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Introduction

The amount of information we are exposed to and its complexity opens up
opportunities to manipulate the beliefs of voters and consumers.

Brexit campaign: The UK information Commissioner’s Office (ICO) is
investigating whether Vote Leave (the official pro-Brexit campaign during the
EU referendum), BeLeave and others shared data to identify audiences and
target adds. In parallel, the Electoral Commission in the UK is investigating
allegations of unlawful coordination between Vote Leave and BeLeave.

Different thinktanks are often called to provide their expertise on issues in
the public debate. However, if sharing the same funding donors, those
thinktanks might be coordinating their reports.

Cagé, Hervé and Viaud (2017) show that most online content is not original
and repackaged and repeated without references.



Introduction

While campaigns and information may be correlated, voters or
consumers may be unaware that this is the case.

The literature has recently documented many environments where
“correlation neglect”arises. (Ortoleva and Snowberg (2015), Eyster
and Weizsker (2011), Kallir and Sonsino (2009) and Enke and
Zimmermann (2018))

correlation neglect: Individuals treat information sources as if they are
conditionally independent.



Introduction

We analyze a model of persuasion when the receiver has correlation
neglect.

Research Question:

What is the scope of manipulation when the receiver has correlation
neglect?

How can a strategic sender use correlation strategically to manipulate
a receiver who believes that information sources are independent?

Information design problem:

The sender“designs”m signals to influence the receiver.

The receiver understands the marginal information structure of each
signal separately,

but believes that the joint information structure over all signals
satisfies conditional independence.



Introduction

General Results:

The sender can manipulate over and above what she could get from a
rational receiver.

▶ In particular, the sender can move the expectation of the posterior of
the receiver in any direction.

For a fixed number of signals, the sender’s ability to manipulate is
bounded.

▶ For example, the probability with which the sender can convince the
receiver that the state is ω is at most the prior probability of the state.

As the number of signals increases, the sender can approximate her
First Best.

▶ In particular, she can approximate any posterior beliefs, where those
posterior may differ across states.



Introduction

Optimal Information Structure:

For the case of state-independent preferences:

Concavification provides an upper bound on the optimal value.

▶ However, such upper bound might not be achievable: concavification
might point to correlation structures that are not feasible.

We analyse a modified problem in which the sender uses full
correlation:

▶ The solution to the modified problem converges to the optimal solution
as the number of signals is large.

▶ Under supermodular utilisites full correlation is optimal even with finite
signals.

▶ Full correlation is not always optimal. For submodular utilities, some
negative correlation is optimal.



The Model

There are two players, a sender (she) and a receiver (also she).

There is a finite set of states of the world, Ω = {ω1, ..., ωn}, with
commonly known interior prior p ∈ ∆(Ω)

The sender designs an information structure, which consists of m
distinct signals.

The receiver observes the realisation of the signals {s1, ..., sm} and
chooses an action a ∈ A where A is compact.

Given action a and state ω, the receiver gets utility u(a, ω) and the
sender gets v(a, ω). We assume that:

▶ There exists an optimal action for the receiver

▶ v evaluated at the optimal action for the receiver is upper
hemi-continuous in the receiver’s information.



Signal Structures

An information structure with m signals is defined by
{S, {q· | ω)}ω∈Ω} where,

▶ S =
∏m

i=1 Si with Si finite, and

▶ q(· | ω) ∈ ∆(S) is a joint distribution conditional on ω.

We denote by {Si , {qi (· | ω)}ω∈Ω} the marginal information structure
for signal i .



Signal Structures

As in the Bayesian Persuasion literature it will be convenient to interpret a
signal as a distribution over posteriors:

A realisation si of signal i generates a posterior

µsi (ω) =
p(ω)qi (si | ω)∑
ν∈Ω p(ν)qi (si | ν)

∀ω ∈ Ω

Hence signal i generates a family of conditional distributions over
posteriors {τi(· | ω)}ω∈Ω ⊂ ∆(∆(Ω)) where

τi(µsi | ω) = qi(si | ω)

(and uncoditional distribution τi (µ) =
∑

υ∈Ω p(υ)τi (µ | υ))



Signal Structures

As the sender might want to correlate signals depending on the realisation
of the state, it will be important to characterise the possible conditional
distributions that might be generated by a signal:

Lemma: The family of conditional distributions over posteriors
{τi (· | ω)}ω∈Ω is inducible by a signal given a Bayesian updater if and only
if for any µ ∈ ∆(Ω) with τi (µ) > 0,

µ(ω) =
p(ω)τi(µ | ω)∑
υ p(υ)τi (µ | υ)

(1)

We will therefore abstract from the explicit distributions of the signals and
work directly with conditional distributions over posteriors.



Correlation Neglect

We assume that the receiver

perfectly understands the marginal distribution of each signal,

treats all the signals as conditionally independent.

Lemma: Given m signals, consider µ = (µ1, ..., µm) a vector of
posteriors. Then, the posterior of a receiver with correlation neglect is
given by:

µCN(ω | µ) =

∏m
i=1 µi (ω)
p(ω)m−1∑

υ∈Ω

∏m
i=1 µi (υ)
p(υ)m−1

Note that if m = 1, then µCN(µ) = µ and the receiver acts as a
completely rational agent.



Receiver’s choice

Once the receiver updates her beliefs, she chooses her optimal action
given those beliefs.

Given a posterior µ ∈ ∆(Ω), aµ is the receiver’s optimal choice:

aµ ∈ argmax
a∈A

∑
ω∈Ω

µ(ω)u(a, ω).

In case of multiple solutions we assume she chooses the
sender-preferred solution in order to guarantee existence of the
sender’s problem.



The Sender’s Problem

The sender’s problem is to choose {τ(· | ω)}ω∈Ω ⊂ ∆(∆(Ω)m) to solve:

maxτ v̂(τ) =
∑

ω∈Ω p(ω)
∑

µ∈∆(Ω)m τ(µ | ω)v(aµCN(µ), ω)

s.t. µCN(ω | µ) =

m∏
i=1

µi (ω)

p(ω)m−1

∑
υ∈Ω

m∏
i=1

µi (υ)

p(υ)m−1

and µi (ω) =
p(ω)τi (µi |ω)∑
υ∈Ω pυτi (µi |υ) ∀µi s.t. τi (µi ) > 0, ∀i ∈ {1, ...,m}



Binary Example

Ω = {0, 1}, with prior p = prob(ω = 1) < 1
2 .

Reciever’s optimal action is a = 1 if µCN(1 | µ) ≥ 1
2 and a = 0

otherwise.

The sender has state independent preferences and prefers a = 1 to
a = 0.

1

0 1

µ

p 1
2

aµ



Binary Example
Consider first the case of a single signal:

1

0 1

µ

p 1
2

aµ

The optimal conditional distribution is:

τ(1/2 | 1) = 1

τ(1/2 | 0) =
p

1− p
, τ(0 | 0) = 1− 2p

1− p
.



Binary Example

Suppose that the sender sends m fully correlated signals. The posterior of
a receiver with correlation neglect becomes:

µCN(µ, ..., µ) =

µm

pm−1

µm

pm−1 +
(1−µ)m

(1−p)m−1

1µCN(m)

0 1

µ

p

µCN(1)

µCN(2)µCN(3)
µCN(10)

There is an amplification effect.



Binary Example

For example for m = 2, we can induce µCN(1 | µ) = 1
2 by generating

marginal posteriors

µ =
p

p + (1− p)
(

p
1−p

) 1
2

<
1

2

But since µ < 1
2 , it can be induced with higher probability in state 0:

τ(µ|1) = 1, τ(µ|0) =
(

p

1− p

) 1
2

, τ(0|0) = 1−
(

p

1− p

) 1
2

This then leads to a higher expected posterior for the receiver, as now

Eτ (µ
CN(µ)) > p

The sender is able to manipulate the expected posterior of the
receiver.



Binary Example

In particular, this will lead to a higher expected utility for the sender:

1

0 1

1
2

µ

p

µCN(2)

aµCN(2) 1

0 1

1
2

µ

p

µCN(m)

aµCN(m)

For fixed m, the sender benefits from correlation, but cannot fully
manipulate the receiver.

As the number of signal increases the sender achieves her first best.



Binary Example
What is the optimal signal structure?

For m = 2 signals, the utility of the sender is:

0

1 0

1
0

0.5

1

µ1

µ2

For the binary example, full correlation is optimal.



Example 2: Suboptimality of Full Correlation

Ω = {0, 1}, p(0) = p(1) = 1
2 .

The receiver’s optimal action is her expected state: aµ = µ

The sender has state independent preferences, increasing in a
continuous for a < 1 and with a discontinuity at a = 1.

1

0 1
µ

p

v(µ)



Example 2: Suboptimality of Full Correlation

With full correlation the sender would perfectly reveal the state:

0

1

1
µ

p

v(aµCN )

ω = 1

ω = 0

V FC
2 (p)

0

1

1
µ

p 1
2

v̂(τ)

ω = 1

ω = 0

However, for example, in the case of 2 signals, the following information
structure is an improvement over full correlation:

τ((1, 12)|ω = 1) = τ((12 , 1)|ω = 1) = 1
2

τ((0, 0)|ω = 0) = 1
2 τ((12 ,

1
2)|ω = 0) = 2

3
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General Results

Changing the Expected beliefs:

Proposition: For any distribution q ∈ ∆(Ω), there exists ϵ > 0 and a signal
structure τ with two fully correlated signals, such:

Eτ (µ
CN) = (1− ϵ)p + ϵq



General Results

Bound on Manipulation:

Consider the set

Mω(δ) = {µ ∈ ∆(∆(Ω)m) | µCN(ω | µ) > 1− δ}

Proposition: For any ω, υ ∈ Ω with ω ̸= υ,

τ(Mω(δ) | υ) ≤ m
1

p(υ)

(
δ

1− δ

) 1
m
(
p(υ)

p(ω)

)m−1
m

In particular,
lim
δ→0

τ (Mω(δ)) ≤ pω



General Results

Full manipulation in the limit:

Proposition: When v(a, ω) is continuous, the sender can achieve her first
best in the limit. That is, given {qω}ω∈Ω, there exists a sequence of signal
structures {τm}m∈N indexed by the number of signals, such that for any
ω ∈ Ω and any ϵ > 0,

lim
m→∞

τm({µ | |µCN(µ)− qω| < ϵ} | ω) = 1



Optimal Information Structure

Homogeneous signals:

Proposition: For any joint information structure τ , and its associated
expected utility for the sender v̂(τ), there exists a joint information
structure τ ′ with homogenous marginals, i.e., τ ′i = τ ′j , for all
i , j ∈ {1, ..m}, such that v̂(τ ′) = v̂(τ)

Sketch of Proof: Define τ∗ = 1
m!

∑
σ τ

σ, where τσ are permutations of τ :

τ∗ has homogeneous marginals

v̂(τ∗) = v̂(τ)

τ∗ satisfies condition (1) and hence can be generated by a signal.



Optimal Information Structure

State-independent Preferences:

The expected utility of the sender only depends on the receiver’s
posteriors:

v̂(τ) =
∑

µ∈∆(Ω)m τ(µ)
∑

ω∈Ω µ(µ)(ω)v(aµCN(µ))

=
∑

µ∈∆(Ω)m τ(µ)v(aµCN(µ))

Denote ṽ(µ) = v(aµCN(µ)), and V (·) the concavification of ṽ(·).

Proposition: Given state-independent preferences, V (p) is an upper bound
for the expected utility of the sender

The upper bound might not be reached because it may yield correlation
patterns that are not compatible with (1).



Optimal Information Structure

Full Correlation: The Modified Problem

Denote by ṽFCm (µ) = v(aµCN(µ,...,µ). Suppose that the sender chooses one

signal τ ∈ ∆(∆(Ω)) to maximise
∑

µ∈∆(Ω) τ(µ)ṽ
FC
m (µ), subject to τ being

a Bayes-plaussible distribution of posteriors.

Proposition: Let v(·) a continuous state-independent utility function.
Then the solution of the modified problem converges to her first best as
the number of signals increases. That is, for any ϵ > 0,

lim
m→∞

|V FC
m (p)− v(µFB)| < ϵ



Optimal Information Structure

Full Correlation:

Proposition: Given Ω = {0, 1} and state-independent preferences, if
v(aµCN(µ)) is supermodular in µ, the optimal solution to the sender’s
problem is achieved by fully correlating a set of homogeneous signals.

This result follows from Lorentz (1953) and the result on homogeneity of
signals.

In that case we can solve for the optimal signal structure by solving the
modified problem.



Optimal Information Structure

Sub-optimality of Full Correlation:

Proposition 7: Given state-independent preferences, and m = 2, if
ṽ(µ1, µ2) = v(aµCN(µ1,µ2)) is sub-modular in (µ1, µ2), then the optimal
information structure consists of homogeneous signals with a joint
cumulative distribution function which is the lower Fréchet bound, and
hence negative correlation arises.

This result follows from Muller and Stoyan (2002) and the result on
homogeneity of signals.

(The lower Fréchet bound of a distribution Γ is given by max{0, 2Γ− 1})



Conclusion

We consider the general problem of strategic information design when the
receiver has correlation neglect.

General Manipulation:

We show that the sender can manipulate the receivers expected
posterior in any direction.

Given a fixed number of signals manipulation is bounded.

But as the number of signals increases the sender approaches her
(state-dependent) first best.



Conclusion

Optimal Information Structure:

For state-independent utilities:

Concavification provides an upper bound for the expected utility of
the sender.

Full correlation is optimal in the limit.

If ṽ(µ) is supermodular in µ then full correlation is optimal.

Full correlation is not always optimal. (submodularity, example 2)
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