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Abstract

This work examines collective decision-making under uncertainty. We model

uncertain social prospects as acts mapping states of nature to (social) outcomes.

A social choice function (or SCF) assigns an act to every profile of subjective

expected utility preferences over acts. A SCF is strategyproof if no agent ever

has an incentive to misrepresent her beliefs about the states of nature or her

valuation of the outcomes; it is ex-post efficient if the act selected at any given

preference profile picks a Pareto-efficient outcome in every state of nature.

We offer a complete characterization of all strategyproof and ex-post efficient

SCFs. The chosen act must pick the most preferred outcome of some (possibly

different) agent in every state of nature. The set of states in which an agent’s

top outcome is selected may vary with the reported belief profile; it is the union

of all states assigned to her by a collection of constant, bilaterally dictatorial,

or bilaterally consensual assignment rules.
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1 Introduction

1.1 The problem

Group decisions are often made under conditions of uncertainty. Nations choose

domestic and foreign policies, firms make investment choices, academic departments

face recruitment and promotion decisions: for all of these examples, a given choice

may yield different possible outcomes and the relative likelihood of these outcomes

cannot be assessed objectively. Following Savage (1954), we model such uncertain

prospects as “acts”, namely, mappings from a set of relevant states of nature into a

set of conceivable outcomes. Because these outcomes matter to all the members of

the group, we speak of social acts.

The choice of a social act ought to be based on the preferences of the members

of the group: the government of a democratic country should serve the interests

of its citizens, the manager of a firm is appointed to make decisions on behalf of its

shareholders, and a department head should take into account her colleagues’ opinions

for recruitment and promotion decisions. The resulting collective decision mechanism

may therefore be modeled as a “social choice function” that asks the group members

(henceforth called the agents) to report their preferences, and recommends an act for

every conceivable preference profile.

Under the assumptions of Savage’s theory, an agent’s preferences over acts are

summarized by the utility she attaches to each conceivable outcome and her sub-

jective beliefs about the likelihood of the various states of nature: she compares

acts according to the subjective expected utility they yield to her. Since prefer-

ences are typically private information, it is important that the social choice function

be incentive-compatible: all agents should always find it best to reveal their pref-

erences truthfully. The purpose of this paper is to understand and describe such

incentive-compatible social choice functions. We focus on the specific property of

strategyproofness, which requires that reporting one’s true preferences be a dominant

strategy. In the current context, this means that an agent should never benefit from

misrepresenting the utility she attaches to the outcomes or her beliefs about the states

of nature.

Incentive compatibility is a central theme of the mechanism design literature. The

specificity of the problem studied in this paper arises from the fact that subjective

expected utility preferences form a highly restricted (and structured) domain.1 The

Gibbard-Satterthwaite theorem (Gibbard (1973), Satterthwaite (1975)) does not ap-

ply and, as we shall see, non-dictatorial social choice functions do indeed exist.

1With two states of nature and three outcomes, there are 362 880 linear preference orderings over

the 9 possible acts, of which only 96 are of the subjective expected utility type.
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1.2 Related work

Rather surprisingly, the problem of describing the class of strategyproof social choice

functions under uncertainty has been overlooked by the literature. The related work

may be divided in three strands. The first strand belongs to the field of statistics.

It is concerned with the problem of eliciting an agent’s assessment of the likelihood

of uncertain events. The best known incentive-compatible elicitation procedures are

the proper scoring rules of McCarthy (1956) and Savage (1971); see Gneiting and

Raftery (2007) for a survey of the literature on the topic. Other procedures include

de Finetti’s (1974) promissory notes method and Karni’s (2009) direct revelation

mechanism. These methods do not elicit the agent’s valuation of the outcomes and

do not address the social choice problem of selecting an act based on the preferences

of several agents.

The second and most closely related strand studies strategyproofness in the con-

text of risk, that is, when society chooses lotteries rather than acts. The seminal

contribution is due to Gibbard (1977), who analyzes social choice rules asking agents

to report their preferences over sure outcomes only. Hylland (1980), Dutta, Peters

and Sen (2007, 2008), and Nandeibam (2013) allow agents to report full-fledged von

Neumann-Morgenstern preferences over lotteries. A central finding in this literature

is that every strategyproof and ex-post efficient social choice function is a random dic-

tatorship. Ex-post efficiency requires that the chosen lottery attach zero probability

to every Pareto-dominated sure outcome. A random dictatorship selects each agent’s

most preferred outcome with a probability that does not depend on the reported

preference profile.

Finally, let us mention that the issue of preference aggregation under uncertainty

has received a good deal of attention: see Hylland and Zeckhauser (1979), Mongin

(1995), Gilboa, Samet and Schmeidler (2004), Chambers and Hayashi (2006), and

Gilboa, Samuelson and Schmeidler (2014), among others. This literature, which is

normative in nature, is not concerned with the incentive-compatibility issue and is

therefore only tangentially related to our work. It shows that aggregation of pref-

erences under uncertainty is problematic; it also questions the desirability of Pareto

efficiency (and proposes weakened versions) when individual beliefs differ.

1.3 Our contribution

In line with the literature on strategyproofness under risk –and primarily for reasons of

tractability– we restrict attention to social choice functions that are ex-post efficient.

Under uncertainty, ex-post efficiency means that the act selected at a given preference

profile should recommend a Pareto efficient outcome in every state of nature. This

does not imply that the chosen act is Pareto efficient. The theorem in this paper

offers a complete characterization of all strategyproof and ex-post efficient social
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choice functions.2

We begin by proving that every such function must be a top selection: at every

preference profile, the chosen act must pick in each state of nature the most preferred

outcome of some agent (possibly picking different agents in different states). A top

selection is fully characterized by its associated assignment rule determining in which

states of nature each agent dictates the outcome.

We then describe which assignment rules do generate strategyproof social choice

functions. Constant assignment rules are one first obvious possibility; the social

choice functions they generate are analogous to the random dictatorships identified

in the literature on strategyproof choice of lotteries.

But, in contrast to the findings in that literature, there exist more flexible rules.

It turns out that if the agents’ valuations cannot be used in assigning states, their

beliefs can. To some extent, the mechanism designer can exploit the differences in

subjective probabilities to make sure that each agent selects the outcome in states

that she finds relatively more likely.

This can be done in two primitive ways, which turn out to constitute the building

blocks of all ex-post efficient strategyproof social choice functions. A bilaterally dicta-

torial assignment rule lets one agent, say 1, choose from an exogenous menu of events

(i.e., subsets of states of nature) the one she considers most likely – leaving the com-

plementary event to some other predetermined agent, say 2. The corresponding social

choice function then picks 1’s top outcome in the event she declared most likely, and

2’s top outcome otherwise. Under a bilaterally consensual assignment rule, the state

space is exogenously partitioned into two events. The first is tentatively assigned to,

say, agent 1, and its complement is assigned to, say, 2. However, if agent 1 reports

that the second event is more likely than the first and agent 2 reports the opposite

belief, they exchange events. The social choice function picks an agent’s reported top

outcome in every state that the bilaterally consensual assignment rule has assigned

to her.

As a toy illustration of the social choice functions just described, consider the

following problem. A small economics department consisting of two members 1, 2 is

searching for a microeconomist. In an effort to develop experimental research, the

university plans to set up a laboratory. But there is no guarantee that this intention

will materialize, and this is the only source of uncertainty faced by the department:

in state of nature no the lab is not built; and in state of nature yes the lab is built. A

candidate must be hired before this uncertainty is resolved. The recruitment process

2The importance of our theorem lies in the fact that it provides a description of all strategyproof

and ex-post efficient social choice functions under subjective expected utility, which was crucially

missing from the literature. We leave it to the reader to assess whether these social choice functions

are appealing. To put them in perspective, recall that, in a deterministic world, the Gibbard-

Satterthwaite theorem states that every strategyproof social choice function whose range contains

more than two alternatives must be dictatorial.
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may yield two possible outcomes:3 publications in the field of experimental economics

E, or in microeconomic theory T . Four candidates are available, and each can be

described as an act – a mapping from {no, yes} to {E, T} . The pure experimentalist

is the constant map (E,E) producing experimental publications in both states of

nature. The pure theorist is the constant map (T, T ). The flexible microeconomist

is (E, T ): she will publish experimental work if the lab is built and theoretical work

otherwise. The candidate (T,E) is the paradoxical candidate (a theorist with excellent

experimental collaborators): she will publish experimental work if the lab is not built,

and theoretical work if it is built.4

An example of constant assignment rule would be to assign state no to agent

1 and yes to 2. The candidate recruited by the social choice function based on this

assignment rule only depends on the agents’ preferences regarding the outcomes E, T.

At any profile where both prefer E to T, the experimentalist will be hired. If both

prefer T to E, the theorist will be hired. If 1 prefers E to T and 2 prefers T to E,

the flexible microeconomist (E, T ) will be hired, while the paradoxical candidate will

be recruited if 1 prefers T to E and 2 prefers E to T.

An example of bilaterally dictatorial rule would be to assign to agent 1 whichever

state she finds more likely, and the other state to agent 2. The candidate recruited by

the social choice function based on this assignment rule depends on the preferences

of agents 1 and 2 regarding the outcomes E, T , as well as on the beliefs of agent 1. If,

for instance, 1 prefers E to T and 2 prefers T to E, then the flexible microeconomist

will be hired if 1 believes that the lab will be built, but the paradoxical candidate

will be recruited if 1 believes that the lab will not be built.

We leave it to the reader to construct a social choice function based on a bilaterally

consensual assignment rule. Notice that the chosen candidate will then depend upon

the beliefs of both agents. Similar examples can be constructed to illustrate our rules

in the case of presidential elections, decision-making by a board of directors, etc.

Under the basic social choice functions described above, only two agents have a say

in the final decision. But such social choice functions can be combined as follows to

allow more (and sometimes all) agents to take part in the decision. Fix an exogenous

partition of the state space into events. For each event belonging to that partition,

choose a (possibly different) pair of agents. Use a constant, bilaterally dictatorial, or

bilaterally consensual “sub-rule” to assign the states belonging to that event on the

basis of these two agents’ conditional beliefs over these states. Compute the overall

event assigned to an agent by taking the union of the events assigned to her by all

3Although our theorem assumes the existence of at least three outcomes, the social choice func-

tions we identify are strategyproof and ex-post efficient regardless of this assumption.
4If the lab is not built, her connections with other experimentalists allow her to publish in that

field. If the lab is built, the time and effort required (training technicians, recruiting subjects for

experiments, and applying for funding) prevent her from publishing experimental work; but she still

manages to publish theoretical papers.
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these assignment sub-rules. Our theorem asserts that every strategyproof and ex-post

efficient social choice function is a top selection based on such a union of constant,

bilaterally dictatorial, or bilaterally consensual assignment sub-rules.

1.4 Further connections with existing work

Two remarks are in order before starting the formal analysis. The first is a point

of (re)interpretation. Assignment rules, which are mappings from profiles of beliefs

into partitions of the state space, are mathematically equivalent to rules for allocat-

ing (valuable) indivisible objects to agents having additively separable preferences

over bundles of objects.5 It is easy to see that the assignment rule associated with a

strategyproof and ex-post efficient social choice function must itself be strategyproof:

by misrepresenting her beliefs, an agent cannot obtain an event she considers more

likely than the one she gets by reporting truthfully. When there are only two agents,

a social choice function is strategyproof and ex-post efficient if and only if it is gen-

erated by a strategyproof assignment rule. In that particular case, as a by-product,

our theorem solves the problem of characterizing all strategyproof assignment rules

for allocating indivisible objects between two agents with additively separable prefer-

ences: these rules are precisely the constant, dictatorial, or consensual unions defined

in Section 4. This two-agent result was proved independently by Amanatadis et al.

(2017), who however do not study at all the problem of choosing social outcomes

under uncertainty, nor consider n-agent assignment rules.

The second remark is technical. The set of acts is a Cartesian product, and sub-

jective expected utility preferences over acts are additively separable. It is known

that when individual preferences over a product set of social alternatives are separa-

ble and form a suitably rich domain, strategyproof social choice rules are products

of strategyproof “sub-rules” defined on the marginal profiles of preferences over the

components of the social alternatives. Le Breton and Sen (1999) offer general the-

orems of this type; earlier papers proving variants of the result include Border and

Jordan (1983), Barberà, Sonnenschein and Zhou (1991), and Barberà, Gul and Stac-

chetti (1993). This decomposition property does not hold in our setting. The reason

is that subjective expected utility preferences do not form a rich domain. Le Breton

and Sen’s (1999) richness condition requires that for any collection of admissible pref-

erences over the components of the social alternatives there exists a preference over

the social alternatives which induces marginal preferences over components coinciding

with the ones in that collection. Since in our setting all state-contingent preferences

over outcomes induced by a subjective expected utility preference over acts are iden-

tical, Le Breton and Sen’s condition is violated. It is this lack of richness that makes

5Reinterpret states of nature as desirable objects and observe that beliefs define additively sepa-

rable “preferences” over subsets of states. Pápai (2007) studies various subclasses of n-agent strat-

egyproof allocation rules for arbitrary monotonic preferences.
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it possible to define non-decomposable rules where beliefs affect the states where an

agent’s top outcome is selected.

2 The model

There is a finite set of agents N = {1, ..., n} with n ≥ 2, a finite set of states of

nature Ω with |Ω| ≥ 2, and a finite set of outcomes X with |X| ≥ 3. Outcomes are of

interest to all agents. Subsets of Ω are called events. An act is a function f ∈ XΩ.

Agent i’s preference ordering <i over acts is assumed to be of the subjective expected

utility type: there exist a valuation function vi : X → R and a subjective probability

measure pi on the set of events such that for all f, g ∈ XΩ,

f <i g ⇔
∑
ω∈Ω

pi(ω)vi(f(ω)) ≥
∑
ω∈Ω

pi(ω)vi(g(ω)).

We assume, without loss of generality, that vi is normalized: minX vi = 0 < maxX vi =

1. Note that we write ω instead of {ω} and i instead of {i}; we will often omit curly

brackets to alleviate notation.

Throughout the paper, we further assume that <i is a linear ordering. Although

the valuation function vi and the subjective probability measure pi associated with

<i are not determined uniquely,6 it is easy to see that if (vi, pi) and (wi, qi) both

represent <i, then vi, wi generate the same ranking of the outcomes (i.e., vi(a) ≥
vi(b) ⇔ wi(a) ≥ wi(b)) and pi, qi generate the same ranking of the events (i.e.,

pi(E) ≥ pi(E
′) ⇔ qi(E) ≥ qi(E

′)). Furthermore, the assumption that <i is a linear

ordering implies that for any (vi, pi) representing <i, (i) vi is injective and (ii) pi
is injective.7 Because pi(∅) = 0, it follows from (ii) that pi(ω) > 0 for all ω ∈ Ω.

The linear ordering assumption is reasonable given that the set of acts is finite. We

make it for convenience. Allowing for indifferences would add considerable technical

difficulties (which we explain in Section 7) but is unlikely to bring much insight.

We denote by V the set of (normalized, injective) valuation functions vi and by P
the set of (necessarily positive, injective) measures pi, which we call beliefs. Formally,

the domain of preferences is the set of pairs (vi, pi) that generate a linear ordering of

the set of acts, that is to say,

D =

{
(vi, pi) ∈ V × P :

∑
ω∈Ω

pi(ω)vi(f(ω)) ̸=
∑
ω∈Ω

pi(ω)vi(g(ω)), ∀f, g ∈ XΩ s.t. f ̸= g

}
.

6See for instance Haller (1985) for a discussion of this point.
7To see this, suppose (vi, pi) represents <i but pi(E) = pi(E

′) for two distinct events E,E′.

Choose two outcomes a, b and consider two acts f, g such that f(ω) = g(ω′) = a, f(ω′) = g(ω) = b,

and f(ω′′) = g(ω′′) for all ω ∈ E \E′, ω′ ∈ E′ \E, and ω′′ ∈ (E ∩E′)∪ (Ω \ (E ∪E′)). But then we

have f ∼i g, and this indifference between distinct acts contradicts the linear ordering assumption.
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A social choice function (or SCF ) is a function φ : DN → XΩ. We denote the

ordered list ((v1, p1), ..., (vn, pn)) ∈ DN by (v, p). In principle, our formulation allows

a SCF φ to choose different acts for profiles (v, p) and (v′, p′) that represent the same

profile of preferences (<1, ...,<n). Of course, the requirement of strategyproofness

defined below will rule this out. With a slight abuse of terminology, we therefore call

any (v, p) ∈ DN a preference profile. We call v = (v1, ..., vn) ∈ VN a valuation profile

and p = (p1, ..., pn) ∈ PN a belief profile. For every preference profile (v, p) ∈ DN and

every ω ∈ Ω, we denote by φ(v, p;ω) the outcome chosen by the act φ(v, p) in state

ω.

We emphasize that the chosen act is allowed to change when an agent’s valuation

function is replaced with another that generates the same ranking of the outcomes

but a different ordering of the acts: no information about individual preferences is a

priori discarded.

We now define the key incentive-compatibility property we are interested in. De-

note by v−i ∈ VN\i and p−i ∈ PN\i the valuation and belief sub-profiles obtained by

deleting vi from v and pi from p, respectively. A SCF φ is strategyproof if, for all

i ∈ N, all (v, p) ∈ DN , and all (v′i, p
′
i) ∈ D,∑

ω∈Ω

pi(ω)vi(φ(v, p;ω)) ≥
∑
ω∈Ω

pi(ω)vi(φ((v
′
i, v−i), (p

′
i, p−i);ω)).

This means that distorting one’s preference –by misrepresenting one’s valuation func-

tion or one’s beliefs– is never profitable. At every profile (v, p) and for every agent i,

any pair (wi, qi) representing the same ordering <i as (vi, pi) is a dominant strategy

in the preference revelation game generated by φ at (v, p).

To facilitate the analysis, we impose the auxiliary property of ex-post efficiency.

A SCF φ is ex-post efficient if for all (v, p) ∈ DN and all ω ∈ Ω, there is no x ∈ X

such that vi(x) > vi(φ(v, p;ω)) for all i ∈ N. In words, ex-post efficiency says that

a social outcome that all agents value less than some other outcome x should never

be picked. This requirement does not imply that the acts chosen by φ are (ex-ante

Pareto) efficient at all preference profiles.

The purpose of this paper is to describe the class of all strategyproof and ex-post

efficient SCFs.

3 A preliminary result: the Top Selection lemma

In this section we show that, as a consequence of strategyproofness and ex-post effi-

ciency, the designer can only pick outcomes that some agents view as their favorite

ones. This requirement is a crucial step, but it is not a characterization result yet

—as it turns out to be insufficient for strategyproofness.
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An assignment is an ordered list A = (A1, ..., An) of subsets of Ω such that

Ai∩Aj = ∅ whenever i ̸= j, and ∪i∈NAi = Ω. We refer to the condition that A1, ..., An

partition Ω as feasibility. Let S denote the set of assignments. An assignment rule

is a function s : PN → S assigning to each belief profile p an assignment s(p) =

(s1(p), ..., sn(p)). We refer to si(p), the event assigned to agent i at p, as i’s share.

Note that an agent’s share may be empty.

For all vi ∈ V , let τ(vi) denote the unique maximizer (or top) of vi in X.

Top Selection Lemma. If a SCF φ is strategyproof and ex-post efficient, then there

exists a unique assignment rule s : PN → S such that, for all (v, p) ∈ DN , ω ∈ Ω,

and i ∈ N , we have

ω ∈ si(p) ⇒ φ(v, p;ω) = τ(vi). (1)

We say that the assignment rule s in (1) is associated with (or generates) φ; and

we call φ a top selection.

The Top Selection lemma really contains two statements. The first is that every

strategyproof and ex-post efficient SCF can only choose acts that pick in every state of

nature some agent’s top outcome. This forbids choosing acts that select “compromise

outcomes”, as illustrated by the following example.

Example 1. Suppose that N = {1, 2} , X = {a, b, c} and consider a preference profile

(v, p) such that v1(a) = v2(c) = 1, v1(b) = v2(b) = .99, and v1(c) = v2(a) = 0. The

Top Selection lemma tells us that the natural compromise outcome b cannot be picked

in any state of nature at this profile. The only admissible form of compromise (at a

fixed belief profile p) consists in allowing different agents to choose the final outcome

in different states of nature. An obvious corollary is that no strategyproof SCF is

(ex-ante Pareto) efficient.

The second statement contained in the Top Selection lemma is that the set of states

in which an agent’s top outcome is selected depends only upon the profile of beliefs:

the valuation profile v is not an argument of the function s. An immediate corollary

is that a strategyproof and ex-post efficient SCF is tops-only :8 if (v, p), (v′, p) ∈ DN

and τ(vi) = τ(v′i) for all i ∈ N , then φ(v, p) = φ(v′, p). The chosen act depends only

upon the belief profile and the tops of the valuation functions.

The proof of the Top Selection lemma is in Appendix A but it may be worth

sketching the main lines of the argument here. We proceed by induction. First, it is

shown that every two-agent strategyproof and ex-post efficient SCF must be a tops-

only top selection (Lemma 4). We then focus on the case n ≥ 3 and, making use

of the induction hypothesis, we show in Lemma 5 that a strategyproof and ex-post

8The cumbersome term “valuations tops-only” would be more precise: the SCFs identified in

the Top Selection lemma may certainly use more information than just the tops of the preference

orderings <1, ...,<n in the set of acts.
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efficient SCF must select top outcomes whenever two agents (or more) report the

same top. Finally, under our two axioms, we show in Lemma 6 that (a) the chosen

act must select only top outcomes (for all preference profiles and in every state);

(b) the tops-only property holds: the decision must remain the same if some agents

change their valuations of any non-top outcomes. It thus follows from these results

that, at each preference profile (v, p), every strategyproof and ex-post efficient SCF

must partition the state space Ω by assigning some event si(v, p) to each agent i. We

conclude the proof by arguing that, in fact, each agent’s share of the state space does

not vary with the valuation profile v.

It may be worth noting that three consequences of strategyproofness (stated in

Lemmas 1-3) are pervasive in the proof sketched above. The most important one

is the monotonicity property stated in Lemma 2: if the social planner changes the

chosen act as an agent’s valuation of some outcome a increases (all else equal), then

the probability of the event in which the outcome a is picked must increase.

4 Statement of the theorem

As pointed out in Section 3, the Top Selection lemma is not a characterization result

yet. The SCF generated by an assignment rule is ex-post efficient but need not

be strategyproof. Our task is now to determine which assignment rules do indeed

generate a strategyproof SCF.

In order to state our main theorem, we need to extend some of our notation to

subsets of events. Fix ∅ ≠ Ω′ ⊆ Ω. A belief on Ω′ is an injective probability measure pi
defined on 2Ω

′
and the set of beliefs on Ω′ is denoted P(Ω′); note that P(Ω) = P . An

assignment of Ω′ is an ordered list of non-intersecting subsets of Ω′ that cover Ω′ and

S(Ω′) denotes the set of assignments of Ω′; note that S(Ω) = S. An Ω′-assignment

rule is a function s : P(Ω′)N → S(Ω′).

If pi ∈ P , we denote by pi | Ω′ the conditional belief generated by pi on P(Ω′),

namely, (pi | Ω′)(A) = pi(A)/pi(Ω
′) for all A ⊆ Ω′. If p ∈ PN , we write p | Ω′ = (p1 |

Ω′, ..., pn | Ω′).

Three types of assignment rules will be central in our analysis: the constant,

bilaterally dictatorial, and bilaterally consensual rules. An Ω′-assignment rule s is

constant if there exists an assignment A of Ω′ such that s(p) = A for all p ∈ P(Ω′)N .

A proper covering of Ω′ is a family A of subsets of Ω′ such that A\B and B\A are

nonempty for all distinct A,B ∈ A, ∪A∈AA = Ω′, and ∩A∈AA = ∅. For any belief pi
on Ω′, we denote by argmax

A
pi the event maximizing pi in the family A. If i, j ∈ N are

two distinct agents, an Ω′-assignment rule s is called (i, j)-dictatorial if there exists

a proper covering A of Ω′ such that si(p) = argmax
A

pi and sj(p) = Ω′ \ argmax
A

pi for

all p ∈ P(Ω′)N . Note that, by feasibility, sk(p) = ∅ for all k ̸= i, j and all p. Note also

that, because A is a proper covering of Ω′, an (i, j)-dictatorial rule s is not constant;
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moreover, there is no ordered pair (i′, j′) ̸= (i, j) for which s is (i′, j′)-dictatorial. We

call s bilaterally dictatorial if it is (i, j)-dictatorial for some (unique) ordered pair of

agents (i, j).

Finally, given nonempty subset A ⊂ Ω′, we say that s is (i, j)-consensual (with

default A) if

(si(p), sj(p)) =

{
(Ω′ \ A,A) if pi(Ω

′ \ A) > pi(A) and pj(A) > pj(Ω
′ \ A),

(A,Ω′ \ A) otherwise.

Here and throughout the paper, ⊂ denotes strict inclusion. Again, feasibility implies

sk(p) = ∅ for all k ̸= i, j and all p. We call s bilaterally consensual if it is (i, j)-

consensual for some pair of agents (i, j).

Bilaterally dictatorial and bilaterally consensual rules exploit beliefs in different

ways. The former allow the mechanism designer to extract detailed information about

the beliefs of a single agent; and their range may be large. The latter have only a

binary range but allow the designer to exploit differences in beliefs between agents.

An assignment rule s : Ω → S is a union of constant, bilaterally dictatorial, or

bilaterally consensual rules (or a C-BD-BC union), if there is an exogenous partition

{Ωt}Tt=1 of Ω, and, for each t = 1, ..., T, a constant, bilaterally dictatorial, or bilaterally

consensual Ωt-assignment rule st such that

si(p) = ∪T
t=1s

t
i(p | Ωt)

for all p ∈ PN and all i ∈ N.Merging cells of the partition if necessary, we may assume

without loss of generality that there is at most one t for which st is constant and,

for each ordered pair of agents (i, j), at most one t for which st is (i, j)-dictatorial.

This is the canonical representation of a C-BD-BC union. Let us use the following

example to illustrate a C-BD-BC union.

Example 2. Suppose that N = {1, 2, 3}, Ω = {ω1, ω2, ω3, ω4}; and define the partition

of the state space Ω by {Ω1,Ω2} = {{ω1, ω2}, {ω3, ω4}}. First, let the Ω1-assignment

rule s1 be (1, 2)-dictatorial with proper covering A = {{ω1}, {ω2}} —agent 1 picks be-

tween ω1 and ω2, with agent 2 receiving the other state. Second, let the Ω2-assignment

rule s2 be (2, 3)-consensual with default {ω4} —agent 2 receives ω4 and agent 3 re-

ceives ω3, unless the two are willing to swap. Then the Ω-assignment rule s = s1 ∪ s2

is a C-BD-BC union characterized by:9 for any p = (p1, p2, p3) ∈ PN ,

s(p) = (ω1;ω2ω3;ω4) if p1(ω1) > p1(ω2), p2(ω3) > p2(ω4) and p3(ω4) > p3(ω3);

s(p) = (ω1;ω2ω4;ω3) if p1(ω1) > p1(ω2) and [p2(ω3) < p2(ω4) or p3(ω4) < p3(ω3)];

s(p) = (ω2;ω1ω3;ω4) if p1(ω1) < p1(ω2), p2(ω3) > p2(ω4) and p3(ω4) > p3(ω3);

s(p) = (ω2;ω1ω4;ω3) if p1(ω1) < p1(ω2) and [p2(ω3) < p2(ω4) or p3(ω4) < p3(ω3)].

9To ease on notation, we have removed curly brackets and commas from these four expressions

of s(p). In the top case for example, the rigorous notation should be s(p) = ({ω1}; {ω2, ω3}; {ω4}).
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At every preference profile (v, p), the SCF generated by s will pick each agent i’s top

τ(vi) in all states ω ∈ si(p).

It is not difficult to check that every SCF that is a top selection generated by

some C-BC-BD union is strategyproof and (obviously) ex-post efficient. Our charac-

terization result in the theorem below precisely states that the SCFs of this type are

the only ones satisfying the two axioms.

Theorem. A SCF φ is strategyproof and ex-post efficient if and only if it is a top

selection whose associated assignment rule s is a C-BD-BC union.

Note that our assumption |X| ≥ 3 is needed for this result. When there are two

outcomes and an odd number of agents, majority voting between the two constant

acts defines a strategyproof and ex-post efficient SCF.

Remark also that a dictatorial assignment rule —which allows a single agent to

select the assignment that maximizes the subjective probability of her own share (over

the range of the rule)– does not generate a strategyproof SCF if it is not the union

of bilaterally dictatorial sub-rules. The following example illustrates this point.

Example 3. Suppose that N = {1, 2, 3} , Ω = {ω1, ω2, ω3} , X is arbitrary, and define

the assignment rule s : PN → S by

s(p1, p2, p3) =


({ω1} , {ω2} , {ω3}) if argmaxΩ p1 = ω1,

({ω2} , {ω3} , {ω1}) if argmaxΩ p1 = ω2,

({ω3} , {ω1} , {ω2}) if argmaxΩ p1 = ω3.

Note that s is not a union of bilaterally dictatorial sub-rules [there exist p′1, p
′′
1, p

′′′
1 ∈ P

s.t ω2 ∈ s1(p
′
1) ∩ s2(p

′′
1) ∩ s3(p

′′′
1 )]. To see why the top selection SCF φ generated by

s is not strategyproof, consider a preference profile (v, p) such that p1(ω1) = .52,

p1(ω2) = .12, p1(ω3) = .36, v1(τ(v2)) = 1, and v1(τ(v3)) = 0. If all agents report their

preferences truthfully, the selected act φ(v, p) = (φ(v, p;ω1), φ(v, p;ω2), φ(v, p;ω3)) =

(τ(v1), τ(v2), τ(v3)) yields to agent 1 an expected utility of .64. If agent 1 reports

(v1, p
′
1) with argmaxΩ p′1 = ω3, the selected act φ(v, (p′1, p2, p3)) = (τ(v2), τ(v3), τ(v1))

yields an expected utility of .88, which is higher.

A similar example can be constructed to illustrate the importance of bilaterality

for consensual assignment rules. The detailed proof of the characterization result

stated in the theorem is available in Appendices B, C and D. In the following sections,

we offer a description of the key steps of this proof.

5 Proof of the theorem: local bilaterality

As already mentioned, it is easy to check that every SCF generated by a C-BD-BC

union is strategyproof and ex-post efficient. In order to prove the converse state-

ment, given the Top Selection lemma, it suffices to prove that the assignment rule s
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associated with a strategyproof and ex-post efficient SCF φ is a C-BC-CD union. In

the current section, we show that s satisfies a strong incentive-compatibility property

–dubbed super-strategyproofness– and we use this property to characterize the local

behavior of s. It turns out that this behavior is bilateral: an elementary change in an

agent’s belief may only affect her own share and that of one other agent.

Call an assignment rule s : PN → S strategyproof if pi(si(p)) ≥ pi(si(p
′
i, p−i)) for

all i ∈ N, p ∈ PN , and p′i ∈ P : no agent can increase the likelihood of the event

assigned to her by misrepresenting her belief.

For any assignment A = (A1, ..., An) ∈ S and any M ⊆ N , write AM = ∪i∈MAi.

Call s super-strategyproof if pi(sM(p)) ≥ pi(sM(p′i, p−i)) for all i,M such that i ∈
M ⊂ N, all p ∈ PN , and all p′i ∈ P : by misrepresenting her belief, an agent can never

increase the likelihood of the event assigned to any group to which she belongs.

For any ω ∈ Ω and p ∈ PN , it will be convenient to let aω(p) denote the agent to

whom s assigns ω at the belief profile p, that is,

aω(p) = i ⇔ ω ∈ si(p). (2)

Super-strategyproofness Lemma. The assignment rule s associated with a strat-

egyproof and ex-post efficient SCF φ is super-strategyproof.

Proof. Let φ be a strategyproof and ex-post efficient SCF and let s be the assignment

rule associated with it through (1). Suppose, by way of contradiction, that there exist

i,M such that i ∈ M ⊂ N, p ∈ PN , and p′i ∈ P such that pi(sM(p′i, p−i)) > pi(sM(p)).

Choose v ∈ VN such that (v, p), (v, (p′i, p−i)) ∈ DN and vi(τ(vj)) = 1 for all j ∈ M

and vi(τ(vj)) = 0 for all j ∈ N \M. Then,∑
ω∈Ω

pi(ω)vi(φ(v, (p
′
i, p−i);ω)) =

∑
ω∈Ω

pi(ω)vi(τ(vaω(p′i,p−i)))

=
∑

ω∈Ω:aω(p′i,p−i)∈M

pi(ω)

= pi(sM(p′i, p−i))

> pi(sM(p))

=
∑

ω∈Ω:aω(p)∈M

pi(ω)

=
∑
ω∈Ω

pi(ω)vi(τ(vaω(p)))

=
∑
ω∈Ω

pi(ω)vi(φ(v, p;ω)),

contradicting the assumption that φ is strategyproof. �
An immediate consequence of the Super-strategyproofness lemma which will prove

crucial in the remainder of the proof is that the assignment rule s associated with
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a strategyproof and ex-post efficient SCF must satisfy the well-known property of

“non-bossiness”.

An assignment rule s is non-bossy if, for all i ∈ N, p ∈ PN and p′i ∈ P , we have:

si(p) = si(p
′
i, p−i) ⇒ s(p) = s(p′i, p−i). In other words, non-bossiness says that no

agent can affect another agent’s share without affecting her own.

Non-Bossiness Corollary. The assignment rule s associated with a strategyproof

and ex-post efficient SCF φ is non-bossy.

Proof. Given the super-strategyproofness lemma, it suffices to show that every

super-strategyproof assignment rule s is non-bossy. Let s be super-strategyproof and

suppose, by way of contradiction, that there exist i, j ∈ N, p ∈ PN and p′i ∈ P
such that si(p) = si(p

′
i, p−i) and sj(p) ̸= sj(p

′
i, p−i). By super-strategyproofness ap-

plied to M = {i, j} and because pi is injective, pi(sij(p)) > pi(sij(p
′
i, p−i)), hence

pi(sj(p)) > pi(sj(p
′
i, p−i)). Since such a strict inequality holds for every j such that

sj(p) ̸= sj(p
′
i, p−i), we have 1 =

∑
j∈N pi(sj(p)) >

∑
j∈N pi(sj(p

′
i, p−i)) = 1, a contra-

diction. �
We are now ready to characterize the local behavior of a super-strategyproof

assignment rule. Define H = {{A,B} : ∅ ̸= A,B ⊂ Ω and A ∩B = ∅} , the set of

pairs of disjoint nonempty events. Two beliefs pi, qi ∈ P will be called {A,B}-
adjacent if

(pi(A)− pi(B))(qi(A)− qi(B)) < 0 and

(pi(C)− pi(D))(qi(C)− qi(D)) > 0 for any {C,D} ∈ H \ {{A,B}} .

We say that pi, qi are adjacent if they are {A,B}-adjacent for some {A,B} ∈ H.

Adjacency is an ordinal property. Every belief pi ∈ P generates a likelihood

ordering R(pi) over events defined by AR(pi)B ⇔ pi(A) ≥ pi(B). Call two beliefs

pi, qi ordinally equivalent if R(pi) = R(qi). If pi, qi are adjacent and p′i is ordinally

equivalent to pi, then p′i, qi are adjacent. From the above definition of adjacency,

observe that two beliefs are adjacent if the likelihood orderings they generate differ

on a single pair of disjoint nonempty events.

Example 4. Let Ω = {ω1, ω2, ω3} and consider the simplex ∆ depicted in Figure 1.

Every point in ∆ implicitly defines a measure pi ∈ P, where P denotes the closure

of P in [0, 1]2
Ω

. Every line segment corresponds to (the intersection with ∆ of) the

hyperplane pi(A) = pi(B) generated by some pair of disjoint events {A,B} ∈ H. Each

connected component of the complement of (the union of) these line segments defines

a region of ordinally equivalent beliefs: the shaded area is an example. Two beliefs

are adjacent if they lie on the same side of all but one hyperplane. For instance, the

beliefs p1i , p
2
i , which lie on the same side of all hyperplanes except pi({ω2}) = pi({ω3}),

are {{ω2} , {ω3}}-adjacent. These beliefs generate the likelihood relations
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pi(ω1) = 1

pi(ω2) = 1 pi(ω3) = 1

•
p2i•

p1i

pi(ω2) = pi(ω3)

Figure 1: Beliefs, likelihood orderings, and adjacency

R(p1i ) = {ω1, ω2, ω3} , {ω1, ω2} , {ω1, ω3} , {ω2, ω3} , {ω1} , {ω2} , {ω3} ,
R(p2i ) = {ω1, ω2, ω3} , {ω1, ω3} , {ω1, ω2} , {ω2, ω3} , {ω1} , {ω3} , {ω2} ,

where events are listed in decreasing order of likelihood. Note that R(p1i ) and R(p2i )

disagree not only on {ω2} , {ω3} but, as a consequence, also on {ω1, ω2} , {ω1, ω3}: this
does not contradict the definition of adjacency because {ω1, ω2} , {ω1, ω3} intersect.

We now focus on the local implications of strategyproofness, that is, we study the

restrictions imposed by strategyproofness when some agent i’s reported belief varies

in the slightest possible way (from some belief pi to another belief p′i such that pi and

p′i are adjacent).

Local Bilaterality Lemma. Let s be a super-strategyproof assignment rule. Let

{A,B} ∈ H and let i ∈ N, p ∈ PN , p′i ∈ P be such that pi, p
′
i are {A,B}-adjacent

and pi(A) > pi(B). Then, either (i) s(p) = s(p′i, p−i) or (ii) there exists j ∈ N \ i

such that

si(p) \ si(p′i, p−i) = A = sj(p
′
i, p−i) \ sj(p),

si(p
′
i, p−i) \ si(p) = B = sj(p) \ sj(p′i, p−i),

sk(p) = sk(p
′
i, p−i) for all k ∈ N \ {i, j} .

This is a complete description of the local behavior of s. By reporting a belief

adjacent to her own, an agent i can only change the event that is assigned to her
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and one other agent j. Moreover, if the assignment is indeed modified, i and j

must precisely exchange the disjoint events that have been switched in i’s likelihood

ordering.

Proof. Fix a super-strategyproof (hence also non-bossy) assignment rule s. Let

{A,B} ∈ H and let i ∈ N, p ∈ PN , p′i ∈ P be such that pi, p
′
i are {A,B}-adjacent

and pi(A) > pi(B).

Step 1. We show that for all M ⊆ N such that i ∈ M, either (i) sM(p) = sM(p′i, p−i)

or (ii) sM(p) \ sM(p′i, p−i) = A and sM(p′i, p−i) \ sM(p) = B.

To see this, suppose (i) fails. Define AM = sM(p) \ sM(p′i, p−i) and BM =

sM(p′i, p−i) \ sM(p). These sets are disjoint and super-strategyproofness of s implies

that both are nonempty; hence, they belong to H. Suppose, by way of contradiction,

that AM ̸= A or BM ̸= B. Since pi, p
′
i are {A,B}-adjacent, their associated likelihood

orderings must agree on the ranking of AM , BM : either (a) pi(AM) > pi(BM) and

p′i(AM) > p′i(BM), or (b) pi(AM) < pi(BM) and p′i(AM) < p′i(BM). If (a) holds, then

p′i(sM(p)) > p′i(sM(p′i, p−i)) whereas if (b) holds, then pi(sM(p′i, p−i)) > pi(sM(p)).

Each of these two inequalities contradicts super-strategyproofness.

Step 2. Applying Step 1 with M = {i}, either (i) si(p) = si(p
′
i, p−i) or (ii) si(p) \

si(p
′
i, p−i) = A and si(p

′
i, p−i) \ si(p) = B.

If (i) holds, non-bossiness of s implies s(p) = s(p′i, p−i), and we are done.

If (ii) holds, let j ∈ N \ i. Applying Step 1 with M = {i, j} = ij, we have either

(a) sij(p) = sij(p
′
i, p−i) or (b) sij(p) \ sij(p′i, p−i) = A and sij(p

′
i, p−i) \ sij(p) = B. If

(a) holds, then (ii) implies

sj(p
′
i, p−i) \ sj(p) = A and sj(p) \ sj(p′i, p−i) = B (3)

whereas if (b) holds, (ii) implies

sj(p) = sj(p
′
i, p−i). (4)

By feasibility, (3) can hold for at most one agent j ∈ N \ i. Because of (ii), it

must hold for exactly one such agent. Since (4) holds for every other agent j ∈ N \ i,
the proof is complete. �

6 Proof of the theorem: the bilateral consensus

and bilateral dictatorship lemmas

This section describes the last key step towards our characterization result. We show

that (under a super-strategyproof assignment rule) a state ω that is assigned to agent

i at some belief profile p must necessarily be assigned to some fixed agent j at all
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profiles q such that aω(q) ̸= i. This property, which we refer to as bilaterality, is

shown by exploiting the Local Bilaterality lemma; and the conclusion that a super-

strategyproof assignment rule is a C-BD-BC union then follows.

Fix a super-strategyproof assignment rule s : PN → S. Let Ω0,Ω1,Ω2 denote the

sets of states whose assignment is either constant, varies with the belief of a single

agent, or with the beliefs of at least two agents. Using the definition of aω in (2), we

thus have:

(i) ω ∈ Ω0 ⇔ aω is constant on PN ;

(ii) ω ∈ Ω1 ⇔
[
there exist i ∈ N, p ∈ PN , and p′i ∈ P such that aω(p) ̸= aω(p

′
i, p−i)

]
and

[
aω(., p−j) is constant on P for all j ̸= i and p−j ∈ PN\j];

(iii) ω ∈ Ω2 ⇔ there exist distinct agents i, j ∈ N, p, q ∈ PN , and p′i, q
′
j ∈ P such

that aω(p) ̸= aω(p
′
i, p−i) and aω(q) ̸= aω(q

′
j, q−j).

By definition, {Ω0,Ω1,Ω2} is a partition of Ω. This is because the definition in (iii)

allows the assignment of states in Ω2 to vary with the beliefs of more than two agents.

Note also that the set of agents to whom a state in Ω2 may potentially be assigned is

a priori unrestricted.

We proceed by considering the states in Ω2 first. We show that, in fact, these

states can only be assigned to two distinct agents, and the assignment must be based

on the beliefs of these two agents only. More specifically, states in Ω2 must be assigned

through bilateral consensus:

Bilateral Consensus Lemma. For every ω ∈ Ω2 there exists a unique event

Eω ⊆ Ω2 containing ω, and there exists a bilaterally consensual Eω-assignment rule

sω such that

si(p) ∩ Eω = sωi (p | Eω)

for all p ∈ PN and i ∈ N .

The long proof of this lemma is relegated to Appendices B and C, but here is a

quick overview. The proof is “by contagion”.

Appendix B derives a “semi-global” characterization. For any given state ω ∈ Ω2,

we fix a profile π of beliefs over Ω \ ω, and we consider the sub-domain PN(π) of all

belief profiles on Ω generating the same profile of likelihood orderings as π on the

subsets of Ω \ ω. Using the Local Bilaterality lemma, we show that there exist two

disjoint events A,B, whose union contains ω, such that the restriction of s to A ∪B

coincides with a bilaterally consensual (A ∪ B)-assignment rule on the sub-domain

PN(π).

In Appendix C, we consider every belief profile (π′
i, π−i) over Ω \ω such that π′

i is

adjacent to πi for some agent i and, in a series of “contagion lemmas”, we describe

how the behavior of the restriction of s to A ∪ B on the sub-domain PN(π′
i, π−i) is

linked to the behavior of its restriction to A ∪B on PN(π). Using the connectedness
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of the set of all beliefs on Ω \ ω, we conclude that the restriction of s to A ∪ B

must be bilaterally consensual on the whole domain PN . The claim follows by setting

Eω = A ∪B.

The Bilateral Consensus lemma fully determines the behavior of s on Ω2. For

any two states ω, ω′ ∈ Ω2, since there exist a bilaterally consensual Eω-rule sω and a

bilaterally consensual Eω′
-rule sω

′
such that si(p)∩Eω = sωi (p | Eω) and si(p)∩Eω′

=

sω
′

i (p | Eω′
) for all i ∈ N, we must have either (i) Eω = Eω′

and sω = sω
′
, or (ii)

Eω ∩ Eω′
= ∅. This delivers at once the following corollary:

Bilateral Consensus Corollary. There exists a partition {Ωt}T2

t=1 of Ω2 and, for

each t = 1, ..., T2, a bilaterally consensual Ωt-assignment rule st such that

si(p) ∩ Ω2 = ∪T2
t=1s

t
i(p | Ωt)

for all p ∈ PN and i ∈ N.

Next, we turn next to the assignment of the states in Ω1. Let Ω11 be the subset of

those states in Ω1 whose assignment varies with the beliefs of agent 1. We show that

these states are assigned by bilateral dictatorship of agent 1.

Bilateral Dictatorship Lemma. There exist a set N1 ⊆ N \ 1, a partition{
Ωj

11

}
j∈N1

of Ω11, and for each j ∈ N1 a (1, j)-dictatorial Ωj
11-assignment rule sj

such that

si(p) ∩ Ω11 = ∪j∈N1s
j
i (p | Ωj

11) (5)

for all p ∈ PN and i ∈ N.

The proof is in Appendix D, but let us outline it here. Consider the family of

all subsets of Ω11 that are assigned to agent 1 at some belief profile. We begin by

showing that s1(p) ∩ Ω11 maximizes p1 over that family whenever p1 is a so-called

Ω11-dominant belief –one in which only the probability differences between events in

Ω11 are large. We then use the Local Bilaterality lemma to extend this observation to

all belief profiles p. The next and crucial step consists in proving that every state in

Ω11 can only be allocated to a single agent other than 1. The set Ω11 can therefore be

partitioned into a collection of subsets
{
Ωj

11

}
such that every state in Ωj

11 is allocated

to either 1 or j, and super-strategyproofness can be used to show that s1(p) ∩ Ωj
11

maximizes p1 over the family of all subsets of Ωj
11 that are assigned to agent 1 at some

belief profile. The argument is completed by appealing to non-bossiness.

We have stated the Bilateral Dictatorship lemma for agent 1, but a corresponding

lemma obviously holds for every agent. It now follows from these Bilateral Dictator-

ship lemmas, the Bilateral Consensus corollary, and the definition of Ω0, that s is a

C-BD-BC union. Together with the Top Selection lemma, this completes the proof

of the Theorem.
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7 Concluding comments

We have shown that strategyproof and ex-post efficient social choice functions are top

selections generated by assignment rules that are unions of constant, bilaterally dicta-

torial, or bilaterally consensual sub-rules. Thus, under uncertainty, strategyproofness

and ex-post efficiency are compatible with a form of consensuality that cannot be

achieved under risk. This generates efficiency gains: any random dictatorship (that

is, any SCF generated by a constant assignment rule) is Pareto-dominated by the

SCF generated by some consensual rule.

The assumption that preferences are linear orderings (which rules out indifference)

could be dispensed with. Under the SCFs identified in our theorem, the act selected

at a given preference profile picks some agent’s top outcome in every state of na-

ture. When this best outcome is not unique, one faces the problem of characterizing

the tie-breaking rules (for choosing between multiple top outcomes) which guaran-

tee that the resulting SCF is strategyproof. Likewise, if an agent may assign the

same subjective probability to two events, the assignment rules on which our SCFs

are based are no longer well-defined and one must characterize which refinements

generate strategyproof SCFs. These are difficult but rather technical issues.

We conclude by mentioning some open problems.

(1) How should we choose between the social choice functions identified in our

theorem? Assuming a given (for instance uniform) distribution over the set of all

preference profiles, one could search for SCFs that maximize some measure of expected

welfare –the expected sum of normalized utilities for instance. Alternatively, one could

proceed axiomatically and impose properties that complement strategyproofness and

ex-post efficiency. It is a corollary of our theorem, however, that no strategyproof

SCF is (ex-ante Pareto) efficient. Anonymity and neutrality are also impossible. On

the other hand, it also follows from our theorem that all strategyproof and ex-post

efficient SCFs are group-strategyproof: the members of a group cannot all benefit

from jointly misrepresenting their preferences. It would be interesting to explore

what lower bounds can be guaranteed on each agent’s welfare.

(2) Strategyproof SCFs that are not ex-post efficient deserve to be studied. If

there is an odd number of agents, majority voting between two pre-specified acts is

clearly strategyproof. But more flexible strategyproof SCFs are possible. Partition

the state space into a collection of events. For each event specify two “sub-acts”,

that is, two mappings from that event into the set of outcomes, and apply majority

voting to choose between these two sub-acts. Let the chosen act be the concatenation

of all the chosen sub-acts. The additive separability of subjective expected utility

preferences guarantees that this SCF is strategyproof; it is also anonymous. Non-

anonymous variants of such SCFs can be defined by using a committee rule (rather

than majority voting) to decide between the two pre-specified sub-acts on each event.
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(3) We conducted our analysis under the assumption that all acts are feasible.

While this unconstrained social choice framework is a natural benchmark (just like

Hylland’s model is in the case of risk), some applications will require imposing con-

straints on the set of feasible acts.

An interesting generalization of our model consists in assuming that well-defined,

but possibly different subsets of feasible outcomes, are associated with the respective

states of nature. The set of feasible acts remains a cartesian product under this

extended framework; and this feature should allow some tractability. We conjecture

that the strategyproof and ex-post efficient SCFs in such a “statewise-constrained”

model have a structure very similar to the one identified in the current paper.

For more general models, the class of strategyproof and ex-post efficient SCFs may

depend in a subtle way upon the considered feasibility constraints, but our results

should provide a good starting point in the search for a characterization. It is worth

noting that the generalization to constrained sets of alternatives was successfully

achieved in the literature on strategyproofness on rich domains of additively separable

preferences originally defined over product sets: see in particular Barberà, Massó and

Neme (2005) and Reffgen and Svensson (2012).

(4) In many contexts, it will also be natural to impose restrictions on preferences.

An interesting case is that of shareholders of a firm choosing acts with monetary out-

comes —the profits to be shared. Here all agents have the same monotonic preference

ordering over outcomes but not necessarily the same valuation functions or the same

beliefs. While the unconstrained problem is uninteresting —the constant act choosing

the highest profit level in all states is dominant, the problem of choosing acts under

some feasibility constraints is entirely nontrivial.
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8 Appendix A: proof of the Top Selection lemma

We first define two consequences of strategyproofness. Given a pair (vi, pi), let

Epi
vi
(f) :=

∑
ω∈Ω

pi(ω)vi(f(ω)) denote agent i’s expected utility associated with the act

f . We say that a SCF φ̃ : DN → XΩ is misvaluation-proof if no agent ever benefits

from distorting her valuation function (while reporting her actual belief), that is, for

all i ∈ N , (v, p) ∈ DN and v′i ∈ V i,

Epi
vi
(φ̃(v, p)) ≥ Epi

vi
(φ̃((v′i, v−i), p)) .

Likewise φ̃ : DN → XΩ will be called misbelief-proof if: for all i ∈ N , (v, p) ∈ DN

and p′i ∈ P i,

Epi
vi
(φ̃(v, p)) ≥ Epi

vi
(φ̃(v, (p′i, p−i)))

This says that no agent should ever benefit from distorting her belief pi (while truth-

fully reporting vi). Obviously, just as misvaluation-proofness, misbelief-proofness is

implied by strategyproofness.

Let φ : DN → XΩ be a strategyproof and ex-post efficient SCF. Unless explicitly

specified otherwise, we assume in what follows that p ∈ PN is fixed (but arbitrary),

and we write φ(v) and Evi instead of the respective φ(v, p) and Epi
vi
. Given the fixed

p, the set of i’s admissible valuation functions is Vpi := {v ∈ V : (vi, pi) ∈ D}; and
(with a slight abuse of notation) we write Vp := Vp1 × . . .× Vpn . For any x ∈ X and

f ∈ XΩ, we let fx := {ω ∈ Ω : f(ω) = x}. Likewise, we will often write φx(v, p).

The preliminary result below says that, if the chosen acts at two given profiles

(v, v′) disagree only in states where either a1 or a2 is selected, then they must coincide

as long as every agent’s ordering of the set {a1, a2} does not change from v to v′.

Lemma 1. Invariance for binary-differentiated acts

If a1, a2 ∈ X and v, v′ ∈ Vp are such that (vi(a1)− vi(a2)) (v
′
i(a1)− v′i(a2)) > 0 for all

i ∈ N , then [φx(v) = φx(v), ∀x ̸= a1, a2] ⇒ [φ(v) = φ(v′)] .

Proof. The result follows from the fact that an agent’s preferences over binary-

differentiated acts f, f ′ (that is, acts that may only differ in states where a1 or a2
is chosen) remain unchanged as long as her ordering of these two outcomes is the

same.

The Monotonicity lemma below states that, if the chosen act changes as agent i’s

reported valuation of the outcome a increases (all else equal), then the probability

assigned to this outcome a in the chosen act must increase as well.

Lemma 2. Monotonicity

If a ∈ X, i ∈ N , v, w ∈ Vp are such that v−i = w−i, vi(x) = wi(x) for all x ̸= a, and

1 > vi(a) > wi(a) ≥ 0, then [φ(v) ̸= φ(w)] ⇒ [pi (φ
a(v)) > pi (φ

a(w))] .
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Proof. Fix i, a, v, w as in the statement of Lemma 2 and suppose that φ(v) = f ̸=

g = φ(w). Next, for any x ∈ X and z ∈ [0, 1), let vzi (x) =

{
vi(x), if x ̸= a

z, if x = a
and

define the following function of z:

∆fg(z) :=
∑
ω∈Ω

pi(ω) [v
z
i (f(ω))− vzi (g(ω))] .

Factoring out z and reshuffling, one can rewrite ∆fg(z) as

∆fg(z) = [pi(f
a)− pi(g

a)]︸ ︷︷ ︸
α

·z +
∑
ω/∈fa

pi(ω)vi(f(ω))−
∑
ω/∈ga

pi(ω)vi(g(ω))︸ ︷︷ ︸
β

.

Thus, ∆fg(z) = α · z + β is a linear function of z ∈ [0, 1).

Moreover, observe that vzi =

{
wi, if z = wi(a)

vi, if z = vi(a)
. Therefore, misvaluation-

proofness implies: (i) ∆fg(wi(a)) < 0 and (ii) ∆fg(vi(a)) > 0. Given that ∆fg is

linear and wi(a) < vi(a), we necessarily have that the slope is positive, that is to say,

α = pi (φ
a(v))− pi (φ

a(w)) > 0.

The next lemma asserts the following: ceteris paribus, as an agent i’s reported

valuation of her second-best outcome a2 gets infinitely close to 1 (the valuation of her

top a1), there necessarily comes a point where (i) the chosen act becomes constant

and (ii) for the two possible orders of i’s two top outcomes a1 and a2, the respective

outcomes chosen must be the same in each state where a1 and a2 are not selected.

Lemma 3. Invariance at the bottom (with close tops)

Consider a1, a2 ∈ X, with a1 ̸= a2, and fix i ∈ N , v ∈ Vp such that vi(a1) = 1. Let

v̂mi , v̄
m
i ∈ Vpi be such that

{
v̂mi (a1) = 1 > v̂mi (a2) = 1− 1/m > v̂mi (x) = vi(x),

v̄mi (a2) = 1 > v̄mi (a1) = 1− 1/m > v̄mi (x) = vi(x),
for

any m ≥ mvi
0 > 1 and any x /∈ {a1, a2}. Then the following statements hold:

(i) ∃f̂ , f̄ ∈ XΩ and ∃m̃ ∈ IN s.t.: m > m̃ ⇒
[
φ(v̂mi , v−i) = f̂ and φ(v̄mi , v−i) = f̄

]
.

(ii) For all x ∈ X \ {a1, a2}, we have f̂x = f̄x.

Proof. Let a, b ∈ X, i ∈ N , v ∈ Vp, v̂mi , v̄
m
i ∈ Vpi satisfy the conditions of the

statement of Lemma 3.

(i) Suppose by contradiction that (i) is false. Then one of the two sequences

f̂m := φ(v̂mi , v−i), f̄m := φ(v̂mi , v−i) is not stationary.10 Assuming without loss of

generality that f̂m is not stationary, there exists a subsequence of f̂m (say, f̂mk
)

10We say that a sequence (qm)m∈IN is stationary if there exists m̄ ∈ IN s.t.: m > m̄ ⇒ qm = qm+1.

In words, a stationary sequence is one that becomes constant after a finite number of steps.
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such that f̂mk
̸= fmk+1

, for all k ∈ IN (where mk increases with k). Given that

v̂
mk+1

i (a2) = 1 − 1/mk+1 > 1 − 1/mk = v̂mk
i (a2) and v̂mk

i (x) = v̂
mk+1

i (x) ∀x ̸= b, it

comes from Lemma 2 that pi(f̂mk+1
) > pi(f̂mk

). Hence, for any k̂ ≥ 1, we may write:

pi

(
f̂a2
m0

)
< pi

(
f̂a2
m1

)
< . . . < pi

(
f̂a2
mk̂−1

)
< pi

(
f̂a2
mk̂

)
< pi

(
f̂a2
mk̂+1

)
< . . .

Since pi is injective, we have thus found an infinite sequence (f̂mk
)k≥0 of pairwise

distinct acts. But this is impossible because the set of acts, XΩ, is finite.

(ii) By way of contradiction, let us assume that f̂x ̸= f̄x for some x ∈ X \{a1, a2}.
We define two new acts ĝ and ḡ as follows:{

ĝ(ω) = f̂(ω), ∀ω /∈ f̂a1 ∪ f̂a2 ;

ĝ(ω) = a1,∀ω ∈ f̂a1 ∪ f̂a2 ;
and

{
ḡ(ω) = f̄(ω),∀ω /∈ f̄a1 ∪ f̄a2 ;

ḡ(ω) = a1,∀ω ∈ f̄a1 ∪ f̄a2 .
(6)

Note that ĝ ̸= ḡ because there exists x ̸= a1, a2 such that f̂x ̸= f̄x. Thus, since the

pair (vi, pi) defines a linear ordering over the set of acts, we must have Evi(ĝ) ̸= Evi(ḡ):∑
x̸=a,b

pi(ĝ
x)vi(x) + pi(f̂

a1 ∪ f̂a2)vi(a1) ̸=
∑
x ̸=a,b

pi(f̄
x)vi(x) + pi(f̄

a1 ∪ f̄a2)vi(a1).

Without loss of generality, suppose that Evi(ĝ)−Evi(ḡ) > 0. It then comes from the

above equation, and the fact that vi(a1) = 1, that∑
x̸=a,b

(pi(ĝ
x)− pi(ḡ

x)) vi(x) +
(
pi(f̂

a1 ∪ f̂a2)− pi(f̄
a1 ∪ f̄a2)

)
> 0.

Hence, since ĝx = f̂x,∀x ̸= a1, a2 (ḡx = f̄x,∀x ̸= a1, a2) from Equation (6), we

have

ε :=
∑
x ̸=a,b

(
pi(f̂

x)− pi(f̄
x)
)
vi(x) + pi(f̂

a1 ∪ f̂a2)− pi(f̄
a1 ∪ f̄a2) > 0. (7)

Consider now m ≥ m̃, where m̃ is defined in (i). Then we have f̂m = f̂ and f̄m = f̄
and, given that v̄i(a2) = 1, v̄mi (a1) = 1− 1/m, it follows that

Ev̄mi
(f̂)− Ev̄mi

(f̄) =
∑
x∈X

(
pi(f̂

x)− pi(f̄
x)
)
v̄i(x)

=
∑

x ̸=a1,a2

(pi(f̂
x)− pi(f̄

x))v̄i(x) + (pi(f̂
a1)− pi(f̄

a1))v̄mi (a1)

+(pi(f̂
a1)− pi(f̄

a2))v̄mi (a2)

=
∑

x ̸=a1,a2

(pi(f̂
x)− pi(f̄

x))vi(x) + pi(f̂
a1 ∪ f̂a2)− pi(f̄

a1 ∪ f̄a2)

− 1

m
(pi(f̂

a1)− pi(f̄
a1))

= ε− 1

m
(pi(f̂

a1)− pi(f̄
a1)).
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Since ε > 0 from (7), and lim
m→∞

1
m
(pi(f̂

a1) − pi(f̄
a1)) = 0, there exists m∗ ≥ m̃ such

that 1
m
(pi(f̂

a1) − pi(f̄
a1)) < ε, for m ≥ m∗. Hence, for all m ≥ m∗ ≥ m̃, we finally

get Ev̄mi
(f̂) − Ev̄mi

(f̄) > 0. But this is a contradiction since, together, misvaluation-

proofness, f̄ = f̄m = φ(v̄mi , v−i) and f̂ = f̂m = φ(v̂mi , v−i) (for all m ≥ m∗) imply

that we must rather have Ev̄mi
(f̄)− Ev̄mi

(f̂) > 0.

Lemma 4. Top selection in the case of two agents.

Let N = {1, 2}, a1, a2 ∈ X, and v, v′∈ Vp. If τ(vi) = τ(v′i) = ai for all i ∈ N, then

φ(v) = φ(v′) ∈ {a1, a2}Ω .

Proof. Fix N = {1, 2}, a1, a2 ∈ X, and v, v′∈ Vp such that τ(vi) = τ(v′i) = ai for

i = 1, 2. If a1 = a2, ex-post efficiency alone delivers the desired result. In what

follows, assume a1 ̸= a2. We prove the claims below.

Claim 1. For any x, y ∈ X, let Txy := {w ∈ Vp : w1(x) = w2(y) = 1} and call

DOMxy the subset of Vp containing all profiles w ∈ Txy such that any z ∈ X \ {x, y}
is ex-post dominated by x or y. Then there exists fxy ∈ {x, y}Ω such that

φ(w) = φ(w′) = fxy, ∀x, y ∈ X, ∀w,w′ ∈ DOMxy.

To prove Claim 1, fix x, y ∈ X and w̃ ∈ DOMxy and observe that, by ex-post

efficiency, we have fxy := φ(w̃) ∈ {x, y}Ω. In addition, remark that for any agent

i ∈ {1, 2}, we have (wi(x)−wi(y))(w
′
i(x)−w′

i(y)) > 0 for all w,w′ ∈ DOMxy. Thus,

Lemma 1 yields the desired result: φ(w) = φ(w′) = fxy, for all w,w′ ∈ DOMxy.

Note that, in particular, Claim 1 implies that φ(w) = φ(w′) = fa1a2 ∈ {a1, a2}Ω for

all w,w′ ∈ DOMa1a2 . To prove Lemma 4, it thus suffices to show that φ(w) = fa1a2
for any w ∈ Ta1a2 \ DOMa1a2 . Let us then consider a fixed v ∈ Ta1a2 \ DOMa1a2 .

By way of contradiction, suppose that φ(v) ̸= fa1a2 . Then there exists b ∈
X \ {a1, a2} such that φb(v) ̸= ∅ —otherwise, Lemma 1 would yield φ(v) = fa1a2 .

Moreover, by monotonicity (Lemma 2), remark that it is not restrictive to assume

that b is the second-best outcome for both players, that is,

v1(a1) = 1 > v1(b) > v1(x),∀x ̸= a1, b; (8)

v2(a2) = 1 > v2(b) > v2(x),∀x ̸= a2, b.

Next, we define v̂m2 , v̄
m
2 ∈ Vp2 by:11

v̂m2 (a2) = 1 > v̂m2 (b) = 1− 1/m > v̂m2 (x) = v2(x) (9)

v̄m2 (b) = 1 > v̄m2 (a2) = 1− 1/m > v̄m2 (x) = vi(x), (10)

11Since the set of acts XΩ is finite, note that the starting point mv2
0 of the sequence {v̂2}m≥m

v2
0
,

can be conveniently chosen so as to have v̂m2 ∈ Vp2 for all m ≥ mv2
0 (and likewise for v̄m2 ).
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for any m ≥ mv2
0 and any x /∈ {a2, b}. We then prove the additional claims below.

Claim 2. For all m ≥ mv2
0 and u1 ∈ Vp1 such that (u1, v̂

m
2 ) ∈ Ta1a2 , we have:

φ(u1, v̂
m
2 ) ̸= fa1a2 ⇒

[
p1(φ

a2(u1, v̂
m
2 )) < p1(f

a2
a1a2

) and p2(φ
a1(u1, v̂

m
2 )) < p2(f

a1
a1a2

)
]
.

Let us prove Claim 2. Consider m ≥ mv2
0 and u1 ∈ Vp1 such that (u1, v̂

m
2 ) ∈ Ta1a2 ;

and suppose that φ(u1, v̂
m
2 ) ̸= fa1a2 . Then we know from Claim 1 that (u1, v̂

m
2 ) /∈

DOMa1a2 ; but defining w by{
w2(a1) = 1− 1/(2m) > w2(b) = 1− 1/m

w2(x) = v̂m2 (x) for all x ̸= a1,

we get (u1, w2) ∈ DOMa1a2 and hence, by Claim 1, φ(u1, w2) = fa1a2 . Observe

that w2 obtains from v̂m2 by merely raising the value of a1: thus, it follows from

monotonicity (Lemma 2) that p2(φ
a1(u1, v̂

m
2 )) < p2(f

a1
a1a2

) = p2(φ(u1, w2)). The proof

of p1(φ
a2(u1, v̂

m
2 )) < p1(f

a2
a1a2

) is similar and will be omitted.

Claim 3. There exists ε∗ ∈ (0, 1) such that, for any u1 ∈ Vp1 , we have:

[u1(a1) = 1 > ε∗ ≥ u1(x), ∀x ̸= a1] ⇒ [φ(u1, v̂
m
2 ) = fa1a2 , ∀m ≥ mv2

0 ].

To prove Claim 3, define α := min
E,E′ ⊆ Ω

E ̸= E′

|p1(E)− p1(E
′)| and let ε∗ = α

|X| > 0. Let

us fix m ≥ mv2
0 and u1 ∈ V1 such that u1(a1) = 1 > ε∗ > u1(x) for all x ̸= a1; and

by contradiction suppose that φ(u1, v̂
m
2 ) ̸= fa1a2 . Then it follows from Claim 2 that

p2(φ
a1(u1, v̂

m
2 )) < p2(f

a1
a1a2

) and, therefore, φa1(u1, v̂
m
2 ) ̸= fa1

a1a2
. Since p1 is injective,

this means that either p1(φ
a1(u1, v̂

m
2 )) < p1(f

a1
a1a2

) or p1(φ
a1(u1, v̂

m
2 )) > p1(f

a1
a1a2

). We

show below that either case leads to a contradiction.
Suppose first that p1(φ

a1(u1, v̂
m
2 )) < p1(f

a1
a1a2

). Then, recalling the definition of α,
we have p1(f

a1
a1a2

)− p1(φ
a1(u1, v̂

m
2 )) ≥ α; and one can hence write

Eu1(fa1a2)− Eu1(φ(u1, v̂
m
2 ))

= p1(f
a1
a1a2)− p1(φ

a1(u1, v̂
m
2 )) +

∑
x̸=a1

[p1(f
x
a1a2)− p1(φ

x(u1, v̂
m
2 ))]

≤ε∗︷ ︸︸ ︷
u1(x)

≥ p1(f
a1
a1a2)− p1(φ

a1(u1, v̂
m
2 ))︸ ︷︷ ︸

≥α=ε∗|X|

−ε∗
∑
x ̸=a1

∣∣p1(fx
a1a2)− p1(φ

x(u1, v̂
m
2 ))

∣∣︸ ︷︷ ︸
≤1

≥ ε∗|X| − ε∗ (|X| − 1) = ε∗ > 0.

But this contradicts misvaluation-proofness: agent 1 will deviate from u1 to u′
1 such

that (u′
1, v̂

m
2 ) ∈ DOMa1a2 and obtain the preferred act fa1a2 .

Suppose now that p1(φ
a1(u1, v̂

m
2 )) > p1(f

a1
a1a2

) and consider w1 ∈ Vp1 such that

w1(a1) = 1 > ε∗ > w2(a2) > w2(x) for all x ̸= a2. Note that (w1, v̂
m
2 ) ∈ DOMa1a2 ,
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hence, φ(w1, v̂
m
2 ) = fa1a2 . But then agent 1 prefers reporting u1 to telling the truth

when receiving w1:

Ew1(φ(u1, v̂
m
2 ))− Ew1(fa1a2)

= p1(φ
a1(u1, v̂

m
2 ))− p1(f

a1
a1a2

) +
∑
x ̸=a1

[p1(φ
x(u1, v̂

m
2 ))− p1(f

x
a1a2

)]

≤ε∗︷ ︸︸ ︷
w1(x)

≥ p1(φ
a1(u1, v̂

m
2 ))− p1(f

a1
a1a2

)︸ ︷︷ ︸
≥α=ε∗|X|

−ε∗
∑
x ̸=a1

∣∣p1(fx
a1a2

)− p1(φ
x(u1, v̂

m
2 ))

∣∣︸ ︷︷ ︸
≤1

≥ ε∗|X| − ε∗ (|X| − 1) = ε∗ > 0.

This also contradicts misvaluation-proofness of φ; and Claim 3 is shown.

To conclude the proof of Lemma 4, let us now fix u1 ∈ Vp1 such that

u1(a1) = 1 > ε∗ =
α

|X|
≥ u1(x), ∀x ̸= a1; (11)

and consider the sequences defined by φ(v1, v̂
m
2 ) and φ(u1, v̂

m
2 ), for m ≥ mv2

0 . By

Lemma 3-(i), there exist f̂v1 ∈ XΩ and m̃v1 ≥ mv2
0 such that: φ(v1, v̂

m
2 ) = f̂v1 , for all

m ≥ m̃v1 . And Lemma 3-(ii) then gives

p2(φ
a1(v1, v̂

m
2 )) = p2(f̂

a1
v1
) = p2(φ

a1(v1, v̄
m
2 )), ∀m ≥ m̃v1 . (12)

On the other hand, it follows from Claim 3 that the sequence φ(u1, v̂
m
2 ) is constant.

Precisely, φ(u1, v̂
m
2 ) = fa1a2 for any m; and hence, applying Lemma 3-(ii), we get

p2(f̂
a1
u1
) = p2(f

a1
a1a2

) = p2(φ
a1(u1, v̄

m
2 )),∀m ≥ m̃u1 . (13)

Next, since φb(v) ̸= ∅, note from monotonicity (Lemma 2) that p2(φ
b(v1, v̂

m
2 ) > 0

and therefore φ(v1, v̂
m
2 ) ̸= fa1a2 for any m ≥ m̃v1 ; and it then follows from Claim

2 that p2(φ
a1(v1, v̂

m
2 )) = p2(f̂

a1
v1
) < p2(f

a1
a1a2

). Plugging this inequality in (12)-(13)

finally gives

p2(f̂
a1
v1
) = p2(φ

a1(v1, v̄
m
2 )) < p2(φ

a1(u1, v̄
m
2 )) = p2(f

a1
a1a2

), ∀m ≥ max{m̃v1 , m̃u1} (14)

But note from (14) that the inequality p2(φ
a1(v1, v̄

m
2 )) < p2(φ

a1(u1, v̄
m
2 )) contradicts

Claim 1. Indeed, remark from (8), (9) and (11) that (v1, v̄
m
2 ), (u1, v̄

m
2 ) ∈ DOMa1b; and

by Claim 1 we should rather have p2(φ
a1(v1, v̄

m
2 )) = p2(φ

a1(u1, v̄
m
2 )) for any m.

We emphasize that our proof of Lemma 4 only makes use of misvaluation-proofness

and ex-post efficiency; it does not require the full force of strategyproofness. Indeed,

up to now, we have kept the belief profile fixed.
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Next, using an induction argument, we prove in Lemma 5 below that φ selects

only tops at each profile where two players report the same top. The statement and

proof of this result require variations of the belief profile p; we hence return to our

original notation, writing φ(v, p) and Epi
vi

rather than just φ(v) and Evi .

Lemma 5. Induction lemma

Suppose that |N | = n ≥ 3. Assume by induction that for all S such that |S| ≤ n− 1

every misvaluation-proof, misbelief-proof and ex-post efficient SCF φ̃ : DS → XΩ is a

top and tops-only selection. Then, for any distinct k, l ∈ N and any (v, p) ∈ DN , we

have: [τ(vk) = τ(vl)] ⇒ φ(v, p) ∈ {τ(vi) : i ∈ N}Ω.

Proof. We will prove Lemma 5 in two steps. Suppose that the conditions in the

statement are satisfied; and let us fix k, l ∈ N such that k ̸= l.

Step 1. For any (v, p) ∈ DN such that vk = vl and pk = pl, we have φ(v, p) ∈ {τ(vi) :
i ∈ N}Ω. Moreover, we have φ(v′, p) = φ(v, p) for any v′ ∈ Vp such that v′k = v′l and

(τ(vi))i∈N = (τ(v′i))i∈N .

Proof. Let N−l := N \ l and consider φ̃ : DN−l → XΩ, defined by:

∀(w, q) ∈ DN−l , φ̃(w, q) = φ(

∈VN︷ ︸︸ ︷
(w, wk︸︷︷︸

l

),

∈PN︷ ︸︸ ︷
(q, qk︸︷︷︸

l

)). (15)

That is to say, φ̃(w, q) obtains as the decision under φ at the profile of DN constructed

from (w, q) by assigning to agent l the same valuation function and beliefs as agent

k. It is straightforward to see from its definition that φ̃ is ex-post efficient (since φ

is). We show next that φ̃ is also misvaluation-proof and misbelief-proof.

It is easy to see from (15) that misreporting vi or pi will never benefit any agent

i ∈ N−l \ k (it would contradict strategyproofness of φ). To show that agent k ∈
N−l cannot profitably misreport either, pick an arbitrary pair (w, q) ∈ DN−l and let

(w′
k, q

′
k) ∈ D. Since φ is misvaluation-proof, agent k cannot profitably misreport w′

k

when receiving (wk, qk):

Eqk
wk
(φ̃((w−k, w

′
k), q) = Eqk

wk
(φ((w−k, w′

k︸︷︷︸
k

, w′
k︸︷︷︸
l

), (q, qk))) ≤ Eqk
wk
(φ((w−k, wk, w

′
k), (q, qk)))

(16)

Likewise, agent l cannot profitably misreport w′
k when receiving (wk, qk), that is,

Eqk
wk
(φ((w−k, wk, w

′
k), (q, qk))) ≤ Eqk

wk
(φ((w−k, wk, wk), (q, qk)) = Eqk

wk
(φ̃(w, q)) (17)

Combining (16) and (17) thus gives Eqk
wk
(φ̃((w−k, w

′
k), q) ≤ Eqk

wk
(φ̃(w, q)), which shows

that φ̃ is misvaluation proof.
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Using the same procedure, we also get Eqk
wk
(φ̃((w, (q−k, q

′
k))) ≤ Eqk

wk
(φ̃(w, q)); and

hence φ̃ is misbelief-proof. It thus follows from the induction hypothesis in the state-

ment of Lemma 5 that φ̃ is a top (and tops-only) selection. That is to say, for

any (v, p) ∈ DN such that vk = vl and pk = pl, the following results hold: (i)

φ̃(v−l, p−l) = φ(v, p) ∈ {τ(vi), i ∈ N}Ω; (ii) φ̃(v′−l, p−l) = φ(v′, p) = φ(v, p) for any

v′ ∈ Vp such that v′k = v′l and (τ(vi))i∈N = (τ(v′i))i∈N

Step 2. For all (v, p) ∈ DN such that vk = vl, we have φ(v, p) ∈ {τ(vi) : i ∈ N}Ω.

Proof. In order to complete this step, let us first state some preliminary results.

Preliminary 1. Let (u, q) ∈ DN and suppose that x∗ ∈ X satisfies ui(x
∗) ∈ [0, 1), for

any i ∈ N . Then there exists εu > 0 such that: (u′, q) ∈ DN and φ(u′, q) = φ(u, q),

whenever u′ ∈ VN satisfies

{
u′
i(x) = ui(x), if x ̸= x∗

|u′
i(x

∗)− ui(x
∗)| < εu

for each i ∈ N .

The proof of Preliminary 1 is left to the reader: it follows from the facts that (i)

the expected utility operator Eqi
ui
(·) is a continuous function of ui; and (ii) all players

have identical preferences under (u, q) and (u′, q) if u and u′ are sufficiently close (the

decision must hence be the same by misvaluation-proofness). It is important to note

that εu may vary with u, but not with p.

Preliminary 2. Suppose that (ui, qi), (ui, q
′
i) ∈ D. Then there exists a finite sequence

of beliefs {qti : t = 0, . . . , T} such that: (i) q0i = qi and qTi = q′i; (ii) (ui, q
t
i) ∈ D, for

every t = 0, . . . , T ; for all t = 0, . . . , T − 1, we have at most one q̄i ∈ [qti , q
t+1
i ] such

that (ui, q̄i) /∈ D.

The proof of Preliminary 2 is also omitted: it obtains as well from the continuity

of the expected utility function Eqi
ui
, and the fact that the set of acts XΩ is finite. In

words, Preliminary 2 means that, given a fixed ui, any deviation from a belief qi to

another belief q′i can be decomposed as a sequence of deviations qti → qt+1
i that are

elementary in the sense that the segment [qti , q
t+1
i ] contains at most one q̄i such that

(ui, q̄i) /∈ D.

Let us now proceed with the proof of Step 2. Fix (v, p) ∈ DN such that vk = vl
and pk ̸= pl; and suppose by contradiction that f := φ(v, p) /∈ {τ(vi) : i ∈ N}Ω.
Using Preliminary 2,12 we will without loss of generality assume that there exists a

unique p̄i ∈ [pk, pl] such that (vk, p̄k) /∈ D.

First, let g := φ(v, (p−kl, pk, pk)), h := φ(v, (p−kl, pl, pl)); and remark that, for any

p∗k ∈ (pk, p̄k), misbelief-proofness or φ gives

φ(v, (p−kl, p
∗
k, pl)) = φ(v, (p−kl, pk, pl)) = f. (18)

12Note from Preliminary 2 that we are ignoring here the case where there exists no p̄k ∈ [pk, pl]

such that (vk, p̄k) /∈ D. In this case, (vk, pk) and (vk, pl) generate exactly the same ranking over the

set of acts XΩ; and hence misbelief-proofness of φ trivially gives the desired contradiction. We thus

focus on the interesting case, where there exists exactly one p̄k ∈ [pk, pl] such that (vk, p̄k) /∈ D.
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Indeed, note that (vk, p
∗
k) and (vk, pl) necessarily yield the same ranking of all acts

because there is no p̄′k ∈ [pk, pl] \ p̄k ⊃ (pk, p̄k) ∋ p∗k such that (vk, p̄
′
k) /∈ D. Likewise,

using misbelief-proofness of φ̃ (established in Step 1) yields

φ(v, (p−kl, p
∗
k, p

∗
k))︸ ︷︷ ︸

=φ̃(v−l,(p−kl,p
∗
k))

= φ(v, (p−kl, pk, pk))︸ ︷︷ ︸
=φ̃(v−l,(p−kl,pk))

= g, ∀p∗ ∈ (pk, p̄k) (19)

Second, we get from Step 1 that g = φ(v, (p−kl, pk, pk)) = φ̃(v−l, p−l) ∈ {τ(vi) : i ∈
N}Ω and also h = φ(v, (p−kl, pl, pl)) = φ̃(v−l, (p−kl, pl)) ∈ {τ(vi) : i ∈ N}Ω. Note

that f /∈ {g, h} since both g and h are top selections (whereas f is not). Since

(v, p) = (v, (p−kl, pk, pl)) obtains from (v, (p−kl, pk, pk)) when agent l changes her

reported belief from pk to pl, misbelief-proofness of φ implies (a.1) Epk
vk
(g) > Epk

vk
(f)

and (a.2) Epl
vk
(f) > Epl

vk
(g). Doing the same for agent k, from (v, (p−kl, pk, pl)) to

(v, (p−kl, pl, pl)), we may write (b.1) Epk
vk
(f) > Epk

vk
(h) and (b.2) Epl

vk
(h) > Epl

vk
(f).

Finally, using misbelief-proofness of φ̃, which has been established in Step 1, we obtain

(c.1) Epk
vk
(g) ≥ Epk

vk
(h) and (c.2) Epk

vk
(g) ≥ Epk

vk
(h) —where the equalities hold only

if g = h. We distinguish two cases below.

Suppose first that g = h. Then observe that (a.1) and (b.1) above respectively

become Epk
vk
(g) > Epk

vk
(f) and Epk

vk
(f) > Epk

vk
(g), and we obviously have a contradic-

tion.

Suppose now that g ̸= h. Combining the intermediate value theorem with the

fact that p̄k is the only belief in [pk, pl] such that(vk, p̄k) /∈ D, we get from (a.1) and

(a.2) that E p̄k
vk
(g) = E p̄k

vk
(f). By the same token, using (c.1) and (c.2), note that we

must as well have E p̄k
vk
(g) = E p̄k

vk
(h). That is to say,

E p̄k
vk
(g) :=

∑
w∈Ω p̄k(w)vk(g(ω)) =

∑
w∈Ω p̄k(w)vk(f(ω)) =: E p̄k

vk
(f); (20)

E p̄k
vk
(g) :=

∑
w∈Ω p̄k(w)vk(g(ω)) =

∑
w∈Ω p̄k(w)vk(h(ω)) =: E p̄k

vk
(h). (21)

Given that f := φ(v, p) /∈ {τ(vi) : i ∈ N}Ω, there necessarily exists (x∗, ω∗) ∈
X × Ω such that vk(x

∗) ∈ [0, 1) and f(ω∗) = x∗. Next, recall the definition of εv

(in Preliminary 1) and define v′ ∈ VN by

{
v′i(x) = vi(x), if x ̸= x∗

v′i(x
∗) = vi(x

∗) + εv/2
for all i ∈ N .

Note from this definition of v′ that v′i(x) = vi(x) for all i ∈ N and all x ∈ {τ(vj) : j ∈
N}. Combining that observation with the fact that g, h ∈ {τ(vj) : j ∈ N}Ω, we may

use (20) to write

E p̄k
v′k
(g) = E p̄k

vk
(g) :=

∑
w∈Ω

p̄k(w)vk(g(ω)) =
∑
w∈Ω

p̄k(w)vk(h(ω)) =: E p̄k
vk
(h) = E p̄k

v′k
(h).

(22)

Also, since v′i(x) ≥ vi(x) for any x ∈ X [with the strict inequality for x∗ ∈ f(Ω)], it
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comes from (22) that

E p̄k
v′k
(g) =

∑
w∈Ω

p̄k(w)

=v′k(g(ω))︷ ︸︸ ︷
vk(g(ω)) =

∑
w∈Ω

p̄k(w)vk(f(ω)) <
∑
w∈Ω

p̄k(w)v
′
k(f(ω)) =: E p̄k

v′k
(f).

(23)

Using the continuity of E
p′k
vk with respect to the belief p′k, Equation (23) implies that

there exists p∗k ∈ (pk, p̄k) such that E
p∗k
v′k
(g) < E

p∗k
v′k
(f). In addition, note that (vk, p

∗
k) ∈

D —because of our assumption that there exists no p̄′k ∈ [pk, pl]\p̄k such that (vk, p̄
′
k) /∈

D. Hence, applying Preliminary 1 also gives (v′k, p
∗
k) ∈ D and

φ(v′, (p−kl, p
∗
k, pl)) = φ(v, (p−kl, p

∗
k, pl)) = f, (24)

where the last equality comes from (18).

Finally, recalling from Step 1 that φ̃ is a tops-only selection —and noting that

τ(vi) = τ(v′i) for all i ∈ N , we get

φ (v′, (p−kl, pk, pk)) = φ̃(v′−l, p−l) = φ̃(v−l, p−l) = φ(v, (p−kl, pk, pk)). (25)

Combining (25) and (19) then gives φ (v′, (p−kl, p
∗
k, p

∗
k)) = g = φ(v, (p−kl, pk, pk)). But

remark that this is a contradiction to misbelief-proofness of φ. Indeed, agent l will

profitably deviate from (v′, (p−kl, p
∗
k, p

∗
k)) to (v′, (p−kl, p

∗
k, pl)) since we have v′l = v′k

and

E
p∗k
v′l
(g) = E

p∗k
v′k
(g) < E

p∗k
v′k
(f) = E

p∗k
v′l
(f);

φ (v′, (p−kl, p
∗
k, p

∗
k)) = g;

φ (v′, (p−kl, p
∗
k, pl)) = f [from (24)].

This concludes the proof of Step 2. Combining Step 1 and Step 2, we thus have

φ(v, p) ∈ {τ(vi) : i ∈ N}Ω for all (v, p) ∈ DN such that vk = vl.

For the case where n = 2, the top (and tops-only) property has been shown in

Lemma 4. The following lemma states this property for n ≥ 3.

Lemma 6. Top Selection (and tops-only) for n ≥ 3

Let |N | = n ≥ 3, An = (a1, . . . , an) ∈ XN and fix p ∈ PN . If v, v′ ∈ Vp are such that

τ(vi) = τ(v′i) = ai for all i ∈ N = {1, . . . , n}, then φ(v, p) = φ(v′, p) ∈ {a1, . . . , an}Ω.

Proof. Suppose that n ≥ 3; and fix An = (a1, . . . , an) ∈ XN and p ∈ PN . Next,

define TAn := {v ∈ Vp : vi(ai) = 1,∀i ∈ N} and, for any v ∈ TAn , let f̂v :=

lim
∞

φ((v̂m1 , v−1), p). That is, f̂v is the value taken by the stationary sequence φ((v̂m1 , v−1), p)

for m large enough [recall Lemma 3-(i)]. We will prove the result by showing two

claims: (1) ∃v ∈ TAn such that φ(v, p) ∈ {a1, . . . , an}Ω; (2) φ(v, p) = φ(v′, p) for all

v, v′ ∈ TAN
.
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Claim 1. There exists v′′ ∈ TAn such that φ(v′′, p) ∈ {a1, . . . , an}Ω.

To prove Claim 1, we distinguish two cases. Fix any v ∈ TAn .

Case 1. Suppose that ak = al for some distinct k, l ∈ N . Then the result of Claim 1

holds by Lemma 5.

Case 2. Suppose now that ai ̸= aj, for any distinct i, j ∈ N , that is, An consists of n

distinct tops. Take i = 1 in Lemma 3 and recall that v̄m is such that v̄m1 (a2) = 1 >

1− 1/m = v̄m1 (a1) > v̄m1 (x) for x ̸= a1, a2. Since τ(v̄m1 ) = a2 = τ(v2), we do not have

n distinct tops at (v̄m1 , v−1); and it thus comes from Lemma 4 and Lemma 3-(i) that,

for m large enough, φ(v̄m1 , v−1) = f̄v ∈ {a2, . . . , an}Ω. That is to say, f̄x
v = ∅, for all

x /∈ {a2, . . . , an}. Moreover, Lemma 3-(ii) tells us that f̂x
v = f̄x

v for all x ̸= a1, a2.

Therefore, we have f̂x
v = f̄x

v = ∅, for all x /∈ {a1, . . . , an}. That is to say, there exists

(a sufficiently large) m′′ ∈ IN such that φ((v̂m
′′

1 , v−1), p) = f̂v ∈ {a1, . . . , an}Ω. It thus
suffices to take v′′ = (v̂m

′′
1 , v−1) to see that Claim 1 is satisfied.

Claim 2. For any v, v′ ∈ TAN
, we have φ(v, p) = φ(v′, p).

To prove Claim 2, let us state two additional preliminaries.

Preliminary 3. Let i ∈ N and suppose that (wi, qi), (w
′
i, qi) ∈ D, with τ(wi) =

τ(w′
i). Then there exist two finite sequences w1

i , w
2
i , . . . , w

T
i ∈ Vq and x1, x2, . . . , xT ∈

X \ τ(wi) such that:13 (a) w1 = w and wT = w′; (b) for all t = 2, . . . , T , and

wt
i(x) = wt−1

i (x) for every x ̸= xt and (wi, qi) ∈ D.

The proof of Preliminary 3 is easy (and left to the reader). This preliminary

means that we can always find a path w1
i , . . . , w

T
i of valuation functions (starting at

wi and leading to w′
i) such that, for each t = 2, . . . , T , wt

i and wt−1
l disagree on at

most one xt ∈ X that is not i’s top.

Let us introduce some notation before the next preliminary. Consider distinct

ω1, ω2 ∈ Ω. For any α ≥ 0, i ∈ N and qi, q
′
i ∈ P i, we write q′i = qi ⊕ αω1 ⊖ αω2 if, for

all ω ∈ Ω, we have

q′i(ω) =


qi(ω), if ω ̸= ω1, ω2,

qi(ω) + α, if ω = ω1,

qi(ω)− α, if ω = ω2.

Preliminary 4. Suppose that (u, q) ∈ D. Then there exists αq > 0 such that:

(u, q′) ∈ D and φ(u, q′) = φ(u, q) whenever q′ ∈ PN satisfies q′−i = q−i and q′i =

qi ⊕ αω1 ⊖ αω2 for some i ∈ N , α ∈ (0, αq) and distinct ω1, ω2 ∈ Ω.

Preliminary 4 obtains as the analog of Preliminary 1 when one slightly varies

the belief profile at (u, q). Its proof follows from the fact that the expected utility

operator E
q′i
ui is a continuous function of the belief q′i.

13Remark that (b) implies τ(wt
i) = τ(wi) = τ(w′

i).
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We are now ready to prove Claim 2. Using Preliminary 3, it suffices to show

that, starting from a profile v ∈ TAN
, the decision does not change if any single

agent changes her valuation of one non-top outcome. By contradiction, suppose that

h := φ(v, p) ̸= h′ := φ(v′, p) for two profiles (v, p), (v′, p) ∈ DN such that vk = vl and,

for some i ∈ N and a ∈ X \τ(vi), satisfying: (i) v′−i = v−i; (ii) v
′
i(x) = vi(x) if x ̸= a;

(iii) v′i(a) > vi(a). In addition,14 since the set of acts is finite, it is not restrictive to

assume that there exists at most one z̄ ∈ (vi(a), v
′
i(a)) such that (vz̄i , pi) /∈ D. Note

that, if z̄ indeed exists, this assumption (along with ordinality) implies

φ
(
(v−i, v

z∗

i ), p
)
= φ ((v−i, vi), p) = h, ∀z∗ ∈ (vi(a), z̄) . (26)

Next, remark that misvaluation-proofness of φ requires: (1) Epi
vzi
(h′) − Epi

vzi
(h) < 0

when z = vi(x); and (2) Epi
vzi
(h) − Epi

vzi
(h′) > 0 when z = v′i(x). Since Epi

vzi
is a

continuous function of z, we may use the intermediate value theorem to claim that

there exists z̄ ∈ (vi(z), v
′
i(x)) such that Epi

vz̄i
(h′)− Epi

vz̄i
(h) = 0, that is to say,∑

ω∈Ω′
+

pi(ω)[v
z̄
i (h

′(ω))− vz̄i (h(ω))] =
∑
ω∈Ω−

pi(ω)[v
z̄
i (h(ω))− vz̄i (h

′(ω))], (27)

where Ω′
+ := {ω ∈ Ω : vz̄i (h

′(ω)) > vz̄i (h(ω))} and Ω′
− := {ω ∈ Ω : vz̄i (h

′(ω)) <

vz̄i (h(ω))}. Note that Ω′
+ ̸= ∅ and Ω′

− ̸= ∅. Indeed, we have pi(h
′a) > pi(h

a) from

Lemma 2 (monotonicity); and hence ∅ ̸= h′a \ ha ⊆ Ω′
+ ∪ Ω′

−. Then, assuming that

Ω′
+ ̸= ∅ (or Ω′

− ̸= ∅), we may use (27) [and pi(ω) > 0 for all w ∈ Ω)] to see that

Ω′
− ̸= ∅ (or Ω′

+ ̸= ∅) must also hold.

Next, pick any ω1 ∈ Ω′
+ and ω2 ∈ Ω′

−; and define p′i = pi ⊕ αp

2
ω1 ⊖ αp

2
ω2, where

αp comes from Preliminary 4. Note from (27) that
∑

ω∈Ω′
+

p′i(ω)[v
z̄
i (h

′(ω))− vz̄i (h(ω))] >∑
ω∈Ω−

p′i(ω)[v
z̄
i (h(ω)) − vz̄i (h

′(ω))], that is to say, E
p′i
vz̄i
(h′) − E

p′i
vz̄i
(h) > 0. Hence, since

E
p′i
vzi
(·) is a continuous function of z, we can claim that there exists z∗ ∈ (vi(a), z̄) such

that E
p′i
vz

∗
i

(h′)− E
p′i
vz

∗
i

(h) > 0. In other words, i prefers h′ to h at (vz
∗

i , p′i). But this is

a contradiction to misvaluation-proofness. Indeed, observe that (vz
∗

i , pi) ∈ D —since

there exists no z̄′ ∈ (vi(a), v
′
i(a)) \ {z̄} such that (vz̄

′
i , pi) /∈ D. Therefore, we have(

(vz
∗

i , v−i), p
)
∈ DN . It then follows from Preliminary 4 that:

(
(vz

∗
i , v−i), (p

′
i, p−i)

)
∈

DN and φ
(
(vz

∗
i , v−i), (p

′
i, p−i)

)
= φ

(
(vz

∗
i , v−i), p

)
. Since φ

(
(vz

∗
i , v−i), p

)
= h from

(26), it holds that φ
(
(vz

∗
i , v−i), (p

′
i, p−i)

)
= h. Moreover, given that ((v′i, v−i), p) =

(v′, p) ∈ DN , Preliminary 4 once again gives: (v′, (p′i, p−i)) ∈ DN and φ (v′, (p′i, p−i)) =

φ(v′, p) = h′. Thus, agent i can profitably manipulate φ at ((vz
∗

i , v−i), (p
′
i, p−i)) by

misreporting (v′i, p
′
i) in order to get h′ (which she prefers to h).

Therefore, we must have φ(v, p) = φ(v′, p) ∈ {a1, . . . , an}Ω for all v, v′ ∈ TAn ; and

Lemma 6 is proved.

14Recall from the proof of Lemma 2 that vzi ∈ Vi is defined by vzi (x) =

{
vi(x), if x ̸= a

z, if x = a.
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Lemmas 4 and 6 imply that, if a SCF is strategyproof and ex-post efficient, then at

each preference profile the state space must be partitioned into a collection of events

{Ei ∈ 2Ω : i ∈ N} such that agent i dictates the outcome in all states ω ∈ Ei. Note

that (i) some Ei may be empty (ii) Ei may vary if we change the beliefs p or the

valuations v —or more precisely, if we change the tops (τ(v1), . . . , τ(vn))). That is to

say, there exist functions σ : DN → (2Ω)N such that, for all (v, p) ∈ DN ,

∪i∈Nσi(v, p) = Ω and φ(v, p;ω) = τ(vi) if ω ∈ σi(v, p). (28)

Remark that there exist many functions σ satisfying (28); but for any two of them (say,

σ′ and σ′′), we must have:15 σ′(v, p) = σ′′(v, p) at any (v, p) ∈ DN such that τ(vi) ̸=
τ(vj) if i ̸= j. To conclude the proof of the Top Selection lemma, it just remains to

notice that there is a unique function s(p) = σ∗(v, p) that satisfies (28) and does not

vary with v. Since we have shown the tops-only property in Lemmas 4 and 6, we

slightly abuse notation and conveniently write φ((a1, . . . , an), p) to refer to the chosen

act at each (v, p) ∈ DN such that (τ(vi))i∈N = (a1, . . . , an). We then define s(p) =

σ∗(v, p) as follows. For any distinct a1, a2 ∈ X, let sa1a21 (p) = φa1((a1, a2, . . . , a2), p).

Define sa1a2i (p) in a similar way for all i ̸= 1; and write s(p) := sa1a2(p) = (sa1a2i (p))i∈N .

We leave it to the reader to check [by using Lemma 3-(ii) and the now established

top-and-tops-only property] that we have: (i) sa1a2(p) = sa3a4(p) = s(p), for all

a1, a2, a3, a4 ∈ X (a1 ̸= a2 and a3 ̸= a4) and all p ∈ P ; (ii) φ((ā1, . . . , ān), p;ω) = āi
if ω ∈ si(p), for all p ∈ PN and (ā1, . . . , ān) ∈ XN . Observing that s meets the

feasibility constraint ∪i∈Nsi(p) = Ω (for all p ∈ PN) then allows to conclude.

9 Appendix B: semi-global results

Let ω̃ ∈ Ω. This state is fixed throughout this appendix. It will be convenient to

further simplify notation as follows: we write Ω̃ instead of Ω \ ω̃, P̃ instead of P(Ω̃),

and ã instead of aω̃. For any πi ∈ P̃ , define

P(πi) =
{
pi ∈ P : pi | Ω̃ ≈ πi

}
.

This is the set of beliefs on Ω generating on Ω̃ a likelihood ordering that coincides

with that generated by πi.

For any two beliefs pi, qi ∈ P , we write pi ≈ qi if pi, qi are ordinally equivalent,

that is, if R(pi) = R(qi). We abuse this notation and, for any profiles p, q ∈ PN , we

write p ≈ q if pi ≈ qi for all i ∈ N. We write piJqi if pi, qi are adjacent according to

the definition in Section 5. The adjacency relation J is obviously a symmetric binary

relation. If pi, qi ∈ P ′ ⊆ P , a J-path between pi and qi in P ′ is a finite sequence

15That is to say, σ′(v, p) ̸= σ′′(v, p) may occur only at profiles (v, p) where some distinct agents

have the same top.
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pi = (pt
i)

T
t=1 such that p1

i = pi, p
T
i = qi, p

t
iJp

t+1
i for t = 1, ..., T − 1, and pt

i ∈ P ′ for

t = 1, ..., T. We call P ′ connected if such a J-path exists between any two beliefs in

P ′.

Finally, define the relation J̃ on P(πi) by

piJ̃qi ⇔ pi, qi are {A,B} -adjacent for some {A,B} ∈ H, ω̃ ∈ A, and pi(A) > pi(B).

This is a sub-relation of the adjacency relation J. Contrary to J , the relation J̃ is not

symmetric. For an illustration, see Figure 2, where an arrow stands for J̃ . Observe

that if two beliefs pi, qi ∈ P(πi) are {A,B}-adjacent, then ω̃ ∈ A∪B : this is because

the likelihood relations generated by pi, qi coincide on Ω̃. Just like J, the relation J̃ is

ordinal: if piJ̃qi, p
′
i ≈ pi and q′i ≈ qi, then p′iJ̃q

′
i. All its maximal elements in P(πi) are

ordinally equivalent; any such maximal element p+i is characterized by the property

that

p+i (ω̃) > p+i (Ω̃). (29)

Likewise, all the minimal elements of J̃ are ordinally equivalent and any such minimal

element p−i is characterized by the property that

p−i (C ∪ ω̃) < p−i (D) whenever πi(C) < πi(D).

Example 5. If Ω = {1, 2, 3} , ω̃ = 1, and πi is a belief on {2, 3} generating the

ordering {2, 3} , {2} , {3} , then any belief on {1, 2, 3} generating the ordering

{1, 2, 3} , {1, 2} , {1, 3} , {1} , {2, 3} , {2} , {3}

is a maximal element p+i of J̃ on P(πi), and any belief on {1, 2, 3} generating the

ordering

{1, 2, 3} , {2, 3} , {1, 2} , {2} , {1, 3} , {3} , {1} .

is a minimal element p−i of J̃ on P(πi). See again Figure 2 for an illustration.

A complete J̃-path in P(πi), or simply a complete path, is a finite sequence pi =

(pt
i)

T
t=1 such that p1

i is a maximal element of J̃ (in P(πi)), p
T
i is a minimal element,

pt
iJ̃p

t+1
i for t = 1, ..., T − 1, and pt

i ∈ P(πi) for t = 1, ..., T.

Observation 1. For each complete J̃-path pi = (pt
i)

T
t=1 in P(πi), T =| {{A,B} ∈ H

: ω̃ ∈ A ∪B} | .
This is because any maximal and minimal elements p+i , p

−
i lie (i) on opposite sides

of every hyperplane pi(A) = pi(B) such that ω̃ ∈ A ∪B, and (ii) on the same side of

every hyperplane pi(A) = pi(B) such that ω̃ /∈ A ∪B.

Observation 2. For each complete J̃-path pi in P(πi) and each t ∈ {1, ..., T − 1} ,
there is a unique {At, Bt} ∈ H such that pt

i,p
t+1
i are {At, Bt}-adjacent. Moreover,

{At, Bt} ̸=
{
At′ , Bt′

}
if t ̸= t′.

36



Observation 3. Each belief pi ∈ P(πi) lies on some complete J̃-path in P(πi) :

there exist pi and t ∈ {1, ..., T} such that pi = pt
i.

The proofs of observations 2 and 3 are straightforward and left to the reader.

Lemma 7. For all i ∈ N, πi ∈ P̃ , and p−i ∈ PN\i, either (a) si(., p−i) is constant

on P(πi), or (b) there exist disjoint sets Ai(πi, p−i), Bi(πi, p−i), Ci(πi, p−i) ⊆ Ω such

that ω̃ ∈ Ai(πi, p−i), πi(Ai(πi, p−i) \ ω̃) < πi(Bi(πi, p−i)), and for all pi ∈ P(πi),

si(pi, p−i) =

{
Ai(πi, p−i) ∪ Ci(πi, p−i) if pi(Ai(πi, p−i)) > pi(Bi(πi, p−i)),

Bi(πi, p−i) ∪ Ci(πi, p−i) otherwise.

The inequality πi(Ai(πi, p−i) \ ω̃) < πi(Bi(πi, p−i)) implies that the function si(., p−i)

in statement (b) is not constant: the assignment actually varies with agent i’s beliefs.

Proof. Let i ∈ N, πi ∈ P̃ , p−i ∈ PN\i. Since πi, p−i are fixed throughout the proof,

we omit them from our notation. It is important to keep in mind, however, that the

sets whose existence is asserted in Lemma 7 may depend on our choice of πi, p−i. Let

T = |{{A,B} ∈ H : ω̃ ∈ A ∪B}| .

Step 1. We claim that for any complete J̃-path pi = (pt
i)

T
t=1 in P(πi), one of the

following statements hold:

(α) si(p
1
i ) = si(p

2
i ) = ... = si(p

T
i ),

(β) there exist disjoint setsAi(pi), Bi(pi), Ci(pi) ⊆ Ω such that ω̃ ∈ Ai(pi), πi(Ai(pi)\
ω̃) < πi(Bi(pi)), and there exists t∗(pi) ∈ {1, ..., T − 1} such that

si(p
t
i) =

{
Ai(pi) ∪ Ci(pi) if t ≤ t∗(pi),

Bi(pi) ∪ Ci(pi) if t > t∗(pi).
(30)

To prove this claim, fix a complete J̃-path pi in P(πi). For each t = 1, ..., T − 1,

let {At, Bt} be the unique pair in H such that pt
i,p

t+1
i are {At, Bt}-adjacent. By

definition of J̃ , ω̃ ∈ At and pt
i(A

t) > pt
i(B

t). By the Local Bilaterality lemma, one of

the following statements holds:

(i) si(p
t
i) = si(p

t+1
i ),

(ii) si(p
t
i) \ si(pt+1

i ) = At and si(p
t+1
i ) \ si(pt

i) = Bt.

If (i) holds for t = 1, ..., T − 1, then statement (α) is true. Otherwise, let t∗ be the

smallest t ∈ {1, ..., T − 1} such that si(p
t
i) ̸= si(p

t+1
i ). By (ii), si(p

t∗
i )\si(pt∗+1

i ) = At∗ .

Since ω̃ ∈ At∗ , we have ω̃ /∈ si(p
t∗+1
i ). This means that statement (ii) cannot hold

for any t = t∗ + 1, ..., T . Hence, si(p
t
i) = si(p

t∗+1
i ) for t = t∗ + 1, ..., T. Defining

Ai(pi) = At∗ , Bi(pi) = Bt∗ , Ci(pi) = si(p
1
i ) \ At∗ , we obtain (30).

Step 2. Let p+i and p−i be maximal and minimal elements of J̃ in P(πi).
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If si(p
+
i ) = si(p

−
i ), define Ci = si(p

+
i ) = si(p

−
i ). For any pi ∈ P(πi) there exists

some path pi and some t ∈ {1, ..., T} such that pi = pt
i (Observation 3). By Step 1,

si(pi) = si(p
t
i) = Ci, that is, statement (a) in Lemma 7 holds.

If si(p
+
i ) ̸= si(p

−
i ), we know from Step 2 that statement (β) holds for every com-

plete J̃-path pi = (pt
i)

T
t=1 in P(πi). We claim that the sets Ai(pi), Bi(pi), Ci(pi) do

not change with pi. To see why, let pi,qi be two paths. If Ai(pi) ̸= Ai(qi) or Ci(pi) ̸=
Ci(qi), then si(p

+
i ) = si(p

1
i ) = Ai(pi) ∪Ci(pi) ̸= Ai(qi) ∪Ci(qi) = si(q

1
i ) = si(p

+
i ), a

contradiction. Thus Ai(pi) = Ai(qi) and Ci(pi) = Ci(qi). Next, if Bi(pi) ̸= Bi(qi),

then si(p
−
i ) = si(p

T
i ) = Bi(pi)∪Ci(pi) = Bi(pi)∪Ci(qi) ̸= Bi(qi)∪Ci(qi) = si(q

T
i ) =

si(p
−
i ), again a contradiction.

Let Ai, Bi, Ci be the sets such that Ai(pi) = Ai, Bi(pi) = Bi, and Ci(pi) = Ci for

all complete J̃-paths pi in P(πi). For any pi ∈ P(πi) there exist some path pi and

some t ∈ {1, ..., T} such that pi = pt
i, and, by Step 1, an integer t∗(pi) ∈ {1, ..., T − 1}

such that

si(p
t
i) =

{
Ai ∪ Ci if t ≤ t∗(pi),

Bi ∪ Ci if t > t∗(pi).
(31)

This integer may –and typically does– change with the path pi, as Figure 2 illustrates.

If pi(Ai) = pt
i(Ai) > pt

i(Bi) = pi(Bi), then t ≤ t∗(pi) : otherwise (31) would

imply si(pi) = Bi ∪ Ci, hence pi(si(p
1
i )) = pi(Ai ∪ Ci) > pi(Bi ∪ Ci) = pi(si(pi)),

contradicting strategyproofness. Since t ≤ t∗(pi), (31) implies si(pi) = Ai ∪ Ci.

Likewise, if pi(Ai) < pi(Bi), then t > t∗(pi) and (31) imply si(pi) = Bi ∪ Ci. We

conclude that statement (b) in Lemma 7 holds with Ai(πi, p−i) = Ai, Bi(πi, p−i) = Bi,

and Ci(πi, p−i) = Ci. �
We record below two immediate consequences of Lemma 7 that will be used later.

Corollary 1. For all i ∈ N, πi ∈ P̃ , pi, p
′
i ∈ P(πi), and p−i ∈ PN\i,

(a) ω̃ ∈ si(pi, p−i) ∩ si(p
′
i, p−i) ⇒ si(pi, p−i) = si(p

′
i, p−i),

(b) ω̃ /∈ si(pi, p−i) ∪ si(p
′
i, p−i) ⇒ si(pi, p−i) = si(p

′
i, p−i).

Given the other agents’ beliefs, i’s assignment is fully determined by whether it con-

tains ω̃ or not.

Corollary 2. For all i ∈ N, πi ∈ P̃ , p−i ∈ PN\i, and any maximal and mini-

mal elements p+i , p
−
i of J̃ in P(πi), if s(., p−i) is not constant on P(πi), then ω̃ ∈

si(p
+
i , p−i) \ si(p−i , p−i).

We now show that the sets Ai(πi, p−i), Bi(πi, p−i), Ci(πi, p−i) in Lemma 7 do

not vary with p−i as long as the ordering generated on P̃ by each pj, j ∈ N \ i,

remains unchanged. If π ∈ P̃N and i ∈ N, we write PN(π) = Πk∈NP(πk) and

PN\i(π−i) = Πk ̸=iP(πk).

Lemma 8. For all i ∈ N and π ∈ P̃N , there exist disjoint sets Ai(π), Bi(π), Ci(π) ⊆
Ω such that ω̃ ∈ Ai(π), πi(Ai(π)\ ω̃) < πi(Bi(π)), and, for all p−i ∈ PN\i(π−i), either
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(a) si(., p−i) is constant on P(πi), or (b) for all pi ∈ P(πi),

si(pi, p−i) =

{
Ai(π) ∪ Ci(π) if pi(Ai(π)) > pi(Bi(π)),

Bi(π) ∪ Ci(π) otherwise.

We emphasize that Lemma 8 does not assert that si(pi, .) is constant over PN\i(π−i).

Proof. Let i ∈ N and let π ∈ P̃N . Define the set

PN\i
∗ (π−i) =

{
p−i ∈ PN\i(π−i) : si(., p−i) is not constant on P(πi)

}
. (32)

Let p−i, q−i ∈ PN\i
∗ (π−i). By Lemma 7 –and dropping πi from the notation– there exist

disjoint sets Ai(p−i), Bi(p−i), Ci(p−i) ⊆ Ω such that ω̃ ∈ Ai(p−i), πi(Ai(p−i) \ ω̃) <
πi(Bi(p−i)), and

for all pi ∈ P(πi), si(pi, p−i) =

{
Ai(p−i) ∪ Ci(p−i) if pi(Ai(p−i)) > pi(Bi(p−i)),

Bi(p−i) ∪ Ci(p−i) otherwise,

(33)

and there exist disjoint sets Ai(q−i), Bi(q−i), Ci(q−i) ⊆ Ω such that ω̃ ∈ Ai(q−i),

πi(Ai(q−i) \ ω̃) < πi(Bi(q−i)), and

for all pi ∈ P(πi), si(pi, q−i) =

{
Ai(q−i) ∪ Ci(q−i) if pi(Ai(q−i)) > pi(Bi(q−i)),

Bi(q−i) ∪ Ci(q−i) otherwise.

(34)

We must prove that Ai(p−i) = Ai(q−i), Bi(p−i) = Bi(q−i), and Ci(p−i) = Ci(q−i).

There is obviously no loss of generality in assuming that there exists some j ̸= i

such that pk = qk for all k ∈ N \ {i, j} . We therefore drop the beliefs of the agents

other than i, j from our notation. Moreover, since P(πj) is connected, there is no loss

in assuming that pj, qj are adjacent.

Let p+i , p
−
i be maximal and minimal elements of J̃ in P(πi). By Corollary 2,

ω̃ ∈ si(p
+
i , pj) \ si(p−i , pj),

ω̃ ∈ si(p
+
i , qj) \ si(p−i , qj).

Since ω̃ /∈ sj(p
+
i , pj) ∪ sj(p

+
i , qj), Corollary 1 implies sj(p

+
i , pj) = sj(p

+
i , qj). By non-

bossiness, si(p
+
i , pj) = si(p

+
i , qj). Since ω̃ ∈ si(p

+
i , pj) ∩ si(p

+
i , qj), it follows from (34)

that

Ai(pj) ∪ Ci(pj) = Ai(qj) ∪ Ci(qj).

Next, we claim that either ω̃ ∈ sj(p
−
i , pj)∩ sj(p

−
i , qj) or ω̃ /∈ sj(p

−
i , pj)∪ sj(p

−
i , qj).

Suppose, on the contrary, that, say, ω̃ ∈ sj(p
−
i , pj) \ sj(p

−
i , qj). Since ω̃ /∈ si(p

−
i , qj),
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there exists k ∈ N\{i, j} such that ω̃ ∈ sk(p
−
i , qj)\sk(p−i , pj). By the Local Bilaterality

lemma, si(p
−
i , qj) = si(p

−
i , pj), that is,

Bi(pj) ∪ Ci(pj) = Bi(qj) ∪ Ci(qj).

Since Ai(pj), Bi(pj), Ci(pj) are disjoint and Ai(qj), Bi(qj), Ci(qj) are disjoint, these

equalities imply Ai(pj) = Ai(qj), Bi(pj) = Bi(qj), and Ci(pj) = Ci(qj). �
We are now ready to describe the structure of s on any sub-domain PN(π).

Terminology. Given π ∈ P̃N , we say that s varies only with agent i’s beliefs (on

PN(π)) if there exists p−i ∈ PN\i(π−i) such that s(., p−i) is not constant on P(πi) but

s(., p−j) is constant on P(πj) for every j ̸= i and every p−j ∈ PN\j(π−j). We say that

s varies with the beliefs of agents i and j (on PN(π)) if there exist p−i ∈ PN\i(π−i)

such that s(., p−i) is not constant on P(πi) and there exists p−j ∈ PN\j(π−j) such

that s(., p−j) is not constant on P(πj). We emphasize that this definition allows s to

potentially vary with the beliefs of agents other than i, j as well.

We say that {A,B} ∈ H cuts P(πi) if there exist pi, qi ∈ P(πi) such that (pi(A)−
pi(B))(qi(A)− qi(B)) < 0. Observe that if ω̃ ∈ A, then {A,B} cuts P(πi) if and only

if πi(A \ ω̃) < πi(B).

Lemma 9. For every π ∈ P̃N there exists a partition {A(π), B(π), C1(π), ..., Cn(π)}
of Ω such that ω̃ ∈ A(π) ∪B(π) and

(a) if s varies only with agent 1’s beliefs on PN(π), then {A,B} cuts P(π1) and

there exists an agent i ∈ N \ 1, say agent 2, such that for all p ∈ PN(π),

s(p) =

{
(A(π) ∪ C1(π), B(π) ∪ C2(π), C3(π), ..., Cn(π)) if p1(A(π)) > p1(B(π)),

(B(π) ∪ C1(π), A(π) ∪ C2(π), C3(π), ..., Cn(π))) otherwise,

(b) if s varies with the beliefs of agents 1 and 2 on PN(π), then {A,B} cuts

P(π1),P(π2) and for all p ∈ PN(π),

s(p) =


(A(π) ∪ C1(π), B(π) ∪ C2(π), C3(π), ..., Cn(π)) if p1(A(π)) > p1(B(π))

and p2(A(π)) < p2(B(π)),

(B(π) ∪ C1(π), A(π) ∪ C2(π), C3(π), ..., Cn(π)) otherwise.

Remark 1. (a) We stated Lemma 9 with reference to agents 1 and 2 for notational

convenience but of course the result holds, up to a relabeling, for any pair of agents.

(b) Statement (b) does not assume that the assignment is independent of the be-

liefs of agents 3, ..., n. Rather, it is a corollary to Lemma 9 that, on PN(π), (i) the

assignment may vary with the beliefs of at most two agents and (ii) only the events

assigned to two agents may change.
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Proof. Let π ∈ P̃N . This profile is fixed throughout the proof and dropped from the

notation whenever this causes no confusion.

Step 1. Suppose first that s varies only with agent 1’s beliefs.

Recall the definition of PN\1
∗ (π−1) in (32). By Lemma 8, there exist disjoint sets

A1, B1, C1 such that for all p1 ∈ P(π1) and all p−1 ∈ PN\1
∗ (π−1),

s1(p1, p−1) =

{
A1 ∪ C1 if p1(A1) > p1(B1),

B1 ∪ C1 otherwise.

Moreover, ω̃ ∈ A1 and π1(A1 \ ω̃) < π1(B1(π)), implying that {A1, B1} cuts P(π1).

Since s does not vary with the beliefs of agents 2, ..., n, the above expression

must, in fact, hold for all (p1, p−1) ∈ PN(π). Statement (a) now follows from the

Local Bilaterality lemma and non-bossiness.

Step 2. Suppose next that s varies with the beliefs of agents 1 and 2 on PN(π).

Since P(π1), P(π2) are connected, there are adjacent beliefs p1, p
′
1 ∈ P(π1), adja-

cent beliefs p2, p
′
2 ∈ P(π2), and sub-profiles p−1 ∈ PN\1(π−1), q−2 ∈ PN\2(π−2) such

that

s(p1, p−1) = α ̸= α′ = s(p′1, p−1), (35)

s(q2, q−2) = β ̸= β′ = s(q′2, q−2). (36)

Sub-step 2.1. We show that the assignment varies locally with two agents’ beliefs:

there exist two agents i, j ∈ N, two adjacent beliefs pi, p
′
i ∈ P(πi), two adjacent

beliefs pj, p
′
j ∈ P(πj), and a sub-profile p−ij ∈ PN\ij(π−ij) such that s(p′i, pj, p−ij) ̸=

s(pi, pj, p−ij) ̸= s(pi, p
′
j, p−ij).

Suppose not. Then (35) implies

s(p1, p
′
j, p−1j) = α ̸= α′ = s(p′1, p

′
j, p−1j)

for all j ̸= 1 and all p′j adjacent to pj. Since P(πj) is connected, it follows that

s(p1, p
′
−1) = α ̸= α′ = s(p′1, p

′
−1) (37)

for all p′−1 ∈ PN\1(π−1).

By the same token, (36) implies

s(q2, q
′
−2) = α ̸= α′ = s(q′2, q

′
−2) (38)

for all q′−2 ∈ PN\2(π−2).

Statement (37) implies s(p1, q2, p−12) = s(p1, q
′
2, p−12) and statement (38) implies

s(p1, q2, p−12) ̸= s(p1, q
′
2, p−12), a contradiction.

41



Sub-step 2.2. We show that there exist disjoint sets A,B,C1, ..., Cn such that

A,B ̸= ∅, ω̃ ∈ A ∪B, and, for all k ̸= i, j,

(si, sj, sk)(pi, pj, p−ij) = (A ∪ Ci, B ∪ Cj, Ck),

(si, sj, sk)(p
′
i, pj, p−ij) = (si, sj, sk)(p

′
i, pj, p−ij) = (B ∪ Ci, A ∪ Cj, Ck).

(39)

Since p−ij is fixed, let us drop it from the notation. By Sub-step 2.1 and Lemma

8, there exist disjoint sets Ai, Bi, Ci and disjoint sets Aj, Bj, Cj such that ω̃ ∈ Ai∩Aj,

Bi, Bj ̸= ∅, and

[si(pi, pj) = Ai ∪ Ci, si(p
′
i, pj) = Bi ∪ Ci] or [si(pi, pj) = Bi ∪ Ci, si(p

′
i, pj) = Ai ∪ Ci]

and[
sj(pi, pj) = Aj ∪ Cj, sj(pi, p

′
j) = Bj ∪ Cj

]
or

[
sj(pi, pj) = Bj ∪ Cj, sj(pi, p

′
j) = Aj ∪ Cj

]
.

Since ω̃ ∈ Ai∩Aj and si(pi, pj)∩ sj(pi, pj) = ∅, we need only consider three cases.

Case 1. (i) si(pi, pj) = Ai ∪Ci, (ii) si(p
′
i, pj) = Bi ∪Ci, (iii) sj(pi, pj) = Bj ∪Cj, (iv)

sj(pi, p
′
j) = Aj ∪ Cj.

Define A = Ai, B = Bj, Ck = sk(pi, pj) for k ̸= i, j. By the Local Bilaterality

lemma, (i), (iii), and (iv) imply Aj = A, Bi = B, si(pi, p
′
j) = B ∪Ci, and sk(pi, p

′
j) =

Ck for k ̸= i, j.

Next, since si(pi, pj) = A ∪ Ci, si(p
′
i, pj) = B ∪ Ci, and sj(pi, pj) = B ∪ Cj, the

Local Bilaterality lemma implies sj(p
′
i, pj) = A ∪ Cj and sk(p

′
i, pj) = Ck for k ̸= i, j,

establishing (39).

Case 2. (i) si(pi, pj) = Bi ∪Ci, (ii) si(p
′
i, pj) = Ai ∪Ci, (iii) sj(pi, pj) = Aj ∪Cj, (iv)

sj(pi, p
′
j) = Bj ∪ Cj.

Define A = Bi, B = Aj, Ck = sk(pi, pj) for k ̸= i, j. Statement (39) follows by the

same argument as in Case 1, mutatis mutandis.

Case 3. (i) si(pi, pj) = Bi ∪Ci, (ii) si(p
′
i, pj) = Ai ∪Ci, (iii) sj(pi, pj) = Bj ∪Cj, (iv)

sj(pi, p
′
j) = Aj ∪ Cj.

This case is impossible. To see why, note first that (i), (ii), (iii), and the Local

Bilaterality lemma imply sj(p
′
i, pj) = Bj ∪ Cj whereas (i), (iii), (iv) and the Local

Bilaterality lemma imply si(pi, p
′
j) = Bi ∪ Ci.

Since (si, sj)(p
′
i, pj) = (Ai ∪ Ci, Bj ∪ Cj) and (si, sj)(pi, p

′
j) = (Bi ∪ Ci, Aj ∪ Cj),

Lemma 3 implies that one of the following statements holds:

(si, sj)(p
′
i, p

′
j) = (Ai ∪ Ci, Bj ∪ Cj),

(si, sj)(p
′
i, p

′
j) = (Bi ∪ Ci, Aj ∪ Cj).
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In either case, the Local Bilaterality lemma requires Ai = Aj and Bi = Bj. The latter

equality implies that si(pi, pj) ∩ sj(pi, pj) ̸= ∅, violating feasibility.

Sub-step 2.3. Assume from now on that ω̃ belongs to the set A in (39). The case

where ω̃ belongs to B is identical up to a permutation of agents i and j. We show

that for all (qi, qj) ∈ P(πi)× P(πj) and all k ̸= i, j,

(si, sj, sk)(qi, qj, p−ij) =

{
(A ∪ Ci, B ∪ Cj, Ck) if qi(A) > qi(B) and qj(A) < qj(B),

(B ∪ Ci, A ∪ Cj, Ck) otherwise.

(40)

Since p−ij is fixed, let us drop it again from the notation. By Sub-step 2.2 and

Lemma 8, pi(A) > pi(B) and pj(A) < pj(B), and it follows that (40) holds for the

case where qi = pi or qj = pj.

Next, for any qi such that qi(A) < qi(B), the fact that sj(qi, pj) = A ∪ Cj implies

that sj(qi, .) is constant, hence, by non-bossiness, (si, sj, sk)(qi, qj) = (B ∪Ci, A∪Cj,

Ck).

Similarly, for any qj such that qj(A) > qj(B), the fact that si(pi, qj) = B ∪ Ci

implies that si(., qj) is constant, hence, by non-bossiness, (si, sj, sk)(qi, qj) = (B ∪Ci,

A ∪ Cj, Ck).

Finally, for any (qi, qj) such that qi(A) > qi(B) and qj(A) < qj(B), the fact that

si(., qj) and sj(., qi) are not constant, together with non-bossiness, implies (si, sj, sk)

(qi, qj) = (A ∪ Ci, B ∪ Cj, Ck), completing the proof of (40).

Sub-step 2.4. We show that for all q ∈ PN(π) and all k ̸= i, j,

(si, sj, sk)(q) =

{
(A ∪ Ci, B ∪ Cj, Ck) if qi(A) > qi(B) and qj(A) < qj(B),

(B ∪ Ci, A ∪ Cj, Ck) otherwise.

(41)

Let q ∈ PN(π). Given Sub-step 2.3 and because each P(πk) is connected, we

may assume without loss of generality that there exists some k ̸= i, j such that qk is

adjacent to pk and qk′ = pk′ for all k
′ ̸= i, j, k. In what follows, we drop q−ijk = p−ijk

from our notation. Suppose, by way of contradiction, that s(qi, qj, qk) ̸= s(qi, qj, pk).

If (si, sj, sk)(qi, qj, pk) = (A∪Ci, B∪Cj, Ck), non-bossiness implies sk(qi, qj, qk) ̸=
sk(qi, qj, pk). Since pk, qk ∈ P(πk), the pair of events {E,E ′} for which pk, qk are

{E,E ′}-adjacent is such that ω̃ ∈ E ∪ E ′. Since ω̃ ∈ A ∪ Ci = si(qi, qj, pk), we must

therefore have si(qi, qj, qk) ̸= si(qi, qj, pk) and Lemma 8 implies si(qi, qj, qk) = B ∪Ci.

By the Local Bilaterality lemma, sj(qi, qj, qk) = si(qi, qj, pk) = B ∪ Cj. This means

that si(qi, qj, qk) ∩ sj(qi, qj, qk) ̸= ∅, contradicting feasibility.

If (si, sj, sk)(qi, qj, pk) = (B ∪ Ci, A ∪ Cj, Ck), exchanging the roles of i and j in

the above argument yields the same contradiction.
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Sub-step 2.5. Since s varies with the beliefs of agents 1 and 2 on PN(π), (41) must

hold with {i, j} = {1, 2}, completing the proof of statement (b). �
Terminology. Given π ∈ P̃N , a rule s of the type identified in part (a) of Lemma 9

is called (1, 2)-dictatorial (with respect to {A(π), B(π)}) on PN(π) : the assignment

varies only with agent 1’s beliefs and only the events allocated to agents 1 and 2

change. For such a rule, there is no loss of generality in assuming that ω̃ ∈ A(π): we

maintain that convention throughout.

A rule of the type identified in part (b) is called {1, 2}-consensual (with respect

to {A(π), B(π)}) on PN(π). We call it (1, 2)-consensual if ω̃ ∈ B(π) and (2, 1)-

consensual if ω̃ ∈ A(π): under an (i, j)-consensual rule, the “default option” assigns

state ω̃ to agent i.

We call the sets C1(π), ..., Cn(π) residuals.

10 Appendix C: proof of the Bilateral Consensus

lemma

10.1 Contagion results

As in Appendix B, ω̃ ∈ Ω remains fixed throughout this sub-section, and we keep

the notation Ω̃ = Ω \ ω̃ and P̃ = P(Ω̃). For any fixed belief profile π ∈ P̃ , Lemma 9

describes the structure of s on the sub-domain PN(π). We will now describe how this

structure varies with π.We begin with two “contagion lemmas” and an “independence

lemma”, which link the behavior of s across “adjacent” sub-domains. These lemmas

require extending the notion of adjacency to beliefs defined over an arbitrary subset of

Ω. For any Ω′ ⊆ Ω (e.g., Ω′ = Ω̃), letH(Ω′) = {{A,B} : ∅ ̸= A,B ⊂ Ω′ and A∩B = ∅}
and say that πi, σi ∈ P(Ω′) are {A,B}-adjacent if (πi(A)−πi(B))(σi(A)−σi(B)) < 0

and (πi(C) − πi(D)) (σi(C) − σi(D)) > 0 for all {C,D} ∈ H(Ω′) \ {{A,B}} . With

a slight abuse of notation, we use J to denote the adjacency relation between beliefs

on any Ω′. Connectedness of a subset of P(Ω′) is defined in the obvious way.

First, an intermediate result.

Lemma 10. Let π ∈ P̃N , let σ1, σ2 ∈ P̃ be adjacent to π1, π2, respectively, and let s

be (2, 1)-consensual with respect to {A,B} on PN(π) with residuals C1, ..., Cn.

(a) If s is (2, 1)-consensual with respect to some {A′, B′} on PN(σ2, π−2), then

{A′, B′} cuts P(π2) and {A,B} cuts P(σ2).

(b) If s is (2, 1)-consensual with respect to some {A′, B′} on PN(σ1, π−1), then

{A′, B′} cuts P(π1) and {A,B} cuts P(σ1).
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Remark 2. We stated Lemma 10 for the ordered pair (2, 1) for notational simplicity

only: up to a relabeling, the result applies to any ordered pair (i, j) of agents. This

comment applies also to the results below.

Proof. We only prove statement (a). Although statement (b) is not a mere permuta-

tion of statement (a) (because s is (2, 1)-consensual in both cases), its proof is almost

identical and therefore omitted. Fix π ∈ P̃N and σ2 ∈ P̃ adjacent to π2. Suppose

s is (2, 1)-consensual with respect to {A,B} on PN(π) with residuals C1, ..., Cn, and

(2, 1)-consensual with respect to {A′, B′} on PN(σ2, π−2) with residuals C ′
1, ..., C

′
n.

Fix an arbitrary sub-profile p−12 ∈ PN\12(π−12) and drop it from the notation. Then,

for all p = (p1, p2) ∈ P(π1)× P(π2),

(s1, s2)(p1, p2) =

{
(A ∪ C1, B ∪ C2) if p1(A) > p1(B) and p2(A) < p2(B),

(B ∪ C1, A ∪ C2) otherwise,

(42)

and for all (p1, q2) ∈ P(π1)× P(σ2),

(s1, s2)(p1, q2) =

{
(A′ ∪ C ′

1, B
′ ∪ C ′

2) if p1(A
′) > p1(B

′) and q2(A
′) < q2(B

′),

(B′ ∪ C ′
1, A

′ ∪ C ′
2) otherwise,

(43)

where ω̃ ∈ A ∩ A′, {A,B} cuts P(π1),P(π2), and {A′, B′} cuts P(π1),P(σ2). In

particular, writing Ã := A \ ω̃, Ã′ := A′ \ ω̃, we have

π2(Ã) < π2(B). (44)

σ2(Ã
′) < σ2(B

′). (45)

Let p+1 , p
+
2 , q

+
2 and p−1 , p

−
2 , q

−
2 be, respectively, maximal and minimal elements of

J̃ in, respectively, P(π1),P(π2), and P(σ2). Let {E,E ′} ∈ H(Ω̃) be the unique pair

of disjoint subsets of Ω̃ such that π2 and σ2 are {E,E ′}-adjacent with, say, π2(E) >

π2(E
′). Recall that π2, σ2 are beliefs on Ω̃ = Ω \ ω̃; this implies that ω̃ /∈ E ∪ E ′.

Observe now that p+2 , q
+
2 are {E,E ′}-adjacent beliefs on Ω: this follows directly from

the characteristic inequality (29). In contrast, p−2 , q
−
2 need not be adjacent, as Figure

2 illustrates.

We will only prove that {A′, B′} cuts P(π2); the proof that {A,B} cuts P(σ2) is

the same, mutatis mutandis. Suppose, by way of contradiction, that

π2(Ã
′) > π2(B

′). (46)

We first claim that for every ω̂ ∈ E ∪ E ′,

p−2 | Ω̂ ≈ q−2 | Ω̂, (47)

45



where Ω̂ := Ω \ ω̂. To see why, fix disjoint events C,D ⊆ Ω̂ and observe that

p−2 (C) < p−2 (D) ⇔ π2(C \ ω̃) < π2(D \ ω̃)
⇔ σ2(C \ ω̃) < σ2(D \ ω̃)
⇔ q−2 (C) < q−2 (D).

The first equivalence holds by definition of p−2 . The second holds because ω̂ ∈ E ∪E ′

and ω̂ /∈ C ∪ D imply that {C \ ω̃, D \ ω̃} differs from {E,E ′} , the unique pair of

disjoints subsets of Ω̃ on which the likelihood orderings generated by π2, σ2 disagree.

The third equivalence holds by definition of q−2 .

Next, let π̂2 be a belief on Ω̂ such that p−2 | Ω̂ ≈ q−2 | Ω̂ ≈ π̂2. We emphasize that

the belief π̂2 is not defined on the same event as π2, σ2, which are beliefs on Ω̃. Define

P(π̂2) =
{
p2 ∈ P : p2 | Ω̂ ≈ π̂2

}
. For every α ∈ [0, 1] , define

αq2 = αp−2 + (1− α)q−2 .

Observe that αq2 ∈ P(π̂2)∩ (P(σ2)∪P(π2))) for every α ∈ [0, 1] , where the upperbar

denotes the closure operator. Furthermore, because we assumed that {A′, B′} does

not cut P(π2) (i.e., (46) holds), there exists some α ∈ [0, 1] such that

αq2 ∈ P(σ2) and
αq2(A

′) > αq2(B
′). (48)

We omit the easy proof for brevity.

Pick p1 ∈ P(π1) such p1(A) > p1(B) and p1(A
′) > p1(B

′). By definition of q−2 and

thanks to (45), q−2 (A
′) < q−2 (B

′), hence from (43),

s2(p1,
0 q2) = s2(p1, q

−
2 ) = B′ ∪ C ′

2. (49)

Choosing α such that (48) holds, (43) again implies

s2(p1,
α q2) = A′ ∪ C ′

2. (50)

But since βq2 ∈ P(π̂2) for all β ∈ [0, 1] , (49), (50), and Lemma 8, applied with Ω̂

instead of Ω̃, imply

s2(p1,
1 q2) = s2(p1, p

−
2 ) = A′ ∪ C ′

2.

However, by definition of p−2 and thanks to (44), p−2 (A) < p−2 (B), hence from (42),

s2(p1, p
−
2 ) = B ∪ C2,

contradicting the previous equality since ω̃ ∈ (A′ ∪ C ′
2) \ (B ∪ C2). �

First Contagion Lemma. Let π ∈ P̃N , let σ2 ∈ P̃ be adjacent to π2, and let s be

(2, 1)-consensual with respect to {A,B} on PN(π) with residuals C1, ..., Cn.
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(a) If {A,B} cuts P(σ2), then s is (2, 1)-consensual with respect to {A,B} on

PN(σ2, π−2).

(b) If {A,B} does not cut P(σ2), then s(p) = (B ∪ C1, A ∪ C2, C3, ..., Cn) for all

p ∈ PN(σ2, π−2).

Remark 3. Statement (a) does not assert that the residuals C ′
1, ..., C

′
n associated with

the (2, 1)-consensual rule s on PN(σ2, π−2) coincide with the residuals C1, ...., Cn on

PN(π) : in fact, they generally do not.

Statement (b), on the other hand, asserts that s is constant on PN(σ2, π−2) and the

residuals are the same as on PN(π): the assignment outside A∪B remains constant

when 2’s beliefs switch from P(π2) to P(σ2). It may be worth explaining why a C-BD-

BC union indeed possesses this property. The reason is the following. Since we have

assumed that s is (2, 1)-consensual with respect to {A,B} on PN(π), we know that

{A,B} cuts P(π2), that is, π2(Ã) < π2(B). On the other hand, since {A,B} does not

cut P(σ2), we have σ2(Ã) > σ2(B). It follows that the adjacent beliefs π2, σ2 must,

in fact, be {Ã, B}-adjacent. This means that any two beliefs p2 ∈ P(π2), q2 ∈ P(σ2)

agree on the ranking of all events C,D ⊆ Ω \ (A ∪ B). As a result, the assignment

outside A ∪B remains unchanged under a C-BD-BC union.

Proof. Fix π ∈ P̃N , σ2 ∈ P̃ such that π2, σ2 are adjacent. Suppose s is (2, 1)-

consensual with respect to {A,B} on PN(π) with residuals C1, ..., Cn : (42) holds for

all p ∈ PN(π), ω̃ ∈ A, and {A,B} cuts P(π2), i.e., (44) holds. For any k ∈ N, let

p+k , p
−
k denote maximal and minimal elements of J̃ in P(πk), q

+
2 , q

−
2 be maximal and

minimal elements of J̃ in P(σ2), and let E,E ′ be the disjoint subsets of Ω̃ such that

π2 and σ2 are {E,E ′}-adjacent with π2(E) > π2(E
′). Recall that ω̃ /∈ E ∪ E ′.

Step 1. We show that for every agent k ̸= 2 and every k′ ̸= k, s is neither (k, k′)-

dictatorial nor (k, k′)-consensual on PN(σ2, π−2).

Fix k ̸= 2, k′ ̸= k. Fix a sub-profile p−2k ∈ PN\2k(π−2k) and drop it from the

notation. Since s is (2, 1)-consensual on PN(π), we have ω̃ ∈ s2(p
+
2 , p

+
k ). If s is

(k, k′)-dictatorial or (k, k′)-consensual on PN(σ2, π−2), then ω̃ ∈ sk(q
+
2 , p

+
k ). These

two statements contradict the Local Bilaterality lemma because p+2 , q
+
2 are {E,E ′}-

adjacent and ω̃ /∈ E ∪ E ′.

Step 2. We prove statement (a).

Suppose {A,B} cuts P(σ2), that is,

σ2(Ã) < σ2(B). (51)

Sub-step 2.1. We show that s varies with the beliefs of agents 1 and 2 on PN(σ2, π−2).
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Fix a sub-profile p−12 ∈ PN\12(π−12) and drop it from the notation. Because

{A,B} cuts P(σ2), there exist adjacent beliefs p2 ∈ P(π2) and q2 ∈ P(σ2) such that

p2(A) < p2(B). These beliefs are, in fact, {E,E ′}-adjacent.
Choose p1 ∈ P(π1) such that p1(A) > p1(B). From (42), s2(p1, p

+
2 ) = A ∪ C2 and

s2(p1, p2) = B ∪ C2. By the Local Bilaterality lemma,

s2(p1, q
+
2 ) = A ∪ C2 or (A ∪ C2 ∪ E ′) \ E,

s2(p1, q2) = B ∪ C2 or (B ∪ C2 ∪ E ′) \ E.

It follows that ω̃ ∈ s2(p1, q
+
2 ) \ s2(p1, q2): s varies with agent 2’s beliefs.

Next, choose q1 ∈ P(π1) such that q1(A) < q1(B). From (42), s2(q1, p2) = A∪C2.

By the Local Bilaterality lemma,

s2(q1, q2) = A ∪ C2 or (A ∪ C2 ∪ E ′) \ E.

Thus ω̃ ∈ s2(q1, q2) \ s2(p1, q2): s varies with agent 1’s beliefs.

Sub-step 2.2. Since s varies with the beliefs of agents 1 and 2 on PN(σ2, π−2),

Lemma 9 and Step 1 imply that s is (2, 1)-consensual with respect to some {A′, B′} on
PN(σ2, π−2) with, say, residuals C

′
1, ..., C

′
2. Thus, (43) holds for all (p1, q2) ∈ P(π1)×

P(σ2), ω̃ ∈ A′, and {A′, B′} cuts P(π1),P(σ2). In particular, (45) holds. To complete

the proof of statement (a), it remains to prove that {A,B} = {A′, B′} .

Suppose, contrary to our claim, that {A,B} ̸= {A′, B′}. Define the positive

numbers

δ = π1(B)− π1(Ã),

δ′ = π1(B
′)− π1(Ã

′).

Assume δ ̸= δ′. This is without loss of generality: if δ = δ′, simply replace π1 with

an ordinally equivalent belief for which the two corresponding numbers differ. Either

δ < δ′ or δ′ < δ. We will only treat the former case; the latter is identical, mutatis

mutandis.

For each α ∈ [0, 1] , define pα1 ∈ P(π1) by

pα1 (ω̃) = α and pα1 (ω) = (1− α)π1(ω) for all ω ∈ Ω̃.

Elementary algebra shows that pα1 (A) < pα1 (B) ⇔ α < δ
1+δ

and pα1 (A
′) < pα1 (B

′) ⇔
α < δ′

1+δ′
. Since δ < δ′, we have δ

1+δ
< δ′

1+δ′
. Choosing δ

1+δ
< α < δ′

1+δ′
, we have

pα1 (A) > pα1 (B) and pα1 (A
′) < pα1 (B

′). (52)

Because of (44) and (51), there exist adjacent beliefs p2 ∈ P(π2) and q2 ∈ P(σ2)

such that p2(A) < p2(B). This is illustrated in Figure 3 with A = {1} , B = {2}; we
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omit the easy proof for brevity. From this inequality, (42), and the first inequality in

(52), we obtain

s2 (p
α
1 , p2) = B ∪ C2.

From (43) and the second inequality in (52),

s2 (p
α
1 , q2) = A′ ∪ C ′

2.

It follows that ω̃ ∈ s2 (p
α
1 , q2) \ s2 (pα1 , p2) , contradicting the Local Bilaterality lemma

because p2, q2 are {E,E ′}-adjacent and ω̃ /∈ E ∪ E ′.

Step 3. We prove statement (b).

Suppose {A,B} does not cut P(σ2), that is,

σ2(Ã) > σ2(B). (53)

Sub-step 3.1. We prove that s is neither (2, k)-dictatorial nor (2, k)-consensual on

PN(σ2, π−2) for any k ̸= 2 .

Suppose it is.

Case 1: {A′, B′} cuts P(π2), that is, π2(Ã
′) < π2(B

′).

Fix a sub-profile p−2k ∈ PN\2k(π−2k) and drop it from the notation. Because of

(53), there exist adjacent p2 ∈ P(π2) and q2 ∈ P(σ2) such that p2(A) > p2(B) and

q2(A
′) < q2(B

′).

Choose pk ∈ P(πk) such that pk(A
′) > pk(B

′). From (42), ω̃ ∈ s2(p2, pk). But since

s is (2, k)-dictatorial or (2, k)-consensual on PN(σ2, π−2), ω̃ ∈ sk(q2, pk), contradicting

the Local Bilaterality lemma.

Case 2: {A′, B′} does not cut P(π2), that is, π2(Ã
′) > π2(B

′).

Fix a sub-profile p−2 ∈ PN\2(π−2) such that p1(A) > p1(B) and pk(A
′) > pk(B

′)

(where 1 and k may coincide). Drop this sub-profile from the notation.

We derive a contradiction using a variant of the argument in Lemma 10. Fix

ω̂ ∈ E∪E ′. As we proved in Lemma 10, there exists a belief π̂2 on Ω\ω̂ such that p−2 | Ω̂
≈ q−2 | Ω̂ ≈ π̂2 and there exists α ∈ [0, 1] such that αq2 := αp−2 + (1 − α)q−2 ∈ P(σ2)

and αq2(A
′) > αq2(B

′).

Since q−2 (A
′) < q−2 (B

′) and s is (2, k)-dictatorial or (2, k)-consensual on PN(σ2, π−2),

s2(
0q2) = s2(q

−
2 ) = B′ ∪ C ′

2,

s2(
αq2) = A′ ∪ C ′

2.

Since βq2 ∈ P(π̂2) for all β ∈ [0, 1] , these equalities and Lemma 8 imply

s2(
1q2) = s2(p

−
2 ) = A′ ∪ C ′

2.
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But (42) implies s2(p
−
2 ) = B ∪ C2, a contradiction.

Sub-step 3.2. Step 1, Sub-step 3.1, and Lemma 9 together imply that s is constant

on PN(σ2, π−2). To complete the proof of statement (b), we need to show that the

constant assignment prescribed by s is (B ∪ C1, A ∪ C2, C3, ..., Cn).

Fix again ω̂ ∈ E ∪ E ′ and π̂2 ≈ p−2 | Ω̂ ≈ q−2 | Ω̂. Because {A,B} does not cut

P(σ2), there exists α ∈ [0, 1] such that αq2 := αp−2 +(1−α)q−2 ∈ P(π2) and
αq2(A) >

αq2(B). Pick p1 ∈ P(π1) such p1(A) > p1(B). Fix p−12 and drop it from the notation.

From (42),

s2(p1,
1 q2) = s2(p1, p

−
2 ) = B ∪ C2,

s2(p1,
α q2) = A ∪ C2.

Since βq2 ∈ P(π̂2) for all β ∈ [0, 1], Lemma 8 implies

s2(p1,
0 q2) = s2(p1, q

−
2 ) = A ∪ C2,

hence, since s is constant on PN(σ2, π−2), s2(p1, q2) = A∪C2 for all (p1, q2) ∈ P(π1)×
P(σ2). The claim now follows from non-bossiness. �
Second Contagion Lemma. Let π ∈ P̃N and let σ1 ∈ P̃ be adjacent to π1.

(a) If s is (2, 1)-consensual with respect to {A,B} on PN(π) and {A,B} cuts P(σ1),

then s is (2, 1)-consensual with respect to {A,B} on PN(σ1, π−1).

(b) If s is (2, 1)-consensual or (2, 1)-dictatorial with respect to {A,B} on PN(π)

and {A,B} does not cut P(σ1), then s is (2, 1)-dictatorial with respect to {A,B} on

PN(σ1, π−1).

Remark 4. Statement (a) is not the permutation of statement (a) in the First Con-

tagion lemma because the rule is assumed to be (2, 1)-consensual in both cases.

Proof. Fix π ∈ P̃N and σ1 ∈ P̃ adjacent to π1. For any k ∈ N, let p+k , p
−
k denote

maximal and minimal elements of J̃ in P(πk), let q+1 , q
−
1 be maximal and minimal

elements of J̃ in P(σ1), and let now E,E ′ denote the disjoint subsets of Ω̃ such that

π1 and σ1 are {E,E ′}-adjacent with π1(E) > π1(E
′). Again, ω̃ /∈ E ∪ E ′.

Step 1. We show that if s is (2, 1)-consensual or (2, 1)-dictatorial on PN(π), then

for every k ̸= 2 and k′ ̸= k, s is neither (k, k′)-dictatorial nor (k, k′)-consensual on

PN(σ1, π−1).

Fix k ̸= 2, k′ ̸= k. Fix a profile p ∈ PN(π) such that p1 = p+1 , p2 = p+2 ,

and pk = p+k (where k may coincide with 1). Since s is (2, 1)-consensual or (2, 1)-

dictatorial on PN(π), we have ω̃ ∈ s2(p). If s is (k, k
′)-dictatorial or (k, k′)-consensual

on PN(σ1, π−1), then ω̃ ∈ sk(q
+
1 , p−1). These two statements contradict the Local

Bilaterality lemma because p+1 , q
+
1 are {E,E ′}-adjacent and ω̃ /∈ E ∪ E ′.
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Step 2. We show that if s is (2, 1)-consensual or (2, 1)-dictatorial on PN(π), then s

it is not constant on PN(σ1, π−1).

Fix a sub-profile p−12 ∈ PN\12(π−12) and drop it from the notation. If s is (2, 1)-

consensual or (2, 1)-dictatorial on PN(π), there exist disjoint sets A,B,C2 such that

ω̃ ∈ A and

s2(p
+
1 , p

+
2 ) = A ∪ C2,

s2(p
+
1 , p

−
2 ) = B ∪ C2

and the Local Bilaterality lemma implies

s2(q
+
1 , p

+
2 ) = A ∪ C2 or (A ∪ C2 ∪ E) \ E ′,

s2(q
+
1 , p

−
2 ) = B ∪ C2 or (B ∪ C2 ∪ E) \ E ′.

Hence, ω̃ ∈ s2(q
+
1 , p

+
2 ) \ s2(q+1 , p−2 ), proving that s is not constant on PN(σ1, π−1).

Step 3. We prove statement (a).

Suppose s is (2, 1)-consensual with respect to {A,B} on PN(π) with, say, residuals

C1, ..., Cn, and {A,B} cuts P(σ1). Fix p−12 ∈ PN\12(π−12) and drop it from the

notation. By assumption, (42) holds for all (p1, p2) ∈ P(π1) × P(π2) and σ1(Ã) <

σ1(B).

Sub-step 3.1. We show that s varies with agent 1’s beliefs on PN(σ1, π−1).

Because {A,B} cuts P(σ1), there exist adjacent beliefs p1 ∈ P(π1) and q1 ∈ P(σ1)

such that p1(A) < p1(B). These beliefs are, in fact, {E,E ′}-adjacent.
Choose p2 ∈ P(π2) such that p2(A) < p2(B). From (42), s2(p

+
1 , p2) = B ∪ C2 and

s2(p1, p2) = A ∪ C2. By the Local Bilaterality lemma,

s2(q
+
1 , p2) = B ∪ C2 or (B ∪ C2 ∪ E ′) \ E,

s2(q1, p2) = A ∪ C2 or (A ∪ C2 ∪ E ′) \ E.

It follows that ω̃ ∈ s2(q1, p2) \ s2(q+1 , p2): s varies with agent 1’s beliefs.

Sub-step 3.2. By Step 1, Sub-step 3.1, and Lemma 9, s is (2, 1)-consensual on

PN(σ1, π−1) with respect to some {A′, B′} and residuals C ′
1, ..., C

′
n. For all (q1, p−1) ∈

PN(σ1, π−1),

s(q1, p−1) =

{
(A′ ∪ C ′

1, B
′ ∪ C ′

2, C
′
3, ..., C

′
n) if q1(A

′) > q1(B
′) and p2(A

′) < p2(B
′),

(B′ ∪ C ′
1, A

′ ∪ C ′
2, C

′
3, ..., C

′
n) otherwise,

(54)

where ω̃ ∈ A′ and {A′, B′} cuts P(σ1),P(π2). It remains to prove that {A′, B′} =

{A,B} .
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Fix p−12 ∈ PN\12(π−12) and drop it from the notation. If {A′, B′} ̸= {A,B} ,
define the positive numbers

δ = π2(B)− π2(Ã),

δ′ = π2(B
′)− π2(Ã

′)

and assume without loss of generality δ ̸= δ′.

If δ < δ′, there exists p2 ∈ P(π2) such that p2(A) > p2(B) and p2(A
′) < p2(B

′).

From (42), s2(p
+
1 , p2) = A∪C2 and from (54), s2(q

+
1 , p2) = B′ ∪C ′

2, contradicting the

Local Bilaterality lemma.

If δ′ < δ, there exists p2 ∈ P(π2) such that p2(A) < p2(B) and p2(A
′) > p2(B

′).

From (42), s2(p
+
1 , p2) = B ∪C2 and from (54), s2(q

+
1 , p2) = A′ ∪C ′

2, contradicting the

Local Bilaterality lemma again.

Step 4. We prove statement (b).

Sub-step 4.1. Suppose first that s is (2, 1)-consensual with respect to {A,B} on

PN(π) and {A,B} does not cut P(σ1).

By Steps 1, 2, and Lemmas 9 and 10, s is (2, 1)-dictatorial on PN(σ1, π−1) with

respect to some {A′, B′} and residuals C ′
1, ..., C

′
n. For all (q1, p−1) ∈ PN(σ1, π−1),

s(q1, p−1) =

{
(A′ ∪ C ′

1, B
′ ∪ C ′

2, C
′
3, ..., C

′
n) if p2(B

′) > p2(A
′),

(B′ ∪ C ′
1, A

′ ∪ C ′
2, C

′
3, ..., C

′
n) otherwise,

(55)

where ω̃ ∈ A′ and {A′, B′} cuts P(σ1). It remains to prove that {A′, B′} = {A,B} .
If {A′, B′} ̸= {A,B} , consider again the numbers δ, δ′ defined in Sub-step 3.2

and assume without loss of generality δ ̸= δ′. Note that δ′ may now be negative as

{A′, B′} need no longer cut P(π2). This, however, does not affect the rest of the

argument: combining (42) with (55) rather than (54) delivers the same contradiction

to the Local Bilaterality lemma.

Sub-step 4.2. Suppose next that s is (2, 1)-dictatorial with respect to {A,B} on

PN(π) and {A,B} does not cut P(σ1).

By Steps 1, 2, and Lemma 9, s is either (2, 1)-consensual or (2, 1)-dictatorial on

PN(σ1, π−1).

If s is (2, 1)-consensual on PN(σ1, π−1), it must be with respect to some {A′, B′} ̸=
{A,B} since {A,B} does not cut P(σ1).

Suppose first that {A′, B′} does not cut P(π1) : exchanging the roles of {A,B} ,
{A′, B′} and π1, σ1 in the argument in Sub-step 4.1 leads to the conclusion that s is

(2, 1)-dictatorial with respect to {A′, B′} on PN(π), contradicting the assumption of

the current sub-step.

Suppose next that {A′, B′} cuts P(π1): exchanging the roles of {A,B} , {A′, B′}
and π1, σ1 in statement (a) leads to the conclusion that s is (2, 1)-consensual with

respect to {A′, B′} on PN(π), again a contradiction.
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We conclude that s is (2, 1)-dictatorial on PN(σ1, π−1). The proof that it must

in fact be (2, 1)-dictatorial with respect to {A,B} proceeds in the same way as in

Sub-step 4.1. �
Independence Lemma. Let π ∈ P̃N , k ∈ N \ {1, 2} , and let σk ∈ P̃ be adjacent

to πk. If s is (2, 1)-consensual with respect to {A,B} on PN(π), then s is (2, 1)-

consensual with respect to {A,B} on PN(σk, π−k).

Proof. Fix π ∈ P̃N and suppose s is (2, 1)-consensual with respect to {A,B} on

PN(π) : there exists a partition {A,B,C1, ..., Cn} of Ω such that ω̃ ∈ A, {A,B} cuts

P(π1),P(π2), and, for all p ∈ PN(π),

s(p) =

{
(A ∪ C1, B ∪ C2, C3, ..., Cn) if p1(A) > p1(B) and p2(A) < p2(B),

(B ∪ C1, A ∪ C2, C3, ..., Cn) otherwise.

(56)

Fix k ∈ N \ {1, 2} , say, k = 3, and let σ3 ∈ P̃ be adjacent to π3.

By calibrating the probability assigned to ω̃, we can find {A,B}-adjacent beliefs
p1, p

′
1 ∈ P(π1) and {A,B}-adjacent beliefs p2, p

′
2 ∈ P(π2) with, say, p1(A) > p1(B)

and p2(A) < p2(B). Let p−123 ∈ PN\123(π−123). This sub-profile is fixed through-

out the argument and therefore omitted from the notation. Let p+3 , q
+
3 be maximal

elements of J̃ in P(π3),P(σ3).

By (56),

s(p1, p2, p
+
3 ) = (A ∪ C1, B ∪ C2, C3, ..., Cn),

s(p′1, p2, p
+
3 ) = (B ∪ C1, A ∪ C2, C3, ..., Cn),

s(p1, p
′
2, p

+
3 ) = (B ∪ C1, A ∪ C2, C3, ..., Cn).

(57)

Step 1. We show that there exists a partition {C ′
1, ..., C

′
n} of Ω \ (A ∪B) such that

s(p1, p2, q
+
3 ) = (A ∪ C ′

1, B ∪ C ′
2, C

′
3, ..., C

′
n). (58)

By definition, p+3 , q
+
3 are adjacent. By the Local Bilaterality lemma and the first

equality in (57), there are only three cases.

Case 1. There exists some j ̸= 1, 2, 3 such that sj(p1, p2, q
+
3 ) ∩ s3(p1, p2, p

+
3 ) ̸= ∅,

s3(p1, p2, q
+
3 ) ∩ sj(p1, p2, p

+
3 ) ̸= ∅, and si(p1, p2, q

+
3 ) = si(p1, p2, p

+
3 ) for all i ̸= j, 3.

In this case (58) holds with C ′
i = Ci for all i ̸= j, 3.

Case 2. s1(p1, p2, q
+
3 ) ∩ s3(p1, p2, p

+
3 ) ̸= ∅, s3(p1, p2, q+3 ) ∩ s1(p1, p2, p

+
3 ) ̸= ∅, and

si(p1, p2, q
+
3 ) = si(p1, p2, p

+
3 ) for all i ̸= 1, 3.

If A " s1(p1, p2, q
+
3 ), then since p1, p

′
1 are {A,B}-adjacent with p1(A) > p1(B), the

Local Bilaterality lemma implies s(p′1, p2, q
+
3 ) = s(p1, p2, q

+
3 ). Comparing with (57),

s1(p
′
1, p2, q

+
3 ) ∩B = ∅ and s1(p

′
1, p2, p

+
3 ) ∩B ̸= ∅,

s2(p
′
1, p2, q

+
3 ) ∩B ̸= ∅ and s2(p

′
1, p2, p

+
3 ) ∩B = ∅,

s3(p
′
1, p2, q

+
3 ) ∩ A ̸= ∅ and s3(p

′
1, p2, p

+
3 ) ∩ A = ∅,
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implying si(p
′
1, p2, q

+
3 ) ̸= si(p

′
1, p2, p

+
3 ) for i = 1, 2, 3, contradicting the Local Bilater-

ality lemma.

This shows that A ⊆ s1(p1, p2, q
+
3 ). Then (58) holds with C ′

i = Ci for all i ̸= 1, 3.

Case 3. s2(p1, p2, q
+
3 ) ∩ s3(p1, p2, p

+
3 ) ̸= ∅, s3(p1, p2, q+3 ) ∩ s2(p1, p2, p

+
3 ) ̸= ∅, and

si(p1, p2, q
+
3 ) = si(p1, p2, p

+
3 ) for all i ̸= 2, 3.

If B " s2(p1, p2, q
+
3 ), then since p2, p

′
2 are {A,B}-adjacent with p2(A) < p2(B), the

Local Bilaterality lemma implies s(p1, p
′
2, q

+
3 ) = s(p1, p2, q

+
3 ). Comparing with (57),

s1(p1, p
′
2, q

+
3 ) ∩ A ̸= ∅ and s1(p1, p

′
2, p

+
3 ) ∩ A = ∅,

s2(p1, p
′
2, q

+
3 ) ∩ A = ∅ and s2(p1, p

′
2, p

+
3 ) ∩ A ̸= ∅,

s3(p1, p
′
2, q

+
3 ) ∩B ̸= ∅ and s3(p1, p

′
2, p

+
3 ) ∩B = ∅,

implying si(p1, p
′
2, q

+
3 ) ̸= si(p1, p

′
2, p

+
3 ) for i = 1, 2, 3, contradicting the Local Bilater-

ality lemma again.

This shows that B ⊆ s2(p1, p2, q
+
3 ), Then (58) holds with C ′

i = Ci for all i ̸= 2, 3.

Step 2. We show that

s(p′1, p2, q
+
3 ) = s(p1, p

′
2, q

+
3 ) = (B ∪ C ′

1, A ∪ C ′
2, C

′
3, ..., C

′
n). (59)

Since p1, p
′
1 are {A,B}-adjacent, Step 1 and the Local Bilaterality lemma im-

ply that either (i) s(p′1, p2, q
+
3 ) = (A ∪ C ′

1, B ∪ C ′
2, C

′
3, ..., C

′
n) or (ii) s(p′1, p2, q

+
3 ) =

(B ∪ C ′
1, A ∪ C ′

2, C
′
3, ..., C

′
n). Statement (i) and the second statement in (57) to-

gether contradict the Local Bilaterality lemma, hence (ii) must hold. Likewise, the

third statement in (57) and the Local Bilaterality lemma imply that s(p1, p
′
2, q

+
3 ) =

(B ∪ C ′
1, A ∪ C ′

2, C
′
3, ..., C

′
n).

Step 3. Combining statements (58), (59), and statement (b) in Lemma 9, we obtain

that for all (q1, q2, q3) ∈ P(π1)× P(π2)× P(σ3),

s(q1, q2, q3) =

{
(A ∪ C ′

1, B ∪ C ′
2, C

′
3, ..., C ′

n) if q1(A) > q1(B) and q2(A) < q2(B),

(B ∪ C ′
1, A ∪ C ′

2, C
′
3, ..., C ′

n) otherwise.

Since p−123 was chosen arbitrarily in PN\123(π−123), this proves that s is (2, 1)-

consensual with respect to {A,B} on PN(σ3, π−3). �
Next, we derive two corollaries of the above results which link the behavior of s

across sub-domains that need not be adjacent.

First Contagion Corollary. Let π ∈ P̃N , let σ2 ∈ P̃ , and let s be (2, 1)-consensual

with respect to {A,B} on PN(π) with residuals C1, ..., Cn.

(a) If {A,B} cuts P(σ2), then s is (2, 1)-consensual with respect to {A,B} on

PN(σ2, π−2).
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(b) If {A,B} does not cut P(σ2), then there exists a partition {C ′
1, ..., C

′
n} of Ω \

(A ∪B) such that s(p) = (B ∪ C ′
1, A ∪ C ′

2, C
′
3, ..., C

′
n) for all p ∈ PN(σ2, π−2).

Proof. Let π ∈ P̃N , σ2 ∈ P̃ , and suppose s is (2, 1)-consensual with respect to

{A,B} on PN(π) with residuals C1, ..., Cn. Define

P̃+ = {σ2 ∈ P̃ : σ2(Ã) < σ2(B)},
P̃− = {σ2 ∈ P̃ : σ2(Ã) > σ2(B)}.

These sets partition P̃ : σ2 ∈ P̃+ if and only if {A,B} cuts P(σ2). Clearly, P̃+ and

P̃− are connected: any two beliefs in one set are linked by a J-path of adjacent beliefs

in that set. Since s is (2, 1)-consensual with respect to {A,B} on PN(π), we have

π2 ∈ P̃+.

Step 1. We prove statement (a).

Let σ2 ∈ P̃+. Let (σt
2)

T
t=1 be a J-path in P̃+ with σ1

2 = π2 and σT
2 = σ2. Since

s is (2, 1)-consensual with respect to {A,B} on PN(σ1
2, π−2), repeated application of

statement (a) in the First Contagion lemma implies that s is (2, 1)-consensual with

respect to {A,B} on PN(σT
2 , π−2) = PN(σ2, π−2).

Step 2. We prove statement (b).

Call two distinct events C,D ⊆ Ω̃ adjacent in σ2 ∈ P̃ if (σ2(C)− σ2(E))(σ2(D)−
σ2(E)) > 0 for all E ⊆ Ω̃ different from C,D. Define

P̃∗ = {σ2 ∈ P̃ : Ã, B are adjacent in σ2},
P̃∗

+ = P̃+ ∩ P̃∗,

P̃∗
− = P̃− ∩ P̃∗.

We will first prove that statement (b) holds if σ2 ∈ P̃∗
−, then show that it holds for

all σ2 ∈ P̃−. The argument is illustrated in Figure 4.

Sub-step 2.1. If σ2 ∈ P̃∗
−, then σ2 is {Ã, B}-adjacent to some belief σ′

2 ∈ P̃∗
+. By

statement (a), s is (2, 1)-consensual with respect to {A,B} on PN(σ′
2, π−2). Statement

(b) now follows from statement (b) in the First Contagion lemma.

Sub-step 2.2. If σ2 ∈ P̃− \ P̃∗
−, recall first that, since {A,B} does not cut P(σ2), we

have σ2(Ã) > σ2(B). Fix p = (p2, p−2) ∈ PN(σ2, π−2). Consider, for each α ∈ (0, 1) ,

the probability measure σα
2 defined over the subsets of Ω̃ by

σα
2 (E) = α

σ2

(
E ∩ Ã

)
σ2

(
Ã
) + (1− α)

σ2

(
E ∩ Ã

)
σ2

(
Ã
) for all E ⊆ Ω̃, (60)

where Ã := Ω̃ \ Ã. Each σα
2 is a variant of the belief σ2 where the probability of the

states in Ã relative to those outside Ã is modified, but the conditional beliefs on the
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subsets of Ã, as well as on the subsets of Ã, are kept unchanged. If α = σ2(Ã), then

σα
2 coincides with σ2. If α = σ2(B)

1+σ2(B)−σ2(Ã)
, then σα

2 (Ã) = σα
2 (B). This means that if α

is sufficiently close to σ2(B)

1+σ2(B)−σ2(Ã)
, the belief σα

2 belongs to P̃∗
−. Elementary algebra

shows that σ2(Ã) >
σ2(B)

1+σ2(B)−σ2(Ã)
.

Write p2(ω̃) = γ and define, for each α ∈ (0, 1) , the measure pα2 over the subsets

of Ω by

pα2 (E) = γ 1(E ∩ {ω̃}) + (1− γ) σα
2

(
E ∩ Ω̃

)
for all E ⊆ Ω, (61)

where 1(E ∩ {ω̃}) = 1 if ω̃ ∈ E and 0 otherwise.

Choose an increasing sequence of numbers α(1), ..., α(T ) in (0, 1) such that (i)

σ
α(t)
2 is adjacent to σα(t+1)

2 for all t = 1, ..., T − 1, (ii) σα(1)

2 ∈ P̃∗
−, and (iii) σα(T )

2 = σ2.

Define the J-path (σt
2)

T
t=1 in P̃− by σt

2 = σα(t)

2 for t = 1, ..., T. Define the associated

finite sequence (pt
2)

T
t=1 in P by pt

2 = pα(t)

2 for t = 1, ..., T. Observe that pT
2 = p2 and

pt
2 ∈ P(σt

2) for each t, but pt
2,p

t+1
2 need not be adjacent. Finally, for each t = 1, ..., T,

let yt
2 be a maximal element of J̃ in P(σt

2). Observe that yt
2,y

t+1
2 are adjacent and

write yT
2 = y2.

Since y12 ∈ P(σ1
2) and σ1

2 ∈ P̃∗
−, Sub-step 2.1 implies that there exists a partition

{C ′
1, ..., C

′
n} of Ω \ (A ∪ B) such that s(y1

2, p−2) = (B ∪ C ′
1, A ∪ C ′

2, C
′
3, ..., C

′
n). We

will show that s(p) = s(p2, p−2) = (B ∪ C ′
1, A ∪ C ′

2, C
′
3, ..., C

′
n). By non-bossiness, it

suffices to prove s2(p) = A ∪ C ′
2.

We have

s2(y
1
2, p−2) = A ∪ C ′

2.

Proceeding now by induction, fix t ∈ {1, ..., T − 1} and suppose that

s2(y
t
2, p−2) = A ∪ C ′

2.

Let {Et, Et+1} ∈ H(Ω̃) be the pair of disjoint events such that σt
2, σ

t+1
2 are {Et, Et+1}-

adjacent with σt
2(E

t) > σt
2(E

t+1). Because σt
2, σ

t+1
2 coincide on Ã as well as on Ã,

Et ∩ Ã ̸= ∅ and Et+1 ∩ Ã ̸= ∅.

If s2(y
t+1
2 , p−2) ̸= s2(y

t
2, p−2), the Local Bilaterality lemma implies s2(y

t+1
2 , p−2) \

s2(y
t
2, p−2) = Et+1. Since A ⊆ s2(y

t
2, p−2), we conclude E

t+1∩ Ã = ∅, a contradiction.

Therefore s2(y
t+1
2 , p−2) = A ∪ C ′

2, and finally

s2(y2, p−2) = A ∪ C ′
2. (62)

Next, we claim that

s2(p) = s2(p2, p−2) = A ∪ C ′
2.
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First, observe that since p1
2 ∈ P(σ1

2) and σ1
2 ∈ P̃∗

−, we have

s2(p
1
2, p−2) = A ∪ C ′

2

Next, suppose, by way of contradiction, that s2(p2, p−2) = D ̸= A ∪ C ′
2. By Lemma

9, ω̃ /∈ D.

Case 1.
σ2(C′

2\D)

σ2

(
Ã
) <

σ2(Ã\D)
σ2(Ã)

.

By strategyproofness, p2(s2(p2, p−2)) > p2(s2(y2, p−2)), hence by (62), pT
2 (D) >

pT
2 (A ∪ C ′

2). Given (61), this means

σT
2

(
Ã ∪ C ′

2

)
− σT

2 (D)

1 + σT
2 (D)− σT

2

(
Ã ∪ C ′

2

) < −γ. (63)

From (60),

σT
2 (Ã∪C ′

2)−σT
2 (D)) = α(T )

σ2

(
Ã \D

)
σ2

(
Ã
)

+(1−α(T ))

σ2(C
′
2)− σ2

(
D ∩ Ã

)
σ2

(
Ã
)

 .

By assumption of Case 1, the second term of this convex combination is smaller than

the first. Since α(1) < α(T ), it follows that σ1
2(Ã∪C ′

2)−σ1
2(D) < σT

2 (Ã∪C ′
2)−σT

2 (D),

hence from (63),

σ1
2

(
Ã ∪ C ′

2

)
− σ1

2(D)

1 + σ1
2(D)− σ1

2

(
Ã ∪ C ′

2

) < −γ,

which, given (61), implies p1
2(D) > p1

2(A∪C ′
2), that is, p

1
2(s2(q2, p−2)) > p1

2(s2(p
1
2, p−2)),

contradicting strategyproofness.

Case 2.
σ2(C′

2\D)

σ2

(
Ã
) ≥ σ2(Ã\D)

σ2(Ã)
.

Define C ′
2 := Ω̃ \ C ′

2. Because σ2 (C
′
2) < σ2

(
Ã
)
and σ2

(
Ã
)
< σ2

(
C ′

2

)
,

σ2

(
Ã \D

)
σ2

(
C ′

2

) <
σ2(C

′
2 \D)

σ2 (C ′
2)

.

Notice that this is the very same inequality as the one defining Case 1 –except that

the roles of C ′
2 and Ã have been exchanged.

For each α ∈ (0, 1) , define the probability measure τα2 over the subsets of Ω̃ by

τα2 (E) = α
σ2 (E ∩ C ′

2)

σ2 (C ′
2)

+ (1− α)
σ2

(
E ∩ C ′

2

)
σ2

(
C ′

2

) for all E ⊆ Ω̃
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and the measure rα2 over the subsets of Ω by

rα2 (E) = γ 1(E ∩ {ω̃}) + (1− γ) τα2

(
E ∩ Ω̃

)
for all E ⊆ Ω.

These constructions are the same as in (60) and (61), except that C ′
2 plays the role

of Ã.

Choose an increasing sequence α(1), ..., α(T ) in (0, 1) such that (i) τ
α(t)
2 is adjacent

to τα(t+1)

2 for all t, (ii) τα(1)

2 ∈ P̃∗
−, and (iii) τα(T )

2 = σ2. Define the path (τ t2)
T
t=1 in P̃− by

τ t2 = τα(t)

2 for all t, and define the sequence (rt2)
T
t=1 in P by rt2 = rα(t)

2 for all t. Finally,

for each t, let zt2 be a maximal element of J̃ in P(τ t2) and let zT2 = z2.

Since τ 12 ∈ P̃∗
−, Sub-step 2.1 implies that there exists a partition {C ′′

1 , ..., C
′′
n} of

Ω \ (A ∪B) such that s(z12, p−2) = (B ∪ C ′′
1 , A ∪ C ′′

2 , C
′′
3 , ..., C

′′
n). In particular,

s2(z
1
2, p−2) = A ∪ C ′′

2 .

By the same inductive argument as in Case 1, we obtain

s2(z2, p−2) = A ∪ C ′′
2 .

But since both z2 and y2 are maximal elements of J̃ in P(σ2), we have s2(z2, p−2) =

s2(y2, p−2), hence (62) implies

s2(z2, p−2) = A ∪ C ′
2.

The proof that s2(p2, p−2) = A∪C ′
2 now follows by the same argument as in Case

1, provided that we exchange the roles of Ã and C ′
2. �

Second Contagion Corollary. Let π ∈ P̃N , let σ1 ∈ P̃, and let s be (2, 1)-

consensual with respect to {A,B} on PN(π) with residuals C1, ..., Cn.

(a) If {A,B} cuts P(σ1), then s is (2, 1)-consensual with respect to {A,B} on

PN(σ1, π−1).

(b) If {A,B} does not cut P(σ1), then s is (2, 1)-dictatorial with respect to {A,B}
on PN(σ1, π−1).

Proof. Let π ∈ P̃N , σ1 ∈ P̃ , and let s be (2, 1)-consensual with respect to {A,B} on

PN(π) with residuals C1, ..., Cn. Define P̃+, P̃−, P̃∗
+, P̃∗

− as in the proof of the previous

corollary. By assumption, π1 ∈ P̃+. The argument below is illustrated in Figure 5.

Step 1. To prove statement (a), let σ1 ∈ P̃+ and let (σt
1)

T
t=1 be a J-path in P̃+

with σ1
1 = π1 and σT

1 = σ1. Since s is (2, 1)-consensual with respect to {A,B} on

PN(σ1
1, π−1), repeated application of statement (a) in the Second Contagion lemma

implies that s is (2, 1)-consensual with respect to {A,B} on PN(σT
1 , π−1) = PN(σ1, π−1).
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Step 2. To prove statement (b), we proceed again in two stages.

If σ1 ∈ P̃∗
−, there exists a belief σ′

1 ∈ P̃∗
+ to which σ1 is {Ã, B}-adjacent. By Step

1, s is (2, 1)-consensual with respect to {A,B} on PN(σ′
1, π−1). By statement (b)

in the Second Contagion lemma, it follows that s is (2, 1)-dictatorial with respect to

{A,B} on PN(σ1, π−1).

If σ1 ∈ P̃− \ P̃∗
−, let (σ

t
1)

T
t=1 be a J-path in P̃− with σ1

1 ∈ P̃∗
− and σT

1 = σ1. Since

s is (2, 1)-dictatorial with respect to {A,B} on PN(σ1
1, π−1), repeated application of

statement (b) in the Second Contagion lemma implies that s is (2, 1)-dictatorial with

respect to {A,B} on PN(σT
1 , π−1) = PN(σ1, π−1). �

10.2 Proof of the Bilateral Consensus lemma

We are finally ready to prove the Bilateral Consensus lemma. Let ω̃ ∈ Ω2. This state

is again fixed throughout the sub-section, but observe that we now assume that its

assignment varies with the beliefs of at least two agents.

We must show that there exist an event Eω̃ ⊆ Ω2 such that ω̃ ∈ Eω̃, and a

bilaterally consensual Eω̃-assignment rule sω̃ such that

si(p) ∩ Eω̃ = sω̃i (p | Eω̃) for all i ∈ N (64)

and all p ∈ PN .

Recall the definition of aω̃ in (2) and the notation ã = aω̃.

Step 1. There exist π0 ∈ P̃N , two distinct agents i, j ∈ N, p, q ∈ PN(π0), and

p′i ∈ P(π0
i ), q

′
j ∈ P(π0

j ) such that ã(p) ̸= ã(p′i, p−i) and ã(q) ̸= ã(q′j, q−j).

By definition of Ω2, there exist two agents, say 1, 2, profiles p, q ∈ PN , and beliefs

p′1, q
′
2 ∈ P such that

ã(p) ̸= ã(p′1, p−1) and ã(q) ̸= ã(q′2, q−2). (65)

Because P is connected, we assume without loss of generality that p1, p
′
1 are adjacent

and p2, p
′
2 are adjacent. Let {E,E ′} be the pair of events such that p1, p

′
1 are {E,E ′}-

adjacent. By the Local Bilaterality lemma and the first inequality in (65), ω̃ ∈ E∪E ′,

hence, (p1(C) − p1(D))(p′1(C) − p′1(D)) > 0 for all distinct C,D ⊆ Ω̃. This means

that there exists π0
1 ∈ P̃ such that p1 | Ω̃ ≈ p′1 | Ω̃ ≈ π0

1, that is, p1, p
′
1 ∈ P(π0

1). By

the same token, there exists π0
2 ∈ P̃ such that p2, p

′
2 ∈ P(π0

2).

To keep notation simple, suppose n = 3; the argument is easily extended to any

number of agents. Suppose first that p3 = q3. Dropping that belief from the notation,

(65) reads

ã(p1, p2) ̸= ã(p′1, p2) and ã(q1, q2) ̸= ã(q1, q
′
2).

Case 1: ã(p′1, q2) ̸= ã(p1, q2) ̸= ã(p1, q
′
2). In this case the claim is trivially true.
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Case 2: (i) ã(p1, q2) = ã(p′1, q2) or (ii) ã(p1, q2) = ã(p1, q
′
2).

Assume (i); the argument is the same, up to a relabeling, if (ii) holds. Let (pt
2)

T
t=1

be a J-path between p1
2 = p2 and pT

2 = q2. From (65) and (i), there exists an integer

t such that

ã(p1,p
t
2) ̸= ã(p′1,p

t
2) and ã(p1,p

t+1
2 ) = ã(p′1,p

t+1
2 ) (66)

Using the Local Bilaterality lemma, the same argument as in Sub-step 1.1 shows that

there exists π0
2 such that pt

2 | Ω̃ ≈ pt+1
2 | Ω̃ ≈ π0

2, that is, p
t
2,p

t+1
2 ∈ P(π0

2). Moreover,

statement (66) implies

ã(p′1,p
t
2) ̸= ã(p1,p

t
2) ̸= ã(p1,p

t+1
2 )

or

ã(p1,p
t+1
2 ) ̸= ã(p′1,p

t+1
2 ) ̸= ã(p′1,p

t
2).

In either case the claim is true.

Finally, let us drop the assumption that p3 = q3. Suppose that there exist p3 ̸= q3
such that

ã(p1, p2, p3) ̸= ã(p′1, p2, p3) and ã(q1, q2, q3) ̸= ã(q1, q
′
2, q3).

and

ã(p1, p2, q3) = ã(p′1, p2, q3) and ã(q1, q2, p3) = ã(q1, q
′
2, p3).

Let (pt
3)

T
t=1 be a J-path between p1

3 = p3 and pT
3 = q3. There exists an integer t such

that

ã(p1, p2,p
t
3) ̸= ã(p′1, p2,p

t
3) and ã(p1, p2,p

t+1
3 ) = ã(p′1, p2,p

t+1
3 ). (67)

By the Local Bilaterality lemma again, there exists π0
3 such that pt

3 | Ω̃ ≈ pt+1
3 | Ω̃

≈ π0
3, that is, p

t
3,p

t+1
3 ∈ P(π0

3). Moreover, statement (67) implies

ã(p1, p2,p
t
3) ̸= ã(p′1, p2,p

t
3) ̸= ã(p′1, p2,p

t+1
3 )

or

ã(p1, p2,p
t+1
3 ) ̸= ã(p1, p2,p

t
3) ̸= ã(p′1, p2,p

t
3).

In either case the claim is again true.

Step 2. Step 1 has established that there is some π0 ∈ P̃N such that s varies

with the beliefs of two distinct agents, say 1 and 2, on PN(π0). By statement (b) in

Lemma 9, s is bilaterally consensual on PN(π0) and we may assume without loss of

generality (in light of Remark 2) that s is (2, 1)-consensual on that domain: there
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exists a partition {A,B,C1, ..., Cn} of Ω such that ω̃ ∈ A, {A,B} cuts P(π0
1), P(π0

2),

and for all p ∈ PN(π0),

s(p) =

{
(A ∪ C1, B ∪ C2, C3, ...., Cn) if p1(A) > p1(B) and p2(A) < p2(B),

(B ∪ C1, A ∪ C2, C3, ...., Cn) otherwise.

(68)

Define Eω̃ := A ∪ B and define the bilaterally consensual Eω̃-assignment rule sω̃

as follows: for all p̃ ∈ P(Eω̃)N ,

sω̃(p̃) =

{
(A,B, ∅, ..., ∅) if p̃1(A) > p̃1(B) and p̃2(A) < p̃2(B),

(B,A, ∅, ..., ∅) otherwise.

We claim that (64) holds for all p ∈ PN .

By definition, statement (64) is true for all p ∈ PN(π0). Next, fix an arbitrary

sub-profile π−12 ∈ P̃N\12.

Sub-step 2.1. By repeated application of the Independence lemma, s is (2, 1)-

consensual with respect to {A,B} on PN(π0
1, π

0
2, π−12), hence, (64) is true for all

p ∈ PN(π0
1, π

0
2, π−12).

Sub-step 2.2. For any profile (π1, π2) ∈ P̃+×P̃+, combining Sub-step 2.1 with part

(a) of the First Contagion Corollary and part (a) of the Second Contagion Corollary

shows that s is (2, 1)-consensual with respect to {A,B} on PN(π1, π2, π−12), hence,

(64) is true for all p ∈ PN(π1, π2, π−12).

Sub-step 2.3. For any profile (π1, σ2) ∈ P̃+ × P̃−, Sub-step 2.2 and part (b) of the

First Contagion Corollary imply that there is a partition {C ′
1, ..., C

′
n} of Ω \ (A ∪B)

such that s(p) = (B∪C ′
1, A∪C ′

2, C
′
3, ..., C

′
n) for all p ∈ PN(π1, σ2, π−12). Since {A,B}

does not cut P(σ2), we have p2(A) > p2(B) for all p2 ∈ P(σ2), hence (64) is true for

all p ∈ PN(π1, σ2, π−12).

Sub-step 2.4. For any profile (σ1, π2) ∈ P̃− × P̃+, Sub-step 2.2 and part (b) of

the Second Contagion Corollary imply that s is (2, 1)-dictatorial on PN(σ1, π2, π−12).

Since {A,B} does not cut P(σ1), we have p1(A) > p1(B) for all p1 ∈ P(σ1), hence

(64) is true for all p ∈ PN(σ1, π2, π−12).

Sub-step 2.5. Consider finally a profile (σ1, σ2) ∈ P̃− × P̃−. By definition, σ2(Ã) >

σ2(B). For each α ∈ (0, 1) , consider again the measure ασ2 defined on Ω̃ by (60).

Recall that ασ2 coincides with σ2 for α = σ2(Ã) and observe that ασ2 ∈ P̃+ for any

generic α < σ2(B)

1+σ2(B)−σ2(Ã)
.

Choose an increasing sequence of numbers α(1), ..., α(T ) such that (i) α(t)σ2 is

adjacent to α(t+1)σ2 for all t = 1, ..., T − 1, (ii) α(1)σ2 ∈ P̃+, and (iii) α(T )σ2 = σ2.

Consider the J-path (σt
2)

T
t=1 in P̃− defined by σt

2 =α(t) σ2 for t = 1, ..., T.
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Since σ1
2 ∈ P̃+, Sub-step 2.3 implies that there exists a partition {C ′

1, ..., C
′
n} of

Ω \ (A∪B) such that s(p) = (B ∪C ′
1, A ∪C ′

2, C
′
3, ..., C

′
n) for all p ∈ PN(σ1, σ

1
2, π−12).

The same argument as in Sub-step 2.2 of the proof of the First Contagion Corollary

then establishes that s(p) = (B∪C ′
1, A∪C ′

2, C
′
3, ..., C

′
n) for all p ∈ PN(σ1, σ

T
2 , π−12) =

PN(σ1, σ2, π−12).

Since {A,B} does not cut P(σ2), we have p2(A) > p2(B) for all p2 ∈ P(σ2), hence

(64) is true for all p ∈ PN(σ1, σ2, π−12).

Since P = ∪πi∈P̃P(πi), the proof of the Bilateral Consensus lemma is complete.

�

11 Appendix D: proof of the Bilateral Dictator-

ship lemma

Let Ω11 be the set of states whose assignment varies only with the beliefs of agent 1,

namely,

ω ∈ Ω11 ⇔
[
there exist p ∈ PN and p′1 ∈ P such that aω(p) ̸= aω(p

′
1, p−1)

]
and[

aω(., p−j) is constant on P for all j ̸= 1 and p−j ∈ PN\j] .
To avoid triviality, assume Ω11 ̸= ∅. Let ω̃ ∈ Ω11. We must show that there exist a

set N1 ⊆ N \ 1, a partition
{
Ωj

11

}
j∈N1

of Ω11, and for each j ∈ N1 a (1, j)-dictatorial

Ωj
11-assignment rule sj such that

si(p) ∩ Ω11 = ∪j∈N1s
j
i (p | Ωj

11) (69)

for all p ∈ PN and i ∈ N.

Define the family

A11 =
{
A ⊆ Ω11 : ∃p ∈ PN such that s1(p) ∩ Ω11 = A

}
=

{
A ⊆ Ω11 : ∃p1 ∈ P such that s1(p1, p−1) ∩ Ω11 = A for all p−1 ∈ PN\1} ,

where the first equality constitutes the definition and the second follows from the

definition of Ω11.

Let Ω11 = Ω \ Ω11. Call a belief p1 ∈ P Ω11-dominant if |p1(A)− p1(B)| >

|p1(A′)− p1(B
′)| for all distinct A,B ⊂ Ω11 and all distinct A′, B′ ⊂ Ω11 (or, equiv-

alently, |p1(ω)− p1(ω
′)| > p1(Ω11) for all distinct ω, ω′ ∈ Ω11). In such a belief,

the probability differences within Ω11 overwhelm the differences outside Ω11. To see

that such beliefs exist, write Ω11 = {1, ...,m} and observe that any belief p1 such

that p1(1) > p1(Ω \ 1), p1(2) > p1(Ω \ 12), ..., and p1(m) > p1(Ω \ 1...m − 1), is

Ω11-dominant. Let P11 denote the set of Ω11-dominant beliefs.
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Step 1. We show that

s1(p) ∩ Ω11 = argmax
A11

p1 (70)

for all p = (p1, p−1) ∈ P11 ×PN\1.

The claim is obviously true if Ω11 = Ω; in what follows we assume Ω11 ̸= Ω. For

any two beliefs p1, q1 ∈ P and for any p−1 ∈ PN\1, we claim that[
p1 | Ω11 = q1 | Ω11

]
⇒

[
s1(p1, p−1) ∩ Ω11 = s1(q1, p−1) ∩ Ω11

]
. (71)

To see why this is true, fix p1, q1 ∈ P , p−1 ∈ PN\1, and note that the definitions of

Ω0 and Ω1j for j ̸= 1 trivially imply

s1(p1, p−1) ∩ [Ω0 ∪ ∪j ̸=1Ω1j] = s1(q1, p−1) ∩ [Ω0 ∪ ∪j ̸=1Ω1j] .

Moreover, by the Bilateral Consensus corollary, agent 1’s share of Ω2 is determined

by bilateral consensus, hence does not depend on her belief outside Ω2. Therefore,[
p1 | Ω11 = q1 | Ω11

]
⇒ [s1(p1, p−1) ∩ Ω2 = s1(q1, p−1) ∩ Ω2] ,

and (71) follows.

Let now p = (p1, p−1) ∈ P11 × PN\1. Since p−1 is fixed in the argument below,

we drop it from the list of arguments of s1. Suppose, contrary to the claim, that

s1(p1) ∩ Ω11 ̸= argmax
A11

p1. Choosing q1 ∈ P such that s1(q1) ∩ Ω1 = argmax
A11

p1, we

have

p1(s1(q1) ∩ Ω11) > p1(s1(p1) ∩ Ω11).

Because p1 is Ω11-dominant,

p1(s1(q1) ∩ Ω11)− p1(s1(p1) ∩ Ω11)

> p1(s1(p1) ∩ Ω11)− p1(s1(q1) ∩ Ω11).

Combining these inequalities yields p1(s1(q1)) > p1(s1(p1)), contradicting strategyproofness.

Step 2. We prove that (70) holds for all p ∈ PN .

Let p = (p1, p−1) ∈ PN and drop again p−1 from the list of arguments of s1. For

each α ∈ (0, 1) , define the probability measure αp1 over the subsets of Ω by

αp1(A) = α
p1(A ∩ Ω11)

p1(Ω11)
+ (1− α)

p1(A ∩ Ω11)

p1(Ω11)
for all A ⊆ Ω. (72)

If α = p1(Ω11), then αp1 coincides with p1. If α is sufficiently close to 1, then αp1 is

Ω11-dominant. For every α, αp1 | Ω11 = p1 | Ω11 and αp1 | Ω11 = p1 | Ω11.
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Choose an increasing sequence of numbers α(1), ..., α(T ) such that (i) α(t)p1 is

adjacent to α(t+1)p1 for all t = 1, ..., T − 1, (ii) α(1)p1 = p1, and (iii) α(T )p1 is Ω11-

dominant. Consider the J-path (pt
1)

T
t=1 in P defined by pt

1 =α(t) p1 for t = 1, ..., T.

Let At = s1(p
t
1) ∩ Ω11 for t = 1, ..., T. Suppose, contrary to the claim, that A1 ̸=

argmax
A11

p1. Since pT
1 is Ω11-dominant and pT

1 | Ω11 = p1 | Ω11, Step 1 implies AT =

argmax
A11

p1. Let t be the largest integer in {1, ..., T − 1} such that At ̸= argmax
A11

p1. Let

{Et, Et+1} be the pair of disjoint events such that pt
1,p

t+1
1 are {Et, Et+1}-adjacent

and pt
1(E

t) > pt
1(E

t+1). Because pt
1 | Ω11 = pt+1

1 | Ω11 and pt
1 | Ω11 = pt+1

1 | Ω11,

Et ∩ Ω11 ̸= ∅ and Et+1 ∩ Ω11 ̸= ∅.

By the Local Bilaterality lemma,

s1(p
t
1) \ s1(pt+1

1 ) = Et and s1(p
t+1
1 ) \ s1(pt

1) = Et+1.

It follows that (s1(p
t
1) \ s1(pt+1

1 ))∩Ω11 ̸= ∅, that is, s1(pt
1)∩Ω11 ̸= s1(p

t+1
1 )∩Ω11,

contradicting (71).

Step 3. We show that for all p, q ∈ P11 × PN\1,

[p1 | Ω11 = q1 | Ω11] ⇒ [si(p) ∩ Ω11 = si(q) ∩ Ω11 for all i ∈ N ] .

Let p, q ∈ P11 × PN\1. Since we are only concerned with the restriction of s to

Ω11, we may assume p−1 = q−1 and omit that sub-profile from the notation. Suppose

p1 | Ω11 = q1 | Ω11. By Step 1,

s1(p1) ∩ Ω11 = s1(q1) ∩ Ω11 = argmax
A11

p1. (73)

Because p1, q1 ∈ P11, (73) and super-strategyproofness imply

si(p1) ∩ Ω11 = si(q1) ∩ Ω11 for all i ∈ N.

Indeed, if, say, s2(p1)∩Ω11 ̸= s2(q1)∩Ω11, then (73) and the assumption p1 | Ω11 = q1 |
Ω11 imply that either (i) p1(s12(p1)∩Ω11) > p1(s12(q1)∩Ω11) and q1(s12(p1)∩Ω11) >

q1(s12(p1) ∩ Ω11), or (ii) both of these two strict inequalities are reversed. Because

p1,q1 are Ω11-dominant, each of (i) and (ii) violates super-strategyproofness.

Step 4. We claim that for every ω ∈ Ω11 there is a unique j ̸= 1 such that aω(P11 ×
PN\1) = {1, j} .

From Step 3, the assignment of all states in Ω11 depends only on the conditional

beliefs of agent 1 over Ω11. We may thus drop p−1 from the notation and regard s
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as a function from P(Ω11) to S(Ω11). By assumption, s is super-strategyproof (hence

also non-bossy) and it is not constant on P(Ω11).

We want to show that

sj(p1) ∩ sk(q1) = ∅ for any distinct j, k ∈ N \ 1 (74)

and any p1, q1 ∈ P(Ω11). For any Ω̃11 ⊂ Ω11, an Ω̃11-assignment rule s̃ : P(Ω̃11) →
S(Ω̃11) will be called 1-C-BD union if it is a union of constant or bilaterally 1-

dictatorial rules on Ω̃11, namely, if there is a partition
{
Ωl

11

}L

t=1
of Ω11 such that, for

all p1 ∈ P(Ω̃11),

s̃i(p1) = ∪L
l=1s

l
i(p1 | Ωl

11) for all i ∈ N, (75)

where each sl is a constant or (1, jl)-dictatorial Ωl
11-assignment rule. With a slight

abuse of terminology, we will call (the restriction to P̄ of) s̃ a 1-C-BD union over P̄
if (75) is satisfied for all p1 ⊂ P̄ ⊂ P(Ω̃11). We prove Step 4 by induction on the size

of Ω11.

Sub-step 4.1. Suppose that |Ω11| = 2 and consider a super-strategyproof assignment

rule s̃ : P(Ω11) → S(Ω11). Then there exists j ∈ N \ 1 such that s̃1j(p) = Ω11 for all

p1 ∈ P(Ω11). It follows that s̃ is a 1-C-BD union.

Indeed, suppose that Ω11 = {ω1, ω2} and let p̃1 ∈ P(Ω11). If we have either s̃1(p̃1) = ∅
or s̃1(p̃1) = Ω11, then s̃ is constant over P(Ω11) and the result of Sub-step 4.1 trivially

holds. Without loss of generality, suppose now that s̃1(p̃1) = {ω1}. Then there

exists some agent j ̸= 1 such that ω2 ∈ sj(p̃1) and obviously s̃1j(p̃1) = Ω11. By

super-strategyproofness of s̃, we have p1(s̃1j(p1)) ≥ p1(s̃1j(p̃1)) = p1(Ω11) = 1, hence,

p1(s̃1j(p̃1)) = 1, for all p ∈ P(Ω11), meaning that s̃ is (1, j)-dictatorial. Thus, in all

possible cases, s̃ is a 1-C-BD union.

Suppose now that |Ω11| = K ≥ 3 and assume by induction that every assignment

rule s̃ : P(Ω̃11) → S(Ω̃11) such that |Ω̃11| ≤ K − 1 is a 1-C-BD union.

Recalling that the range of s1(·) is E ≡ {E ⊂ Ω11 : s1(p1) = E for some p1 ∈
P(Ω11)}, strategyproofness of s obviously implies s1(p1) = argmax

E
p1 for all p1 ∈

P(Ω11).

Given any ω ∈ Ω11, define the set of ω-lexicographic beliefs L(ω) := {p1 ∈
P(Ω11) : p1(ω1) > p1(Ω11 \ ω)}. For any q1 ∈ P(Ω11) ∪ P(Ω11 \ ω), let Lq1(ω) :=

{p1 ∈ L(ω) : p1 | (Ω11 \ ω) = p1 | (Ω11 \ ω)} and, for any α ∈ (1
2
, 1), define qω,α1 ∈

Lq1(ω) as follows: for all ω′ ∈ Ω11,

qω,α1 (ω′) :=

{
α if ω′ = ω,

q1(ω′)
1−α

if ω′ ̸= ω.

Sub-step 4.2. Consider q1 ∈ Ω11 such that ω ∈ s1(q1); and suppose that p1 ∈ Lq1(ω).

Then we have s(p1) = s(q1).
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The proof of Sub-step 4.2. is rather straightforward, and left to the reader. It follows

from non-bossiness of s and the fact that p1(ω) > 1/2 for all p1 ∈ Lq1(ω).

Sub-step 4.3. Fix ω̄ ∈ Ω11 and α ∈ (1
2
, 1). Define the mapping αs̃

−ω̄ : P(Ω11\ ω̄) →
S(Ω11 \ ω̄) as follows: (i) αs̃

−ω̄
1 (q1) = s1(q

ω̄,α
1 ) \ ω̄; (ii) αs̃

−ω̄
i (q1) = si(q

ω̄,α
1 ), ∀i ̸= 1.

Then αs̃
−ω̄ is an (Ω11 \ ω̄)-assignment rule and a 1-C-BD union.

To prove Sub-step 4.3, note first that ω̄ ∈ s1(p1) for all p1 ∈ L(ω̄). Indeed, since

the range E of s1(·) is a proper covering of Ω11, there exists p̄1 ∈ P(Ω̃11) such that

ω̄ ∈ s1(p̄1). Therefore, if ω̄ /∈ s1(p1) for some p1 ∈ L(ω̄), we would have p1(s1(p̄1)) ≥
p1(ω̄) >

1
2
> p1(s1(p1)), contradicting strategyproofness.

Building on this result, observe from (i)-(ii) above that the mapping αs̃
−ω̄ satisfies

the feasibility constraint. Indeed, for any q1 ∈ P(Ω11 \ ω̄)1, since qω̄,α1 ∈ L(ω̄), we get

from the feasibility of s that

∪i∈N αs̃
−ω̄
i (q1) =

= αs̃
−ω̄
1 (q1)︷ ︸︸ ︷

(s1(q
ω̄,α
1 )︸ ︷︷ ︸

ω̄∈

\ω̄)∪[∪i∈N\i si(q
ω̄,α
1 )︸ ︷︷ ︸

ω̄ /∈

] = Ω11 \ ω̄.

Thus, the mapping αs̃
−ω̄ is a well-defined (Ω11 \ ω̄)-assignment rule. Moreover, it is

super-strategyproof (because s is), and since |Ω11 \ ω̄| = K − 1 < K, our induction

hypothesis implies that αs̃
−ω̄ is a 1-C-BD union.

Sub-step 4.4. Fix ω̄ ∈ Ω11. The mapping s̄ω̄ : L(ω̄) → S(Ω11 \ ω̄), defined as the

restriction of s to L(ω̄), is a 1-C-BD union over L(ω̄). As a consequence, (74) must

hold for all p1, q1 ∈ L(ω̄).

This follows from the combination of Sub-step 4.2 and Sub-step 4.3. Indeed, fix any

α > 1/2; and note from Sub-step 4.2 that, for all q1 ∈ L(ω̄), we have s̄ω̄(q1) = s(q1) =

s(qω̄,α1 ) because qω̄,α1 ∈ Lq1(ω̄). That is to say,

s̄ω̄1 (q1) = ω̄ ∪ αs̃
−ω̄
1 (q1 | (Ω11 \ ω̄)) and s̄ω̄i (q1) = αs̃

−ω̄
i (q1 | (Ω11 \ ω̄)), ∀i ̸= 1. (76)

Recalling from Sub-step 4.3 that αs̃ is a 1-C-BD union, there exists a partition

{Ω1
11, . . . ,Ω

L
11} of Ω11 \ ω̄ and L Ωl-assignment rules s1, . . . , sL such that αs̃

−ω̄
i (q1 |

(Ω11 \ ω̄)) = ∪L
l=1s

l
i(q1 | Ωl

11) and each sl is constant or (1, jl)-dictatorial for some

jl ̸= 1. Substituting this in (76) thus gives: for all q1 ∈ L(ω̄) and i ∈ N ,

s̄ω̄i (q1) =

{
∪L

l=1s
l
i(q1 | Ωl

11) if i ̸= 1,

ω̄ ∪
(
∪L
l=1s

l
i(q1 | Ωl

11)
)

if i = 1.
(77)

Observe from (77) that s̄ω̄, the restriction of s to L(ω̄) is expressed as the union of

the L + 1 sub-rules s0, s1, . . . , sL, where s0 is the constant Ω0-assignment rule which

always assigns Ω0
11 := {ω̄} to agent 1. This concludes the proof of Sub-step 4.4.
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We are now ready to proceed with the proof of Step 4. Since P(Ω11) is connected,

there is a J-path (pt
1)

T
t=1 in P(Ω11) between any two beliefs p1, q1 ∈ P(Ω11). If the

length T−1 of this path is equal to 1, then p1, q1 are adjacent and the Local Bilaterality

lemma implies sj(p1) ∩ sk(q1) = ∅ for any distinct j, k ∈ N \ 1. Next, proceeding by

induction, we assume that (74) is true whenever p1, q1 are connected by some J-path

of length T ′− 1 < T − 1 (with T ≥ 3) and we prove that (74) also holds for any p1, q1
that are connected by some J-path of length T − 1.

By contradiction, suppose that there exist ω∗ ∈ Ω11 and p′′1, p
′′′
1 ∈ P(Ω11) such

that, say, ω∗ ∈ s2(p
′′
1)∩s3(p

′′′
1 ) and p′′1, p

′′′
1 are connected by some J-path q1 = (qt

1)
T
t=1.

Combining the Local bilaterality lemma with our induction hypothesis that (74) holds

for all p1, q1 that are connected by some J-path of length T ′ ≤ T − 1, we obtain

w∗ ∈ s1(q
T−1
1 ) \ s1(qT

1 ) =s3(q
T
1 ) \ s3(qT−1

1 ) ̸= ∅ (78)

si(q
T−1
1 ) =si(q

T
1 ), ∀i ̸= 1, 3 (79)

s3(q
T−1
1 )∩si(p′′1) = ∅, ∀i ̸= 1, 3. (80)

To see why (78) holds, note that w∗ ∈ s1(q
t−1
1 ) \ s1(q

t
1) for some t ≤ T − 1 would

imply a violation of our induction hypothesis on the J-path {q1
1, . . . ,q

t
1}, which is of

length t− 1 < T − 1. Statement (80) holds for the same reason. Finally, (79) follows

from (78) and the Local Bilaterality lemma. In addition, observe that combining (79)

and (80) gives

si(p
′′′
1 ) ∩ s3(p

′′
1) = si(q

T
1 ) ∩ s3(p

′′
1) = si(q

T−1
1 ) ∩ s3(p

′′
1) = ∅, ∀i ̸= 1, 3. (81)

Sub-step 4.5. There exist ω3 ∈ s1(p
′′′
1 ) ∩ s3(p

′′
1) and ω2 ∈ s1(p

′′
1) ∩ s3(p

′′′
1 ).

To prove Sub-step 4.5, first note that, together, ω∗ ∈ s2(p
′′
1) ∩ s3(p

′′′
1 ) and the super-

strategyproofness of s imply that p′′′1 (sN\3(p
′′′
1 )) > p′′′1 (sN\3(p

′′
1)). Thus, there exists

ω̂ ∈ Ω11 such that

ω̂ ∈ sN\3(p
′′′
1 ) \ sN\3(p

′′
1) = sN\3(p

′′′
1 ) ∩ s3(p

′′
1). (82)

It thus suffices now to remark that sN\3(p
′′′
1 )∩ s3(p

′′
1) = s1(p

′′′
1 )∩ s3(p

′′
1). Indeed, given

that we have sN\3(p
′′′
1 ) := ∪i ̸=3si(p

′′′
1 ), we can write

sN\3(p
′′′
1 ) ∩ s3(p

′′
1) = [s1(p

′′′
1 ) ∩ s3(p

′′
1)] ∪ [∪i̸=1,3 (si(p

′′′
1 ) ∩ s3(p

′′
1))︸ ︷︷ ︸

=∅ by (81)

] = s1(p
′′′
1 ) ∩ s3(p

′′′
1 ).

Thus, ω̂ ∈ sN\3(p
′′′
1 )∩ sN\3(p

′′
1) = s1(p

′′′
1 )∩ s3(p

′′′
1 ). A symmetric argument shows that

there exists ω2 ∈ s1(p
′′
1) ∩ s3(p

′′′
1 ); and this ends the proof of Sub-step 4.4.

Recall from what precedes that ω∗ ∈ s2(p
′′
1) ∩ s3(p

′′′
1 ), ω3 ∈ s1(p

′′′
1 ) ∩ s3(p

′′
1) and

ω2 ∈ s1(p
′′
1) ∩ s3(p

′′′
1 ). The states ω∗, ω2, ω3 are thus necessarily (pairwise) distinct.

We show a few additional sub-steps below.
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Fix any q′′1 ∈ Lp′′1 (ω2) (see Figure 6) and q′′′1 ∈ Lp′′′1 (ω3), and define tq′′′1 ∈ L(ω3) by
tq′′′1 (ω3) = q′′′1 (ω2),

tq′′′1 (ω2) = q′′′1 (ω3) and
tq′′′1 (ω) = q′′′1 (ω), ∀ω ̸= ω2, ω3. In addition,

call πω2
ω3

the probability measure over Ω11 defined by:16

πω2
ω3
(ω2) = πω2

ω3
(ω2) = 1/2; and πω2

ω3
(ω) = 0 for all ω ̸= ω2, ω3.

Define the two sequences {qm1 }m≥m̄q and {q̄m1 }m≥m̄q̄ as follows: for any ω ∈ Ω11,

qm1 (ω) =
1

m
q′′′1 + (1− 1

m
)πω2

ω3
; (83)

q̄m1 (ω) =
1

m
tq′′′1 + (1− 1

m
)πω2

ω3
.

Figure 6 gives an illustration of the construction of the beliefs qm1 , q̄
m starting from

p′′1 ∈ L(ω2). It is important to remark that, by definition, we have qm1 ∈ L(ω2) and

q̄m1 ∈ L(ω3).
17

Sub-step 4.6. There exist m̃ ∈ IN (with m̃ ≥ m̄q, m̄q̄) and A, Ā ∈ S(Ω11) such

that

[m ≥ m̃] ⇒ [s(qm1 ) = A and s(q̄m1 ) = Ā].

The proof of Sub-step 4.6 is similar to that of Lemma 3-(i), and therefore left to the

reader.

Sub-step 4.7. For any m ≥ m̃, we have ω∗ ∈ s2(q
m
1 ); and it follows that A ̸= Ā.

We showed in Sub-step 4.4 that s̄ω2 , the restriction of s to L(ω2), can be written as

s̄ω̄2
i (q1) =

{
∪L

l=1s
l
i(q1 | Ωl

11) if i ̸= 1,

ω2 ∪
(
∪L

l=1s
l
i(q1 | Ωl

11)
)

if i = 1,
(84)

where each sl is constant or (1, jl)-dictatorial for some jl ̸= 1. Call Ωw∗
11 the unique

event in the partition { Ω0
11︸︷︷︸

={ω2}

,Ω1
11, . . . ,Ω

L
11} of Ω11 such that ω∗ ∈ Ωw∗

11 . Since q′′1 ∈

Lp′′1 (ω2) ⊂ L(ω2), it follows from Sub-step 4.2 that ω∗ ∈ s2(p
′′
1) = s2(q

′′
1) = s̄ω2

2 (q′′1);

and we may then conclude from (84) that jω
∗
= 2 and sω

∗
is (1,2)-dictatorial over

Ωω∗
11 . We get in the same way that jω3 = 3 and sω3 is (1,3)-dictatorial over Ωω3

11 . It thus

follows that ω3, ω2 /∈ Ωω∗
11 –obviously, ω2 /∈ Ωω∗

11 since Ω0
11 = {ω2}. Using (84) and the

fact that sω
∗
is (1,2)-dictatorial, we may assert that ω∗ ∈ s2(q1) for any q1 ∈ L(ω2)

such that q1 | Ωω∗
11 = q′′1 | Ωω∗

11 . One can then see that ω∗ ∈ s2(q
m
1 ) by combining

16Obviously, πω2
ω3

is not an injective probability measure (i.e., πω2
ω3

/∈ P(Ω11)); but this does not

affect the validity of our upcoming argument —which is based on the study of sequences of injective

probability measures that converge to πω2
ω3
.

17There may exist only a finite number of integers m such that qm1 , q̄m1 are not injective; and this

issue is taken care of by conveniently starting the sequence at a rank m̄q (or m̄q̄) that is higher than

any such integer.
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(83) and ω2, ω3 /∈ Ωω∗
11 to deduce that we indeed have: qm1 | Ωω∗

11 = q′′1 | Ωω∗
11 , for all

m ≥ m̄q.

We conclude the proof of Sub-step 4.7 by noting that we necessarily have A ̸= Ā.

Indeed, since m̃ ≥ m̄q, we have ω∗ ∈ A2 = s2(q
m̃
1 ). Assuming that A = Ā would

thus give ω∗ ∈ A2 = Ā2 = s2(q̄
m̃). But this would contradict the fact that s̄ω3 is a

1-C-BD union over L(ω3) (established in Sub-step 4.4), which requires (74) to hold

for q̄m̃, q′′′1 ∈ L(ω3) —recall that ω∗ ∈ s3(q
′′′
1 ).

Sub-step 4.8. There exist disjoint subsets E, Ē ⊂ Ω \ {ω2, ω3, ω
∗} such that

A1 \ Ā1 = ω2 ∪ E = Ā3 \A3,

Ā1 \A1 = ω3 ∪ Ē = A3 \ Ā3,

Ai = Āi for all i ̸= 1, 3.

We start the proof of Sub-step 4.8 by noting that: ∃m̂ ≥ m̃ such that, for any {F, F̄} ∈
H and any m ≥ m̂,

[
w2 /∈ F or ω3 /∈ F̄

]
⇒

[
(qm1 (F )− qm1 (F̄ ))(q̄m1 (F )− q̄m1 (F̄ )) > 0

]
.

This implication holds by construction since lim
m→∞

qm1 = lim
m→∞

q̄m1 = πω2
ω3

and πω2
ω3
(ω2) =

πω2
ω3
(ω3) = 1/2. In words: when m is large enough, the segment [qm1 , q̄

m
1 ] cuts only

hyperplanes {F, F̄} ∈ H such that ω2 ∈ F and ω3 ∈ F̄ (see Figure 7), and qm1 , q̄
m
1 are

on the same side of all other hyperplanes.

Second, recall from (83) that qm1 | (Ω11 \ {ω2, ω3}) = q̄m1 | (Ω11 \ {ω2, ω3}) = q′′1 |
(Ω11 \ {ω2, ω3}), for any m ≥ m̂. It hence follows that the set of hyperplanes of the

form {ω2 ∪ E, ω3 ∪ Ē} is totally ordered along the segment [qm̂1 , q̄
m̂
1 ]. Calling T the

number of such hyperplanes, we may thus write

{{F, F̄} ∈ H | F = ω2∪E, F̄ = ω3∪Ē} = {{ω2∪E1, ω3∪Ē1}, . . . , {ω2∪ET , ω3∪ĒT , }},

where Et [t = 1, . . . , T ] is the tth hyperplane cut on the way from qm̂1 to q̄m̂1 . Using

this notation, we may then consider a J-path {pt
1}T+1

t=1 satisfying the properties: (i)

p1
1 = qm̂1 , p

T+1
1 = q̄m̂1 ; (ii) pt

1 and pt+1
1 are {ω2 ∪ Et, ω3 ∪ Ēt}-adjacent for any t =

1, . . . , T .

We conclude the proof of Sub-step 4.8 by showing that there exists a unique

t∗ ∈ {1, T} such that: (a) s(pt
1) = s(qm̂1 ),∀t ∈ {1, . . . , t∗} and (b) s(pt

1) = s(q̄m̂1 ),∀t ∈
{t∗ + 1, . . . , T + 1}. First, note that the assignment may change only once along

the J-path p. Indeed, if s(pt∗
1 ) ̸= s(pt∗+1

1 ) then we get from the Local Bilaterality

lemma that s1(p
t∗
1 ) \ s1(pt∗+1

1 ) = ω2 ∪Et∗ ; and (given that ω2 /∈ s1(p
t∗+1
1 )), the Local

Bilaterality lemma requires that s(pt
1) = s(q̄m̂1 ),∀t ∈ {t∗ + 1, . . . , T + 1}.

Second, recall from Sub-step 4.7 (and m̂ ≥ m̃) that s(qm̂1 ) = A ̸= Ā = s(q̄m̂1 ).

Hence, there must indeed exist a unique t∗ ∈ {1, . . . , T} such that s(pt∗
1 ) ̸= s(pt∗+1

1 ).

The Local Bilaterality lemma, applied to the adjacent beliefs pt∗
1 ,p

t∗+1
1 , then gives

the desired result: A1 \ Ā1 = ω2 ∪ Et∗ = Ā3 \ A3; Ā1 \ A1 = ω3 ∪ Ēt∗ = A3 \ Ā3;

Ai = Āi,∀i ̸= 1, 3. Recalling from Sub-step 4.7 that ω∗ ∈ s2(q
m̂
1 ) = A2, we obtain

that Et∗ , Ēt∗ ⊂ Ω \ {ω2, ω3, ω
∗}.
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We are finally ready to clinch the proof of Step 4. We have shown in Sub-step

4.8 that ω∗ ∈ s2(q
m̂
1 ) = A2 = Ā2 = s2(

∈L(ω3)︷︸︸︷
q̄m̂1 ). But this is a contradiction given that

ω∗ ∈ s3(

∈L(ω3)︷︸︸︷
q′′′1 ). Indeed, this violation of (74) contradicts the fact that (the restriction

to L(ω3) of) s is a 1-C-BD union over L(ω3) —which was established in Sub-step

4.4. Thus, it never holds that ω∗ ∈ sj(p
′′
1) ∩ sk(p

′′′
1 ) for any ω∗, p′′1, p

′′′
1 and distinct

j, k ̸= 1. Given that s is not constant on P(Ω11), for any ω ∈ Ω11, we thus have,

aω(P(Ω11)) = {1, j} for some j ̸= 1.

Step 5. We show that for every ω ∈ Ω11 there is a unique j ̸= 1 such that aω(PN) =

{1, j} .

Let ω ∈ Ω11. By Step 4, there is a unique j ̸= 1 such that aω(P11×PN\1) = {1, j} .
We claim that aω(PN) = {1, j} . Suppose, by contradiction, that there exists some

k ̸= 1, j and some p ∈ PN such that ω ∈ sk(p). Drop p−1 from the notation. Consider

an Ω11-dominant belief p∗1 ∈ P11 such that p∗1 | Ω11 = p1 | Ω11 and p∗1 | Ω11 = p1 | Ω11.

Such a belief can be constructed by taking α close to 1 in (72). Since aω(P11 ×
PN\1) = {1, j}, we have ω /∈ sk(p

∗
1). By Step 2, s1(p1) ∩ Ω11 = s1(p

∗
1) ∩ Ω11. By (71),

s1(p1) = s1(p
∗
1). By non-bossiness, s(p1) = s(p∗1), contradicting ω ∈ sk(p1) \ sk(p

∗
1)

and completing Step 5.

For every j ̸= 1, define Ωj
11 =

{
ω ∈ Ω11 : aω(PN) = {1, j}

}
. Let N1 = {j ∈ N \1 :

Ωj
11 ̸= ∅}. By definition,

{
Ωj

11 : j ∈ N1

}
is a partition of Ω11. For each j ∈ N1, let

Aj
11 =

{
Aj ⊆ Ωj

11 : ∃p ∈ PN such that s1(p) ∩ Ωj
11 = Aj

}
.

Step 6. We show that A11 is a product family. Namely, for any collection of events

{Aj : j ∈ N1} , [
Aj ∈ Aj

11 for all j ∈ N1

]
⇒

[
∪j∈N1A

j ∈ A11

]
.

Suppose Aj ∈ Aj
11 for all j ∈ N1 and write N1 = {2, ..., n1} . Call a belief p1

lexicographically (Ω2
11, ...,Ω

n1
11)-dominant if |p1(A)− p1(B)| > |p1(A′)− p1(B

′)| for all
distinct A,B ⊂ Ωj

11, all A
′, B′ ⊂ Ω \ (∪j

k=1Ω
k
11), and all j = 2, ..., n − 1. Consider a

lexicographically (Ω2
11, ...,Ω

n1
11)-dominant belief p1 such that

argmax
Aj

11

p1 = Aj

for all j = 2, ..., n− 1. Fix p−1 ∈ PN\1 and drop it from the notation.

Strategyproofness implies

s1(p1) ∩ Ω2
11 = A2.
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This is because there is some q1 such that s1(q1)∩Ω2
11 = A2, argmax

A2
11

p1 = A2, and p1

is Ω2
11-dominant.

Next, proceed inductively. Suppose we have shown that s1(p1) ∩ Ωj
11 = Aj for

j = 2, ..., k − 1. We claim that

s1(p1) ∩ Ωk
11 = Ak. (85)

Since Ak ∈ Ak
11, there is some q1 such that s1(q1)∩Ωk

11 = Ak. If s1(p1)∩Ωk
11 = Bk ̸= Ak,

then

p1(s{1,...,k−1}(p1) ∩ (∪k
j=2Ω

j
11)) = p1(∪k−1

j=2Ω
j
11 ∪Bk)

< p1(∪k−1
j=2Ω

j
11 ∪ Ak)

= p1(s{1,...,k−1}(q1) ∩ (∪k
j=2Ω

j
11)),

contradicting super-strategyproofness and proving (85).

We conclude that s1(p1)∩Ωj
11 = Aj for all j ∈ N1, which implies that s1(p1)∩Ω11 =

∪j∈N1A
j, hence ∪j∈N1A

j ∈ A11.

Step 7. Step 6 ensures that argmax
A11

p1 = ∪j∈N1 argmax
Aj

11

p1 for all p1 ∈ P . Combining

this with Step 2,

s1(p) ∩ Ω11 = ∪j∈N1 argmax
Aj

11

p1

for all p ∈ PN . Defining for each j ∈ N1 the (1, j)-dictatorial Ωj
11-assignment rule sj

by

sji (p̃) =


argmax

Aj
11

p̃1 if i = 1,

Ωj
11 \ argmax

Aj
11

p̃1 if i = j,

∅ if i ̸= 1, j

for all p̃ ∈ P(Ωj
11)

N , statement (69) holds for p ∈ PN and i ∈ N.

To complete the proof, it only remains to check that Aj
11 is a proper covering of

Ωj
11 for every j ∈ N1.

Fix j ∈ N1. To check that ∪Aj∈Aj
11
Aj = Ωj

11, fix ω ∈ Ωj
11. Since, by definition

of Ωj
11, aω(PN) = {1, j} , there is some p ∈ PN such that ω ∈ s1(p), hence some

Aj ∈ Aj
11 such that ω ∈ Aj.

To check that Aj \ Bj ̸= ∅ for all distinct Aj, Bj ∈ Aj
11, suppose on the contrary

that Aj ⊂ Bj. By Step 6, this implies that there exist A,B ∈ A11 such that A ⊂ B.

But by definition of A11 and Step 1, there is some p such that A = argmax
A11

p1,

contradicting the fact that p1(A) < p1(B).

To check that ∩Aj∈Aj
11
Aj = ∅, suppose on the contrary that ω ∈ ∩Aj∈Aj

11
Aj. Then

ω ∈ s1(p) for all p ∈ PN , contradicting the fact that aω(PN) = {1, j} . �
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12 Appendix E: Figures

Figure 2: The binary relation J̃

Figure 3: Illustration of the proof of the first contagion lemma

72



Figure 4: Illustration of the proof of the first contagion corollary

Figure 5: Illustration of the proof of the second contagion corollary
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Figure 6: Construction of qm1 and q̄m1 .

For m large, [qm1 , q̄
m
1 ] cuts only hyperplanes of the form {ω2 ∪ E, ω3 ∪ Ē}.

Note in this example that [q′′1 , q
′′′
1 ] — but not [qm1 , q̄

m
1 ]– cuts {ω3, ω

∗} ∈ H.

Figure 7: Hyperplanes cut by [qm1 , q̄
m
1 ].
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