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Abstract

A new condition, which we call uniform monotonicity, is shown to be
necessary and almost sufficient for rationalizable implementation of corre-
spondences. Uniform monotonicity is much weaker than Maskin monotonic-
ity and reduces to it in the case of functions. Maskin monotonicity, the key
condition for Nash implementation, had also been shown to be necessary for
rationalizable implementation of social choice functions. Our conclusion is
that the conditions for rationalizable implementation are not only starkly
different from, but also much weaker than those for Nash implementation,
when we consider social choice correspondences. Thus, dropping rational ex-
pectations significantly expands the class of rules that can be decentralized
by communication-based economic institutions.
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1 Introduction

The design of institutions to be used by rational agents has been an important
research agenda in economic theory. As captured by the notion of Nash equilib-
rium, rationality is encapsulated in two aspects: these are (i) the best responses of
agents to their beliefs, and (ii) that those beliefs are correct, the so-called rational
expectations assumption. One can drop the latter and retain the former, moving
then into the realm of rationalizability. One would conjecture that the design of
institutions under rationalizable behavior, i.e., without insisting on rational expec-
tations, should leave room for significantly different results than the theory based
on equilibrium.1 Settling this important question is our task in this paper. We
show that dropping rational expectations significantly expands the class of rules
that can be decentralized by communication-based institutions designed by the
Central Authority for participating agents in the system.

The theory of Nash implementation has uncovered the conditions under which
one can design a mechanism (or game form) such that the set of its Nash equi-
librium outcomes coincides with a given social choice correspondence (henceforth,
SCC). Indeed, Maskin (1999) proposes a well-known monotonicity condition, which
we refer to as Maskin monotonicity. Maskin’s (1999) main result shows that Maskin
monotonicity is necessary and almost sufficient for Nash implementation.2

Nash implementation is concerned with complete information environments, in
which all agents know the underlying state and this fact is commonly certain among
them. As a foundation of Nash equilibrium, Aumann and Brandenburger (1995)
delineate a set of epistemic conditions under which the agents’ strategic interac-
tion always leads to a Nash equilibrium. Furthermore, Polak (1999) shows that
when the agents’ payoffs are commonly certain, as complete information environ-
ments prescribe, the Aumann-Brandenburger epistemic conditions imply common
certainty of rationality.

Bernheim (1984) and Pearce (1984) independently propose rationalizability, a
weaker solution concept than Nash equilibrium, by asking what are the strategic
implications that come solely from common certainty of rationality. Brandenburger
and Dekel (1987) allow for the agents’ beliefs to be correlated and propose an
even weaker version of rationalizability. Lipman (1994) extends the concept of
rationalizability to games with infinite action sets. In this case, the set of all

1On the one hand, from the existence point of view, since rationalizability is a weaker solution
concept, one would conjecture a more permissive theory. On the other hand, uniqueness would
be harder to establish. Hence, the answer, a priori, is far from clear.

2Maskin (1999) uses deterministic mechanisms, but allows mixed-strategy equilibria in an ex
post sense (each outcome in the support of the equilibrium must be in the SCC). For us, given
the importance of disagreements in beliefs, random outcomes are central in our mechanisms, but
see footnote 15 as a point of comparison.

2



rationalizable strategies is fully characterized in terms of the strategies that survive
the (possibly transfinite) iterative deletion of never best responses, taking limits
as needed. Throughout the current paper, our discussion is entirely based upon
Lipman’s (1994) extension of correlated rationalizability of Brandenburger and
Dekel (1987).

In a paper that was our starting point and motivation, Bergemann, Morris, and
Tercieux (2011) –BMT in the sequel– recently consider the implementation of social
choice functions (henceforth, SCFs) under complete information in rationalizable
strategies. By an SCF we mean a single-valued SCC. They show that Maskin
monotonicity is necessary and almost sufficient for rationalizable implementation.
This essentially would imply that rationalizable implementation is similar to Nash
implementation. However, their result has one important caveat: BMT focus only
on SCFs in their analysis (we note that rationalizability and single-valuedness
amount to uniqueness of Nash equilibrium). In any attempt to extend their result,
one should ponder the following observations: (1) Maskin’s characterization on
Nash implementation holds true regardless of whether we consider SCFs or SCCs;
(2) Maskin monotonicity can be quite restrictive in the case of SCFs (see, e.g.,
Mueller and Satterthwaite (1977) and Saijo (1987)); and (3) Many interesting
SCCs are Maskin monotonic, including the Pareto, Core, envy-free, constrained
Walrasian or Lindhal correspondences, while any SCF selected from a Maskin
monotonic SCC no longer inherits the property.3

Therefore, what we set out to resolve here is the question of how close ra-
tionalizable implementation really is to Nash implementation, without imposing
the straightjacket of single-valuedness. We interpret characterizations of imple-
mentable correspondences as descriptions of all that is feasible for the mechanism
designer, and in this sense, multivaluedness strikes us as being quite plausible. In
dealing with correspondences, we identify a new condition, which we call uniform
monotonicity, basically closing the gap between necessity and sufficiency.4 We
show that uniform monotonicity is necessary (Theorem 1) and almost sufficient
(Theorem 2) for rationalizable implementation of SCCs.5

A comparison between Maskin monotonicity and uniform monotonicity is in-

3The results in BMT (2011) contrasts with the much more permissive findings in Abreu and
Matsushima (1994) for implementation in iterative elimination of weakly dominated strategies,
or those in Abreu and Matsushima (1992), even though the latter are obtained for virtual or
approximate implementation.

4A weaker version of this condition, based on the strict lower contour sets, first surfaced in
Cabrales and Serrano (2011) under the name weak quasimonotonicity; see also its corrigendum,
posted at http://www.econ.brown.edu/faculty/serrano/pdfs/2011GEB73-corrigendum.pdf.

5Theorem 2 assumes at least three agents and three additional conditions, “strong no worst
alternative,” “minimal conflict-of-interests” and “responsiveness” (See definitions in Section 6
below).
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structive. Our uniform monotonicity requires the lower contour sets to be nested
across states “uniformly” over all outcomes in the range of the SCC. This set-
wise definition of monotonicity exhibits a clear contrast with Maskin monotonic-
ity, which is a “pointwise” condition, in the sense that it requires the nestedness
of the lower contour sets across states at any fixed outcome in the range of the
SCC (see Subsection 4.1). Uniform monotonicity is logically weaker than Maskin
monotonicity, and it is likely to be much weaker if the SCC contains many val-
ues in its range. However, both become equivalent in the case of SCFs. We also
construct an example in which an SCC is rationalizably implementable by a finite
mechanism, while it violates Maskin monotonicity at almost any outcome in the
range of the SCC. In this sense, the SCC in the example is “very far from” being
Nash implementable. Of course, as expected from our necessity result, we confirm
that uniform monotonicity is satisfied for this SCC (Lemma 1).

Thus, rationalizable implementation is generally quite different from Nash im-
plementation, and their alleged resemblance in BMT arose as an artifact of the
assumption that only SCFs were being considered. This allows us to conclude
that the design of economic institutions that rely on agents as best-responders,
but which drop the rational expectations assumption, is possible for a significantly
wider class of socially desirable rules.

In drawing that landscape of possibilities, we have relied on a canonical mech-
anism that heavily exhibits the violation of rational expectations. The mechanism
features a novel use of a modulo game. In it, the election of a king is conducted,
and the task of the king is to dictate the outcome. However, agents have different
beliefs about who the elected king will be; for instance, agent i hopes for agent
(i + 1) to be a generous king that will award agent i her most preferred outcome
in the SCC, which implies in particular that agent i can announce that she would
implement agent (i−1)’s most preferred outcome were agent i elected. It turns out
that the messages involved, with the corresponding beliefs, can be made consistent
with rationalizability. We remark that we do not require the existence of Nash
equilibrium in the mechanism, unlike BMT; see footnote 15 again.

The rest of the paper is organized as follows. In Section 2, we introduce the
general notation for the paper. Section 3 introduces rationalizability as our solution
concept and defines the concept of rationalizable implementation. In Section 4,
we propose and discuss uniform monotonicity, and show it to be necessary for
rationalizable implementation. Section 5 illustrates by an example the conditions
for rationalizable implementation and Nash implementation. In Section 6, we
propose sufficient conditions for full implementation in rationalizable strategies,
and provide a sketch of the proof to highlight the intuition behind our mechanism.
Section 7 concludes. In the Appendix, we provide the proof of a claim (omitted
from the main body of the paper), discuss the ordinal approach to rationalizable
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implementation as well as the role of finite mechanisms, extend our results to the
case of weak implementation, and evaluate the roles of the additional sufficient
conditions used.

2 Preliminaries

Let N = {1, . . . , n} denote the finite set of agents and Θ be the finite set of
states. It is assumed that the underlying state θ ∈ Θ is common knowledge among
the agents. Let A denote the set of social alternatives, which are assumed to be
independent of the information state. We shall assume that A is countable, and
denote by ∆(A) the set of probability distributions over A.6 Note that ∆(A) has a
countable support because A is countable. For any arbitrary set X (countable or
not), we denote by ∆(X) the set of all Borel-measurable probability distributions
over X endowed with the weak-* topology, and by ∆∗(X) its subset of distributions
with countable support. Agent i’s state dependent von Neumann-Morgenstern
utility function is denoted ui : ∆(A)×Θ→ R. We can now define an environment
as E = (A,Θ, (ui)i∈N), which is implicitly understood to be common knowledge
among the agents.

A (stochastic) social choice correspondence F : Θ ⇒ ∆(A) is a mapping from
Θ to a nonempty compact subset of ∆(A).7 The mapping F is called a social
choice function if it is a single-valued social choice correspondence. In this case,
we denote it by f : Θ → ∆(A). We henceforth use the acronyms SCC and SCF
for both objects, respectively.

A mechanism (or game form) Γ = ((Mi)i∈N , g) describes a nonempty message
space Mi for each agent i ∈ N and an outcome function g : M → ∆(A) where
M = M1 × · · · ×Mn.

3 Implementation in Rationalizable Strategies

We adopt correlated rationalizability, allowing the agents’ beliefs to be correlated,
as a solution concept and investigate the implications of implementation in ra-
tionalizable strategies. We fix a mechanism Γ = (M, g) and define a message
correspondence profile S = (S1, . . . , Sn), where each Si ∈ 2Mi , and we write S for

6It is easy to see that one can extend our arguments to a separable metric space of alternatives,
focusing on its countable dense subset.

7The compact-valuedness of the SCC is used in our sufficiency results. We note, for instance,
that it is consistent with the environment in Mezzetti and Renou (2012), who consider Nash
implementation in terms of the support of the equilibrium, with finite A and deterministic SCCs.
In their footnote 4 (p. 2360), they argue that their results extend to the case in which A is a
separable metric space and the SCC maps Θ into a countable dense subset of A.
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the collection of message correspondence profiles. The collection S is a lattice with
the natural ordering of set inclusion: S ≤ S

′
if Si ⊆ S

′
i for all i ∈ N . The largest

element is S̄ = (M1, . . . ,Mn). The smallest element is S = (∅, . . . , ∅).
We define an operator bθ : S → S to iteratively eliminate never best responses

with bθ = (bθ1, . . . , b
θ
n) and bθi is now defined as:

bθi (S) ≡

mi ∈Mi

∣∣∣∣∣∣
∃λi ∈ ∆∗(M−i) such that
(1)λi(m−i) > 0⇒ mj ∈ Sj ∀j 6= i;
(2)mi ∈ arg maxm′i

∑
m−i

λi(m−i)ui(g(m′i,m−i); θ)


Recall that ∆∗(M−i) denotes the set of all Borel-measurable probability dis-

tributions over M−i with countable support, endowed with the weak-* topology.
Here we argue how we obtain ∆∗(M−i). We define the weak-* topology on M as
follows: mk → m as k → ∞ if g(mk) converges to g(m) pointwise. Since the set
of lotteries ∆(A) has a countable dense subset, we can define an equivalence class
on M such that for any m,m

′ ∈ M , we say that m ∼ m
′

if the closest lottery to
g(m) is equivalent to the closest lottery to g(m

′
) within the countable dense subset

of ∆(A). Since expected utility is continuous on ∆(A), this equivalence class on
M can be taken and not affect the agents’ behavior. Therefore, we can assume
without loss of generality that the agents’ beliefs have a countable support.

Observe that bθ is increasing by definition: i.e., S ≤ S
′ ⇒ bθ(S) ≤ bθ(S

′
). By

Tarski’s fixed point theorem, there is a largest fixed point of bθ, which we label
SΓ(θ). Thus, (i) bθ(SΓ(θ)) = SΓ(θ) and (ii) bθ(S) = S ⇒ S ≤ SΓ(θ). We can also
construct the fixed point SΓ(θ) by starting with S̄ – the largest element of the
lattice – and iteratively applying the operator bθ. If the message sets are finite, we
have

S
Γ(θ)
i ≡

⋂
k≥1

bθi

([
bθ
]k

(S̄)
)

In this case, the solution coincides with iterated deletion of strictly dominated
strategies. But because the mechanism Γ may be infinite, transfinite induction
may be necessary to reach the fixed point. It is useful to define

S
Γ(θ)
i,k ≡ bθi

([
bθ
]k−1

(S̄)
)
,

using transfinite induction if necessary. Thus, S
Γ(θ)
i is the set of messages surviving

(transfinite) iterated deletion of never best responses of agent i. We refer the reader
to Lipman (1994) for the formal treatment.

This is the central definition of implementability that we use in this paper:

Definition 1 (Full Rationalizable Implementation) An SCC F is fully im-
plementable in rationalizable strategies if there exists a mechanism Γ =
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(M, g) such that for each θ ∈ Θ,⋃
m∈SΓ(θ)

{g(m)} = F (θ).

Remark: This is the definition of implementability that Maskin (1999) adopts for
Nash implementation. We believe that this is the right paradigm if we want to
compare the permissiveness of Nash implementation theory versus a theory based
on rationalizability. However, we also consider a weaker notion of implementation:
an SCC F is weakly implementable in rationalizable strategies if there exists a
mechanism Γ = (M, g) such that for each θ ∈ Θ, we have (i) SΓ(θ) 6= ∅ and (ii)
g(m) ∈ F (θ) for each m ∈ SΓ(θ). The reader is referred to Section A.4 for the
details of the analysis in this case.

4 Uniform Monotonicity

In this section, we introduce a central condition to our results, which we term
uniform monotonicity. We motivate it by comparing it to Maskin monotonicity,
and we later show that uniform monotonicity is necessary for rationalizable imple-
mentation.

For the domain of complete information environments, Maskin (1999) proposes
a monotonicity condition for Nash implementation where the set of Nash equilib-
rium outcomes is required to coincide with the SCC. This condition is often called
Maskin monotonicity.

Definition 2 An SCC F satisfies Maskin monotonicity if, for any states θ, θ
′ ∈

Θ and any a ∈ F (θ), if

ui(a, θ) ≥ ui(z, θ)⇒ ui(a, θ
′
) ≥ ui(z, θ

′
) ∀i ∈ N, ∀z ∈ ∆(A),

then a ∈ F (θ
′
).

Let D denote a countable subset of ∆(A) with a generic element d being a
lottery over A. We denote the convex hull of D by

co(D) =

{
{αd}d∈D

∣∣∣∣∣ αd ≥ 0 ∀d ∈ D and
∑
d∈D

αd = 1

}
.

Definition 3 An SCC F satisfies weak uniform monotonicity if, for every
pair of states θ, θ

′ ∈ Θ, if

ui(a; θ) ≥ ui(z; θ)⇒ ui(a; θ
′
) ≥ ui(z; θ

′
) ∀a ∈ co(F (θ)), ∀i ∈ N, ∀z ∈ ∆(A),

then, F (θ) ⊆ F (θ
′
).

7



Remark: When we consider SCFs, co(F (θ)) becomes a singleton set. Therefore,
in this case, the condition just defined reduces to Maskin monotonicity.

We slightly strengthen weak uniform monotonicity into the following:

Definition 4 An SCC F satisfies uniform monotonicity if, for every pair of
states θ, θ

′ ∈ Θ, if

ui(a; θ) ≥ ui(z; θ)⇒ ui(a; θ
′
) ≥ ui(z; θ

′
) ∀a ∈ F (θ), ∀i ∈ N, ∀z ∈ ∆(A),

then F (θ) ⊆ F (θ
′
).

Remark: Note how, under expected utility, both conditions amount to the same
thing, as requiring the nestedness of the lower contour sets over all a ∈ F (θ) or
their convex hull is equivalent. However, it will be convenient to use the weak
version for the proof of the necessity result, and the strong version for the proof of
sufficiency.

4.1 Intuition and Examples

The comparison between Maskin monotonicity and uniform monotonicity is in-
structive. Maskin monotonicity always implies uniform monotonicity. The former
checks for the “pointwise” inclusion, at an alternative a ∈ F (θ), of the lower con-
tour sets of agents’ preferences in state θ into those in θ

′
, in order to determine

whether that same alternative a should still remain in F (θ
′
). The latter takes the

entire set of alternatives F (θ) and checks “uniformly” whether, for each agent and
a ∈ F (θ), his lower contour set at a in θ is contained in the lower contour set of
a at θ

′
, in order to determine that all outcomes in F (θ) should still be in F (θ

′
).

In other words, for an outcome a ∈ F (θ) to fall out of the SCC at θ
′

a preference
reversal involving outcome a and another outcome b ∈ ∆(A) is required if the
SCC is Maskin monotonic. If the SCC is uniformly monotonic, for a ∈ F (θ) and
a /∈ F (θ

′
) to happen, all that is required is a preference reversal involving some

pair x ∈ F (θ) and y ∈ ∆(A) and, importantly, x need not be the same as a. In
this sense, uniform monotonicity is likely to be extremely weak in many settings
because such “uniform inclusions” of lower contour sets will just be impossible,
and the condition will be vacuously satisfied: for example, in a standard convex
exchange economy (before extending it to expected utility preferences), if an SCC
contains outcomes in which each agent is assigned bundles on different indifference
curves (say ai and bi), it will generally be very difficult that the indifference curve
through ai at θ be nested into the one through the same bundle at θ

′
, and at the

same time, that the same nestedness happens for the indifference curves through
bundle bi. The reader is referred to Figure 1 for an illustration of this difficulty.
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x1

x2

O

ui(ai; θ
′
) = const

ui(bi; θ
′
) = const

ui(ai; θ) = const

bi1

bi2ai1

ai2
ai

bi

Figure 1: The Permissiveness of Uniform Monotonicity

In the figure, one can see that the nestedness of the lower contour sets at ai from
θ to θ

′
is satisfied, whereas the nestedness of the lower contour sets at bi from θ to

θ
′

is violated.
The same logic applies if one uses the probability simplex of lotteries over al-

ternatives. With expected utility, the indifference map under any state consists of
parallel straight lines. Maskin monotonicity is a trivial condition at points in the
interior of the simplex, as the lower contour sets at any point are never nested (this
was the key insight behind the very permissive results of virtual implementation
(Abreu and Sen (1991), Matsushima (1988)), for instance). Thus, to make the ar-
gument of the relative permissiveness of uniform monotonicity, one should consider
SCC’s whose outcomes are at the boundaries of the simplex. Again, it will not be
generally easy to have that all the lower contour sets at multiple boundary points
in the simplex at state θ be nested into the corresponding lower contour sets at θ

′
.

This is not to say that uniform monotonicity is universally satisfied by all SCCs.
Indeed, some SCCs may violate it. For instance, consider the egalitarian-equivalent
allocation correspondence (henceforth, the EEA rule) in an exchange economy with
continuous, convex, and strictly monotone preferences (define feasible allocations
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with equality between total consumption and aggregate endowment).8 Pazner and
Schmeidler (1978) originally propose such an allocation rule and characterize it as
the subset of feasible allocations for each of which there is a “reference” bundle on
the ray that goes from the origin to the aggregate endowment vector such that each
agent is indifferent between his assigned bundle and the reference bundle. Given
the assumptions we imposed on the economy, the EEA rule is always nonempty,
as the equal-division rule is egalitarian-equivalent. First we confirm that the EEA
rule violates Maskin monotonicity. Let aθ be an allocation specified by the EEA
rule in state θ. Even if the nestedness of lower contour sets at aθ across states is
satisfied, as long as an agent’s indifference curves at aθ are not identical between
two states, the original allocation aθ no longer remains egalitarian-equivalent in the
new state. Second, we argue that the EEA rule even violates uniform monotonicity
(recall that uniform monotonicity is logically weaker than Maskin monotonicity).
For the sake of expositional simplicity, consider the case where there are two agents
and two commodities, each with the same aggregate amount. Assume further that
agents have different Cobb-Douglas utility functions so that the contract curve
(i.e., the set of Pareto efficient allocations) always lies either above or below the
diagonal of the Edgeworth box. Then, we know that the equal-division rule is
“not” Pareto efficient but as Pazner and Schmeidler (1978) show, there is a unique
egalitarian equivalent allocation that is Pareto efficient. This implies that the EEA
rule is genuinely a multi-valued correspondence consisting of these two allocations.
Suppose the nestedness of the lower contour sets across states “over both outcomes
in the EEA rule” needed for uniform monotonicity is satisfied. Note that the equal-
division allocation continues to be egalitarian equivalent in the new state trivially.
Let z̄θ be the reference bundle that corresponds to the unique Pareto efficient and
egalitarian-equivalent allocation in state θ. In order for uniform monotonicity to
hold, one must have that, given the reference bundle z̄θ′ , all agents’ indifference
curves through the assigned bundle in the new state θ

′
must continue to intersect

at z̄θ′ . However, this cannot be guaranteed by the monotonic transformation of
preferences we have for the hypothesis of uniform monotonicity. Therefore, the
EEA rule violates uniform monotonicity.9

8An allocation (xi)i∈N is said to be egalitarian-equivalent if there is a bundle z such that z is
indifferent to xi for every i ∈ N .

9Dutta and Vohra (1993) show in their Theorem 2 that the EEA rule satisfies a condition
of weak positive association, denoted by WPAh, which is weaker than Maskin monotonicity.
Clarifying the connection between WPAh and uniform monotonicity might be an interesting
open question, left for future research.
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4.2 Necessity for Rationalizable Implementation

We proceed to state and prove our first result, which identifies a necessary condition
for rationalizable implementation10:

Theorem 1 If an SCC F is fully implementable in rationalizable strategies, it
satisfies weak uniform monotonicity.

Proof : Suppose F is fully implementable in rationalizable strategies by a mech-
anism Γ = (M, g). Fix two states θ, θ

′ ∈ Θ satisfying the following property:

ui(a; θ) ≥ ui(z; θ)⇒ ui(a; θ
′
) ≥ ui(z; θ

′
) ∀a ∈ co(F (θ)), ∀i ∈ N, ∀z ∈ ∆(A) (∗)

Then, due to the hypothesis that F is implementable by Γ, we fix m∗ ∈ SΓ(θ), and
we have that g(m∗) ∈ F (θ).

Fix i ∈ N . Since m∗i ∈ S
Γ(θ)
i , there exists λ

m∗i ,θ
i ∈ ∆∗(M−i) satisfying the fol-

lowing two properties: (i) λ
m∗i ,θ
i (m−i) > 0 ⇒ m−i ∈ SΓ(θ)

−i and g(m∗i ,m−i) ∈ F (θ);

and (ii)
∑

m−i
λ
m∗i ,θ
i (m−i)ui(g(m∗i ,m−i); θ) ≥

∑
m−i

λ
m∗i ,θ
i (m−i)ui(g(m

′
i,m−i); θ) for

each m
′
i ∈Mi.

We focus on the best response property of m∗i summarized by inequality (ii).

Fix m
′
i ∈Mi. Due to the construction of λ

m∗i ,θ
i , we have that∑

m−i

λ
m∗i ,θ
i (m−i)ui(g(m∗i ,m−i); θ) ≥

∑
m−i

λ
m∗i ,θ
i (m−i)ui(g(m

′

i,m−i); θ)

ui(a; θ) ≥ ui(z
a; θ),

where the two lotteries a and za are defined as

a =
∑
m−i

λ
m∗i ,θ
i (m−i)g(m∗i ,m−i) and za =

∑
m−i

λ
m∗i ,θ
i (m−i)g(m

′

i,m−i).

Since g(m∗i ,m−i) ∈ F (θ) for each m−i with λ
m∗i ,θ
i (m−i) > 0, we have a ∈

co(F (θ)). Using Property (∗), we also obtain

ui(a; θ
′
) ≥ ui(z

a; θ
′
).

10Our first working paper version dates back to May 2016. On the substance, the contents
of that version and the current version are not significantly different. In a related model, using
an implementability notion based on Mezzetti and Renou (2012), Jain – draft dated June 2016
– independently proves a necessity result that is close to our result in this section. That draft,
however, contained a sufficiency result that was far from closing the gap between necessary and
sufficient conditions. In a recent draft dated May 2017, Jain (2017) produces a sufficiency result
that comes closer to closing that gap in his framework.
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Due to the choice of a and za and the hypothesis that ui(·) is a von-Neumann-
Morgenstern expected utility, we obtain the following:∑

m−i

λ
m∗i ,θ
i (m−i)ui(g(m∗i ,m−i); θ

′
) ≥

∑
m−i

λ
m∗i ,θ
i (m−i)ui(g(m

′

i,m−i); θ
′
).

Since this argument does not depend upon the choice of m
′
i, this shows that m∗i

is a best response to λ
m∗i ,θ
i in state θ

′
as well. Therefore, m∗i ∈ S

Γ(θ
′
)

i . Since the

choice of agent i is arbitrary, we can conclude that m∗ ∈ SΓ(θ
′
). Furthermore, since

the choice of m∗ ∈ SΓ(θ) is also arbitrary, we have SΓ(θ) ⊆ SΓ(θ
′
). Finally, by full

implementability, this implies that

F (θ) =
⋃

m∈SΓ(θ)

{g(m)} ⊆
⋃

m∈SΓ(θ
′
)

{g(m)} = F (θ
′
).

The proof is thus complete. �

5 An Example

In this section, we show by example that rationalizable implementation can be very
different from Nash implementation. We consider the following example. There
are two agents N = {1, 2}; two states Θ = {α, β}; and a finite number K of pure
outcomes A = {a1, a2 . . . , aK} where K ≥ 4.11 Assume that it is commonly certain
that both agents know the state, i.e., it is a complete information environment.
Agent 1’s utility function is given as follows: for each k = 1, . . . , K,

u1(ak, α) = u1(ak, β) =

{
1 +Kε if k = K,

1 + (K − k)ε if k 6= K,

where ε ∈ (0, 1). Hence, agent 1 has state-uniform preferences over A and aK is
the best outcome in both states; a1 is the second best outcome in both states; ...;
and aK−1 is the worst outcome in both states for agent 1.

Agent 2’s utility function in state α is defined as follows: for each k = 1, . . . , K,

u2(ak, α) =


1 + (K + 1)ε if k = K,

1 +Kε if k = 2,
1 + kε otherwise.

11This example builds upon the one discussed in the Concluding Remarks section of BMT
(2011).
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In state β, agent 2’s utility function is defined as follows: for each k = 1, . . . , K,

u2(ak, β) =


1 + (K + 1)ε if k = K,

1 if k = 2,
1 + kε otherwise.

Note that aK is the best outcome for agent 2 in both states; a2 is his second best
outcome in state α but it is his worst outcome in state β; and aK−1 is his third
best outcome in state α and it is his second best outcome in state β.

We consider the following SCC F : F (α) = {a1, a2, . . . , aK} and F (β) = {aK}.

Claim 1 For every outcome ak ∈ A with ak 6= a2,

ui(ak, α) ≥ ui(y, α)⇒ ui(ak, β) ≥ ui(y, β) ∀i = {1, 2}, ∀y ∈ ∆(A).

Proof : Since agent 1 has state-uniform preferences, this claim is trivially true
for agent 1. Thus, in what follows, we focus on agent 2. Take any lottery in the
lower contour set of ak ∈ A \ {a2} in state α. If that lottery did not contain a2

in its support, it is still in the lower contour set of ak in state β as no utilities
have changed, and if it did contain a2 in its support, since the utility of a2 has
decreased, it will also be in the lower contour set at β. This completes the proof.
�

Fix ak ∈ A\{a2, aK} arbitrarily. If F were to satisfy Maskin monotonicity, we
would have ak ∈ F (β), which is not the case. Therefore, we confirm the violation of
Maskin monotonicity by the SCC F at every ak ∈ A\{a2, aK}. As is clear from the
construction, we can choose K arbitrarily large. Therefore, the violation of Maskin
monotonicity is severe, measured by the number of alternatives that should remain
in the social choice in state β given the relevant nestedness of agents’ preferences
across the two states. In this sense, this correspondence is “very far” from being
Maskin monotonic.

Nevertheless, we claim that the SCC F is implementable in rationalizable
strategies using a finite mechanism. Consider the following mechanism Γ = (M, g)
where Mi = {m1

i ,m
2
i , . . . ,m

K
i } for each i = 1, 2 and the deterministic outcome

function g(·) is given in the table below:
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g(m) Agent 2
m1

2 m2
2 m3

2 m4
2 · · · mK−1

2 mK
2

m1
1 a1 a1 aK−2 aK−3 · · · a2 aK−1

m2
1 a2 a1 a1 aK−2 · · · a3 aK−1

m3
1 a3 a2 a1 a1 · · · a4 aK−1

Agent 1 m4
1 a4 a3 a2 a1 · · · a5 aK−1

...
...

...
...

...
. . .

...
...

mK−1
1 a1 aK−2 aK−3 aK−4 · · · a1 aK−1

mK
1 aK−1 aK−1 aK−1 aK−1 · · · aK−1 aK

Claim 2 The SCC F is fully implementable in rationalizable strategies by the
mechanism Γ.

Proof : In state α, all messages can be best responses. Therefore, no message
can be discarded via the iterative elimination of never best responses. That is,
the set of rationalizable message profiles SΓ(α) = M . This implies that the set of
rationalizable outcomes in state α is F (α) = {a1, a2, . . . , aK}.

In state β, message mK
2 strictly dominates all other messages, m1

2, . . . ,m
K−1
2

for agent 2. On the other hand, all messages for agent 1 can be a best response.
In the second round of elimination of never best responses, mK

1 strictly dominates
all other messages m1

1, . . . ,m
K−1
1 for agent 1. Thus, we have SΓ(β) = {(mK

1 ,m
K
2 )}.

This implies that we have F (β) = {aK} as the unique rationalizable outcome in
state β. This completes the proof. �

BMT (2011) show in their Proposition 1 that strict Maskin monotonicity is nec-
essary for implementation in rationalizable strategies under complete information.
It follows from the previous example that this crucially relies on the assumption
that only SCFs were considered in BMT’s main result. More specifically, we show
that, while the failure of Maskin monotonicity is severe, implementation in ratio-
nalizable strategies is still possible by a finite mechanism. For completeness, we
provide the following lemma.

Lemma 1 The SCC F satisfies uniform monotonicity.

Proof : Since agent 1 has state-uniform preferences, we only focus on agent
2 in the following argument. First, we set θ = α and θ

′
= β in the definition

of uniform monotonicity. We know that F (α) = {a1, . . . , aK} and by Claim 1,
for any a ∈ F (α)\{a2, aK} and i ∈ {1, 2}, we have the corresponding monotonic
transformation from α to β. For a2 ∈ F (α) and a3 ∈ A, however, we have

u2(a2;α) > u2(a3;α) and u2(a2; β) < u2(a3; β).
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Therefore, the condition needed for the monotonic transformation from α to β
under uniform monotonicity is not satisfied. Hence, in this case, uniform mono-
tonicity imposes no conditions on SCCs.

Second, we set θ = β and θ
′

= α in the definition of uniform monotonicity.
Since F (β) = {aK} and aK is the best outcome for agent 2 in both states, we have
that for any y ∈ ∆(A),

u2(aK ; β) ≥ u2(y; β)⇒ u2(aK ;α) ≥ u2(y;α).

In this case, uniform monotonicity implies that aK ∈ F (α), which is indeed the
case. Thus, F satisfies uniform monotonicity. �

6 Sufficient Conditions for Full Implementation

in Rationalizable Strategies

We turn in this section to our general sufficiency result. Before that, we introduce
three additional conditions, the first of which follows immediately.

Definition 5 An SCC F satisfies the strong no-worst-alternative condition
(henceforth, SNWA) if, for each θ ∈ Θ and i ∈ N , there exists zθi ∈ ∆(A) such
that, for each a ∈ F (θ),

ui(a; θ) > ui(z
θ
i ; θ).

Remark: This condition is introduced by Cabrales and Serrano (2011). In words,
SNWA says that the SCC never assign the worst outcome to any agent at any state.
BMT (2011) use its SCF-version and call it the no-worst-alternative condition
(NWA).

Lemma 2 If an SCC F satisfies SNWA, then for each i ∈ N , there exists a
function zi : Θ×Θ→ ∆(A) such that for all θ, θ

′ ∈ Θ:

ui(a; θ
′
) > ui(zi(θ, θ

′
); θ

′
) ∀a ∈ F (θ

′
)

and whenever θ 6= θ
′
,

ui(zi(θ, θ
′
); θ) > ui(zi(θ

′
, θ
′
); θ).

Proof : The proof is an appropriate extension of Lemma 2 of BMT (2011). For
any agent i ∈ N , by SNWA, we are given the set of lotteries {zθi }θ∈Θ. Then, define
the average lottery as

zi ≡
1

|Θ|
∑
θ∈Θ

zθi .
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Fix i ∈ N . For all θ
′ ∈ Θ, we define

zi(θ
′
, θ
′
) ≡ (1− ε)zθ

′

i + εzi,

where ε ∈ (0, 1). For all θ, θ
′ ∈ Θ with θ 6= θ

′
:

zi(θ, θ
′
) ≡ (1− ε)zθ

′

i +
ε

|Θ|

∑
θ̂ 6=θ

zθ̂i + a

 ,

where a ∈ F (θ). By SNWA and the finiteness of Θ, we can choose ε ∈ (0, 1)
sufficiently small so that ui(a

′
; θ
′
) > ui(zi(θ, θ

′
); θ

′
) for all θ, θ

′ ∈ Θ and a
′ ∈ F (θ

′
).

This establishes the first inequality.
Observe that the only difference between zi(θ

′
, θ
′
) and zi(θ, θ

′
) lies in the fact

that the lottery zθi is replaced by some lottery a ∈ F (θ). But by SNWA, this is
clearly increasing the expected utility of agent i in state θ, and hence we have that
for all θ, θ

′ ∈ Θ with θ 6= θ
′
:

ui(zi(θ, θ
′
); θ) > ui(zi(θ

′
, θ
′
); θ).

This establishes the second inequality. This completes the proof. �

We introduce next a second additional condition for the sufficiency result:

Definition 6 An SCC F satisfies the minimal conflict-of-interests condi-
tion (henceforth, MCI) if there do not exist θ, θ

′ ∈ Θ with θ 6= θ
′

and a ∈ ∆(A)
such that |F (θ

′
)| ≥ 2 and a ∈ arg maxb∈F (θ′ ) ui(b; θ) for all i ∈ N .

Remark: Note that MCI becomes a vacuous constraint when we consider SCFs.
As the example in Section 5 shows, the outcome aK is the best outcome for both
agents in state α and F (α) = {a1, . . . , aK}. Therefore, the SCC F does not
satisfy MCI, but it is implementable in rationalizable strategies by a finite mech-
anism. This implies that MCI is not necessary for rationalizable implementation.
The same example shows that SNWA is not necessary either, as the SCC violates
SNWA.

Next we introduce a natural extension of the responsiveness condition used by
BMT (2011) to the case of SCCs.

Definition 7 An SCC F is responsive if there do not exist two distinct states
θ, θ

′ ∈ Θ such that F (θ) = F (θ
′
).
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Remark: Responsiveness is not necessary for rationalizable implementation either
(think, for example, of the case of a constant correspondence). We discuss the role
of this condition further in the last section of the Appendix.

For the sufficiency result we establish below, we propose the following mech-
anism Γ = (M, g): each agent i sends a message mi = (m1

i ,m
2
i ,m

3
i ,m

4
i ,m

5
i ,m

6
i ),

where

• m1
i ∈ Θ, i.e., a state;

• m2
i = {m2

i [θ]}θ∈Θ where m2
i [θ] ∈ F (θ), i.e., a state-dependent menu of socially

desirable alternatives, understood as a recommendation to the designer;

• m3
i = {(m3

i [θ, 1],m3
i [θ, 2])}θ∈Θ where m3

i [θ, 1] ∈ ∆(A) and m3
i [θ, 2] ∈ F (θ),

i.e., a state-dependent pair of alternatives, one of them in the SCC, under-
stood as potential arguments for a challenge to the designer;

• m4
i ∈ ∆(A), i.e., a state-independent alternative, also understood as a chal-

lenge to the designer;

• m5
i ∈ N , i.e., a number chosen from {1, . . . , n}, understood as a vote for

some person to be the king;

• and m6
i ∈ N, i.e., a positive integer.

The outcome function g : M → ∆(A) is defined as follows: for each m ∈M :

Rule 1. Consensus implements the recommendation made by the elected
king: If there exists θ

′ ∈ Θ such that m1
i = θ

′
and m6

i = 1 for all i ∈ N , then
g(m) = m2

t [θ
′
] where t = (

∑
j∈N m

5
j) (mod n+ 1).

Rule 2. An odd man out: If there exist θ
′ ∈ Θ and i ∈ N such that [a] m1

j = θ
′

and m6
j = 1 for all j 6= i, and [b] either m6

i > 1 or m1
i 6= θ

′
, then the following

subrules apply:

Rule 2-1. A nongreedy odd man out is heard in his challenge, al-
though some bad outcomes are also implemented in the appeal process:
If ui(m

2
t [θ
′
]; θ
′
) ≥ ui(m

3
i [θ
′
, 1]; θ

′
) and m2

t [θ
′
] = m3

i [θ
′
, 2] where t = (

∑
j∈N m

5
j)

(mod n+ 1), then

g(m) =

{
m3
i [θ
′
, 1] with probability m6

i /(m
6
i + 1)

zi(θ
′
, θ
′
) with probability 1/(m6

i + 1)
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Rule 2-2. A greedy odd man out is not heard in his challenge, although
some bad outcomes are also implemented in the appeal process: Other-
wise,

g(m) =

{
m2
t [θ
′
] with probability m6

i /(m
6
i + 1)

zi(θ
′
, θ
′
) with probability 1/(m6

i + 1)

where t = (
∑

j∈N m
5
j) (mod n+ 1).

Rule 3. Stronger disagreements lead to the integer game, implementing
potential disarray in the appeal/challenge process: In all other cases,

g(m) =



m4
1 with probability

m6
1

n(m6
1+1)

m4
2 with probability

m6
2

n(m6
2+1)

...
...

m4
n with probability m6

n

n(m6
n+1)

z with the remaining probability,

where

z =
1

n

∑
i∈N

zi and zi =
1

|Θ|
∑
θ∈Θ

zθi .

We are finally ready to state the general sufficiency result for full implementa-
tion in rationalizable strategies.

Theorem 2 Suppose that there are at least three agents (n ≥ 3). If an SCC
F satisfies uniform monotonicity, SNWA, MCI, and responsiveness, it is fully
implementable in rationalizable strategies.

Proof : We use the mechanism Γ = (M, g) constructed above. The proof
consists of Steps 1 through 4. Before going into the details of the proof, we briefly
sketch its basic logic. We discuss the properties of our mechanism after providing
the formal proof.

In Step 1, we show that any rationalizable message mi involves m6
i = 1, that

is, there must be at least consensus in the integer chosen. If this were not the
case, either Rule 2 (odd man out) or Rule 3 (stronger disagreements) is triggered
with probability one. By choosing the third and fourth components of the message
appropriately, it is strictly better for agent i to announce an integer even higher
than m6

i , which contradicts the hypothesis that mi is rationalizable.
In Step 2, we prove that any outcome in the range of the SCC can be supported

by a rationalizable message profile. Let θ be the true state and fix a ∈ F (θ)
arbitrarily. We construct the following message profile m: m1

i = θ; m5
i = 1; and

m6
i = 1 for every i ∈ N and m2

1[θ] = a. Note first that no agent has an incentive
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to become the odd man out and induce Rule 2 by unilaterally deviating from m.
Thus, the specification of the third and fourth components of the messages do not
matter. Then, m induces Rule 1 with probability one and g(m) = a where agent 1
is the king, the winner of the modulo game. The novelty of the argument is that
we can make m1 rationalizable because agent 1 believes that agent 2 is a “generous
king” so as to choose agent 1’s best outcome from F (θ). Similarly, we can also
make m2 rationalizable because agent 2 believes that agent 3 is a “generous king”
so as to choose agent 2’s best outcome from F (θ). We extend this argument to all
agents so that we can make m rationalizable.

In Step 3, we show that every agent believes that all rationalizable message
profiles induce Rule 1 (consensus also in the announced state) with probability one.
Suppose, by way of contradiction, that agent i believes with positive probability
that Rule 2 (odd man out) or Rule 3 (stronger disagreements) is triggered. By
choosing the third and fourth components of the message appropriately and an
integer in its sixth component sufficiently high, agent i is able to find an even
better response against his belief. This is a contradiction. Step 3 implies that one
can partition the set of rationalizable message profiles into separate components,
θ, θ

′
, θ
′′
, . . .. For instance, in the θ

′
component, this is the announced state by

each agent in the first item of their messages, which also determines the event to
which each of them assigns probability 1. That is, in that component, each agent
i believes that all the others are using strategies of the form (θ

′
, ·, ·, ·, ·, 1) with

probability 1.
In Step 4, we prove that if m is a message profile such that mi = (θ

′
, ·, ·, ·, ·, 1) ∈

S
Γ(θ)
i for each i ∈ N , then g(m) ∈ F (θ). If θ

′
= θ, this is trivially true. So, we

assume θ
′ 6= θ. First, using the features of the canonical mechanism, a technical

claim –Claim 3– shows that if one has a rationalizable message profile, one can
modify it slightly in order to support any outcome in the range of the social choice
correspondence. After that claim, the proof is by contradiction. If in state θ
there were a rationalizable message profile whose outcome is not in F (θ) where
all agents are coordinating in a deception in which they are reporting state θ

′
,

given previous steps in the proof, the outcome must be actually in F (θ
′
). We then

claim F (θ
′
) ⊆ F (θ). If this were not the case, uniform monotonicity would allow

us to use the preference reversal for at least an agent and at least an alternative
a∗ ∈ F (θ

′
). By the technical claim, this should also be supported by rationalizable

messages, but, using MCI, we show it cannot.
Finally, by responsiveness, if mi = (θ

′
, ·, ·, ·, ·, 1) ∈ SΓ(θ)

i for each i ∈ N , we must
have θ

′
= θ. This means that it is commonly certain that all agents announce the

true state θ under rationalizability. This completes the proof.
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Now, we proceed to the formal proof. Throughout, we denote the true state by
θ

Step 1: mi ∈ SΓ(θ)
i ⇒ m6

i = 1.

Proof of Step 1: Let mi = (m1
i ,m

2
i ,m

3
i ,m

4
i ,m

5
i ,m

6
i ) ∈ S

Γ(θ)
i . Suppose by way

of contradiction that m6
i > 1. Then, for any profile of messages m−i that agent

i’s opponents may play, (mi,m−i) will trigger either Rule 2 or Rule 3. We can
partition the message profiles of all agents but i as follows:

M2
−i ≡

{
m−i ∈M−i

∣∣ ∃θ′ ∈ Θ s.t. m1
j = θ

′
,m2

j [θ
′
] ∈ F (θ

′
), and m6

j = 1 ∀j 6= i
}

denotes the set of messages of all agents but i in which Rule 2 is triggered, and

M3
−i ≡M−i\M2

−i

denotes the set of messages of all agents but i in which Rule 3 is triggered.
Suppose first that agent i has a belief λi ∈ ∆∗(M−i) under which Rule 3 is

triggered with positive probability, so that
∑

m−i∈M3
−i
λi(m−i) > 0. If ui(m

4
i ; θ) >

ui(z
θ
i ; θ), we define m̂i as the same as mi except that m̂6

i is chosen to be larger than
m6
i . In doing so, agent i decreases the probability that z is chosen in Rule 3.

Note that, under Rule 3, by choosing an appropriate lottery, each agent has a
strict incentive to reduce the probability that z occurs. To see this, fix θ ∈ Θ and
a ∈ F (θ). Then, define

ẑi(θ) ≡
1

|Θ|
∑
θ̂ 6=θ

zθ̂i +
1

|Θ|
a.

By SNWA, we obtain
ui(ẑi(θ); θ) > ui(zi; θ).

Define

z∗i (θ) ≡
1

n

∑
j 6=i

zj +
1

n
ẑi(θ).

Since ui(ẑi(θ); θ) > ui(zi; θ), we have

ui(z
∗
i (θ); θ) > ui(z; θ).

So, conditional on Rule 3, we have∑
m−i∈M3

−i

λi(m−i)ui(g(m̂i,m−i); θ) >
∑

m−i∈M3
−i

λi(m−i)ui(g(mi,m−i); θ).
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If ui(m
4
i ; θ) ≤ ui(z

θ
i ; θ), we define m̂i as the same as mi except that m̂4

i ∈ F (θ) and
m̂6
i is chosen to be larger than m6

i . Similarly, conditional on Rule 3, we obtain the
same inequality.

Now suppose that agent i believes that Rule 2 will be triggered with positive
probability, so that

∑
m−i∈M2

−i
λi(m−i) > 0. We again consider a deviation from

mi to m̂i and observe that the choice of m̂4
i does not affect the outcome of the

mechanism conditional on Rule 2.
First, assume that m1

j = θ
′ 6= θ for each j 6= i. Suppose ui(m

3
i [θ
′
, 1]; θ) ≥

ui(zi(θ, θ
′
); θ). In this case, agent i could change mi to m̂i by having m̂6

i larger than
m6
i and keeping mi unchanged otherwise. Since ui(m

3
i [θ
′
, 1]; θ) ≥ ui(zi(θ, θ

′
); θ) >

ui(zi(θ
′
, θ
′
); θ), we have that conditional on Rule 2,∑

m−i∈M2
−i

λi(m−i)ui(g(m̂i,m−i); θ) >
∑

m−i∈M2
−i

λi(m−i)ui(g(mi,m−i); θ).

Otherwise, suppose that ui(m
3
i [θ
′
, 1]; θ) < ui(zi(θ, θ

′
); θ). In this case, agent i

could change mi to m̂i by having m̂3
i [θ
′
, 1] = zi(θ, θ

′
), m̂6

i > m6
i > 1, and keeping

mi unchanged otherwise. Since ui(zi(θ, θ
′
); θ) > ui(zi(θ

′
, θ
′
); θ), we have that,

conditional on Rule 2,∑
m−i∈M2

−i

λi(m−i)ui(g(m̂i,m−i); θ) >
∑

m−i∈M2
−i

λi(m−i)ui(g(mi,m−i); θ).

Second, assume that m1
j = θ for each j 6= i. We choose t∗ 6= i and m∗−i ∈

supp(λi(·)) such that for each j 6= i and m−i ∈ supp(λi(·)),

ui(m
∗2
t∗ [θ]; θ) ≥ ui(m

2
j [θ]; θ).

Then, in this case, agent i could change mi to m̂i by having m̂3
i [θ, 1] = m∗2t∗ [θ]

and m̂6
i > m6

i > 1, keeping mi unchanged otherwise. Since ui(m
∗2
t∗ [θ]; θ) >

ui(zi(θ, θ); θ), we have that, conditional on Rule 2,∑
m−i∈M2

−i

λi(m−i)ui(g(m̂i,m−i); θ) >
∑

m−i∈M2
−i

λi(m−i)ui(g(mi,m−i); θ).

It follows that, in all cases, these choices of m̂i strictly improve the expected payoff
of agent i if either Rule 2 or Rule 3 is triggered. This implies that mi is never a
best response to any belief λi, which contradicts our hypothesis that mi ∈ SΓ(θ)

i .
�

Step 2: For any θ ∈ Θ and a ∈ F (θ), there exists m∗ ∈ SΓ(θ) such that g(m∗) = a.
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Proof of Step 2: Fix θ ∈ Θ as the true state, and fix a ∈ F (θ). Define
m∗1 = (θ,m∗21 ,m

∗3
1 ,m

∗4
1 , 1, 1), where m∗21 [θ] = a. For each j ∈ {2, . . . , n}, define

m∗j = (θ,m∗2j ,m
∗3
j ,m

∗4
j , 1, 1), where m∗2j [θ] = aj−1(θ), which denotes one of the

maximizers of uj−1(·; θ) within all the outcomes in F (θ) – recall that F is compact-
valued and uj−1(·; θ) is continuous in probability. Then, the constructed message
profile m∗ induces Rule 1 and agent 1 becomes the winner of the modulo game. We
thus have g(m∗) = a by construction. What remains to show is that m∗ ∈ SΓ(θ).

By construction of the mechanism, Rule 3 cannot be triggered by any unilateral
deviation from Rule 1. So, the specification of m∗4i does not affect our argument.
Moreover, also by construction of the mechanism, no agent has an incentive to
induce Rule 2 with a unilateral deviation from a truthful profile under Rule 1. So,
effectively, the specification of m∗3i does not affect our argument either.

We first show that m∗1 can be made a best response to some belief. Define
λ∗1 ∈ ∆∗(M−1) as follows: for any m−1 ∈M−1, if λ∗1(m−1) > 0,

m1
j = θ;

m2
j [θ] = aj−1(θ);

m5
j =

{
2 if j = 2,
1 otherwise;

m6
j = 1.

for all j ∈ {2, . . . , n}. Given this belief λ∗1 and m∗1, agent 2 becomes the winner of
the modulo game so that the outcome a1(θ), which is the best one for agent 1, is
generated. Therefore, m∗1 is a best response to λ∗1 so that it survives the first round
of deletion of never best responses.

We next show that the support of λ∗1 is rationalizable. Assume j 6= 1. Define

m̄j =

{
(θ, m̄2

2, m̄
3
2, m̄

4
2, 2, 1) if j = 2,

(θ, m̄2
j , m̄

3
j , m̄

4
j , 1, 1) otherwise.

where m̄2
j [θ] = aj−1(θ). Define λ̄2 ∈ ∆∗(M−2) as follows: for any m−2 ∈ M−2, if

λ̄2(m−2) > 0,

m1
k = θ;

m2
k[θ] = ak−1(θ);

m5
k =

{
2 if k = 1,
1 otherwise;

m6
k = 1.

for all k 6= 2. Then, given this belief λ̄2 and m̄2, agent 3 becomes the winner of
the modulo game so that the outcome a2(θ), which is the best one for agent 2, is
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realized. Therefore, m̄2 is a best response to λ̄2 so that it survives the first round
of deletion of never best responses. Assume j ∈ N\{1, 2}. Define λ̄j ∈ ∆∗(M−j)
as follows: for any m−j ∈M−j, if λ̄j(m−j) > 0,

m1
k = θ;

m2
k[θ] =

{
an(θ) if k = 1,
ak−1(θ) otherwise;

m5
k =

{
j + 1 if k = 1

1 otherwise;

m6
k = 1,

for all k 6= j. Assume j < n. Then, given the belief λ̄j and m̄j, agent j + 1
becomes the winner of the modulo game so that the outcome aj(θ), which is the
best one for agent j, is realized. Assume, on the other hand, that j = n. Then,
given the belief λ̄j and m̄j, agent 1 becomes the winner of the modulo game so
that the outcome an(θ), which is the best one for agent n, is realized. Therefore,
m̄j is a best response to λ̄j so that it survives the first round of deletion of never
best responses. We can repeat this argument iteratively so that m∗1 survives the

iterative deletion of never best responses. Hence, m∗1 ∈ S
Γ(θ)
i .

Third, we shall show that, for each j 6= 1, m∗j can be made a best response to
some belief. For each j ∈ {2, . . . , n}, define λ∗j ∈ ∆∗(M−j) with support as follows:

m1
k = θ;

m2
k[θ] =

{
an(θ) if k = 1,
ak−1(θ) otherwise;

m5
k =

{
j + 1 if k = 1,

1 otherwise;

m6
k = 1,

for all k 6= j. Given this belief λ∗j and m∗j , agent j + 1 becomes the winner of
the modulo game so that the outcome aj(θ), which is the best one for agent j, is
realized. Therefore, for each j 6= 1, m∗j is a best response to λ∗j so that it survives
the first round of deletion of never best responses.

Fourth, we will show that the support of λ∗j is rationalizable. Consider m̄1 =
(θ, m̄2

1, m̄
3
1, m̄

4
1, j + 1, 1), where m̄2

1[θ] = an(θ). Define λ̄1 ∈ ∆∗(M−1) as follows: for
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any m−1 ∈M−1, if λ̄1(m−1) > 0,

m1
k = θ;

m2
k[θ] = ak−1(θ);

m5
k =

{
n+ 2− j if k = 2,

1 otherwise;

m6
k = 1,

for all k 6= 1. Given this belief λ̄1 and m̄1, agent 2 becomes the winner of the
modulo game so that the outcome a1(θ), which is the best one for agent 1, is
realized. Therefore, m̄1 is a best response to λ̄1 so that it survives the first round
of deletion of never best responses.

Consider agent k ∈ N\{1, j}. We first assume k < n. Define m̄k = (θ, m̄2
k, m̄

3
k, m̄

4
k, 1, 1),

where m̄2
k[θ] = ak−1(θ). Define λ̄k ∈ ∆∗(M−k) as follows: for any m−k ∈ M−k, if

λ̄k(m−k) > 0,

m1
i = θ;

m2
i [θ] = ai−1(θ);

m6
i = 1,

for all i 6= k and
∑

i 6=km
5
i = n + k − 1. Given this belief λ̄k and m̄k, agent k + 1

becomes the winner of the modulo game so that the outcome ak(θ), which is the
best one for agent k, is realized. Therefore, m̄k is a best response to λ̄k so that it
survives the first round of deletion of never best responses.

Assume n 6= j. We define m̄n = (θ, m̄2
n, m̄

3
n, m̄

4
n, 1, 1) and λ̄n ∈ ∆∗(M−n) as

follows: for any m−n ∈M−n, if λ̄n(m−n) > 0,

m1
i = θ;

m2
i =

{
an(θ) if i = 1
ai−1(θ) otherwise;

m5
i = 1;

m6
i = 1,

for all i 6= n. Given this belief λ̄n and m̄n, agent 1 becomes the winner of the
modulo game so that the outcome an(θ), which is the best for agent n, is realized.
Therefore, m̄n is a best response to λ̄n so that it survives the first round of deletion
of never best responses.

We conclude that the support of λ∗j is rationalizable. So, we can repeat this
argument iteratively so that for each j 6= 1, m∗j survives the iterative deletion of

never best responses. Therefore, m∗j ∈ S
Γ(θ)
j for each j 6= 1. Since m∗1 ∈ S

Γ(θ)
1 , we

obtain m∗ ∈ SΓ(θ). This completes the proof of Step 2. �
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Step 3: mi ∈ SΓ(θ)
i ⇒ λi(m−i) = 0 for any profile (mi,m−i) under Rules 2 or 3,

where λi ∈ ∆∗(M−i) represents the belief held by i to which mi is a best response.

Proof of Step 3: Suppose mi ∈ SΓ(θ)
i . By Step 1, mi has the form of mi =

(θ
′
,m2

i ,m
3
i ,m

4
i ,m

5
i , 1) for some θ

′ ∈ Θ, where the state θ
′

announced by different
agents might be different. Given the message mi, we define the set of messages of
the remaining agents which trigger Rule 1, 2, or 3. Let M1

−i be the set of m−i ∈M−i
such that (mi,m−i) triggers Rule 1 and M2,i

−i be the set of m−i ∈ M−i such that
(mi,m−i) triggers Rule 2 with agent i as the deviating player (odd man out).

We consider a given belief λi of agent i. If
∑

m−i∈M1
−i
λi(m−i) = 0, then Rule 2

or 3 will be triggered with probability one. Although Rule 2 can now be triggered
with a “deviating agent (odd man out)” being different from i, it is easily checked
that a similar argument to that in Step 1 applies so that the message mi cannot
be a best reply to λi. So, suppose that

0 <
∑

m−i∈M1
−i

λi(m−i) < 1.

For each θ̃ ∈ Θ, define

m̂3
i (θ̃) =

{
(m2

j∗ [θ
′
],m3

i [θ
′
, 2]) if θ̃ = θ

′

m3
i [θ̃] otherwise,

where j∗ = arg maxj∈N ui(m
2
j [θ
′
]; θ). Define m̂4

i = arg maxy∈∆(A) ui(y; θ). We set

m̂6
i to be an integer sufficiently large. Define m̂i = (θ

′
,m2

i , m̂
3
i , m̂

4
i ,m

5
i , m̂

6
i ) as i’s

alternative message in which we keep m1
i = θ

′
,m2

i and m5
i unchanged. Then, as

m̂6
i tends to infinity, agent i’s expected utility from choosing m̂i is approximately

at least as high as∑
m−i∈M1

−i∪M
2,i
−i

λi(m−i)ui(g(mi,m−i); θ) +
∑

m−i /∈M1
−i∪M

2,i
−i

λi(m−i)ui(m̂
4
i ; θ),

which is strictly larger than i’s expected payoff from choosing mi. Hence, by
choosing m̂6

i large enough, m̂i is a better response to λi (in words, the loss in Rule
2 can always be offset by a bigger gain in Rule 3). This is a contradiction.

So, if mi = (θ
′
,m2

i ,m
3
i ,m

4
i ,m

5
i , 1) ∈ S

Γ(θ)
i , it follows that agent i must be

convinced that each j 6= i is choosing a message of the form (θ
′
,m2

j ,m
3
j ,m

4
j ,m

5
j , 1)

and hence
∑

m−i∈M1
−i
λi(m−i) = 1. �

We introduce an additional piece of notation. For any θ, θ
′ ∈ Θ and i ∈ N ,

define
S

Γ(θ)
i [θ

′
] =

{
mi ∈ SΓ(θ)

i

∣∣ m1
i = θ

′
and m6

i = 1
}
.
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For each i ∈ N and θ
′ ∈ Θ, consider the sets S

Γ(θ)
i [θ

′
]. Now define:

SΓ(θ)[θ
′
] =

∏
i∈N

S
Γ(θ)
i [θ

′
].

We also define
S

Γ(θ)
i =

⋃
θ′∈Θ

S
Γ(θ)
i [θ

′
].

And, of course,

SΓ(θ) =
∏
i∈N

S
Γ(θ)
i .

Step 4: SΓ(θ)[θ
′
] ⊆ F (θ).

Proof of Step 4: If θ = θ
′
, we are done because m ∈ SΓ(θ)[θ] implies g(m) ∈

F (θ). So, let θ 6= θ
′
. Suppose we have mi = (θ

′
,m2

i ,m
3
i ,m

4
i ,m

5
i , 1) ∈ S

Γ(θ)
i [θ

′
].

By Step 3, agent i believes with probability one that Rule 1 is triggered, implying
that for every agent k 6= i, the setsS

Γ(θ)
k [θ

′
] is nonempty. Moreover, for any k 6= i,

mk ∈ SΓ(θ)
k [θ

′
] implies that it is a best response to λk ∈ ∆(M−k), where the support

of this belief consists of strategies that yield outcomes under Rule 1. That is, every
agent k 6= i also believes that Rule 1 will be triggered with probability one.

Take now the profile m̄ = (m̄i, m̄−i) such that m̄j ∈ SΓ(θ)
j [θ

′
] for each j ∈ N .

Clearly, by construction, g(m̄) ∈ F (θ
′
). If F (θ

′
) ⊆ F (θ), we immediately conclude

that g(m̄) ∈ F (θ). Therefore, we must assume that F (θ
′
) is not a subset of F (θ).

So, suppose, contradicting the claim in Step 4, that g(m̄) /∈ F (θ). Since F (θ
′
)

is not a subset of F (θ), by uniform monotonicity, there exist an agent j ∈ N ,
an outcome a∗ ∈ F (θ

′
), and z∗ ∈ ∆(A) such that uj(a

∗; θ
′
) ≥ uj(z

∗; θ
′
); and

uj(a
∗; θ) < uj(z

∗; θ). We begin with the following auxiliary claim, whose proof is
relegated to the Appendix:

Claim 3 If there exists m̄ ∈ SΓ(θ)[θ
′
], for any a∗ ∈ F (θ

′
), there also exists m∗ ∈

SΓ(θ)[θ
′
] such that a∗ = g(m∗).

We thus proceed with the proof. By Claim 3, there exists m∗ ∈ SΓ(θ)[θ
′
] such

that g(m∗) = a∗ and m∗j = (θ
′
,m∗2j ,m

∗3
j ,m

∗4
j ,m

∗5
j , 1) ∈ SΓ(θ)

j [θ
′
] for any j ∈ N .12

Since m∗i ∈ S
Γ(θ)
i [θ

′
], there exists λi ∈ ∆∗(M−i) such that (i) λi(m−i) > 0⇒ mj =

(θ
′
,m2

j ,m
3
j ,m

4
j ,m

5
j , 1) ∈ SΓ(θ)

j [θ
′
] for any j 6= i and (ii)

∑
m−i

λi(m−i)ui(g(m∗i ,m−i); θ) ≥∑
m−i

λi(m−i)ui(g(m̃i,m−i); θ) for all m̃i ∈ Mi. Over profiles m−i to which m∗i is
one of i’s best responses in state θ, define

m̂−i(m
∗
i ) ∈ arg max

(m∗i ,m−i)∈SΓ(θ)[θ′ ]
ui(g(m∗i ,m−i); θ).

12If |F (θ
′
)| = 1, we have g(m̄) = g(m∗) = a∗.
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Without loss of generality, we assume that the winner of the modulo game that
yields the outcome g(m∗i , m̂−i(m

∗
i )) is actually not agent i himself.13

The rest of the proof is intended to establish that m∗i /∈ S
Γ(θ)
i [θ

′
]. By Claim 3,

this will imply m̄i /∈ SΓ(θ)
i [θ

′
], which will contradict our initial hypothesis. There-

fore, we will have that either m̄ /∈ SΓ(θ)[θ
′
] or m̄ ∈ SΓ(θ)[θ

′
] and g(m̄) ∈ F (θ). This

will complete the proof of Step 4.
We proceed to detail. Assume that g(m∗i , m̂−i(m

∗
i )) 6= a∗.14 First, we observe

that this assumption implies that |F (θ
′
)| ≥ 2. Since the SCC F satisfies MCI and

|F (θ
′
)| ≥ 2, the profile (m∗i , m̂−i(m

∗
i )) is not a Nash equilibrium in state θ, since

there must exist at least one agent j ∈ N\{i} who has a different strategy that
is a better response to the profile (m∗i , m̂−i(m

∗
i )). Since every agent believes that

Rule 1 is triggered with probability one, as we have established in Steps 1 to 3,
this further implies that there are no message profiles in SΓ(θ)[θ

′
] that are Nash

equilibria in state θ. (In particular, m is not a Nash equilibrium either in state
θ.)15

The preceding argument confirms that S
Γ(θ)
−i [θ

′
] contains multiple message pro-

files, which together with m∗i , lead to distinct outcomes. Recall that S
Γ(θ)
−i [θ

′
]

denotes the set of all rationalizable message profiles of all agents other than i in
state θ where all other agents coordinate on θ

′
for the first component of their

message. This is consistent with our assumption that g(m∗i , m̂−i(m
∗
i )) and a∗ are

two distinct outcomes, each of which is induced by some rationalizable message
profile (m∗i ,m−i) with m−i ∈ SΓ(θ)

−i [θ
′
]. In particular, for each j ∈ N\{i}, we have

m∗j ∈ S
Γ(θ)
j [θ

′
]. Recall that g(m∗) = a∗. We define λ̃i ∈ ∆∗(M−i) as follows:

λ̃i(m−i) = 0 if and only if m−i 6= m̂−i(m
∗
i ). We now define λεi ∈ ∆∗(M−i) as the

belief that assigns probability 1−ε to λ̃i and assigns probability ε to the event that
all agents other than i use m∗−i. By construction, the support of λεi is concentrated

13This is indeed confirmed in the proof of Claim 3, where we explicitly construct m∗i from m̄i.
14Later we consider the case where g(m∗i , m̂−i(m

∗
i )) = a∗ and argue that it can also be handled

by the same argument we are about to construct.
15Although there are no pure-strategy Nash equilibria in state θ, there might exist a mixed-

strategy equilibrium whose support belongs to the set of rationalizable message profiles triggering
Rule 1. For example, suppose there are three agents and F (θ) = {a1, a2, a3}, with u1(a1; θ) = 2,
u1(a2; θ) = 1, u1(a3; θ) = 0, u2(a2; θ) = 2, u2(a3; θ) = 1, u2(a1; θ) = 0, u3(a3; θ) = 2, u3(a1; θ) =
1, u3(a2; θ) = 0. Then, a profile of mixed-strategies, all of them inducing Rule 1, in which each
agent announces the true state θ, asks for her most preferred outcome in F (θ), announces integer
1 in her sixth component, and randomizes with equal probability over all three names in her fifth
component, is a Nash equilibrium. The probability that each agent is elected to be the king is
1/3, and cannot be affected by unilateral deviations. The outcome is the uniform probability
distribution over the three alternatives in F (θ). Note how for each of the pure strategies in the
support of the equilibrium, the resulting outcome is one of the alternatives in F (θ). This is the
only canonical form that Nash equilibria can take in this mechanism.
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on S
Γ(θ)
−i [θ

′
].

By construction of λ̃i, m
∗
i must be a best response to the redefined belief λ̃i. We

assume without loss of generality that the lottery z∗ is the best lottery for agent
i in state θ such that ui(a

∗; θ
′
) ≥ ui(z

∗; θ
′
) and ui(z

∗; θ) > ui(a
∗; θ).16 Fix ε > 0

small enough. Since ui(g(m∗i , m̂−i(m
∗
i )); θ) ≥ ui(g(m

′
i, m̂−i(m

∗
i )); θ) for any m

′
i and

ε > 0 is chosen to be small, the best possible deviation by agent i is to choose
m3
i [θ
′
, 1] = z∗; m3

i [θ
′
, 2] = a∗; and m6

i →∞, keeping the rest of her announcement
the same as m∗i so that the outcome is changed only when a∗ used to occur under
Rule 1. Therefore, we must have that for any m

′
i ∈Mi,∑

m−i

λεi (m−i)ui(g(m
′

i,m−i); θ)

≤ (1− ε)ui(g(m∗i , m̂−i(m
∗
i )); θ) + εui(z

∗; θ)

= (1− ε)ui(g(m∗i , m̂−i(m
∗
i )); θ) + εui(a

∗; θ) + ε[ui(z
∗; θ)− ui(a∗; θ)]

=
∑
m−i

λεi (m−i)ui(g(m∗i ,m−i); θ) + ε[ui(z
∗; θ)− ui(a∗; θ)].

Thus, we obtain that for any m
′
i ∈Mi,∑

m−i

λεi (m−i)ui(g(m∗i ,m−i); θ) ≥
∑
m−i

λεi (m−i)ui(g(m
′

i,m−i); θ)−ε[ui(z∗; θ)−ui(a∗; θ)].

Set ε
′
= ε[ui(z

∗; θ)−ui(a∗; θ)]. Hence, if we choose ε > 0 small enough (and hence,
ε
′

also small enough), we have argued that m∗i is an ε
′
-best response to λεi , even

including deviations to messages that trigger Rule 2.
However, we show this is not the case. Consider the already described deviation,

mi, by agent i, who chooses m6
i arbitrarily large, m3

i [θ
′
, 1] = z∗, and m3

i [θ
′
, 2] = a∗

but keeps the rest of her announcement the same as m∗i so that the outcome
is changed only when a∗ used to occur under Rule 1. The construction of λεi
guarantees that given m∗i , the outcome a∗ is realized with probability ε > 0. We
define {ε(m6

i )} as a sequence on R such that (i) ε(m6
i ) > 0 for each m6

i ; (ii)
ε(m6

i )→ 0 as m6
i →∞; and (iii)

1
m6
i+1

ε(m6
i )
→ 0 as m6

i →∞.

For example, we can set ε(m6
i ) = 1/

√
m6
i + 1, which satisfies the three properties.

16This is indeed without loss of generality: one could take z∗ to be the supremum lottery over
the set of alternatives satisfying these inequalities, and then construct the argument below using
a sequence of alternatives converging to z∗.
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Recall that m∗i is a best response to m̂−i(m
∗
i ). This implies in particular that

ui(g(m∗i , m̂−i(m
∗
i )); θ) ≥ ui(z

∗; θ).
We next show that there exists ε > 0 small enough such that m∗i is not an

ε
′
-best response to λεi , where ε

′
= ε[ui(z

∗; θ) − ui(a∗; θ)]. Indeed, we confirm this
as follows:

∑
m−i

λ
ε(m6

i )
i (m−i)ui(g(mi,m−i); θ)− ε

′
(m6

i )

= (1− ε(m6
i ))

[
m6
i

m6
i + 1

ui(g(m∗i , m̂−i(m
∗
i )); θ) +

1

m6
i + 1

ui(zi(θ
′
, θ
′
)

]
+ε(m6

i )

[
m6
i

m6
i + 1

ui(z
∗; θ) +

1

m6
i + 1

ui(zi(θ
′
, θ
′
); θ)

]
− ε′(m6

i )

(∵ agent i is not the winner of the modulo game under (mi, m̂−i(m
∗
i )).)

≥ m6
i

m6
i + 1

[
(1− ε(m6

i ))ui(g(m∗i , m̂−i(m
∗
i )); θ) + ε(m6

i )ui(z
∗; θ)

]
+

1

m6
i + 1

ui(zi(θ
′
, θ
′
); θ)− ε(m6

i ) [ui(g(m∗i , m̂−i(m
∗
i )); θ)− ui(a∗; θ)]

(∵ ε
′
(m6

i ) = ε(m6
i ) [ui(z

∗; θ)− ui(a∗; θ)] and ui(g(m∗i , m̂−i(m
∗
i )); θ) ≥ ui(z

∗; θ))

≈ (1− ε(m6
i ))ui(g(m∗i , m̂−i(m

∗
i )); θ) + ε(m6

i )ui(z
∗; θ)

−ε(m6
i ) [ui(g(m∗i , m̂−i(m

∗
i )); θ)− ui(a∗; θ)]

(if we choose m6
i large enough so that 1/(m6

i + 1)→ 0 but ε(m6
i ) > 0.)

= (1− 2ε(m6
i ))ui(g(m∗i , m̂−i(m

∗
i )); θ) + ε(m6

i )(ui(z
∗; θ) + ui(a

∗; θ))

= (1− 2ε(m6
i ))ui(g(m∗i , m̂−i(m

∗
i )); θ) + 2ε(m6

i )ui(z
∗; θ)− ε(m6

i )[ui(z
∗; θ)− ui(a∗; θ)]

≈ (1− 2ε(m6
i ))ui(g(m∗i , m̂−i(m

∗
i )); θ) + 2ε(m6

i )ui(z
∗; θ)

(if we choose ε(m6
i ) small enough, noting 2ui(z

∗; θ) > ui(z
∗; θ)− ui(a∗; θ))

≈ (1− ε(m6
i ))ui(g(m∗i , m̂−i(m

∗
i )); θ) + ε(m6

i )ui(z
∗; θ)

(if we choose m6
i large enough so that ε(m6

i )→ 0)

> (1− ε(m6
i ))ui(g(m∗i , m̂−i(m

∗
i )); θ) + ε(m6

i )ui(a
∗; θ)

(∵ ui(z
∗; θ) > ui(a

∗; θ), and ε(m6
i ) > 0.)

=
∑
m−i

λ
ε(m6

i )
i (m−i)ui(g(m∗i ,m−i); θ).

Hence, we have established the desired opposite inequality, showing that m∗i is not
an ε

′
-best response to λεi .

17

17To make our argument more transparent, we could divide it into the following two
cases. We first assume ui(g(m∗i , m̂−i(m

∗
i )); θ) > ui(z

∗; θ). In this case, we immedi-
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For the case where g(m∗i , m̂−i(m
∗
i )) = a∗, we first observe that m∗i is a best

response to λεi independently of the size of ε because g(m∗i , m̂−i(m
∗
i )) = g(m∗) = a∗.

We next claim that if we choose m6
i large enough, the same deviation strategy mi

constructed above is a better response to λεi than m∗i . Specifically, given the belief
λεi , mi induces the outcome z∗ with probability m6

i /(m
6
i + 1) and the outcome

zi(θ
′
, θ
′
) with the rest of probability. Since ui(z

∗; θ) > ui(a
∗; θ), by choosing m6

i

large enough, we obtain∑
m−i

λεi (m−i)ui(g(mi,m−i); θ) >
∑
m−i

λεi (m−i)ui(g(m∗i ,m−i); θ).

Thus, even if g(m∗i , m̂−i(m
∗
i )) = a∗, we obtain the desired contradiction, as in the

previous case. Hence, regardless of whether g(m∗i , m̂−i(m
∗
i )) 6= a∗ or g(m∗i , m̂−i(m

∗
i )) =

a∗, we conclude that m∗i /∈ S
Γ(θ)
i [θ

′
]. This concludes the proof of Step 4. �

Now we shall conclude the proof of Theorem 2. By Step 4 and the auxiliary
claim (Claim 3) in its proof, for all θ 6= θ

′
, we know that F (θ

′
) ⊆ F (θ). Simply by

reversing the roles of θ and θ
′

in the proof, we would reach the opposite inclusion,
which would imply that F (θ) = F (θ

′
), contradicting responsiveness.

Therefore, it must be the case that, for any θ, θ
′ ∈ Θ, whenever θ 6= θ

′
, the set

S
Γ(θ)
i [θ

′
] is empty for all i ∈ N . It then follows that for any θ ∈ Θ,

SΓ(θ) =
∏
i∈N

S
Γ(θ)
i =

∏
i∈N

S
Γ(θ)
i [θ].

This together with Step 2 further implies⋃
m∈SΓ(θ)

{g(m)} = F (θ).

This concludes the proof of Theorem 2. �

We make some comments on the properties of the mechanism we constructed.
One novelty of the mechanism lies in the way we use the modulo game under the
consensus Rule 1. Modulo games have been often used in the literature, but they
are viewed as a substitute for the integer games where the person who announces
the highest integer becomes a dictator. In fact, our Rule 3 on strong disagreements
is a stochastic version of an integer game, used to knock out bad message profiles

ately obtain a strict inequality even before we take 1/(m6
i + 1) → 0. Otherwise, i.e.,

if ui(g(m∗i , m̂−i(m
∗
i )); θ) = ui(z

∗; θ), when we obtain (1 − 2ε(m6
i ))ui(g(m∗i , m̂−i(m

∗
i )); θ) +

2ε(m6
i )ui(z

∗; θ), this is equivalent to (1 − ε(m6
i ))ui(g(m∗i , m̂−i(m

∗
i )); θ) + ε(m6

i )ui(z
∗; θ). This

is larger than (1− ε(m6
i ))ui(g(m∗i , m̂−i(m

∗
i )); θ) + ε(m6

i )ui(a
∗; θ), regardless of the size of ε(m6

i ).
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so that the agents end up making a unanimous announcement in equilibrium, as
only Rule 1 (consensus) prevails. However, in our mechanism, the modulo game
in Rule 1 is used to select an outcome rather than knock out bad message profiles.
Since the rational expectations hypothesis is not needed here, each agent believes
that the modulo game under Rule 1 always works in his favor but the resulting
outcome is not necessarily what he expects to happen.

Our paper follows the classic implementation literature in allowing for arbitrary
mechanisms. This is often justified in order to obtain a tight characterization, i.e.,
to have a small gap between necessary and sufficient conditions. Jackson (1992),
however, rightly argues that some of the power of implementation results derive
from the fact that we have not imposed any restrictions on the mechanisms. In or-
der to restrict attention to reasonable mechanisms, Jackson, Palfrey, and Srivastava
(henceforth, JPS, 1994) propose the best response property, which requires that
there be a best response for every possible belief that an agent might hold about
other agents’ strategies. Indeed, our mechanism does not satisfy this property as
there exist no best responses when Rule 3 (strong disagreements) is triggered. As
we discuss in Section 5, finite mechanisms sometimes suffice for rationalizable im-
plementation. Finite mechanisms clearly satisfy the JPS best response property.
We will have more to say about rationalizable implementation by finite mecha-
nisms for the case of SCFs and postpone this discussion until we state our result
for that case.

When focusing only on SCFs, we obtain the following result as a corollary of
Theorem 2.

Corollary 1 Suppose that there are at least three agents (n ≥ 3). If an SCF f
satisfies Maskin monotonicity, NWA, and responsiveness, it is fully implementable
in rationalizable strategies.

Remark: This result is the same as Proposition 2 of BMT (2011). Using the exam-
ple proposed by Jain (2017, Appendix A), we can show that responsiveness cannot
be dispensed with for Corollary 1 if we were to achieve rationalizable implemen-
tation by our canonical mechanism. We discuss this in the Appendix. However,
it remains an open question whether one can dispense with responsiveness for ra-
tionalizable implementation. Of course, if this is possible, we need to devise a
different mechanism than the mechanism proposed in Theorem 2.

Proof : This follows because MCI becomes a vacuous constraint and uniform
monotonicity and SNWA reduce to Maskin monotonicity and NWA (the SCF-
version used by BMT (2011)), respectively, as long as the social choice rule is
single-valued. �
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We recall that BMT (2011) introduce their best-response property, and restrict
attention to the mechanisms satisfying it when considering nonresponsive SCFs
(See Definition 6 of BMT (p.1267)). It is easy to see that our canonical mechanism
used in Theorem 2 satisfies BMT’s best-response property.18

7 Concluding Remarks

By relying on a setwise condition requiring the nestedness of lower contour sets,
a condition that we term uniform monotonicity, we have shown that rationaliz-
able implementation of correspondences leads to a significantly more permissive
theory than its counterpart using Nash equilibrium. This has been established for
environments with at least three agents. The two-agent general sufficiency argu-
ment is likely handled by adding the usual requirement of nonempty intersections
of lower contour sets; we chose instead to focus on a simple finite mechanism for
a useful example. The extension to incomplete information environments should
be our natural next step. Our conclusion is that, in the comparison with Nash
equilibrium, dropping the rational expectations assumption while still retaining
best-replies to beliefs, expands significantly the range of socially desirable rules
that can be potentially decentralized. For a specific rule in a concrete environ-
ment, one should aim to construct a less abstract mechanism than our proposed
canonical one, but we view our contribution as a way to draw the landscape of
rules that could be in principle implemented.

Appendix

In this Appendix, we first provide the proof of Claim 3, which is part of Step 4 in
the proof of Theorem 2. Second, we discuss ordinality issues. Third, we comment

18In their proposition 3, BMT show that strict Maskin monotonicity∗ (BMT (p.1265)) is a nec-
essary condition for rationalizable implementation of SCFs by a mechanism satisfying their best
response property. Maskin monotonicity∗, together with the modified version of NWA, implies
strict Maskin monotonicity∗, which is itself logically stronger than strict Maskin monotonicity.
See p.1269 of BMT for the details. When considering environments with monetary transfers,
Chen et al. (2018) show that an SCF is rationalizably implementable by a finite mechanism
if and only if it satisfies Maskin monotonicity∗. That paper also obtains the following result:
an SCF is Nash implementable by a finite mechanism if and only if it satisfies Maskin mono-
tonicity. Hence, in some classes of economic environments, when we only deal with SCFs and
finite mechanisms, Nash implementation yields results that are more permissive than rational-
izable implementation. For the case of SCCs, the result for Nash implementation is extended.
In particular, if an SCC is deterministic and the set of pure outcomes is finite, the SCC is Nash
implementable by a finite mechanism if and only if it satisfies Maskin monotonicity. What is
unknown is whether their rationalizable implementation result can be extended to SCCs.
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on the role of finite mechanisms. Fourth, we outline how one can extend our results
(Theorems 1 and 2) to the case of weak implementation. And fifth, we discuss the
roles of responsiveness and MCI, used in Theorem 2 and Corollary 1.

A.1. Proof of Claim 3

We set n+ 1 ≡ 1 and 0 ≡ n. We construct a message profile m∗, which induces
Rule 1 with probability one, and in which all agents unanimously announce θ

′
in the

first component of their message, and agent i+1 becomes the winner of the modulo
game, as follows. First, for agent i+1, define m∗i+1 = (θ

′
,m∗2i+1, m̄

3
i+1, m̄

4
i+1, i+1, 1),

where m∗2i+1[θ
′
] = a∗ and m∗2i+1[θ̃] = m̄2

i+1[θ̃] for every θ̃ 6= θ
′
. Second, for each

j ∈ N\{i + 1}, define m∗j = (θ
′
,m∗2j , m̄

3
j , m̄

4
j , 1, 1) such that m∗2j [θ̃] = m̄2

j [θ̃] for

every θ̃ 6= θ
′

and

m∗2j [θ
′
] =

{
aj−1(θ, θ

′
) if j 6= 1

an(θ, θ
′
) if j = 1,

where aj−1(θ, θ
′
) ∈ arg maxa∈F (θ′ ) uj−1(a; θ), which denotes one of the maximizers

of uj−1(·; θ) within all the outcomes in F (θ
′
). What remains to show is that

m∗ ∈ SΓ(θ). We proceed to do so.
First, we show that m∗i+1 is a best response to some belief. Define λ∗i+1 ∈

∆∗(M−(i+1)) with support as follows:

m1
j = θ

′
;

m2
j [θ
′
] = aj−1(θ, θ

′
);

m5
j =

{
2 if j = i+ 2,
1 otherwise;

m6
j = 1,

for all j ∈ N\{i + 1}. Given λ∗i+1 and m∗i+1, agent (i + 2) becomes the winner of
the modulo game. Thus, it generates the best possible outcome for agent (i + 1)

conditional on Rule 1. Since there exists m̄i+1 ∈ SΓ(θ)
i+1 [θ

′
] andm∗i+1 differs from m̄i+1

only in the second and fifth components of the message, m∗i+1 is a best response to
λ∗i+1.

Second, we show that λ∗i+1(m−(i+1)) > 0 ⇒ m−(i+1) ∈ SΓ(θ)
−(i+1)[θ

′
], which means

that each mj in the support of λ∗i+1 is rationalizable. Define λ∗i+2 ∈ ∆∗(M−(i+2))
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with support as follows:

m1
k = θ

′
;

m2
k[θ
′
] = ak−1(θ, θ

′
);

m5
k =

{
i+ 3 if k = i+ 1,

1 otherwise;

m6
k = 1,

for all k 6= i + 2. Then, given λ∗i+2 and m∗i+2, agent (i + 3) becomes the winner of
the modulo game so that the best outcome for agent (i + 2) conditional on Rule
1 is realized. Assume j ∈ N\{i + 1, i + 2}. Define λ∗j ∈ ∆∗(M−j) with support as
follows:

m1
k = θ

′
;

m2
k[θ
′
] =

{
an(θ, θ

′
) if k = 1,

ak−1(θ, θ
′
) otherwise;

m5
k =

{
j + 1 if k = i+ 1,

1 otherwise;

m6
k = 1,

for all k 6= j. Assume j < n. Then, given λ∗j and m∗j , agent j + 1 becomes
the winner of the modulo game so that the best outcome for agent j is realized
conditional on Rule 1. Assume, on the other hand, that j = n. Then, given λ∗n
and m∗n, agent 1 becomes the winner of the modulo game so that the best outcome
for agent n is realized conditional on Rule 1. We know that (i) by our hypothesis

and Step 3, there exist m̄j ∈ SΓ(θ)
j [θ

′
] together with the belief λ̄j to which m̄j is a

best response and which induces Rule 1 with probability one; (ii) m∗j differs from
m̄j only in the second and fifth components of the message; and (iii) m∗j generates
the best outcome for himself conditional on Rule 1 given the belief λ∗j . Therefore,
we have that the support of λ∗i+1 is rationalizable. That is, for each j 6= i + 1,

λ∗i+1(m−(i+1)) > 0⇒ m−(i+1) ∈ SΓ(θ)
−(i+1)[θ

′
]. Thus, m∗i+1 ∈ S

Γ(θ)
i+1 .

Third, we show that, for each j 6= i + 1, m∗j can be made a best response to
some belief. Fix j 6= i+ 1. Define λ∗j ∈ ∆∗(M−j) with support as follows:

m1
k = θ

′
;

m2
k[θ
′
] =

{
an(θ, θ

′
) if k = 1,

ak−1(θ, θ
′
) otherwise;

m5
k =

{
j + 1 if k = i+ 1,

1 otherwise;

m6
k = 1,
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for all k 6= j. Given λ∗j and m∗j , agent j + 1 becomes the winner of the modulo
game so that the best outcome for agent j conditional on Rule 1 is realized. Since
we know that there exists m̄j ∈ S

Γ(θ)
j [θ

′
] together with λ̄j to which m̄j is a best

response and which induces Rule 1 with probability one and m∗j differs from m̄j

only in the second and fifth components of the message, m∗j is a best response to
λ∗j .

Fourth, we claim that for each j 6= i+1, the support of λ∗j is rationalizable, i.e.,

λ∗j(m−j) > 0⇒ m−j ∈ SΓ(θ)
−j [θ

′
]. Consider m̂i+1 = (θ

′
, m̂2

i+1, m̄
3
i+1, m̄

4
i+1, j+1, 1), as

a generic element in the support of λ∗j , where m̂2
i+1[θ

′
] = an(θ, θ

′
) if i+ 1 = 1 (i.e.,

i = n) or ai(θ, θ
′
) otherwise. Define λ̂i+1 ∈ ∆∗(M−(i+1))) with support as follows:

m1
k = θ

′
;

m2
k[θ
′
] =

{
an(θ, θ

′
) if k = 1,

ak−1(θ, θ
′
) otherwise;

m5
k =

{
n+ 2− j if k = i+ 2,

1 otherwise;

m6
k = 1,

for all k 6= i + 1. Given m̂i+1 and λ̂i+1, agent (i + 2) becomes the winner of
the modulo game so that the best outcome for agent (i + 1) conditional on Rule
1 is realized. Fix k ∈ N\{i + 1, j}. Consider m̂k = (θ

′
, m̂2

k, m̄
3
k, m̄

4
k, 1, 1), as a

generic element in the support of λ∗j where m̂2
k[θ
′
] = an(θ, θ

′
) if k = 1 or ak−1(θ, θ

′
)

otherwise. Define λ̂k ∈ ∆∗(M−k) with support as follows:

m1
h = θ

′
;

m2
h[θ
′
] =

{
an(θ, θ

′
) if h = 1,

ak−1(θ, θ
′
) otherwise;

m5
h =

{
k + 1 if h = i+ 1,

1 otherwise;

m6
h = 1,

for all h 6= k. Given m̂k and λ̂k, agent (k + 1) becomes the winner of the modulo
game so that the best outcome for agent k conditional on Rule 1 is realized. We
know that: (i) by our hypothesis and Step 3, there exists m̄k ∈ SΓ(θ)

k [θ
′
] together

with the belief λ̄k to which m̄k is a best response and which induces Rule 1 with
probability one; (ii) m̂k differs from m̄k only in the second and fifth components
of the message; and (iii) m̂k generates the best outcome for himself conditional on
Rule 1 given the belief λ̂k. Therefore, for each j 6= i+ 1, we have that the support
of λ∗j is rationalizable. That is, for each j 6= i+ 1, λ∗j(m−j) > 0⇒ m−j ∈ SΓ(θ)

−j [θ
′
].

This implies that m∗j ∈ S
Γ(θ)
j [θ

′
] for each j 6= i+ 1.
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In sum, we conclude that we have m∗ ∈ SΓ(θ) such that g(m∗) = a∗, as desired.
�

A.2. Ordinality

The theory of implementation often associates each state with a profile of ordi-
nal preferences and does not introduce any cardinal representation. In this subsec-
tion, we identify a state θ with a profile of ordinal preferences (�θi )i∈N over A. This
is the ordinal approach considered in Mezzetti and Renou (2012) in the context of
Nash implementation. BMT (2011) also discuss the ordinal approach to rational-
izable implementation. Specifically, we refer the reader to Section 6 of Mezzetti
and Renou (2012) and Section 5 of BMT (2011). We say that u = (u1, . . . , un) is a
cardinal representation of (�θi )i∈N,θ∈Θ if, for each a, a

′ ∈ A, i ∈ N , and θ ∈ Θ, we
have ui(a; θ) ≥ ui(a

′
; θ) ⇔ a �θi a

′
. A deterministic SCC F is ordinally fully im-

plementable in rationalizable strategies if it is fully implementable in rationalizable
strategies “independently of the cardinal representation.”

We come to the next couple of definitions:

Definition 8 A deterministic SCC F satisfies ordinal (weak) uniform mono-
tonicity if it satisfies (weak) uniform monotonicity for any cardinal representation.

With its weak version, we can show the following necessity result, whose proof
is omitted:

Proposition 1 If a deterministic SCC F is ordinaly fully implementable in ratio-
nalizable strategies, it satisfies ordinal weak uniform monotonicity.

Here is our next definition:

Definition 9 A deterministic SCC F satisfies ordinal SNWA if, for each θ ∈ Θ
and i ∈ N , there exists a pure alternative zθi ∈ A such that a �θi zθi for each
a ∈ F (θ).

We also propose an ordinal version of MCI.

Definition 10 A deterministic SCC F satisfies the ordinally minimal conflict-
of-interests condition (henceforth, ordinal MCI) if there do not exist θ, θ

′ ∈ Θ
and a ∈ A such that |F (θ

′
)| ≥ 2 and a �θi b for all b ∈ F (θ

′
) for all i ∈ N .

The proof of this sufficiency result is also omitted:

Proposition 2 Suppose that there are at least three agents (n ≥ 3). If a determin-
istic SCC F satisfies ordinal uniform monotonicity, ordinal MCI, ordinal SNWA,
and responsiveness, it is ordinally fully implementable in rationalizable strategies.
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A.3. Finite Mechanisms

Recall that our sufficiency result for rationalizable implementation (Theorem
2) employs an infinite implementing mechanism. In this section, we elaborate on
the role of finite implementing mechanisms. We show by example that there is a
finite mechanism that achieves Nash implementation but fails rationalizable im-
plementation. Of course, this does not necessarily imply that one cannot achieve
rationalizable implementation by a finite mechanism. Rather, the point is that a
Nash-implementing finite mechanism need not achieve rationalizable implementa-
tion.

There are two agents N = {1, 2}; two states Θ = {α, β}; and a finite number
of pure outcomes A = {a1, a2, a3}. Agent 1’s strict preference relation over A is
given as follows:

a1 �α1 a2 �α1 a3 and a2 �β1 a1 �β1 a3.

Agent 2’s strict preference relation over A is given as follows:

a1 �α2 a3 �α2 a2 and a1 �β2 a3 �β2 a2.

Note that Agent 2 has state-independent preferences. We consider the following
SCC: F (α) = {a1, a3} and F (β) = {a3}. Note that F is responsive. We first
claim that the SCC F satisfies Maskin monotonicity. When we move from β to
α, we know that F (β) ⊆ F (α). So, we consider the case of moving from α to β.
Fix a1 ∈ F (α). Since there is a preference reversal around a1 such that a1 �α1 a2

and a2 �β1 a1, going from α to β is not a monotonic transformation of preferences
around a1. Thus, no conditions are imposed on F so that it satisfies Maskin
monotonicity. This further implies that F satisfies uniform monotonicity as well.

We construct a finite mechanism that implements the SCC F in Nash equilib-
rium. Consider the following mechanism Γ = (M, g) where M1 = {m1

1,m
2
1,m

3
1};

M2 = {m1
2,m

2
2}; and the deterministic outcome function g(·) is given in the table

below:

g(m) Agent 2
m1

2 m2
2

m1
1 a1 a3

Agent 1 m2
1 a2 a3

m3
1 a3 a3

It can be easily shown that (m1
1,m

1
2), (m2

1,m
2
2), and (m3

1,m
2
2) are pure strategy

Nash equilibria in the game Γ(α) and (m2
1,m

2
2) and (m3

1,m
2
2) are pure strategy

Nash equilibria in the game Γ(β). As long as we are concerned with pure strategy
Nash equilibria, we can see that the mechanism Γ Nash implements the SCC F .
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Suppose that there is a nontrivial mixed strategy Nash equilibrium in the game
Γ(α). Assume that agent 2 chooses a pure strategy in the supposed mixed equi-
librium. Then, agent 1 has an incentive to randomize over the messages only if
agent 2 chooses m2

2 where a3 is the resulting outcome no matter what agent 1
does. Therefore, any such mixed strategy equilibrium outcome, if it exists, is con-
sistent with the SCC. Now, let us consider a mixed strategy equilibrium where
agent 2 uses a genuinely mixed strategy: choose m1

2 with probability q and m2
2

with probability 1 − q where q ∈ (0, 1). In the game Γ(α), for any q ∈ (0, 1), m2
1

cannot be a best response to agent 2’s strategy (q, 1− q). Hence, in such a mixed
strategy equilibrium, m2

1 is never played with positive probability. Then, any such
mixed strategy equilibrium outcome, if it exists, only generates a1 or a3, which are
consistent with the SCC F .

Suppose that there is a nontrivial mixed strategy equilibrium in the game Γ(β).
Assume that agent 2 chooses a pure strategy in the supposed mixed equilibrium.
Then, agent 1 has an incentive to randomize over the messages only if agent 2
chooses m2

2 where a3 is the resulting outcome no matter what agent 1 does. There-
fore, any such mixed strategy equilibrium outcome, if it exists, is consistent with
the SCC. Now, let us consider a mixed strategy equilibrium where agent 2 uses a
genuinely mixed strategy: choose m1

2 with probability q and m2
2 with probability

1 − q where q ∈ (0, 1). In the game Γ(β), for any q ∈ (0, 1), m2
1 is a strict best

response to agent 2’s strategy (q, 1− q). In other words, agent 2 should choose m2
1

with probability one. However, if agent 1 chooses m2
1 for sure, agent 2 is better off

by switching to choosing a pure strategy m2
2. Therefore, there is no such mixed

strategy equilibrium. This implies that the SCC F is Nash implementable by the
finite mechanism Γ even in the sense of Mezzetti and Renou (2012), who require
every outcome in the support of Nash equilibria to be consistent with the SCC.

Next, we show that the mechanism Γ does not implement the SCC F in ra-
tionalizable strategies. Consider the game Γ(β). First, m2

1 is a best response to
the belief that agent 2 chooses m1

2. Second, m1
2 is a best response to the belief

that agent 1 chooses m1
1. Third, m1

1 is a best response to the belief that agent 2
chooses m2

2. Therefore, both m2
1 and m1

2 survive the first round of deletion of never

best responses. We can repeat this argument so that m2
1 ∈ S

Γ(β)
1 and m1

2 ∈ S
Γ(β)
2 .

Since both m2
1 and m1

2 are rationalizable messages, we obtain that g(m2
1,m

1
2) = a2,

which is inconsistent with F (β) = {a3}. Therefore, the SCC F is not rationalizably
implementable by the mechanism Γ.

Of course, we do not know whether one could achieve rationalizable imple-
mentation using a different finite mechanism. Since this example does not satisfy
MCI, we do not even know whether one could achieve rationalizable implementa-
tion by an infinite mechanism, although we conjecture that one can modify this
example so that our Theorem 2 applies. Hence, what we have shown is that a
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Nash-implementing finite mechanism need not achieve rationalizable implemen-
tation. On the other hand, the example in Section 5 is also based on a finite
mechanism, and it re-enforces the paper’s main message of rationalizable imple-
mentation being significantly more permissive than Nash implementation, even for
a two-agent environment.

In closing, we recall that BMT (2011) introduce the best-response property, and
restrict attention to the mechanisms satisfying it when considering nonresponsive
SCFs. It is easy to see that our canonical mechanism used in Theorem 2 satisfies
their best-response property. Of course, as long as we have a finite mechanism
that achieves rationalizable implementation, that finite mechanism will satisfy the
best response property as well. This is confirmed in the example we discussed in
Section 5.

A.4. Weak Implementation in Rationalizable Strategies

Next, we provide the definition of weak rationalizable implementation.

Definition 11 (Weak Rationalizable Implementation) An SCC F is weakly
implementable in rationalizable strategies if there exists a mechanism Γ =
(M, g) such that for each θ ∈ Θ, the following two conditions hold: (1) SΓ(θ) 6= ∅;
and (2) for each m ∈ SΓ(θ), then g(m) ∈ F (θ).

We begin by proposing a condition for weak implementation in rationalizable
strategies:

Definition 12 An SCC F satisfies weak K-uniform monotonicity if, for ev-
ery pair of states θ, θ

′ ∈ Θ, there exists a nonempty set K(θ) ⊆ F (θ) such that
if

ui(a; θ) ≥ ui(z; θ)⇒ ui(a; θ
′
) ≥ ui(z; θ

′
) ∀a ∈ co(K(θ)), ∀i ∈ N, ∀z ∈ ∆(A),

then, K(θ) ⊆ F (θ
′
).

Remark: When we consider SCFs, co(K(θ)) becomes a singleton set. Therefore,
in this case, the condition just defined also reduces to Maskin monotonicity.

We slightly strengthen weak K-uniform monotonicity into the following:

Definition 13 An SCC F satisfies K-uniform monotonicity if, for every pair
of states θ, θ

′ ∈ Θ, there exists a nonempty set K(θ) ⊆ F (θ) such that, if

ui(a; θ) ≥ ui(z; θ)⇒ ui(a; θ
′
) ≥ ui(z; θ

′
) ∀a ∈ K(θ), ∀i ∈ N, ∀z ∈ ∆(A),

then, K(θ) ⊆ F (θ
′
).
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The same comment we made after the definition of uniform monotonicity ap-
plies here. Therefore, under expected utility, weak K-uniform monotonicity is
equivalent to K-uniform monotonicity. Note also that K-uniform monotonicity
is logically weaker than uniform monotonicity, itself weaker than Maskin mono-
tonicity. All three reduce to the same condition when one considers single-valued
rules.

The necessity result for weak implementation follows:

Theorem 3 If an SCC F is weakly implementable in rationalizable strategies, it
satisfies weak K-uniform monotonicity.

Proof : Suppose F is weakly implementable in rationalizable strategies by a
mechanism Γ = (M, g). Fix two states θ, θ

′ ∈ Θ. Define

K(θ) =
⋃

m∈SΓ(θ)

{g(m)}.

Assume the following property:

ui(a; θ) ≥ ui(z; θ)⇒ ui(a; θ
′
) ≥ ui(z; θ

′
) ∀a ∈ co(K(θ)), ∀i ∈ N, ∀z ∈ ∆(A) (∗)

Then, due to the hypothesis that F is weakly implementable by Γ, we fix m∗ ∈
SΓ(θ), and we have that g(m∗) ∈ K(θ).

Fix i ∈ N . Since m∗i ∈ S
Γ(θ)
i , there exists λ

m∗i ,θ
i ∈ ∆(M−i) satisfying the fol-

lowing two properties: (i) λ
m∗i ,θ
i (m−i) > 0 ⇒ m−i ∈ SΓ(θ)

−i and g(m∗i ,m−i) ∈ F (θ);

and (ii)
∑

m−i
λ
m∗i ,θ
i (m−i)ui(g(m∗i ,m−i); θ) ≥

∑
m−i

λ
m∗i ,θ
i (m−i)ui(g(m

′
i,m−i); θ) for

each m
′
i ∈Mi.

We focus on the best response property of m∗i summarized by inequality (ii).

Fix m
′
i ∈Mi. Due to the construction of λ

m∗i ,θ
i , we have that∑

m−i

λ
m∗i ,θ
i (m−i)ui(g(m∗i ,m−i); θ) ≥

∑
m−i

λ
m∗i ,θ
i (m−i)ui(g(m

′

i,m−i); θ)

ui(a; θ) ≥ ui(z
a; θ),

where the two lotteries a and za are defined as

a =
∑
m−i

λ
m∗i ,θ
i (m−i)g(m∗i ,m−i) and za =

∑
m−i

λ
m∗i ,θ
i (m−i)g(m

′

i,m−i).

Since g(m∗i ,m−i) ∈ K(θ) for each m−i with λ
m∗i ,θ
i (m−i) > 0, we have a ∈

co(K(θ)). Using Property (∗), we also obtain

ui(a; θ
′
) ≥ ui(z

a; θ
′
).
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Due to the choice of a and za and the hypothesis that ui(·) is a von-Neumann-
Morgenstern expected utility, we obtain the following:∑

m−i

λ
m∗i ,θ
i (m−i)ui(g(m∗i ,m−i); θ

′
) ≥

∑
m−i

λ
m∗i ,θ
i (m−i)ui(g(m

′

i,m−i); θ
′
).

Since this argument does not depend upon the choice of m
′
i, this shows that m∗i

is a best response to λ
m∗i ,θ
i in state θ

′
as well. Therefore, m∗i ∈ S

Γ(θ
′
)

i . Since the

choice of agent i is arbitrary, we can conclude that m∗ ∈ SΓ(θ
′
). Furthermore, since

the choice of m∗ ∈ SΓ(θ) is also arbitrary, we have SΓ(θ) ⊆ SΓ(θ
′
). Finally, by weak

implementability, this implies that

K(θ) =
⋃

m∈SΓ(θ)

{g(m)} ⊆
⋃

m∈SΓ(θ
′
)

{g(m)} ⊆ F (θ
′
).

The proof is thus complete. �

We also propose a version of MCI, which we call K-minimal conflict-of-interests
condition.

Definition 14 An SCC F satisfies the K-minimal conflict-of-interests con-
dition (henceforth, K-MCI) if there do not exist θ, θ

′ ∈ Θ, a nonempty set
K(θ

′
) ⊆ F (θ

′
), and a ∈ ∆(A) such that |K(θ

′
)| ≥ 2 and a ∈ arg maxb∈K(θ′ ) ui(b; θ)

for all i ∈ N .

We also adapt responsiveness to weak implementation.

Definition 15 An SCC F is K-responsive if, for each θ ∈ Θ, there exists a
nonempty subset K(θ) ⊆ F (θ) such that θ

′ 6= θ
′′

implies K(θ
′
) 6= K(θ

′′
).

Next, we state the general sufficiency result for weak implementation in ratio-
nalizable strategies.

Theorem 4 Suppose that there are at least three agents (n ≥ 3) and the set of
pure outcomes A is finite. If a deterministic SCC F satisfies K-uniform mono-
tonicity, K-MCI, SNWA, and K-responsiveness, it is weakly implementable in
rationalizable strategies.

Remark: In the sufficiency result below, we need the compactness of K(θ). To
guarantee this, we assume A is finite and only consider deterministic SCCs. We
view this as a technical requirement for the result.
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Proof : By K-uniform monotonicity, for each θ ∈ Θ, we have a nonempty
set K(θ) ⊆ F (θ). Since the SCC F is deterministic and the set of pure out-
comes A is finite, we have that K(θ) is a finite set for each θ ∈ Θ. We con-
struct a mechanism Γ = (M, g) such that each agent i sends a message mi =
(m1

i ,m
2
i ,m

3
i ,m

4
i ,m

5
i ,m

6
i ) where m1

i ∈ Θ,m2
i = {m2

i [θ]}θ∈Θ where m2
i [θ] ∈ K(θ),

m3
i = {(m3

i [θ, 1],m3
i [θ, 2])}θ∈Θ where m3

i [θ, 1] ∈ ∆(A) and m3
i [θ, 2] ∈ K(θ), m4

i ∈
∆(A),m5

i ∈ N , and m6
i ∈ N. This mechanism is essentially the same as the one

proposed in the proof of Theorem 2. The only change we have made from the mes-
sage space proposed in the proof of Theorem 2 is that we use K(θ) in the spaces
of m2

i [θ] and m3
i [θ, 2]. The outcome function g : M → ∆(A) is defined exactly as

for the case of full implementation in the proof of Theorem 2. The proof consists
of Steps I through IV, parallel to the steps for the full implementation proof.

Step I: mi ∈ SΓ(θ)
i ⇒ m6

i = 1.

Step II: For any θ ∈ Θ and a ∈ K(θ), there exists m∗ ∈ SΓ(θ) such that g(m∗) = a.

Step III: mi ∈ S
Γ(θ)
i ⇒ λi(m−i) = 0 for any profile (mi,m−i) under Rules 2 or

3, where λi ∈ ∆∗(M−i) represents the belief held by agent i to which mi is a best
response.

Step IV: SΓ(θ)[θ
′
] ⊆ K(θ).

Claim III: If there exists m̄ ∈ SΓ(θ)[θ
′
], for any a∗ ∈ K(θ

′
), there also exists

m∗ ∈ SΓ(θ)[θ
′
] such that a∗ = g(m∗).

Now we shall conclude the proof of Theorem 2. By Step IV and the auxiliary
claim (Claim III) in its proof, for all θ 6= θ

′
, we know that K(θ

′
) ⊆ K(θ). Simply by

reversing the roles of θ and θ
′

in the proof, we would reach the opposite inclusion,
which would imply that K(θ) = K(θ

′
), contradicting K-responsiveness.

Therefore, it must be the case that, for any θ, θ
′ ∈ Θ, whenever θ 6= θ

′
, the set

S
Γ(θ)
i [θ

′
] is empty for all i ∈ N . It then follows that for any θ ∈ Θ,

SΓ(θ) =
∏
i∈N

S
Γ(θ)
i =

∏
i∈N

S
Γ(θ)
i [θ].

This together with Step II further implies⋃
m∈SΓ(θ)

{g(m)} = K(θ) ⊆ F (θ).

This concludes the proof of Theorem 4. �
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A.5. The Roles of Responsiveness and MCI

On responsiveness. We borrow this example from Appendix A of Jain (2017).
The reader is referred to that paper for more details. Let A = {a, b, c, d} , N =
{1, 2, 3} , and Θ = {θ, θ′, θ′′, θ′′′} . The preference profile for each state is given
in the table below. Numbers in the parentheses specify the von-Neumann and
Morgenstern utilities. Consider the following SCF f (θ) = f (θ′) = f (θ′′) = a and
f (θ′′′) = b. This SCF f clearly violates responsiveness.

θ θ′ θ′′ θ′′′

1 2 3 1 2 3 1 2 3 1 2 3
a(3) a(3) a(3) b(3) c(3) d(3) c(3) d(3) b(3) b(3) c(3) b(3)
b(2) c(2) b(2) a(2) a(2) a(2) a(2) a(2) a(2) a(2) a(2) a(2)
c(1) b(1) c(1) c(1) d(1) c(1) d(1) c(1) c(1) c(1) d(1) c(1)
d(0) d(0) d(0) d(0) b(0) b(0) b(0) b(0) d(0) d(0) b(0) d(0)

f (θ) = a f
(
θ
′)

= a f
(
θ
′′)

= a f (θ) = b

Claim 4 The SCF f satisfies strict Maskin monotonicity.

Proof. We simply check all the possible pair of states with different social
outcome.

• (θ, θ′′′) : u1(a, θ) > u1(b, θ) but u1(a, θ
′′′

) < u1(b, θ
′′′

).

• (θ′, θ′′′) : u2(a, θ
′
) > u2(c, θ

′
) but u2(a, θ

′′′
) < u2(c, θ

′′′
).

• (θ′′, θ′′′) : u1(a, θ
′′
) > u1(b, θ

′′
) but u1(a, θ

′′′
) < u1(b, θ

′′′
).

• (θ′′′, θ) : u1(b, θ
′′′

) > u1(a, θ
′′′

) but u1(b, θ) < u1(a, θ).

• (θ′′′, θ′) : u2(b, θ
′′′

) > u2(d, θ
′′′

) but u2(b, θ
′
) < u2(d, θ

′
).

• (θ′′′, θ′′) : u1(b, θ
′′′

) > u1(a, θ
′′′

) but u1(b, θ
′′
) < u1(a, θ

′′
). �

Claim 5 The SCF f satisfies NWA and MCI.

Proof : This is trivial. �

Thus far, in this example, we have three agents and confirm that the SCF f
satisfies strict Maskin monotonicity, NWA, and MCI. But the SCF f is not respon-
sive. Suppose by way of contradiction that even if the SCF f is not responsive, it
is implementable in rationalizable strategies by the canonical mechanism used in
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Theorem 2. Then, by Steps 1 through 3 of our Theorem 2, we have shown that one
can partition the set of rationalizable message profiles into separate components.
In each component, each agent i believes that all the others are using strategies of
the form (θ

′
, ·, ·, ·, ·, 1) with probability one. Since we focus on the case of SCFs, it

does not matter how we specify m2
i ,m

3
i [θ, 2],m4

i , and m5
i in our mechanism.

In the following two claims, we characterize SΓ(θ) in our mechanism.

Claim 6 SΓ(θ)[θ
′
] 6= ∅

Proof : By Step 2 of our Theorem 2, we have shown that there exists m ∈ SΓ(θ)

such that mi = (θ,m2
i ,m

3
i ,m

4
i ,m

5
i , 1) for each i ∈ N . If we simply replace θ with

θ
′

and keep the rest the same as before, we propose a minimally modified message
profile m

′
i = (θ

′
,m2

i ,m
3
i ,m

4
i ,m

5
i , 1). Fix any i ∈ N and any such m

′
i ∈ S

Γ(θ)
i . Then,

for any belief λi whose support is concentrated on S
Γ(θ)
−i [θ

′
], agent i obtains the

best outcome a in state θ by playing m
′
i, which together with λi induces Rule 1

with probability one. The only deviation player i has is to trigger Rule 2 but by
doing so, agent i’s expected payoff becomes strictly lower than what he gets under
m
′
i, no matter how large an integer in the 6th component of the message is chosen.

This implies that m
′
i ∈ SΓ(θ)[θ

′
]. �

Claim 7 SΓ(θ)[θ
′′
] 6= ∅

Proof : By Step 2 of our Theorem 2, we have shown that there exists m ∈ SΓ(θ)

such that mi = (θ,m2
i ,m

3
i ,m

4
i ,m

5
i , 1) for each i ∈ N . If we simply replace θ with

θ
′′

and keep the rest the same as before, we propose a minimally modified message
profile m

′′
i = (θ

′′
,m2

i ,m
3
i ,m

4
i ,m

5
i , 1). Fix any i ∈ N and any such m

′′
i ∈ S

Γ(θ)
i .

Then, for any belief λi whose support is concentrated on S
Γ(θ)
−i [θ

′′
], agent i obtains

the best outcome a in state θ by playing m
′′
i , which together with λi induces Rule

1 with probability one. The only deviation player i has is to trigger Rule 2 but by
doing so, agent i’s expected payoff becomes strictly lower than what he gets under
m
′′
i , no matter how large an integer in the 6th component of the message is chosen.

This implies that m
′′
i ∈ SΓ(θ)[θ

′′
]. �

In sum, we obtain the following structure of SΓ(θ):

SΓ(θ) = SΓ(θ)[θ] ∪ SΓ(θ)[θ
′
] ∪ SΓ(θ)[θ

′′
]

For example, we take m1 = (θ,m2
1,m

3
1,m

4
1,m

5
1, 1); m2 = (θ

′
,m2

1,m
3
1,m

4
1,m

5
1, 1);

andm3 = (θ
′′
,m2

3,m
3
3,m

4
3,m

5
3, 1). Due to the structure of SΓ(θ) above, we know that

m1 ∈ SΓ(θ)
1 , m2 ∈ SΓ(θ)

2 , and m3 ∈ SΓ(θ)
3 . Therefore, we have m = (m1,m2,m3) ∈

SΓ(θ). Since m triggers Rule 3 in our mechanism, we claim g(m) 6= f(θ) = a. This
shows that our mechanism fails to achieve rationalizable implementation. Under

44



Rule 3, the lottery z always occurs with positive probability. Since the SCF f
satisfies NWA and a is the common best outcome in state θ, we have that z 6= a.

On MCI. Consider the following variant of the example in Section 5. We assume
K = 4 and define F (α) = {a2, a4} and F (β) = {a1}. We also add Agent 3, who
has state-uniform preferences identical to Agent 1’s. We note that: (i) there are
three agents; (ii) the given SCC F satisfies uniform monotonicity, SNWA, and
responsiveness; but (iii) no mechanism implements F in rationalizable strategies
because the message profile whose outcome is a4 is a Nash equilibrium in state
β. It follows that we need an extra condition to establish the sufficiency result
for rationalizable implementation, and MCI is such a condition. We could use
Example 8.1 in Jain (2017) to make the same point.
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