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Motivation

I Proliferation of experiments (academia, business, public policy)
has been accompanied by debates about best practices

• Blocking, clustering, stratification

• Pros and cons of randomization

• Pre-registration of designs and pre-analysis plans

I Theory should help resolve these debates

I However, standard models of information acquisition fail to
explain key feature of experimental practice: randomization

• RCTs are mixed strategies over experimental assignments
→ never strictly optimal for Bayesian decision maker
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Goal

I Propose a decision-theoretic framework for experiment
design that:

• correctly captures the preferences revealed by real-life
experimentation

• provides insight into open problems for experimental practice
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Outline of the Talk

I Building plausible model of experimentation

Fact: people really care about randomization

Bayesians don’t randomize (Kasy 2013)
Ambiguity averse experimenters might

I Use it to address re-randomization

Fact: people often don’t stick with their first randomization
(Bruhn and McKenzie 2009)

It does reduce robustness, but very slowly
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An example: a voucher experiment

I A school district superintendent wants to do an experiment

I Her prior puts a lot of weight on the idea that private schools are
all about selection and that private school students will do
equally well in private and public schools

I However she allows that there is some probability that private
schools are better and that all children would do much better
there

I She has one slot in a private school: how should she allocate it?

I Clearly giving it to a poor child maximizes her learning.
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The experiment continues

I Now suppose the superintendent assigns one more child to the
experiment.

I The best design under her priors will be to assign a rich child to
the public school and a poor child to a private school.

I No randomization

I Not balanced. A Bayesian may not want balance.
• Contrast with Kasy (2014)

I Even if she only had two children who were both poor for the
experiment, she has no reason to randomize.
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Setup
I Population indexed by i

• Covariates xi ∈ X observed

• Distributed according to q(x)

I Treatment τ ∈ {0, 1}, potential outcome Y τ
i ∈ {0, 1}

I pτx ≡ Prob(Y τ
i = 1|xi = x),

state of the world p = (pτx)x,τ ∈ P

I Policy decision a ∈ {0, 1}: treat everybody or not

I Decision maker’s payoff

u(a, p) ≡
∑
x∈X

q(x)pax.

I E.g., vaccinate school children or not, reorganize production lines
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Experiments

I Decision maker informs policy choice by running an experiment
on N(< 2|X|) subjects

I Experiment design is mixed strategy E ∈ ∆(E) over experimental
sample and treatment tuples e = (xi, τi)i∈{1,...,N} ∈ E

I Generates outcome data y = (yi)i∈{1,...,N} ∈ Y

I Allocation rule α : E × Y → ∆({0, 1})
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Natural Model

Subjective expected utility maximizer (Bayesian)

I Picks E , α solving

maxE ,α Eh[u(α, p)]

for prior h ∈ ∆(P) over state of the world p
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Not a Great Positive Model

Proposition 1.
Bayesian ⇒ optimal experiment E∗ deterministic.

For generic priors, deterministic experiment strictly optimal.

Why?

I Randomization is a mixed strategy

I Pure strategies weakly optimal for expected utility maximizer

Payoff from experiment E :

Ee,y∼E max
a∈{0,1}

Eh[u(p, a)|e, y]
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Not Completely Off Either

I Imagine you are a presidential candidate, a few days before a key
media appearance

I Two speeches: first pretty classic, second tries out new points

I Opportunity to experiment by giving one speech at a campaign
meeting a few days before

I Do you pick the location randomly so that it’s representative?
Do you randomize which speech you give?

I Obviously, no; you’ll pick most informative experiment:
prior gives you a comparison point even with a single outcome

I With a prior, even with two meetings, you might give the same
speech at both
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Ambiguity Averse Experimentation
I Decision maker picks E , α solving

max
E,α

λEh0 [u(α, p)] + (1− λ) min
h∈H

Eh[u(α, p)]

I Interpretation: subjective prior h0, constrained by
adversarial audience

Assumption 1 (Limited Extrapolation).

For all realized experiments e, there exists an adversarial prior h
such that optimal decisions conditional on data are bounded
away from first best
(i.e., even with infinite data, there is room for learning)

Can be dispensed with if DM exhibits regret aversion
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Optimal Maxmin Design

Proposition 2.
For fixed N and generic h0,

if H → {h0} (audience not adversarial)
or λ→ 1 (don’t care about convincing others),

then optimal experiment deterministic and Bayesian optimal for h0
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Optimal Maxmin Design

Proposition 3.
Take λ ∈ (0, 1) as given.

(i) Optimal experiment (e.g., std RCT) guarantees

max
α

min
h∈H

Eh,E [u(p, α(e, y))] > min
h∈H

Eh
(

max
a∈{0,1}

u(p, a)

)
−
√

ln 2

N
.

(ii) Deterministic experiments are bounded away from
(maxmin) efficiency:

max
α

min
h∈H

Eh,e [u(p, α(e, y))] < min
h∈H

Eh
(

max
a∈{0,1}

u(p, a)

)
− ξ.

As sample size N gets large, optimal experiment is random
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Design Choice
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Intuition, Other Implications

I Playing a zero-sum game against nature

I Anything that makes you (as the experimenter) predictable will
be matched with an unfavorable prior (h ∈ H) that exploits
that predictability

I Implication: quasi-randomization not sufficient
• Randomizing by time of day; see Green and Tusicisny, 2012, for

a critique
• Miguel and Kremer, 2004; see Deaton, 2010 for a critique

I Implication: RCTs offer near optimal alternative to complexity of
solving decision maker’s problem exactly, which requires reliably
eliciting beliefs (priors)
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Balance

I Experimenters often want a “balanced” assignment

I Stratification or blocking often used
• Hard to do with multiple or continuous variables
• Related to “curse of dimensionality”
• In the U.S., Gender x Race x Age (x groups) x Education (y

groups) = 10xy bins

I However, these algorithms create predictable assignments
• Is this a weakness?
• Surprisingly, yes: “You picked the wrong variables to block on”
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What If You Get an Unbalanced Sample?

I Max-min preferences not dynamically consistent:
What if assignment very unbalanced? Re-randomize?

I Not a problem for Bayesian learner:

Prob(p|e, y, e picked randomly) = Prob(p|e, y, e selected)

→ process of experiment design irrelevant

I Is this a problem for robustness? Can we quantify it?
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Re-Randomization

Model can be written as

max
E,α

λEE [B(e, α)]︸ ︷︷ ︸
subjective balance

+(1− λ)R(E , α)︸ ︷︷ ︸
robustness

K re-randomization:

1. Fixed sample of xs drawn according to pop. dist. q ∈ ∆(X),
independently draw K assignments {e1, · · · , eK}
(prob. treatment = .5)

2. Select assignment e∗K ∈ arg maxe∈{e1,··· ,eK}maxαB(e, α)
maximizing Bayesian expected utility

3. Run experiment e∗K
4. Choose policy according to α∗ = arg maxa∈{0,1} y

a − y1−a
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4. Choose policy according to α∗ = arg maxa∈{0,1} y

a − y1−a
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The Tradeoff of Re-Randomization

Improves balance

I B(e∗K , α
∗) monotonically increasing in K

Proposition 4 (negative impact on robustness).
There exists ρ > 0 such that, for all N , if K ≥ 2N , then

max
α

min
h∈H

Eh,EK [u(p, α(e, y))] < min
h∈H

Eh
(

max
a∈{0,1}

u(p, a)

)
− ρ.
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How Large Are the Costs?

Proposition 5 (cost of rerandomization small).
A K-rerandomized experiment EK guarantees

min
h∈H

Eh,EK [u(p, α(e, y))] ≥ min
h∈H

Eh
(

max
a∈{0,1}

u(p, a)

)
−

√
ln(K)

N/2

Proposal 1.

Set K ≤ N , for instance K = min{N, 100}

Remark 1.

Bound remains valid regardless of objective function B(e), can
even choose objective ex post

22 / 24



How Large Are the Costs?

Proposition 5 (cost of rerandomization small).
A K-rerandomized experiment EK guarantees

min
h∈H

Eh,EK [u(p, α(e, y))] ≥ min
h∈H

Eh
(

max
a∈{0,1}

u(p, a)

)
−

√
ln(K)

N/2

Proposal 1.

Set K ≤ N , for instance K = min{N, 100}

Remark 1.

Bound remains valid regardless of objective function B(e), can
even choose objective ex post

22 / 24



How Large Are the Costs?

Proposition 5 (cost of rerandomization small).
A K-rerandomized experiment EK guarantees

min
h∈H

Eh,EK [u(p, α(e, y))] ≥ min
h∈H

Eh
(

max
a∈{0,1}

u(p, a)

)
−

√
ln(K)

N/2

Proposal 1.

Set K ≤ N , for instance K = min{N, 100}

Remark 1.

Bound remains valid regardless of objective function B(e), can
even choose objective ex post

22 / 24



Numerical Assessment

I Consider likelihood with which K-rerandomized trial generates
assignment in top zth quantile of balance

I That likelihood is equal to 1− (1− z)K

K 10 50 100 250 500 1000√
log(K) 1.52 1.97 2.15 2.35 2.49 2.63

odds top 5% bal. 0.4 0.92 0.99 1.0 1.0 1.0
odds top 1% bal. 0.1 0.39 0.63 0.92 0.99 1.0
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What About Standard Errors?

I Hypothesis testing (using t- or z-stats) is not Bayesian, not due
to risk aversion

I Tetenov (2012) shows that reference dependence (loss aversion
or status quo bias) can rationalize hypothesis testing

Proposition 6.
All of our results extend to using reference dependent preferences

I Morgan and Rubin (2012) show that re-randomization increases
precision of estimated treatment effect in linear Gaussian model

I Bungi, Canay, and Shaikh (2016) show this more generally for
balanced assignment rules (i.e., symmetric stratification)
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Alternative Procedure

I Could consider defining a set of acceptable assignments and
randomize over them:
e.g., require sufficiently good balance under some distance
(Morgan and Rubin 2012)

I Difficulty: is the balance requirement hard to satisfy?
If so, then near deterministic assignment

I Can be addressed in our framework: set B(e) ≡ 1balance>b

I If probability that a random assignment is balanced is very small,
then procedure above is akin to setting K very high
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Takeaway

I Ambiguity-averse experimentation as a plausible model for a
range of behavior

With small samples, we need to be Bayesian — learning
necessarily subjective

I Re-randomization does involve a tradeoff, but cost is small

I Other questions: subgroup analysis, pre-analysis plans, . . .
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