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Abstract

This paper proposes a decision-theoretic framework for experiment design. We model
experimenters as ambiguity-averse decision-makers, who make trade-offs between sub-
jective expected performance and robustness. This framework accounts for experi-
menters’ preference for randomization, and clarifies the circumstances in which ran-
domization is optimal: when the available sample size is large enough or robustness
is an important concern. We illustrate the practical value of such a framework by
studying the issue of rerandomization. Rerandomization creates a trade-off between
subjective performance and robustness. However, robustness loss grows very slowly
with the number of times one randomizes. This argues for rerandomizing in most
environments.
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1 Introduction

The proliferation of experiments in academia, business, and public policy has been accom-

panied by spirited debates about best practices for experiment design and the statistical

analysis of experimental results. Topics of debate include pre-registration of experiment de-

signs, pre-analysis plans, the pros and cons of rerandomization, clustering, stratification, and

statistical significance testing (Bruhn and McKenzie, 2009; Deaton, 2010; Duflo et al., 2008;

Humphreys et al., 2013; Imbens, 2010; Olken, 2015; Athey and Imbens, 2016; Benjamin et

al., 2017). At the heart of these debates are differing—usually implicit—models of knowledge

generation and how people interpret experimental evidence. This paper seeks to provide a

decision-theoretic framework that may be able to guide, and help resolve, these debates. We

show that our framework is consistent with important elements of observed experimental

practice. We then use our framework to shed light on one of the less contentious open ques-

tions of experimental design, rerandomization. Finally, we discuss how our framework might

be used to address other questions about experiment design.

Unfortunately, models of experimentation and information acquisition fail to explain why

researchers (almost always) run randomized controlled trials (RCTs; see Kasy, 2016).1 This

is due to modeling decision-makers as subjective expected utility maximizers (Savage, 1954).

As RCTs are mixed strategies over experimental assignments, they can never be strictly

optimal for such a decision-maker.

To overcome this limitation, we model a Bayesian experimenter facing an adversarial

audience. This is equivalent to assuming an ambiguity-averse decision-maker with standard

maxmin preferences (Gilboa and Schmeidler, 1989). In our formulation, the decision-maker

maximizes a mixture of her own subjective expected utility term and the welfare of an

adversarial audience with non-common priors. Examples of such audiences abound: the

1For seminal contributions to the literature on experimentation and information acquisition Rothschild
(1974); Grossman and Stiglitz (1980); Aghion et al. (1991); Bergemann and Välimäki (1996); Persico (2000);
Bergemann and Välimäki (2002, 2006).
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Food and Drug Administration for drug trials, seminar audiences and journal referees for

research papers, and governments or NGOs for development proposals.2

The paper reports two main sets of results. The first set of results shows that RCTs can be

optimal for a decision-maker facing an adversarial audience, and clarifies the circumstances

in which this is the case. If the decision-maker places non-zero weight on satisfying her

adversarial audience, then, for sufficiently large sample sizes, it is always strictly optimal for

the decision-maker to use a RCT. Indeed, as the sample size N grows large, RCTs permit

robust prior-free inference, and achieve assignment losses of order 1/
√
N . On the other hand,

deterministic experiments are generically strictly optimal when the sample size is small and

the decision-maker puts sufficiently high weight on her subjective expected utility.

This set of results accords with the observed heterogeneity of experimental practice. Ran-

domized experiments tend to be used by decision-makers who put a high value on convincing

an adversarial audience (scientists, pharmaceutical companies), or when the decision-maker

can afford large samples (A/B testing in online marketing). Whenever data points are expen-

sive and the decision-maker puts little weight on satisfying an adversarial audience, optimal

experiments are deterministic as such a design optimizes the informational value of each

acquired data point (new product launches in select markets, preliminary medical research

on diseases that would otherwise result in quick and certain death).

The second set of results applies our framework to the question of whether experimenters

should rerandomize to improve covariate balance between treatment and control groups.

Rerandomization draws multiple treatment assignments, then chooses the one that maxi-

mizes balance. For example, a medical researcher may want to ensure that treatment and

control groups are similar in terms of gender, age, race, and baseline health variables such

as blood pressure and weight (Morgan and Rubin, 2012). Despite the ease of using reran-

domization to improve balance, researchers are concerned that it may adversely affect the

2The audience could also be another side of the decision-maker herself, as ambiguity aversion is a natural
way to model self-doubt.
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reliability of findings (Bruhn and McKenzie, 2009).

The trade-offs at the heart of rerandomization are succinctly captured in our framework.

Successive rerandomizations improve balance, as captured by the subjective expected util-

ity component of preferences. However, rerandomization reduces robustness, as captured

by the adversarial component of preferences. In the extreme case where the allocation is

rerandomized until perfect balance is achieved, the allocation is effectively deterministic

and the adversarial term is always bounded away from first-best. In contrast, robustness

losses are vanishing in sample size N when the number of rerandomizations grows linearly

or sublinearly in N .

Our framework builds on a long line of work in statistics, starting with Wald (1950).

Variants of Wald’s framework have more recently been used in economics and econometrics

to study questions of identification and model uncertainty (Manski, 2004, 2009; Kitagawa and

Tetenov, 2015; Marinacci, 2015). However, prior work has not sought to provide a positive

and normative model of experimenters.3 The prior literature falls into two broad groups:

one focuses on ambiguity aversion, the other on regret minimization. While our main results

are stated in an ambiguity-aversion framework, in Section 5 we show they extend to a regret-

minimization framework. This is important as Tetenov (2012) shows that asymmetric regret

minimization is sufficient for explaining the standard practice of null-hypothesis statistical

testing (NHST) using t-statistics. Our basic insights therefore apply directly to classical

statistical inference as well as to our more conventional decision-theoretic model.

The paper is structured as follows. Section 2 introduces our framework. Section 3 delin-

eates the forces that determine whether running a randomized or deterministic experiment

is optimal. Section 4 studies the trade-offs involved in rerandomization. Section 5 shows

that our results extend to reference-dependent preferences, better suited to explain the use

of t-statistics in decision-making. Section 6 discusses other applications for our framework,

3This paper is also related to the dormant literature in multi-Bayesian statistical decision theory (Weera-
handi and Zidek, 1981, 1983). In these models, Bayesians with conflicting preferences adopt random decision
rules, rather than randomized experiments.
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including subgroup analysis. Appendix A explores the use of reference-dependent preferences

as a foundation for t-statistics. Proofs are contained in Appendix B. Appendix C presents

simulations.

2 A Framework for Studying Experiment Design

Decisions and payoffs. A decision-maker chooses whether or not to implement a policy

that provides a treatment τ ∈ {0, 1} to a unit mass of individuals. For simplicity, we assume

that the final policy choice a ∈ {0, 1} is all-or-nothing and sets τ = a for all individuals.4

Potential outcomes for an individual with treatment status τ are random variables Y τ ∈
{0, 1}; Y = 1 is referred to as a success. Each individual has observable covariates x ∈ X ⊂
Rm that affect the distribution of outcomes Y . X is finite, and the distribution q ∈ ∆(X) of

covariates in the population is known and has full support. The probability of success given

covariate x is denoted by pτx ≡ prob(Y τ = 1|x), and, conditional on x, outcomes are i.i.d.

The state of the world is described by the finite-dimensional vector p = (p0
x, p

1
x)x∈X ∈

[0, 1]2X ≡ P of success probabilities pτx conditional on treatment status τ ∈ {0, 1} and

covariates x. Note that state-space P is compact, convex, and finite-dimensional. Given a

state p and a policy decision a ∈ {0, 1}, the decision-maker’s payoff u(p, a) is

u(p, a) ≡ EpY a =
∑
x∈X

q(x)pax.

Although covariates x are observable, our framework implicitly allows for unobservable

characteristics. Denoting unobserved characteristics by z, we would have pτx =
∫
pτx,zdF (z|x).

Large shifts in correlations between x and z are captured by allowing the mapping x 7→ px

to be discontinuous in x.

4See Section 6 for a discussion of sub-group analysis and targeting.
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Experiments and strategies. To maximize her odds of making the correct policy choice,

the decision-maker can run an experiment on N participants. For simplicity, we assume that

N is even and exogenously given. Formally, an experiment is a tuple e = (xi, τi)i∈{1,...,N} ∈
(X × {0, 1})N ≡ E. Experiment e generates outcome data y = (yi)i∈{1,...,N} ∈ {0, 1}N ≡ Y ,

with yis independent realizations of Y τi
i given (xi, τi). Throughout, we assume thatN < 2|X|,

even as we increase N . A natural special case is unique individuals: |X| = N and q(X) = 1
|X| .

This corresponds to settings where subjects are fixed, and the decision-maker must choose

a treatment assignment.

The decision-maker’s strategy consists of both an experimental design E ∈ ∆(E), which

is a mixed strategy over experimental assignments, and an allocation rule α : E × Y →
∆({0, 1}), which maps experimental data (e, y) to policy decisions a ∈ {0, 1}. We denote by

A the set of such mappings.

Preferences. We consider an ambiguity-averse decision-maker with standard maxmin

preferences (Gilboa and Schmeidler, 1989). We reinterpret these preferences in a way that

is convenient for comparative static exercises. Under this interpretation, the decision-maker

has her own prior h0 and faces an adversarial audience of Bayesian stakeholders with non-

common priors.5 She chooses a strategy (E , α) to solve

U(E , α) ≡ λEh0,E [u(p, α(e, y))] + (1− λ) min
h∈H

Eh,E [u(p, α(e, y))], (DP)

where H is a convex set of priors h ∈ ∆(P ) over states p ∈ P , and represents the set of

priors belonging to members of the audience. The decision-maker places weight λ on her

own subjective utility, and weight 1− λ on the utility of her audience.6 When λ = 1, these

5If the audience entertained a common prior h, then the decision problem would boil down to subjective
expected utility maximization for the mixed prior λh0 + (1− λ)h.

6Whenever h0 ∈ H, increasing 1 − λ also corresponds to increasing the set of priors that the decision-
maker entertains as plausible. If audience members have veto power and enjoy a common outside option,
then 1−λ

λ is the Lagrange multiplier placed on the audience’s individual rationality constraint.

6



preferences coincide with standard subjective expected utility maximization. We sometimes

refer to this case as Bayesian.

Equivalent experiments. As successes are independent conditional on covariates, ex-

periments that differ only by a permutation of participants with identical covariates are

equivalent from a decision-making perspective.

Definition 1 (equivalent experiments). Two experiments e = (xi, τi)i∈{1,...,N} and e′ =

(x′i, τ
′
i)i∈{1,...,N} are equivalent, denoted by e ∼ e′, if there exists a permutation σ : {1, . . . , N} →

{1, . . . , N} of the participants’ labels such that (xi, τi) = (x′σ(i), τ
′
σ(i)) for all i. The equivalence

class of an experiment e is denoted by [e].7 We denote by [E] the partition of possible experi-

ments in equivalence classes. We say that two experimental designs E and E ′ are equivalent,

denoted by E ∼ E ′, if they induce the same distribution over [E].

Lemma 1. Whenever E ∼ E ′, max
α∈A

U(E , α) = max
α∈A

U(E ′, α).

All proofs can be found in Appendix B.

Standard RCTs. As many of our results deal with randomized controlled trials (RCTs),

it is useful to define these explicitly. A standard RCT that assigns a share π ∈ (0, 1) of

participants to treatment τ = 1, corresponds to a strategy (Erct, αrct):

• Erct samples N exchangeable participants labelled by i ∈ {1, · · · , N}, with covariates

(xi)i∈{1,··· ,N} drawn according to the distribution of observable covariates q;

• Erct assigns treatment τi = 1i≤πN ;

• αrct(e, y) ≡ 1ŷ1≥ŷ0 , where ŷτ ≡ ∑N
i=1 yi1τi=τ

/∑N
i=1 1τi=τ is the mean outcome for

participants with treatment status τ .

7It is convenient to include distributions E with support in [e] in the equivalence class of e.
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2.1 Assumption about the Audience

We impose the following limited extrapolation condition on X, N , and H: Denote by

pa ≡ ∑x∈X q(x)pax the expected probability of success given policy a ∈ {0, 1}. Given an

experiment e = (τi, xi)i∈{1,··· ,N}, denote by pe ≡ (pτixi)i∈{1,··· ,N} the subset of success rates for

participants in the experiment. Vector pe is an upper bound to the information generated

by experiment e in the sense of Blackwell (1953).

Assumption 1 (limited extrapolation). There exists ξ > 0 such that, for all e ∈ E, there

exists a prior h ∈ arg minh∈H Eh(maxa∈{0,1} p
a) such that, for almost every pe,

min

{
Eh
[

max
a∈{0,1}

pa − p0
∣∣pe] , Eh [ max

a∈{0,1}
pa − p1

∣∣pe]} > ξ.

This imposes two important constraints on the members of the adversarial audience.

First, the information from any experiment is insufficient to fully convince every single

audience member (represented by some prior h ∈ H) of the correct policy a ∈ {0, 1}.
Second, audience members cannot be arbitrarily pessimistic; they cannot be certain that

p1 = p0 = 0.

Note that the requirement that N < 2|X| ensures that Assumption 1 can be satisfied.

We show in Section 5 that Assumption 1 is dispensable when the decision-maker exhibits

regret aversion.

3 Optimal Design and Randomization

3.1 Bayesian Experimentation

When λ = 1, the decision-maker is a standard subjective expected utility maximizer. In this

case, it is known that deterministic experiments are weakly optimal. In fact, we show that
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for generically every prior—that is, for an open and dense set of priors under an appropriate

distance—deterministic experiments are strictly optimal when λ is close to 1.8

Proposition 2 (near-Bayesians do not randomize). If λ = 1, then for every prior h0, there

exists a deterministic experiment e∗ solving (DP).

For generically every prior h0, there exist λ ∈ (0, 1) and a unique equivalence class of

experiments [e∗] such that for all λ > λ, a (potentially mixed) experiment E ∈ ∆(E) solves

(DP) if and only if support E ⊂ [e∗].

In recent work, Kasy (2016) uses a similar result to argue that RCTs may be suboptimal.

However, his key point is that deterministic assignments are much more likely to achieve

covariate balance between treatment and control groups. Instead, we suggest that Propo-

sition 2 shows the limits of subjective expected utility maximization as a positive model

of experimenters. We argue that the decision problem defined by (DP) is more successful

at explaining the range of information acquisition strategies observed in practice. Later, in

Section 4, we study rerandomization as a non-deterministic alternative to improving balance.

3.2 Adversarial Experimentation

We now examine the case where the experimenter cares about her audience’s preferences.

Proposition 3. Take weight λ ∈ (0, 1) as given. There exists N such that for all N ≥ N ,

any optimal experiment is randomized. More precisely, the following hold:

(i) For any N , any optimal experiment E∗ satisfies

max
α∈A

min
h∈H

Eh,E∗ [u(p, α(e, y))] ≥ min
h∈H

Eh
[

max
a∈{0,1}

u(p, a)

]
−
√

ln 2

N
.

8We use the uniform norm on distributions: d(h, h′) ≡ sup A⊂P
A meas.

|h(A)− h′(A)|.

9



(ii) For any N , all deterministic experiments e ∈ E are bounded away from

first-best:

∀e ∈ E, max
α∈A

min
h∈H

Eh,e [u(p, α(e, y))] < min
h∈H

Eh
[

max
a∈{0,1}

u(p, a)

]
− ξ,

where ξ is defined in Assumption 1.

Point (i) shows that the efficiency loss of the optimal experiment compared to the first-

best decision is bounded above by a term of order 1/
√
N . Point (ii) shows that the loss

from a deterministic experiment is bounded below by ξ, where ξ is bounded away from zero,

and independent of N . Thus, as N grows, the optimal experiment cannot be deterministic;

therefore, it must be randomized.

The rationale for randomization can be understood by observing that the decision-maker

is playing a zero-sum game against nature. The decision-maker first chooses an experimental

design and a decision rule. Nature then picks the prior which maximizes the chance of the

experimenter choosing the wrong policy, given the decision-maker’s experiment design. If

there is a known pattern in the choice of experimental assignments, nature can exploit it

to lower the decision-maker’s payoff. Randomization eliminates patterns that nature can

exploit. This is related to the fact that ambiguity-averse agents may have preferences for

randomization even if they exhibit risk-aversion over known lotteries (Saito, 2015).9

3.3 RCTs as a Rule of Thumb

A corollary of the proof of Proposition 3 is that the standard RCT (Erct, αrct) (defined in

Section 2) provides a near optimal solution to decision problem (DP).

9A key modeling choice here is that nature cannot observe the outcome of the decision-maker’s random-
ization before picking a prior. Kasy (2016) assumes that nature observes the outcome of the experimenter’s
randomization and then picks a prior, which renders randomization useless. We believe our assumption is
more consistent with research practice: Referees typically complain about research design, not about why
a particular observation ended up in the treatment or control group. The exception is when there is an
extreme imbalance between treatment and control on a covariate the referee considers important.
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Corollary 1. Experimentation policy (Erct, αrct) is such that for all priors h ∈ ∆([0, 1]X),

Eh,Erct [u(p, αrct(e, y))] ≥ Eh
[

max
a∈{0,1}

u(p, a)

]
−
√

ln 2

2πN
,

where π ≡ min{π, 1− π}.

As this result holds for every prior h, standard RCTs allow approximately optimal

decision-making for both Bayesian and ambiguity-averse decision-makers. Thus, an RCT

can be interpreted as a rule-of-thumb that avoids the complexity of specifying the space of

priors in decision problem (DP) and deriving an optimal solution.

Note that Corollary 1 holds even though there may be arbitrarily many covariates, some

of which have a significant impact on treatment effects, and exact balance cannot be ensured.

As outcomes are bounded, it is not possible for rare—and therefore hard to balance—

covariate realizations to have a substantial impact on payoffs. Balance in expectation is

sufficient to guarantee approximately optimal decision-making.

3.4 Positive Implications

Figure 1 maps out some positive implications of Propositions 2 and 3 for experiment design.

When sample points are scarce, or when the decision-maker does not put much weight

on satisfying her audience (λ close to 1), the optimal experiment will be deterministic,

driven by prior h0. That is, the experimenter will focus on assigning treatment and control

observations to the participants from whom she expects to learn the most. This is the case,

for example, when a firm is implementing a costly new process at a few production sites:

The firm will focus on the places where it can learn the most. This may, for example,

involve assigning treatment to sites where success is the least likely (Banerjee et al., 2017).

Similarly, early stage medical research often does not feature randomization—especially when

treating conditions known to result in severe disability or death.10 In this case, there is no

10For recent examples, see Harmon (2016) and Yuhas (2016).
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Figure 1: When to randomize? Theory matches broad patterns.
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adversarial audience. Scientists are trying to learn whether a particular research direction is

worth exploring.

When the decision-maker must instead satisfy a sufficiently adversarial audience, or she

has a sufficiently large sample, she will randomize. The former is the case in scientific

research. The latter is the case for firms doing A/B testing online. Although the firm only

needs to convince itself of the effectiveness of a particular ad or UI design, observations

are so plentiful that randomization is used to effectively address internal concerns about

robustness. This is also the case for later stage medical research seeking regulatory approval:

government regulators and investors form the adversarial audience for pharmaceutical and

medical device companies.

4 Rerandomization as a Refined Rule-of-Thumb

Having established that our framework makes reasonable positive predictions about exper-

imental practice, we now use it to shed light on an open question of experimental design:
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rerandomization. As noted in Section 3.3, a standard RCT is only a near-optimal solution

to (DP). In particular, it may sometimes result in an unbalanced sample that permits little

real opportunity for learning.

This could be avoided by computing an optimal solution to (DP). For appropriate prob-

lems, the solution is a distribution over possible assignments that puts greater weight on

balanced assignments, and may put zero weight on excessively unbalanced assignments.

This distribution maintains sufficient randomization to ensure robust decision-making. Un-

fortunately, it is implausible that one could carefully and reliably elicit full preferences from

experimenters and their audience at the onset of an experiment. Computing an optimal so-

lution to (DP) is a tricky exercise, and a well designed rule-of-thumb may be more valuable.

In practice, experimenters resolve this difficulty through rerandomization: they repeat-

edly randomize until they obtain an assignment that satisfies their balance objectives. As

Bruhn and McKenzie (2009) highlight, this practice is widespread, poorly theorized and—

in principle—a substantial deviation from one-shot randomization. Our framework can be

used to clarify the trade-offs involved in rerandomization. We argue that, used in moder-

ation, rerandomization is a valuable rule-of-thumb that provides a flexible way to improve

balance—and/or reflect ancillary design objectives—without sacrificing significant decision-

making robustness. Compared to other common approaches to ensuring balance, it has the

added benefit of carefully controlling losses in robustness.

4.1 K-rerandomized Experiments

The objective of the decision-maker, as described by (DP), can be rewritten as

max
E∈∆(E)

λEE [B(e)] + (1− λ)R(E).

Decision problem (DP) sets B(e) ≡ Eh0 [u(p, α(e, y))|e], capturing “balance”, and R(E) ≡
minh∈H Eh,E [u(p, α(e, y))], capturing robustness. We re-write (DP) in this form to emphasize
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that our results hold for any objective function B(e) the experimenter, or other stakeholders,

might have.

With this mapping, we define a K-rerandomized experiment EK as follows:

1. Independently draw a set of K assignments {e1, · · · , eK} with each ek = (xi, τi,k) such

that a fraction π ∈ (0, 1) of participants receives treatment τ = 1.

2. Select the assignment e∗K ∈ argmaxe∈{e1,··· ,eK}B(e) that maximizes balance, breaking

ties with a uniform draw.

3. Run experiment e∗K , generating outcomes yK .

4. Policy is chosen according to αrct(e∗K , yK) ≡ 1ŷ1K≥ŷ0K , where ŷτK is the mean outcome

for participants with treatment status τ .

Rerandomization protocols may also use a stopping time to endogenously pick the num-

ber of randomizations (Morgan and Rubin, 2012). Provided the stopping time has an upper

bound K, all our results apply for this bound. However, our results show open-ended stop-

ping times may lead to significant robustness losses.

4.2 The Trade-off of Rerandomization

For any balance function, the gains from rerandomization are immediately apparent.

Remark 1. B(e∗K) first-order stochastically dominates B(e∗K−1).

The value of balance is formally and intuitively clear. In the context of statistical infer-

ence, Morgan and Rubin (2012) study the value of rerandomization when B(e) = −M(e),

in which M(e) is the Mahalanobis distance between the treatment and control samples.

They show that rerandomization leads to significantly more precise estimates of treatment

effects when outcomes come from a linear Gaussian model.11 Bungi et al. (2016) show, more

11The Mahalanobis distance—defined as M(e) ≡ (x̂1− x̂0)′[cov(x̂1− x̂0)]−1(x̂1− x̂0)—is commonly used in
multivariate matching (Rubin, 1980; Cochrane and Rubin, 1973; Rubin, 1979). Outcomes follow a Gaussian
linear model when they are defined by Y τii = 〈xi, β〉+ δτi + σεi, with εi ∼ N (0, 1).

14



generally, that balance from symmetric stratification procedures also substantially increases

precision.

The Cost of Rerandomization. Although rerandomization provides clear benefits in

terms of improved balance, there are common, but vague, concerns about its potential costs.

As Bruhn and McKenzie (2009) document, this leads many researchers to use rerandomiza-

tion but not report it. Our framework clarifies the issue by showing that rerandomization can

reduce robustness, but that this cost is relevant only when the number of rerandomizations

is very large:

Proposition 4. There exists ρ > 0 such that for all N , if K ≥ 2N , then

max
α

min
h∈H

Eh,EK [u(p, α(e, y))] < min
h∈H

Eh
[

max
a∈{0,1}

u(p, a)

]
− ρξ.

Intuitively, when K is sufficiently large, the allocation becomes essentially deterministic.

Proposition 3 implies that this precludes first-best robustness.12 However, the number of

rerandomizations K needed to cause fixed losses in robustness is exponential in the sample

size.

A moderate number of rerandomizations has little impact on robustness:

Proposition 5. Given K ≥ 2, consider a rerandomized experiment EK assigning treatment

to a proportion π ∈ (0, 1) of participants. Then for all h ∈ H,

Eh,EK [u(p, αRCT (e, y))] ≥ Eh
[

max
a∈{0,1}

u(p, a)

]
−
√

lnK

πN
,

where π ≡ min{π, 1− π}.
12The process by which a realized experiment e is reached is irrelevant for a Bayesian: h0(p | e, y, e ∼ δe) =

h0(p | e, y, e ∼ Erct) = h0(p | e, y, e ∼ EK), in which δe denotes the deterministic experiment e.
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As the additional loss from rerandomization is of order
√

lnK, which is less than 5 for

K ≤ 1010, K linear in N does not change the order of magnitude of robustness losses. This

suggests the following guideline:

Suggested Guideline. Set K ≤ N .13

Remark 1 and Propositions 4 and 5 clarify the pros and cons of rerandomization, but

do not provide a hard and fast rule. Our suggested guideline defines a range of acceptable

behavior that limits potential robustness-losses from rerandomization. Within this range,

different decision-makers may choose differently. A Bayesian decision-maker using the linear

Gaussian model studied by Morgan and Rubin (2012) should choose the largest possible

number of rerandomizations. An ambiguity-averse decision-maker entertaining a symmetric

set of possible priors may prefer to randomize only once (see Appendix C.1 for a stylized

numerical example).

4.3 Other Approaches for Increasing Balance

Rerandomization can be seen as an algorithm to bias the distribution of experimental assign-

ments towards high-balance ones. It is simpler than many matching algorithms, especially

when one wants to establish balance on multiple continuous covariates. Moreover, as our

results hold for any balance function B(e), they are also true if this function is specified after

seeing the K possible rerandomizations. As we highlight in Section 6, this degree of freedom

may be very useful in practice as a way to respond to the preferences of stakeholders and

implementation partners.

It is instructive to relate rerandomization to an experiment design that ensures balance

in a more direct way: by randomizing conditional on strata. Formally, the experimenter

first defines a set of acceptable assignments E† ⊂ E. Then, an assignment is drawn from

13The probability that the rerandomized assignment will be in the top 5% most balanced is 1−0.95K > 99%
when K = 100. Thus, experimenters may wish to limit the number of rerandomizations to 100, even if N is
much larger (Banerjee et al., 2017).
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E† with uniform probability. This procedure involves two difficulties. First, if E† is de-

fined implicitly—for example, the set of all assignments whose balance is above a certain

threshold—computing it may be quite difficult. Second, this procedure obfuscates potential

robustness costs. Indeed, if the set of acceptable assignments E† turns out to be small,

the intuition underlying Proposition 4 suggests that robustness will be bounded away from

first-best.14

Our framework can be used to explicitly evaluate the potential robustness costs of such

approaches. Note that the procedure described above sets B(e) ≡ 1e∈E† . Define EE† as the

randomized experiment that picks an assignment e ∈ E† with uniform probability. Finally,

let pE† > 0 denote the probability that a uniformly chosen assignment e ∈ E belongs to

E†. Note that computing p† may be difficult, especially for complex or opaque matching

algorithms. In that case, Monte Carlo simulations may provide an approximate value for

pE† .

Corollary 2. For all h ∈ H,

Eh,EE† [u(p, αRCT (e, y))] ≥ Eh
[

max
a∈{0,1}

u(p, a)

]
− min

K†∈N

1

1− (1− p†)K†

√
lnK†
πN

This implies that a stratification or matching procedure will come at a limited cost of

robustness if an acceptable assignment can be reached with high probability within a small

number of rerandomizations.

5 Extension to Reference Dependent Preferences

14This may occur when an experimenter uses a matching algorithm to achieve balance across several
continuous covariates. Note that stratification and matching can considerably improve the precision of
estimates (Athey and Imbens, 2016; Bungi et al., 2016). However, it is important to assess whether a proposed
design limits the set of possible assignments so severely that it causes significant losses in robustness.
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It has been shown that decision problem (DP) does not rationalize the use of null-hypothesis

statistical testing (NHST) using t-statistics. For this, we need reference-dependent prefer-

ences with the status quo as the reference point (Tetenov, 2012).15 As most researchers use

NHST, it is important to extend our main results to such reference-dependent preferences.

Interestingly, this extension also allows us to dispense with the limited extrapolation

assumption. One of the key features of this assumption is to ensure that learning is still

possible even for the worst-case prior for any experimental design. Without this constraint,

the worst prior would always put unit mass on the probability of success being zero, re-

gardless of the policy choice. However, when considering regret minimization, nature favors

environments in which the decision-maker can make an incorrect decision—otherwise there

is no possibility of regret. As a result, under regret aversion, there is always a value for

information even at the unconstrained worst-case prior.

Let ∆a ≡ pa − p1−a denote true expected outcome differences between action a ∈ {0, 1}
and the alternative. We consider a decision-maker who seeks to solve

max
E,α

λEh0 [wα(∆α)] + (1− λ) min
h∈H

Eh[wα(∆α)]. (DP′)

in which, for all a ∈ {0, 1},

wa(∆
a) = ∆a + κa ×∆a1∆a<0, with κa > 0.

In words, the decision-maker cares about improvements rather than absolute levels, and is

κa > 0 implies she is particularly averse to making wrong choices. Note that H in (DP′) is

now the set of all priors over P . For simplicity, we assume N = |X|, so that each subject is

unique.16

15See Appendix A as well as Tetenov (2012) for micro-foundations of the standard approach to NHST.
16Our results extend to the case when N < 2|X|, as before. Moreover, our analysis applies more generally

to functions wa that are strictly increasing and concave in ∆a. We restrict wa to the form above to clarify
the relationship with the prior literature.
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We show in Appendix A that this class of preferences rationalizes the use of t-statistics

whenever κ1 > κ0, that is, when a preference for success is not symmetric with respect to

the policy choice a. In addition it coincides with pure regret-averse preferences when κ0 and

κ1 grow large.17

The conditions under which deterministic and randomized experiments are optimal are

qualitatively unchanged:

Proposition 6. Consider a decision-maker solving Problem (DP′):

(i) For generically every prior h0, there exists λ ∈ (0, 1) such that, for all λ > λ,

it is optimal to use a deterministic experiment.

(ii) For every h0 and every λ ∈ (0, 1), as N becomes arbitrarily large, determin-

istic experiments remain bounded away from efficiency, and randomized experi-

ments are strictly optimal.

Additionally, the near-optimality of K-randomized trials continues to hold:

Proposition 7. There exists M > 0 such that for every prior h ∈ H,

Eh
[
wa(∆

a)
∣∣ e ∼ EK , a ∼ αRCT

]
≥ Eh

[
max
a∈{0,1}

wa(∆
a)

]
−M

√
lnK

πN
.

6 Discussion

The ambition of this paper is to propose a decision-theoretic framework that takes seriously

the concerns of experimenters, and can help clarify current experimental practices as well as

resolve open debates. In this final section, we discuss further implications of our framework,

and preview other possible applications.

17Regret-averse preferences have received extensive attention from statisticians and econometricians (Wald,
1950; Manski, 2004, 2009; Kitagawa and Tetenov, 2015). However, failure of transitivity can reduce their
appeal (see, for example, Marinacci, 2015).
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Why randomize? Our analysis clarifies the circumstances in which randomization is opti-

mal: when robustness matters and the sample size is large. When robustness considerations

are motivated by an adversarial audience with non-common priors, randomization can be

interpreted as a way to let parties with diverging priors agree on a process. Indeed, stake-

holders with divergent priors need not be satisfied by any given deterministic experiment:

there may always exist a prior under which the experiment’s design is flawed. In contrast,

running a randomized experiment guarantees each stakeholder that, in expectation, the final

decision will be optimal from her perspective. However, there is a tension here: when the

assignment is revealed, some stakeholders may wish to change it ex post.

Whether robustness is motivated by an external audience, or internal doubts, our analysis

highlights the importance of actually randomizing. An experimenter that adopts a protocol

that is only “nearly” random, such as assignment based on time of day of an experimental

session (see Green and Tusicisny, 2012, for a critique), or the first letter of an experimental

subject’s name (as was the case in the deworming study of Miguel and Kremer, 2004; see

Deaton, 2010 for a critique), can always find a skeptical prior in her audience. Randomization

provides a defense against the most skeptical priors; near-randomization does not.

Rerandomization as an additional degree of freedom. Our framework also clarifies

the trade-offs of rerandomization: it improves subjective balance, but comes at the expense of

robustness. However, the loss in robustness from rerandomization grows slowly in the number

of times we rerandomize. As a result, applied in moderation, rerandomization provides a

useful degree of freedom for experimenters who have subjective preferences over balance.

While pre-specifying the objective function used in rerandomization has the added benefit

of permitting randomization inference tests (Fisher, 1935; Morgan and Rubin, 2012; Young,

2016,; see Appendix C.2.3 for examples), we emphasize that it is not a requirement for our

results to hold. Indeed, Proposition 5 remains true if the balance function B(e) is specified

after experimental assignments {e1, · · · , eK} are drawn.
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This suggests a novel use of rerandomization: as a way to let stakeholders, such as imple-

mentation partners, express preferences over assignments. The experimenter may draw K

treatment assignments in advance and let her implementation partners pick their preferred

assignment. This process could be used with any stakeholder, including regulators, funders,

or the communities from which experimental participants are drawn. These stakeholders

often have equity concerns and distributional preferences. They may further care about

targeting treatment to those they believe will benefit the most, or may simply dislike ran-

domization and wish to exert some control over assignment. The ability to at least partially

accommodate the preferences of stakeholders by letting them pick their preferred assignment

among K options may help build good will and ensure cooperation.18

Extending the framework: Subgroup analysis. While we believe that our framework

is well suited to extensions designed to answer other important questions about experimental

practice. We illustrate this by providing an outline of how our framework may be extended

to address another important methodological question: sub-group analysis.

Consider a partition of the population into subgroups G ∈ G where G is a partition of

X. Treatment and policy α may now be targeted by subgroup. Assignment α becomes

a mapping from experimental outcomes (e, y) to a distribution over targeted assignments

a = (aG)G∈G ∈ {0, 1}G. The decision-maker’s problem is now:

max
E,α

λEh0,E,α[u(p, a)] + (1− λ) min
h∈H

Eh,E,α[u(p, a)] (DP′′)

where u(p, a) =
∑

G∈G
∑

x∈G q(x)paGx .

This framework can provide guidelines on how finely to target treatment as a function

of the data and sample size. An ambiguity-averse decision-maker would not want to tailor

assignments based on within-group treatment effects when the number of groups G ∈ G is

18Constraints from implementation partners led Miguel and Kremer (2004) to assign treatment alphabet-
ically, eliciting concerns from Deaton (2010).

21



of order N . If treatment effects are constant across groups, targeting leads to inefficient

treatment choices for a non-vanishing share of the population. A Bayesian decision-maker

putting sufficient weight on treatment effects being constant or correlated across groups

would come to the same conclusion. On the other hand, if the number of groups is small

compared to N , and the decision-maker’s subjective prior entertains the possibility that the

optimal treatment is different across groups, then the solution to (DP′′) will target by group

(and approach first-best efficiency).

More generally, we believe that related decision-theoretic frameworks are needed to ad-

dress the trickier aspects of experiment design. For example, if a random, uninformed

statement is included in a pre-analysis plan, should this affect inference? It seems logical

that the answer would be no, but this calls into question the entire exercise. Or, why should

formulating an additional hypothesis affect our confidence in the analysis of others? Yet,

this is the impact of corrections for multiple hypotheses testing. These questions, as well as

others, await a rigorous treatment with solid decision-theoretic foundations.
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Online Appendix—Not Intended for Publication

A Rationalizing t-statistics

A primary goal of this paper is to provide a suitable positive model of experimental practice

that can be used to examine and guide innovations. However, decision problem (DP) is

incompatible with hypothesis testing using t-statistics, a mainstay of experimental practice.

The raw treatment effect—that is, the difference in average outcomes ∆1 ≡ p1 − p0—is

sufficient for near-optimal decision-making.

This appendix describes a class of experimenter preferences that rationalize the use of

t-statistics. Hypothesis testing favors implementation of the status quo (or null) treatment

a = 0. We first clarify that standard preferences (including risk-aversion) do not rationalize

t-statistics. We then turn to reference-dependent preferences.

Ambiguity aversion does not play a role in this argument. We consider a decision-

maker with independent Gaussian posteriors N (p̂a, σ
2
a

N
) over the mean outcome pa of action

a ∈ {0, 1}.1 A risk-neutral Bayesian decision-maker solving maxa∈{0,1} E[pa] will simply take

action a = 1 if and only if p̂1 − p̂0 > 0. However, the t-statistic for a given treatment effect

is given by

t ≡
√
N

p̂1 − p̂0√
σ2

0 + σ2
1

. (1)

Thus, decision rules that choose a = 1 if and only if t > t > 0 are suboptimal. To see this,

note that there always exists σ0 large enough to cause the decision-maker to stick with a = 0

regardless of the estimated treatment effect.

1Parameters p̂a and
σ2
a

N could be derived from a standard Gaussian learning model.
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Risk-aversion over policy outcomes. A natural supposition is that risk aversion may

drive the reliance on hypothesis testing using t-statistics. However, this is not the case. To

show this, we assume (w.l.o.g.) that σ0 < σ1, and consider a decision-maker who wants to

solve maxa∈{0,1} E [Γ(pa)] where Γ is thrice continuously differentiable and concave. For N

large, the second order development of E [Γ(pa)] is

E [Γ(pa)] = Γ(p̂a)− 1

2
Γ
′′
(p̂a)

σ2
a

N
implying sufficient statistic θ = 2N

Γ(p̂1)− Γ(p̂0)

Γ′′(p̂1)σ2
1 − Γ′′(p̂0)σ2

0

.

As σ0 < σ1, the decision-maker will choose policy a = 1 whenever θ > γ, where γ = 1
2

Γ
′

Γ′′
. In

the special case where Γ is quadratic, θ reduces to

θ = N
p̂1 − p̂0

σ2
1 − σ2

0

.

This differs significantly from a t-statistic: mean treatment effect p̂1 − p̂0 is scaled by the

difference of variances, rather than the sum of standard deviations. Indeed, risk-aversion

means that the decision-maker values certainty (a small variance in outcomes) as well as

a higher mean outcome. Variance—rather than standard deviation—plays a role as Γ is

smooth, and can be approximated by a 2nd order polynomial.

Reference-dependent preferences. The preceding discussion suggests that hypothesis

testing can only be motivated by reference-dependent preferences that treat a = 0 and a = 1

asymmetrically (see Tetenov, 2012). Let ∆a ≡ pa − p1−a. Consider a decision-maker who

seeks to solve

max
a∈{0,1}

E[wa(∆
a)], (2)

where

∀a ∈ {0, 1}, wa(∆
a) = ∆a + κa ×∆a1∆a<0

2



with κ1 > κ0 ≥ 0.

Lemma A.1. Consider a reference-dependent agent solving (2). The optimal-decision rule

takes the form t > t∗, with t∗ > 0.

Proof. Let t ≡ p1−p1√
σ2
0+σ2

1

. As p1− p0 ∼ N
(
p̂1 − p̂0,

√
σ2

0 + σ2
1

)
, it follows that t ∼ N (t, 1). As

both w0 and w1 are positively homogeneous of degree 1, the decision-maker chooses a = 1 if

and only if:

E
[
w1(∆1)− w0(∆0)

]
> 0 ⇐⇒ Et

[
w1

(
t
√
σ2

0 + σ2
1

)
− w0

(
−t
√
σ2

0 + σ2
1

)∣∣∣∣ t ] > 0

⇐⇒ Et
[
w1

(
t
)
− w0

(
−t
)
|t
]
> 0

⇐⇒ t > t∗

for some value of t. Note that w1

(
t
)
− w0

(
−t
)

= (2 + κ0)t + (κ1 − κ0)t1t<0. As κ1 > κ0 it

follows that w1

(
t
)
−w0

(
−t
)

is concave in t. This implies that Et
[
w1

(
t
)
− w0

(
−t
)
|t = 0

]
< 0,

so that t∗ > 0.

B Proofs

Proof of Lemma: By the Minimax Theorem (Luenberger, 1969), the decision-maker’s

indirect utility from running experiment E can be written as

V (E) ≡ max
α∈A

U(E , α) = max
α∈A

min
h∈H′

Eh,E [u(p, α(e, y))]

= min
h∈H′

max
α∈A

Eh,E [u(p, α(e, y))].
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Given h, the decision-maker’s payoff from running experiment E can be written as

max
α∈A

Eh,E [u(p, α(e, y))] = max
α∈A

∑
e∈E

E(e)Ep∼h

[∑
y∈Y

prob(y|p, e)u(p, α(e, y))

]

=
∑
e∈E

E(e)
∑
y∈Y

max
a∈{0,1}

Ep∼h [prob(y|p, e)u(p, a)]

=
∑
e∈E

E(e)v(h, e),

where v(h, e) ≡ ∑y∈Y maxa∈{0,1} Ep∼h [prob(y|p, e)u(p, a)]. As v(h, e′) = v(h, e) ≡ v(h, [e])

for all e′ ∈ [e], it follows that V (E) = minh∈H′
∑

[e]∈[E] E([e])v(h, [e]). Thus, if E and E ′ induce

the same distribution over [E], V (E) = V (E ′). �

Proof of Proposition 2: We begin by showing that deterministic experiments are always

weakly optimal for a Bayesian decision-maker. The decision-maker’s indirect utility from

running experiment E can be written as

max
α∈A

Eh0,E [u(p, α(e, y))] =
∑
e∈E

E(e)v(h0, e),

where v(h0, e) is the indirect utility from decision-making given realized experiment e:

v(h0, e) ≡
∑

y∈Y prob(y|e) maxa∈{0,1} Ep∼h0 [u(p, a)|e, y]. Any deterministic experiment e∗

solving maxe∈E v(h0, e) is optimal. More strongly, E solves (DP) if and only if support E ⊂

argmax
e∈E

v(h0, e).

To show that deterministic experiments are generically strictly optimal, we begin by

showing that argmax[e]∈[E] v(h0, [e]) is generically a singleton for λ = 1. We first show that

the set of priors h0 such that there is a uniquely optimal equivalence class of experiments is

open. Suppose that [e0] is uniquely optimal under h0. As E is finite, there exists η > 0 such

that v(h0, [e]) < v(h0, [e0])−η for all [e] 6= [e0]. As v(h, e) is continuous in h, this implies that
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there exists a neighborhood H0 of h0 such that, for all h ∈ H0, v(h, [e]) < v(h, [e0]) − η/2.

Hence, [e0] is the uniquely optimal design for all priors h ∈ H0.

We now prove that the set of priors h0 such that there is a uniquely optimal equivalence

class of experiments is dense. The proof is by induction on the number of equivalence classes

[e0] in argmax[e]∈[E] v(h0, [e]). We show that if there exist n such equivalence classes, then in

any neighborhood of h0 there exists a prior h such that there are at most n− 1 equivalence

classes in argmax[e]∈[E] v(h, [e]).

Indeed, assume that [e0] 6= [e1] both belong to argmax[e]∈[E] v(h0, [e]). For θ > 0, consider

the polynomial Mθ(p) in p ∈ P defined by

Mθ(p) = v ((1− θ)h0 + θp, [e0])− v ((1− θ)h0 + θp, [e1]) ,

where (1− θ)h0 + θp denotes the mixture probability measure that places mass 1− θ on h,

and mass θ on the Dirac mass at p. As [E] is finite, for all θ > 0 small enough, it must be

that

argmax
[e]∈[E]

v((1− θ)h0 + θp, [e]) ⊂ argmax
[e]∈[E]

v(h0, [e]).

Consider such a θ > 0. The fact that [e0] 6= [e1] implies that Mθ(p) is not identically equal

to 0. Hence, there exists p such that v ((1− θ)h0 + θp, [e0]) 6= v ((1− θ)h0 + θp, [e1]). This

implies that the inductive step holds at prior h̃ = (1 − θ)h0 + θp. Using the fact that

[E] is finite and v(h, [e]) is continuous in h, this implies that the inductive step holds at a

prior that admits a density against the Lebesgue measure. Thus, when λ = 1, deterministic

experiments are generically strictly optimal.

We now consider the case of λ < 1. Given λ, h, and [e], as the decision-maker’s utility
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takes values in [0, 1], letting α0 ∈ argmaxα∈A Eh0,e[u(p, α(e, y))] we have

v(λh0 + (1− λ)h, [e]) ≤ λv(h0, [e]) + (1− λ)v(h, [e]) ≤ v(h0, [e]) + (1− λ) and

v(λh0 + (1− λ)h, [e]) ≥ λv(h0, [e]) + (1− λ)Eh,e[u(p, α0(e, y))] ≥ v(h0, [e])− (1− λ).

As there are finitely many experiments, if [e0] is the unique maximizer of v(h0, [e]), there

exists η > 0 such that, for all [e] 6= [e0], v(h0, [e0]) > v(h0, [e]) + η. Together, this implies

that there exists λ ∈ (0, 1) such that, for all λ > λ, objective (DP) is maximized at E if and

only if support E ⊂ [e0]. �

Proof of Proposition 3: To establish point (i) and Corollary 1, we use the standard RCT

(Erct, αrct). Losses L(p) from first best, given state of the world p, are defined as

L(p) ≡ max
a∈{0,1}

pa − Ep,Erct
[
prob(1y1−y0>0)

]
.

By symmetry, it suffices to treat the case where p1 − p0 > 0. In this case, we have L(p) =

(p1 − p0)probp,Erct(y
1 − y0 ≤ 0). The probability of choosing the suboptimal policy can be

bounded using McDiarmid’s inequality.2 By applying McDiarmid’s inequality to f(y) ≡
1

(1−π)N

∑N
i=πN+1 y

0
i − 1

πN

∑πN
i=1 y

1
i , we obtain

probp,Erct(y
1 − y0 ≤ 0) = probp,Erct

(
y0 − y1 − (p0 − p1) ≥ (p1 − p0)

)
≤ exp

(
− 2(p1 − p0)2

1
(1−π)N

+ 1
πN

)
= exp

(
−2π(1− π)N(p1 − p0)2

)
≤ exp

(
−πN(p1 − p0)2

)
,

2McDiarmid (1989): Let X1, . . . , Xn be independent random variables, with Xk taking values in a set Ak
for each k. Suppose that the (measurable) function f : ×kAk → R satisfies |f(x) − f(x′)| ≤ ck whenever x
and x′ differ only in the kth coordinate. Then, for any t > 0, prob (f(X1, . . . , Xn)− E[f(X1, . . . , Xn)] ≥ t) ≤
exp

(
−2t2/

∑
k c

2
k

)
.
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where the last inequality follows from 2π(1 − π) ≥ π ≡ min{π, 1 − π}. For any a > 0, the

mapping x 7→ x exp(−ax2) is ln-concave and maximized at x = (2a)−1/2. This implies that

max
a∈{0,1}

pa − Ep,Erct
[
p1y1−y0>0

]
≤
√

exp(−1)

2πN
≤
√

ln 2

2πN
. (3)

An analogous argument delivers (3) also for the case where p1 − p0 ≤ 0. Hence, given any

h ∈ H,

Eh
(

max
a∈{0,1}

u(p, a)

)
− Eh,Erct [u(p, αrct(e, y))] ≤

√
ln 2

2πN
.

Setting π = 1/2 yields point (i) and the tightest bound.

To establish point (ii), fix a deterministic experiment e ∈ E. From the Limited Extrap-

olation Assumption, there exists h ∈ H such that for almost every pe,

min

{
Eh
[

max
a∈{0,1}

pa − p0
∣∣pe] , Eh [ max

a∈{0,1}
pa − p1

∣∣pe]} > ξ. Hence,

max
α

Eh,e [u(p, α(e, y))] ≤ Eh,e
[

max
a∈{0,1}

Eh,e [u(p, a)|pe]
]

≤ Eh,e
[

max
a∈{0,1}

u(p, a)

]
− ξ.

�

Proof of Proposition 4: Consider an experiment e† ∈ argmaxe∈support EK B(e). As the

total number of subsets of {1, · · · , N} is equal to 2N , the number of experiments that assign

treatment to πN participants out of N is necessarily less than or equal to 2N . Hence the

probability that the kth rerandomized trial selects e† is at least ρ ≡ 1 −
(
1− 2−N

)K
. For

K ≥ 2N ,

ρ ≥ 1− exp
(
2N ln

(
1− 2−N

))
∼ 1− exp(−1) > 0.
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Hence, there exists ρ > 0 such that, for all N , rerandomized experiment EK selects deter-

ministic experiment e† with probability at least ρ.

The proof of Proposition 3 implies that there exists h† ∈ H such that

∀e ∈ E, max
α∈A

Eh†,e[u(p, α(e, y))] ≤ min
h∈H

Eh
(

max
a∈{0,1}

u(p, a)

)
,

and max
α∈A

Eh†,e† [u(p, α(e†, y))] ≤ min
h∈H

Eh
(

max
a∈{0,1}

u(p, a)

)
− ξ.

Hence, max
α∈A

min
h∈H

Eh,EK [u(p, α(e, y))] ≤ min
h∈H

Eh
(

max
a∈{0,1}

u(p, a)

)
− ρξ.

�

Proof of Proposition 5: Denote by (y0,k, y1,k) the sample average of outcomes by treatment

group for experiment ek, and by (y∗0, y
∗
1) the sample average of outcomes by treatment group

for the experimental design e∗K selected by rerandomized experiment EK .

Losses L(p) from first best given state of the world p are defined as L(p) ≡ maxa∈{0,1} p
a−

Ep,EK
[
prob(1y∗1−y∗0>0)‘

]
. By symmetry, it suffices to treat the case where p1− p0 > 0. In this

case, we have

L(p) = (p1 − p0)probp,EK (y∗1 − y∗0 ≤ 0)

≤ (p1 − p0)probp,EK

(
min

k∈{1,...,K}
y1,k − y0,k ≤ 0

)
≤ (p1 − p0) min

{
1,

K∑
k=1

probp,EK (y1,k − y0,k ≤ 0)

}
.

As in the proof of Proposition 3, by applying McDiarmid’s inequality to fk(y) ≡ y0,k − y1,k,

we obtain probp,EK (y1,k − y0,k ≤ 0) ≤ exp (−πN(p1 − p0)2), where π ≡ min{π, 1− π}.
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We have that K exp(−πN(p1 − p0)2) ≤ 1 ⇐⇒ p1 − p0 ≥
√

lnK
πN

, which implies that

L(p) ≤


p1 − p0 if p1 − p0 <

√
lnK
πN

,

K(p1 − p0) exp(−πN(p1 − p0)2) if p1 − p0 ≥
√

lnK
πN

.
(4)

The mapping x 7→ x exp(−πNx2) is ln-concave and maximized at x =
√

1
2πN

. As K ≥ 2,

we have
√

lnK
πN

>
√

1
2πN

, which implies that both terms on the right-hand side of (4) are

maximized at p1 − p0 =
√

lnK
πN

. This implies that indeed L(p) ≤
√

lnK
πN

. Identical reasoning

applies in the case where p1 − p0 < 0. �

Proof of Corollary 2: Consider a balance function minimized by assignments e ∈ E†. Let

LK denote the loss in efficiency from a K-rerandomized trial, and LE† the loss in efficiency

from experiment EE† . The likelihood that the assignment e drawn from EK belongs to E† is

1− (1− pE†)K . As LK ≥
(
1− (1− pE†)K

)
LE† , it follows from Proposition 5 that

LE† ≤
1

1− (1− pE†)K

√
lnK

πN
.

�

Proof of Proposition 6: Point (i) follows from a reasoning similar to that of Proposition

2. For λ = 1, given an experiment E , the decision-maker’s indirect utility is

max
α,E

Eh0 [wα(∆α)] =
∑
e∈E

E(e)w(h0, e),

where w(h0, e) ≡
∑

y∈Y prob(y|e) maxa∈{0,1} Ep∼h0 [wa(∆
a)|e, y] . Hence, an experiment E is

optimal if and only if support E ⊂ arg maxew(h0, e).

9



To conclude the proof of point (i), it is sufficient to show that arg max[e]∈[E] w(h0, [e]) is a

singleton. A reasoning identical to that of Proposition 2, with w(h0, [e]) in place of v(h0, [e]),

shows that this is the case for generically every prior h0. The existence of an appropriate

threshold λ < 1 follows from the fact that w(h0, [e]) is Lipshitz continuous in h0, and there

are finitely many possible experimental assignments.

We now turn to point (ii). We know from Proposition 7 that there exist randomized

experiments leading to optimal decisions up to a penalty of order O(1/
√
N). This implies

that the decision-maker can guarantee herself a payoff greater than −O(1/
√
N). Consider a

deterministic experiment e. For d ∈ R, let the state p(d) such that

p0
x = 1

2
+ d, p1

x = 1
2

if τx = 1;

p0
x = 1

2
, p1

x = 1
2
− d if τx = 0.

Consider the prior he that puts probability 0.5 on p(d = ν) and 0.5 on p(d = −ν) for

ν ∈ (0, 1/2). By construction the information generated by the experiment is independent of

whether d = ν or d = −ν. In addition, ∆1 = p1− p0 = −d. Hence, regardless of the action a

taken by the decision-maker, there is probability 0.5 that ∆a = −ν and probability 0.5 that

∆a = +ν. As wa is locally strictly concave around 0, it follows that expected payoffs from

running a deterministic experiments are bounded away below 0.

This implies that for N large enough, randomized experiments are strictly optimal. �

Proof of Proposition 7: The proof is closely related to that of Proposition 5. Consider

first the case where ∆p > 0. Then the efficiency loss compared to first-best is equal to

L = Eh[w1(∆1)− wαRCT
(∆1)|∆1 > 0].

10



As functions wa are Lipschitz continuous and wa(0) = 0, there exists M > 0 such that

L ≤MEh[(1− αRCT )∆1|∆1 > 0].

In turn, if ∆p < 0, there existsM such that the efficiency loss satisfies L ≤MEh[−αRCT∆1|∆1 <

0].

The proof of Proposition 5 implies that Eh[(1−αRCT )∆1 |∆1 > 0] and Eh[−αRCT∆1|∆1 <

0] are bounded above by
√

logK
πN

. This proves Proposition 7. �

C Simulations

C.1 Optimal Experimentation

A simple example helps clarify the use of rerandomization as a way to pick a trade-off between

subjectively optimal experiments and the robustness of RCTs. We consider an environment

where N = |X| = 2, X = {0, 1}, and the experimenter is given a sample of participants with

(x1, x2) = (1, 0).

We parameterize the set H of admissible priors over the set P of states of the world as

follows. First, for the expected probability of success given policy a ∈ {0, 1}, pa = qpa1 +(1−

q)(1 − pa0), we consider priors such that, with equal probability, the pair (p0, p1) describes

either a “high probability of success” world with
(
mina∈{0,1} p

a,maxa∈{0,1} p
a
)

= (1/2, 3/4)

or a “low probability of success” world with
(
mina∈{0,1} p

a,maxa∈{0,1} p
a
)

= (1/4, 1/2).

Next, given pa, to further constrain the support of priors in H, we construct a grid over

the set of values of the conditional success probabilities pa0 and pa1 consistent with pa. Note

that as pa0 = (pa − qpa1)/(1 − q), pa0 ≥ 0 implies that pa1 ≤ ha ≡ min{1, pa/q}, while pa0 ≤ 1

implies that pa1 ≥ la ≡ max{0, (q−1+pa)/q}. Letting ma ≡ la/2+ha/2, we restrict priors in
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H to assign positive probability only to values of pa1 defining an equally-spaced, 10-segment

grid from la/2 +ma/2 to ma/2 + ha/2.

With only two participants, we consider experiments with τ1 = 1− τ2, and we solve nu-

merically for the optimal probability with which participant 1 should be treated to maximize

the adversarial component of the experimenter’s payoff as defined in (DP) with policy chosen

according to αrct. Figure C.1 shows how the optimal experiments vary with the value of

q ∈ [0, 1], the share of agents with x = 1 in the population. Relative to a standard RCT with

probability π = 1/2 of treating each participant, the experimenter only experiences gains

from running an optimal experiment for intermediate values of q. In this range, rerandom-

ization offers a compromise between optimality and the robustness of the RCT. However, if q

is close to zero or one, the advantage of rerandomization over the standard RCT disappears.

Figure C.1: Range of optimal experiments as a function of the environment.

C.2 The Trade-Offs of Rerandomization

We provide two numerical explorations of our results. We begin by considering a well-

behaved case in which treatment effects are continuous with respect to a small number of
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underlying characteristics, so that there is limited tension between balance and robustness.

We then turn to a much more discontinuous setting designed to oppose the desire to balance

and robust policy making. The message from both simulations is clear: rerandomization

increases balance with very little to no increase in mistaken decisions.

C.2.1 Smooth Priors

We consider the following environment. Covariates x are drawn i.i.d. according to
∏5

k=1 U [0, 1],

a five-dimensional uniform distribution. These are mapped to outcomes according to a five-

dimensional unknown parameter µ:

prob(Yi = 1|x) =
exp(µ · x)

1 + exp(µ · x)
.

Parameter µ is drawn according to a five-dimensional truncated normal: µ ∼∏5
k=1N (0, 1)|[−2,2].

We denote by τ ∗ and α the Bayes optimal assignment of treatment and policy choice under

this model.

We report balance—captured by the negative of the L2 norm between mean characteris-

tics across treatment and control—as well as several efficiency losses of interest (see Figure

C.2):

• Bayes Loss given Bayes Optimal Assignment

Eµ,x,τ∗
[

max
a∈{0,1}

u(p, a)− u(p, α)

]
; (5)

• Loss under worst prior given Bayes optimal assignment

max
µ

Ex,τ∗
[

max
a∈{0,1}

u(p, a)− u(p, α)

]
; (6)
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Figure C.2: Rerandomization substantially increase balance with no cost to robustness.
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• Loss under worst prior, and worst assignment τ

max
µ

Ex max
τ

E
[

max
a∈{0,1}

u(p, a)− u(p, α)

]
. (7)

The ex-ante Bayes expected loss (5) is essentially identical under randomization and

rerandomization. Loss measure (6) chooses the prior that maximizes the error rate given

the experimental strategy E of the experimenter. While this is substantially higher than the

Bayes expected loss — as expected — it is not substantially different between randomization

and rerandomization. Finally, loss measure (7) stacks the deck against the experimenter, and

assumes that the experimenter has an “evil RA” who chooses the experimental assignment

τ from eK that maximizes the expected loss. This has no application in the case of random-

ization, but in the case of rerandomization it substantially increases error rates. However,

it is important to note even under this highly unrealistic scenario—the evil RA must know

the data-generating process—the error rate is about one-tenth of 1% for N ≥ 300.

In the simulations above, we vary K, the number of rerandomizations according to our
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Figure C.3: Rerandomizaton increases balance with no robustness cost with fixed N .
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rule of thumb, K = min{N, 100}. This suggests that the simulation may be masking some

decision-making cost of rerandomization by increasing N simultaneously. Figure C.3 shows

this is not the case by plotting worst-prior loss and balance with K, holding N fixed at 100.

Balance improves substantially, especially for the first 20 rerandomizations, but the error

rate is essentially flat.

C.2.2 The Case of Non-Smooth Priors

We now consider an environment designed to create a tension between balance and robust-

ness. Also, we pick assignment τ using balance objective B(e) = −||x1 − x0||2. Policy is

chosen according to α(e, y) ≡ argmaxa∈{0,1} y
a − y1−a.

The environment involves a single covariate x ∈ X = {1, 2, . . . , 10,000}. Even covariates

are twice as likely as odd covariates, and the treatment effect is small and negative for even

covariates, and large and positive for odd covariates. Specifically, for n ∈ {1, 2, . . . , 5,000},

q(2n− 1) =
q(2n)

2
=

2

3|X| , p1
2n−1 = 4p0

2n−1 =
4

5
, and p1

2n =
p0

2n

2
=

1

4
,
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Figure C.4: Rerandomization substantially increase balance with no cost to robustness.

0

20%

40%

60%

E
rr

o
r 

R
at

e

10 100 1,000 10,000
N (Log Scale)

0

−500

−1,000

−1,500

B
al

an
ce

10 100 1,000 10,000
N (Log Scale)

Randomization Rerandomization

Thus, on aggregate, u(p, 1) = 13
30
> 2

5
= u(p, 0), so treatment is beneficial, and α = 1 is

the “correct” decision. This setup is meant to make attempts to balance the sample likely

to cause inferential mistakes—balancing will tend to pair odd observations with the more

numerous even observations, which are not an appropriate comparison group.3

Figure C.4 examines the error rates and balance of randomization and rerandomization.

As can be seen in the first panel, all three give roughly the same error rate. This is because

the chosen balance function, B(e), in these simulations is very unlikely to select a more

biased sample allocation. While in any specific application the interaction of the model

parameters and the balance function may produce different results, it appears quite difficult

to find a balance function that 1) might actually be used and 2) is particularly pernicious.

On the other hand, once again, rerandomization substantially improves the balance of

the samples. This is particularly true for small and moderate sample sizes, up to the order

of 1,000, although even with 10,000 participants there is an improvement in balance, even

3Indeed, using pairwise matching to assign treatment and control status increases inferential errors, but
does so equally for randomization and rerandomization
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though we only re-draw the experimental allocation 100 times.

C.2.3 (Re-)Randomization Inference

As noted in the text, if B(e) is pre-specified, randomization inference can be used to calculate

standard errors (Fisher, 1935; Young, 2016). Here, we illustrate this process using the

simulations, and balance functions, from the prior subsections.

In particular, randomization inference uses the following procedure:

1. Randomize assignment (τi)i∈{1,...,N}

2. Generate data (yτii )i∈{1,...,N}

3. Calculate treatment effect ∆ŷ ≡ ŷ1 − ŷ0

4. Re-draw experimental assignment using the same randomization procedure (τ ji )i∈{1,...,N}

5. Calculate treatment effect as if τ j had been implemented ∆j ŷ ≡ ŷτ
j
i =1 − ŷτ ji =0

6. Return to Step 4, repeat until j = J (usually 10,000).

The simulated distribution of ∆j ŷ is the distribution of treatment effects that would be

observed if p1
x = p0

x, ∀x ∈ X. This can be used to calculate p-values, or infer standard errors.

Clearly, knowing B(e), and the number of rerandomizations, K, is critical to properly

implementing Step 4. If this is the case, we say that the experimenter can conduct reran-

domization inference.

In Figure C.5, we compare rerandomization inference and the standard errors that would

come from a regression of outcomes on treatment status. Finally, we also include näıve

randomization inference, where the experimenter does not know B(e), and consequently

draws a single randomization to calculate each ∆j ŷ.
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Figure C.5: Comparing rerandomization inference with other inference strategies.
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The right-hand-side panels of the figure show the distribution of ∆j ŷ under each tech-

nique. The distribution shown for the regression comes from a simulated normal with stan-

dard deviation equal to the standard error from the regression coefficient. The left-hand-side

panels show how standard errors from each source change as the sample grows larger. Note

that we set K = min{N, 100} for both the experimental simulation and rerandomization

inference.

The results under all schemes are substantially the same. This may be due, in part, to

the fact that outcomes are bounded in our simulations. However, it is certainly the case, as
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our theoretical results show, that rerandomization has a very small impact on the robustness

of decision-making.
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