-consumption relative to their own first best
- We find that more efficient HHs those that internalize one another's welfare or can enforce informal contracts are more price elastic
- Also find that changes to individual price for women has largest effect

- Transactions for water and electricity are with the HH, not individual
- HHs cannot observe own and spouse's consumption of water, leading to over-consumption relative to their own first best
- We find that more efficient HHs those that internalize one another's welfare or can enforce informal contracts are more price elastic
- Also find that changes to individual price for women has largest effect
- Policy implications:

- Transactions for water and electricity are with the HH, not individual
- HHs cannot observe own and spouse's consumption of water, leading to over-consumption relative to their own first best
- We find that more efficient HHs those that internalize one another's welfare or can enforce informal contracts are more price elastic
- Also find that changes to individual price for women has largest effect
- Policy implications:

- Transactions for water and electricity are with the HH, not individual
- HHs cannot observe own and spouse's consumption of water, leading to over-consumption relative to their own first best
- We find that more efficient HHs those that internalize one another's welfare or can enforce informal contracts are more price elastic
- Also find that changes to individual price for women has largest effect
- Policy implications: Our intervention was not intended to be scalable

- Transactions for water and electricity are with the HH, not individual
- HHs cannot observe own and spouse's consumption of water, leading to over-consumption relative to their own first best
- We find that more efficient HHs those that internalize one another's welfare or can enforce informal contracts are more price elastic
- Also find that changes to individual price for women has largest effect
- Policy implications: Our intervention was not intended to be scalable
 - In-kind household rewards that are especially valued by women

- Transactions for water and electricity are with the HH, not individual
- HHs cannot observe own and spouse's consumption of water, leading to over-consumption relative to their own first best
- We find that more efficient HHs those that internalize one another's welfare or can enforce informal contracts are more price elastic
- Also find that changes to individual price for women has largest effect
- Policy implications: Our intervention was not intended to be scalable
 - In-kind household rewards that are especially valued by women
 - Make HH-level water usage more observable, e.g., easy-to-access high-frequency usage data

- Transactions for water and electricity are with the HH, not individual
- HHs cannot observe own and spouse's consumption of water, leading to over-consumption relative to their own first best
- We find that more efficient HHs those that internalize one another's welfare or can enforce informal contracts are more price elastic
- Also find that changes to individual price for women has largest effect
- Policy implications: Our intervention was not intended to be scalable
 - In-kind household rewards that are especially valued by women
 - Make HH-level water usage more observable, e.g., easy-to-access high-frequency usage data
- Solving intraHH frictions might be easier/better than very high prices

- Transactions for water and electricity are with the HH, not individual
- HHs cannot observe own and spouse's consumption of water, leading to over-consumption relative to their own first best
- We find that more efficient HHs those that internalize one another's welfare or can enforce informal contracts are more price elastic
- Also find that changes to individual price for women has largest effect
- Policy implications: Our intervention was not intended to be scalable
 - In-kind household rewards that are especially valued by women
 - Make HH-level water usage more observable, e.g., easy-to-access high-frequency usage data
- Solving intraHH frictions might be easier/better than very high prices
- Or, Pigouvian taxes need to be set especially high in settings where intraHH frictions are large

Backup slides

Dictator game correlates

	Husband	Wife share	Sent above
	share sent	sent	median
	(1)	(2)	(3)
H: Share NGO	0.192***	0.079***	0.262***
W: Share NGO	0.034	0.198***	0.269***
W: Residual claimant	(0.033)	(0.033)	(0.063)
	0.003	0.001	0.013
W: Bigger water user	(0.016)	(0.016)	(0.030)
	0.003	-0.006	-0.000
Household size	(0.019)	(0.019)	(0.036)
	-0.004	-0.009***	-0.015**
	(0.003)	(0.003)	(0.006)

Dictator game correlates

	Husband share sent (1)	Wife share sent (2)	Sent above median (3)
HH assets	0.008***	0.018***	0.030***
	(0.003)	(0.003)	(0.005)
HH english fluency	0.022	0.082***	0.112***
	(0.017)	(0.017)	(0.033)
Either underestimated price	0.009	0.017	0.033
	(0.017)	(0.017)	(0.032)
Both blame high bill on SWSC	0.012 (0.015)	0.016 (0.015)	0.000 (0.028)

Robustness check: Endogeneity of intrahousehold efficiency

Outcome: log (quantity)			
	(1)	(2)	(3)
Incentive x Sent above median	-0.071		-0.060
	(0.050)		(0.052)
Incentive × Sent above median to NGO	-0.069	-0.037	-0.034
	(0.049)	(0.050)	(0.050)
Incentive × Above median SDB score	0.034	0.024	0.030
	(0.049)	(0.050)	(0.050)
Incentive × Household size	-0.005	-0.006	-0.006
	(0.011)	(0.011)	(0.011)
Incentive × Maid	-0.046	-0.003	-0.001
	(0.068)	(0.069)	(0.069)
Incentive × HH assets	-0.017*	-0.015	-0.013
	(0.009)	(0.010)	(0.011)
Observations (HH)	6,587	6,587	6,587
Observations (HH-months)	129,775	129,775	129,775

Price info and SWSC credibility interventions

Outcome: log (quantity)		
	(1)	(2)
Info treatment	-0.012 [0.055]	
Info treatment x Underestimated price	-0.020 [0.073]	
Provider credibility treatment		0.005 [0.033]
Provider credibility × Distrust billing		0.046 [0.049]
Total effect	-0.032 [0.048]	0.050 [0.036]
HH FE Month-year FE Observations (HH)	× × 6,337	× × 6,594
Observations (HH-months)	124,826	129,899

Robustness check: Other margins of adjustment

	Any pay (1)	Missing quant (2)
Incentive	0.011 [0.014]	-0.005 [0.008]
Surveyed	0.002 [0.014]	0.010 [0.007]
Observations (HH) Observations (HH-months)	6,594 140,431	6,594 152,971