Migration and Consumption Insurance in Bangladesh

Costas Meghir (Yale) Mushfiq Mobarak (Yale) Corina Mommaerts (Wisconsin) Melanie Morten (Stanford)

October 18, 2017

Seasonal migration and consumption insurance

- Income very volatile in developing country agricultural households
 - Often seasonal component
- Seasonal and temporary migration is common
- Informal risk sharing common and important
- How do these insurance mechanisms interact?

This paper

Experimental intervention to increase migration

- Treatment effect of migration on risk sharing
 - Risk sharing improves
- Is this consistent with limited commitment risk sharing?
 - Estimate model using control data
 - Estimate out-of-sample predictions of the experiment
 - Model matches treatment effects
- In progress: further counterfactuals

Contributions

Bryan, Chowdhury and Mobarak (2014)

- Study effects of migration on migrants
- We study spillover effects on risk sharing network
- Morten (2017)
 - Focus on seasonal migration
 - Exploit experimental variation

Key related literature

Rural-urban migration

Bryan, Chowdhury and Mobarak (2014); Sjaastad (1962); Harris and Todaro (1970)

Limited commitment risk sharing

Krueger and Perri (2010); Ligon, Thomas, Worrall (2002); Kocherlakota (1996)

- Interaction between substitute risk management strategies Mobarak and Rosenzweig (2014), Morten (2017)
- Risk sharing and permanent migration
 Banerjee and Newman (1998); Munshi and Rosenzweig (2009)
- Combining structural models and experimental data Kaboski and Townsend (2011), Todd and Wolphin (2006)

Outline

1. Data and experiment

2. Reduced form test

3. Model of endogenous risk-sharing and migration

Experimental setup

Bryan, Chowdhury and Mobarak (2014)

- North-West Bangladesh (Rangpur division):
 - Population Rangpur: 9.6m; 5.3 m below poverty line
 - Lean season (*Monga*) prior to Aman rice harvest (Sep-Nov)
 - But, low levels of seasonal out-migration Seasonality of consumption
- Experiment: August 2008
 - Small (approx bus ticket) cash or credit incentive
 - Baseline: July 2008 pre-Monga
 - Follow up surveys: Nov '08; Nov '09; July '11; Dec '13
- 100 villages over two districts
 - Cash: 37; Credit: 31; Information: 16; Control: 16

Summary of main experimental results

- 1. Seasonal/circular migration
 - Increase of 22 p.p. in migration
 - Control: 36%, Treatment: 58%
- 2. Own household consumption at origin
 - LATE estimate: increase 30% Table
- 3. Re-migration
 - One year later (no incentives): Mig + 9%; Cons + 28%
 - 2.5 years later: Mig +7%; Cons + 30%
 - 4.5 years later: Mig + 7%; Cons + 35%;

Summary stats

Why would experiment affect risk sharing?

- Experiment made migration easier
 - Reduced travel cost
- Interaction with risk sharing
 - Increases value of outside option (-)
 - \rightarrow Household uses migration as self-insurance, risk-sharing less valuable
 - If migration itself risky, risk-sharing may facilitate (+)
 - \rightarrow Network can help insure risky decision
 - May help insure aggregate shocks (+)
- Net effect on insurance ambiguous

1. Data and experiment

2. Reduced form test

3. Model of endogenous risk-sharing and migration

Testing for risk sharing: Townsend test

Standard Townsend test:

$$\log c_{ivt} = \beta \log y_{ivt} + \gamma_i + \gamma_{vt} + \epsilon_{ivt}$$

- Full risk sharing: $\beta = 0$
- No risk sharing: $\beta = 1$

Table: Consumption smoothing among control villages

	(1) Log total consumption	(2) Log food consumption
Log income	0.197*** (0.015)	0.174*** (0.014)
Observations R-squared	2169 0.229	2169 0.232

Does migration cause risk sharing to get better?

- Interact treatment with income
- Intepreting sign of interaction
 - Negative: cons, income less correlated: r/s ↑
 - Positive: cons, income more correlated: r/s ↓

$$\log c_{ivt} = \beta_1 \log y_{ivt} + \frac{\beta_2}{2} \log y_{ivt} * T_v + \gamma_i + \gamma_{vt} + \epsilon_{ivt}$$

	Log	total consum	ption	Log	food consum	ption
	(1)	(2)	(3)	(4)	(5)	(6)
Overall treatment effect	-0.042** (0.020)			-0.038** (0.019)		
Group restrictions	. ,			. ,		
Unassigned group		-0.053** (0.024)			-0.047** (0.023)	
Self-formed group		-0.021 (0.028)			-0.014 (0.029)	
Assigned group		-0.050*			-0.047*	
Destination restrictions		()			(0.01)	
Unassigned destination			-0.054** (0.022)			-0.050** (0.023)
Assigned destination			-0.030 (0.025)			-0.025 (0.023)
Observations R-squared	4419 0.205	4419 0.205	4419 0.206	4421 0.206	4421 0.206	4421 0.206

Table: Effect of migration incentives on consumption smoothing

Savings

Table: Effect of migration incentives on consumption smoothing, non-migrant sample

	Log total consumption			Log f	ood consum	otion
	(1)	(2)	(3)	(4)	(5)	(6)
Overall treatment effect	-0.048* (0.026)			-0.046** (0.023)		
Group restrictions	. ,			. ,		
Unassigned group		-0.073** (0.030)			-0.070** (0.029)	
Self-formed group		-0.002 (0.038)			0.006 (0.037)	
Assigned group		-0.061 [*] (0.037)			-0.065 ^{**} (0.032)	
Destination restrictions		. ,			. ,	
Unassigned destination			-0.060** (0.030)			-0.049* (0.029)
Assigned destination			-0.036 (0.032)			-0.043 (0.029)
Observations R-squared	2615 0.234	2615 0.236	2615 0.235	2626 0.232	2626 0.234	2626 0.233

Direct evidence

	Would help you	Would help you and you'd ask	Would ask you for help	Would ask you for help and you'd help
Family	0.047*	0.043*	0.111***	0.106***
Control mean	[0.730]	(0.026) [0.707]	[0.516]	[0.475]
Friends	0.081***	0.073**	0.096***	0.090***
Control mean	(0.031) [0.258]	(0.030) [0.239]	(0.029) [0.207]	(0.027) [0.182]
Other villagers	0.069**	0.070**	0.106***	0.105***
Control mean	(0.028) [0.628]	(0.027) [0.588]	(0.031) [0.365]	(0.026) [0.306]
NGOs	0.067**	0.071**		
Control mean	(0.030) [0.540]	(0.029) [0.494]		
Moneylenders	0.031	0.029		
Control mean	(0.021) [0.208]	(0.020) [0.180]		

Table: Treatment effect on financial assistance from and to others

Migrant subsample Non-migrant subsample

Risk sharing improved in treatment villages

Correlation between income and consumption decreased

- ▶ ↓ 4%
- Food consumption: ↓ 4%
- Effect consistent when look only at non-migrants
 - ▶ ↓ 5%
 - Food consumption: ↓ 5%
- Suggests risk sharing improved in treatment villages

1. Data and experiment

2. Reduced form test

3. Model of endogenous risk-sharing and migration

Move to structural estimation

Experiment changes the income process of the village

- Variance of income
- Persistence of income
- Measurement error in income
- We calibrate LC model using control villages
 - Income process generates consumption stream
 - Estimate model to match risk sharing
- Validate model out-of-sample with the experiment

Limited commitment model

Households can walk away from risk sharing model

- Value of risk sharing needs to be as high as autarky
- Endogenously incomplete risk sharing
- Changes in income process affect value of autarky
- Estimation approach
 - Estimate mig, village income off control villages
 - Then, change migration cost

Kocherlakota (1996), Ligon, Thomas and Worrall (2002)

AR (1) income process

Income process characterized by

- Variance of measurement error: $var(\epsilon^{y})$
- Variance of persistent shock var(v)
- Income persistence ρ

$$\log y_{it} = u_{it} + \epsilon_{it}^{y}$$
$$u_{it} = a + \rho u_{it-1} + \nu_{it}$$

- Estimate separately for treatment and control
- Identify from cross-person moments

Details of moment conditions

Naive estimation of model

Full model

Social planner decides utility now vs promise for future

- ► Timing:
 - 1. Village income revealed
 - 2. Migration and contingent utilities chosen
 - 3. Migration income revealed, ex-post utilities assigned
- Ingredients
 - Village income risk, migration income risk
 - State variables: village income (y_i) and promised utility (w_{ik})
 - Choose: migration (I), ex-post utility (h_{jk}) , continuation utility $(w'_{j'k'})$

Limited commitment constraints

Limited commitment constraints: need to receive at least autarky

- Before migrate: ex-ante
- After migrate: ex-post
- Promise keeping constraints
- Autarky

Details of model

Intuition

Effect of reducing migration cost

Village income takes 3 states, with equal probability: [1.1, 1.5, 1.9]. Safe migration option is guaranteed migration income of 1.5. Risky migration option is a process with 2 states with equal probability, [0.8, 2.2].

Estimation results: with migration

Table: Fit of model to data: control

	Data	Model
Targeted moments		
Risk-sharing beta	0.20	0.21
Variance of consumption	0.12	0.13
Mean migration rate	0.38	0.38
Estimated parameters		
Coeff. relative risk aversion		1.57
Measurement error variance (cons)		0.11
Migration cost		0.06
Set exogenously		
Discount factor		0.90

Notes: Estimated on data from control villages only.

.

Model with mig: predicts improvement in risk sharing

Matching additional experiments

- Akram et al. (2016)
 - Subsidized different shares of the village
 - Take-up higher when higher share subsidized
- Risk-sharing: improves; more so in high-share-subsidy
- Can our model match this
 - Intuition: last figure

Conclusion

- Risk is important in developing countries
- Context: annual lean season
 - Simple experiment: large increase in migration
 - Large consumption effects
- But, what spillovers did this have?
- Examine interaction between risk sharing and migration
 - Townsend: improved risk sharing
 - Structural model: will examine mechanisms further

Seasonality and Monga

Figure 1. Seasonality in Consumption and Price in Rangpur and in Other Regions of Bangladesh

Source: Bangladesh Bureau of Statistics 2005 Household Income and Expenditure Survey

Return to presentation

Summary stats

		Round 1			Round 4	Rou		
mean/sd	Total	Control	Treatment	Total	Control	Treatment	Total	Cont
Total income	24.22	24.21	24.22	43.13	43.11	44.91	62.85	61.1
	(15.95)	(16.42)	(15.73)	(25.32)	(25.44)	(26.66)	(41.47)	(41.1
Wage income	11.65	12.29	11.34	22.77	22.23	23.53	35.80	35.7
-	(12.06)	(13.21)	(11.48)	(20.62)	(20.66)	(22.06)	(39.25)	(50.3
Total consumption	46.67	46.58	46.72	77.95	79.91	80.87	79.48	76.7
	(17.12)	(17.39)	(17.00)	(33.80)	(33.68)	(34.84)	(36.91)	(34.3
Food consumption	35.44	35.42	35.44	52.09	53.83	53.68	49.96	48.9
	(13.37)	(13.50)	(13.32)	(21.74)	(21.62)	(22.13)	(19.34)	(19.6
Non-food consumption	11.01	10.83	11.10	25.09	25.29	26.23	28.85	27.5
	(5.83)	(5.89)	(5.81)	(16.39)	(15.62)	(16.99)	(23.52)	(21.5
Daily per capita calories	2.07	2.06	2.07	2.32	2.32	2.37	2.25	2.22
	(0.51)	(0.50)	(0.51)	(0.64)	(0.62)	(0.65)	(0.66)	(0.65
Household size	3.78	3.80	3.77	4.05	4.06	4.06	4.04	3.98
	(1.30)	(1.35)	(1.27)	(1.43)	(1.47)	(1.48)	(1.46)	(1.45
Migrant household	. ,	. ,	. ,	0.41	0.36	0.44	0.39	0.30
•				(0.49)	(0.48)	(0.50)	(0.49)	(0.46
Number of households	1784	574	1210	1666	533	1133	1614	503

Return to presentation

Consumption effects

Panel A: 2008 Consumption			
		IT*T	
	Cash	Credit	Info
Consumption of Food	61.876**	50.044*	15.644
	(29.048)	(28.099)	(40.177)
Consumption of Non-Food	34.885***	27.817**	22.843
	(13.111)	(12.425)	(17.551)
Total Consumption	96.566***	76.743**	38.521
	(34.610)	(33.646)	(50.975)
Total Calories (per person per day)	106.819*	93.429	-85.977
	(62.974)	(59.597)	(76.337)

Return to presentation

Effect of experiment on consumption and income

Back to presentation

Migrant sample

Table: Treatment effect on financial assistance from and to others, migrant sample

	Would help you	Would help you and you'd ask	Would ask you for help	Would ask you for help and you'd help
Family	0.061 (0.037)	0.056 (0.038)	0.150*** (0.044)	0.139*** (0.042)
Control mean	[0.729]	[0.714]	[0.497]	[0.462]
Friends	0.124***	0.107**	0.127***	0.106**
	(0.046)	(0.047)	(0.041)	(0.041)
Control mean	[0.322]	[0.312]	[0.266]	[0.246]
Other villagers	0.096**	0.081**	0.138***	0.121***
	(0.039)	(0.041)	(0.042)	(0.039)
Control mean	[0.568]	[0.518]	[0.327]	[0.266]
NGOs	0.105**	0.112***		
	(0.041)	(0.040)		
Control mean	[0.538]	[0.497]		
Moneylenders	0.017	0.021		
	(0.030)	(0.029)		
Control mean	[0.191]	[0.171]		

Back to presentation

Non-migrant sample

Table: Treatment effect on financial assistance from and to others, non-migrant sample

_	Would help you	Would help you and you'd ask	Would ask you for help	Would ask you for help and you'd help
Family	0.040	0.036	0.083**	0.080**
Control mean	[0.715]	[0.689]	[0.511]	[0.466]
Friends	0.045	0.042	0.067**	0.072**
Control mean	(0.032) [0.260]	(0.030) [0.234]	(0.032) [0.223]	(0.029) [0.195]
Other villagers	0.051	0.060*	0.082**	0.095***
Control mean	[0.619]	[0.573]	[0.331]	[0.271]
NGOs	0.039	0.042		
Control mean	[0.582]	[0.531]		
Moneylenders	0.032	0.026		
Control mean	[0.181]	[0.158]		

Back to presentation

Savings

Table: Treatment effect on savings

	Everyone		Migrant	sample	Non-migra	ant sample
	Any	Amount	Any	Amount	Any	Amount
Treatment	0.0034	1.00	0.0082	-12.5	-0.0084	18.9
	(0.034)	(24.9)	(0.049)	(37.1)	(0.041)	(33.9)
Control mean	0.57	214.5	0.58	333.6	0.57	273.6
N	1865	1864	950	949	913	913

Return to presentation

Income moment conditions

$$\begin{aligned} &\operatorname{cov}(\Delta y_{i,t},\Delta y_{i,t}) = \frac{2(1-\rho)}{1-\rho^2}\operatorname{var}(\nu) + 2\operatorname{var}(\epsilon^{y}) \\ &\operatorname{cov}(\Delta y_{i,t},\Delta y_{i,t-1}) = -\frac{(1-\rho)^2}{1-\rho^2}\operatorname{var}(\nu) - \operatorname{var}(\epsilon^{y}) \\ &\operatorname{cov}(\Delta y_{i,t},y_{i,t}) = \frac{(1-\rho)}{1-\rho^2}\operatorname{var}(\nu) + \operatorname{var}(\epsilon^{y}) \\ &\operatorname{cov}(\Delta y_{i,t},y_{i,t-1}) = -\frac{(1-\rho)}{1-\rho^2}\operatorname{var}(\nu) - \operatorname{var}(\epsilon^{y}) \\ &\operatorname{cov}(\Delta y_{i,t},y_{i,t-2}) = -\frac{\rho(1-\rho)}{1-\rho^2}\operatorname{var}(\nu) \\ &\operatorname{cov}(\Delta y_{i,t},y_{i,t+1}) = -\frac{\rho(1-\rho)}{1-\rho^2}\operatorname{var}(\nu) \end{aligned}$$

Back to presentation

	Control	Treatment	Difference		
Income variances					
Persistent shocks					
Idiosyncratic	0.008	0.040	0.032		
	(0.015)	(0.015)	(0.019)		
Village-aggregate	0.001	0.016	0.015		
	(0.002)	(0.004)	(0.005)		
Persistence	0.988	0.884	-0.104		
	(0.247)	(0.242)	(0.335)		
Transitory shocks					
Idiosyncratic	0.283	0.253	-0.030		
	(0.064)	(0.065)	(0.036)		
Village-aggregate	0.020	0.003	-0.017		
	(0.007)	(0.003)	(0.007)		
Measurement error	— 0.000 —				
	(0	.066)			
Consumption parameters					
Persistent shock transmissions					
Idiosyncratic	0.242	0.204	-0.037		
	(0.509)	(0.128)	(0.511)		
Village-aggregate	2.000	0.230	-1.770		
	(0.694)	(0.168)	(0.716)		
Transitory shocks transmissions					
Idiosyncratic	0.133	0.073	-0.060		
	(0.076)	(0.044)	(0.066)		
Village-aggregate	0.063	-1.000	-1.063		
	(0.454)	(0.228)	(0.534)		
Measurement error variance	0.080	0.083	0.003		
	(0.008)	(0.008)	(0.013)		

Table: Village insurance estimates

Details of autarky

Before migration: choose best migration I*

$$\widetilde{\Omega}(\mathbf{y}) = \max_{\mathbb{I}} \left\{ \mathrm{E}_{\mathbf{y}_m} u((1 - \mathbb{I})\mathbf{y} + \mathbb{I}\mathbf{y}_m) - \mathbf{d}\mathbb{I} \right\} + \beta \mathrm{E}_{\mathbf{y}'} \widetilde{\Omega}(\mathbf{y}')$$

After migration and y_m realized:

$$\Omega(\mathbf{y},\mathbb{I},\mathbf{y}_m) = u((1-\mathbb{I})\mathbf{y} + \mathbb{I}\mathbf{y}_m) - d\mathbb{I} + \beta \mathbf{E}_{\mathbf{y}'}\tilde{\Omega}(\mathbf{y}')$$

• Note:
$$\tilde{\Omega}(\mathbf{y}) = \mathrm{E}_{\mathbf{y}_m} \Omega(\mathbf{y}, \mathbb{I}^*, \mathbf{y}_m)$$

Return to presentation

No network effects in migration

Dep. Var.: Migration in 2009	OLS	IV	OLS	IV	OLS	IV	OLS	IV
Did any member of the household migrate in 2008?	0.392*** (0.02)	0.410*** (0.145)	0.392*** (0.02)	0.464*** (0.133)	0.393*** (0.021)	0.436*** (0.132)	0.392*** (0.02)	0.476*** (0.13)
Number of friends and relatives who migrated			0.007 (0.01)	-0.006 (0.022)				
Number of friends who migrated					-0.012 (0.025)	-0.048 (0.049)		
Number of relatives who migrated							0.01 (0.011)	0.007
Constant	0.097*** (0.037)	0.088 (0.083)	0.095** (0.038)	0.062 (0.078)	0.098*** (0.037)	0.078 (0.076)	0.095** (0.038)	0.052 (0.077)
Observations	1818	1818	1818	1818	1797	1797	1797	1797
R-squared	0.207	0.206	0.207	0.201	0.208	0.206	0.209	0.202

Table 6. Learning from Own Experience and Others' Experiences in 2009 Re-migration Decision

*** p<0.01, ** p<0.05, * p<0.1 Robust standard errors in parentheses.

Return to presentation

Model

$$V(s_j) = \min_q \left\{ V^{\mathsf{mig}}(s), V^{\mathsf{no mig}}(s)
ight\}$$

where

$$V^{\text{mig}} = \min \sum_{k} \pi_{k} \left[\left(1 - \frac{1}{R} \right) C(h_{jk}) + \frac{1}{R} \sum_{j'} \tau_{j'} V(y_{j'}, w_{j'0'}^{'\text{mig}_{k}}, w_{j'1}^{'\text{mig}_{k}}, ..., w_{j'K'}^{'\text{mig}_{k}}) \right]$$
$$V^{\text{no mig}} = \min \left[\left(1 - \frac{1}{R} \right) C(h_{j0}) + \frac{1}{R} \sum_{j'} \tau_{j'} V(y_{j'}, w_{j'0'}^{'\text{no mig}}, w_{j'1}^{'\text{no mig}}, ..., w_{j'K'}^{'\text{no mig}}) \right]$$

 $\begin{array}{l} q = (\mathbb{I}, h_0, h_k, w_{j'0'}^{\text{imig}_k}, w_{j'k'}^{\text{imig}_k}, w_{j'0'}^{\text{ino mig}}, w_{j'k'}^{\text{ino mig}}) \quad \forall k \in 1, ..., K, j' \in 1, ..., J, \, k' \in 1, ..., K \\ s_j = (y_j, w_{j0}, w_{j1}, ..., w_{jK}) \end{array}$

Model, cont.

(1) ex-post participation constraints:

$$\begin{split} \Omega(y_{j'k'},\mathbb{I}) &\leq w_{j'k'}^{\prime \text{mig}_k} & \forall k,j',k' \\ \Omega(y_{j'},\mathbb{O}) &\leq w_{j'0'}^{\prime \text{mig}_k} & \forall k,j' \\ \Omega(y_{j'k'},\mathbb{I}) &\leq w_{j'k'}^{\prime \text{no mig}} & \forall j',k' \\ \Omega(y_{j'},\mathbb{O}) &\leq w_{j'0'}^{\prime \text{no mig}} & \forall j' \end{split}$$

(2) ex-ante participation constraints:

$$\begin{split} \hat{\Omega}(y_{j'}) \leq \mathbb{I}' \sum_{k'} \pi_{k'} w_{j'k'}^{\text{no mig}} + (1 - \mathbb{I}') w_{j'0'}^{\text{no mig}} & \forall j' \\ \hat{\Omega}(y_{j'}) \leq \mathbb{I}' \sum_{k'} \pi_{k'} w_{j'k'}^{\text{mig}_k} + (1 - \mathbb{I}') w_{j'0'}^{\text{mig}_k} & \forall k, j' \end{split}$$

(3) promise-keeping:

$$\begin{split} w_{j0} = &(1 - \beta)h_{j0} - \beta \sum_{j'} \tau_{j'} (\mathbb{I}' \sum_{k'} \pi_{k'} w_{j'k'}^{\text{no mig}} + (1 - \mathbb{I}') w_{j'0'}^{\text{no mig}}) \\ w_{jk} = &(1 - \beta)h_{jk} - \beta \sum_{j'} \tau_{j'} (\mathbb{I}' \sum_{k'} \pi_{k'} w_{j'k'}^{\text{mig}_k} + (1 - \mathbb{I}') w_{j'0'}^{\text{mig}_k}) \qquad \forall k \end{split}$$

Back to presentation

Did migrants have job lead?

Table 7. Differences in Characteristics Between Migrants in Treatment and in Control Group

	Incentive	Non incentive	Diff
First Episode	47%	64%	17***
	(1.85)	(3.30)	(3.8)
Any Episode	55%	62%	6.3*
	(1.80)	(3.23)	(3.70)

Panel A: Percentage of Migrants that Know Someone at Destination

Panel B: Percentage of Migrants that had a Job Lead at Destination

	Incentive	Non incentive	Diff
First Episode	27%	44%	17***
	(1.64)	(3.41)	(3.55)
Any Episode	31%	44%	12.8***
	(1.67)	(3.30)	(3.56)

Panel C: Percentage of Migrants Traveling Alone

	Incentive	Non incentive	Diff
First Episode	30%	32%	1.6
	(1.70)	(3.20)	(3.6)
Any Episode	37%	37%	0.44
	(1.75)	(3.20)	(3.65)

*** p<0.01, ** p<0.05, * p<0.1. Standard errors are in parentheses.

Return to presentation

People who did well are those who remigrated

Figure 4. Migration Experience in 2008 by re-Migration Status in 2009.

Back to presentation

Meghir, Mobarak, Mommaerts, Morten

Migration and Insurance

Estimated income variances

Table: Income parameter estimates

	Control	Treatment	Difference
Persistent shock variance	0.087	0.148	0.061
	(0.041)	(0.072)	(0.072)
Persistence (ρ)	0.800	0.519	-0.281
	(0.089)	(0.125)	(0.142)
Measurement error variance	0.215	0.149	-0.066
	(0.051)	(0.075)	(0.080)

Estimation of LC model

- ► Set β = 0.9
- Use income process for control villages
- Estimate
 - Coefficient of relative risk aversion
 - Variance of measurement error in consumption
- Moments
 - Risk-sharing beta
 - Observed variance of consumption

Estimation results

Table: Fit of model to data: control

	Data	Model
Targeted moments		
Risk-sharing beta	0.19	0.19
Variance of consumption	0.13	0.13
Estimated parameters		
Estimated coeff. relative risk aversion		1.12
Estimated measurement error variance (cons)		0.07

Notes: Estimated on data from control villages only.

Model predicts improvement in risk sharing

Table: Out-of-sample predictions: treatment

	Data	Model
Risk-sharing beta	0.16	0.06
Variance of consumption	0.13	0.09
Estimated coeff. relative risk aversion		1.12
Estimated measurement error variance (cons)		0.07

Notes: Out-of-sample predictions on treatment villages, using parameters estimated on data from control villages only.

Mechanics of the model: comparative statics

