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Abstract

We present a theory of multi-attribute choice founded in the neuroscience of perception. Ac-
cording to our theory, valuation is formed through a series of pairwise, attribute-level comparisons
implemented by (divisive) normalization — a normatively-grounded form of relative value cod-
ing observed across sensory modalities and in species ranging from honeybees to humans. As
we demonstrate, “pairwise normalization” captures a broad range of behavioral regularities, in-
cluding the compromise and asymmetric dominance effects, the diversification bias in allocation
decisions, and majority-rule preference cycles (among several others). In binary choice, the model
also offers a potential neurobiological foundation for Cobb-Douglas preferences and other classic
microeconomic preference representations.
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1 Introduction

Standard choice theories presume that an individual’s valuation of an alternative does not
depend on the set of alternatives under consideration. However, a large empirical litera-
ture has revealed several violations of such “context-independence.” For example, simply
adding an alternative to a choice set can alter preferences among existing alternatives (see
Rieskamp et al., 2006, for a review). Empirical demonstrations of context effects can be
found in both laboratory experiments (beginning with Huber et al., 1982, and Simonson,
1989) and in field data (e.g. Doyle et al., 1999; Geyskens et al., 2010), and extend to
many types of decisions — including consumer choice, choices among lotteries, doctors’
prescription decisions, perceptual decisions, and mate selection, to name just a few.1

Though less familiar to behavioral researchers, context-independence is also challenged
by an established neuroscience literature (beginning with Hartline and Ratliff, 1957)
demonstrating that the brain encodes information in relative, not absolute terms. For
example, the neural activity encoding the value of an alternative decreases — indicating a
reduced valuation — as the value of another alternative rises (Louie et al., 2011; Holper et
al., 2017). This pattern of neural activity is consistent with (divisive) normalization — a
well-documented and normatively-grounded neural computation originally used to model
the mechanisms of visual perception and more recently applied to value-based choice (see
Rangel and Clithero, 2012, Carandini and Heeger, 2012, and Louie et al., 2015, for re-
views).

In its simplest conceivable form, the normalization computation merely re-expresses
some input value a — which may represent the utility of an alternative, or the intensity of
a sensory stimuli (such as the brightness of a pixel) — relative to another input b as a

a+b .
Indeed, the prevailing neuroscience literature conceptualizes such “division by neurons” as
an arithmetic operation that is actually performed in the brain.2

Why wouldn’t our brains just encode a independently of b? The answer is thought to
stem from biological constraints. The brain has a limited number of neurons, each with
a bounded response range. Thus, information must be compressed within these bounds.
A relative value encoding is then needed to ensure this compression is well-calibrated
to the choice environment (a point noted in the economics literature by Robson, 2001,
and Rayo and Becker, 2007; also see Netzer, 2009, Woodford, 2012, and Robson and
Whitehead, 2018). A relative encoding using the normalization computation has been
shown to optimally mitigate choice mistakes subject to these biological constraints (Webb

1See, for example, Huber et al. (2014), Soltani et al. (2012), Schwartz and Chapman (1999), Trueblood
et al. (2013), Lea and Ryan (2015).

2See, for example, Carandini and Heeger’s (1994) article in Science (which coined the phrase in quotes)
as well as Wilson et al.’s (2012) closely-related work in Nature. As shown by Louie et al. (2014), this
divisive functional form can be derived as the equilibrium solution to the system of differential equations
that govern neural activity in a stylized neural circuit.
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et al., 2016; Steverson et al., 2017), as normalization efficiently facilitates the perception
of both large and small differences on a common scale — e.g. helping to distinguish “one
dollar from two dollars and one million dollars from two million dollars” (Carandini and
Heeger, 2012).

In this paper, we explore whether this inherently context-dependent computation might
relate to context-dependent behavior. To do so, we adapt the “ a

a+b ” normalization model
to the setting where behavioral research on context-dependence is mainly focused: multi-
attribute choice. Specifically, if x is an alternative with x1, . . . , xN denoting its N attribute
values, the decision-maker’s valuation of x according to our basic pairwise normalization
(PN) model is normalized relative to other alternatives in the choice set X as:

V (x; X) =
N∑
n=1

∑
y∈X\x

xn
xn+yn

.

This formulation is “pairwise” in the sense that each term reflects an attribute-level com-
parison (normalization) of x to some other alternative y. Pairwise comparisons have
long been a feature of multi-attribute choice theories (e.g. Tversky and Simonson, 1993)
and have substantial empirical support from eye-tracking studies showing that individuals
typically compare multi-attribute alternatives in pairs on one attribute dimension at a
time. In context-dependent choice, in particular, Noguchi and Stewart (2014) find that
“alternatives are repeatedly compared in pairs on single dimensions.”3

Our modelling approach demonstrates how neuroscience may prove useful to economists
as a source of candidate functional form representations to consider in model selection (as
suggested by Bernheim, 2009). Arguably the simplest, standard multi-attribute choice
model is an additive model, V (x) =

∑
n xn. This additive model provides a common foun-

dation for many leading multi-attribute choice theories that address context-dependence
(e.g. Tversky and Simonson, 1993; Kivetz et al. 2004a; Koszegi and Szeidl, 2013; Bordalo
et al. 2013; and Bushong et al. 2017).4 These theories typically replace each term in the
summation with a function of xn that also depends on the set of alternatives. Similarly, our
theory modifies the additive model by applying pairwise normalization to each attribute
value (effectively replacing xn with

∑
y∈X\x

xn
xn+yn

). This formalizes pairwise normaliza-
tion in its most elemental form, isolated from other factors that may influence choice, and
with minimal parametric freedom. Despite its simplicity, the model’s predictions capture

3Also see Russo and Dosher (1983), Arieli et al. (2011), Noguchi and Stewart (2018), as well as Russo
and Rosen (1975), who emphasize that the predominance of pairwise comparisons in choice may stem
from cognitive constraints, as even ternary comparisons (which they observed roughly 2 percent as often
as pairwise comparisons) can stretch working memory to its limits. For a lengthier discussion of pairwise
comparisons in relation to other theoretical representations of attribute-level comparisons, see Section 8.

4 We consider these relationships more deeply in Sections 7 and 8 (see, in particular, Figure 4 and
Table 2).
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a broad range of context-dependent behavioral regularities. See Table 1.5

The rest of this paper proceeds as follows. Section 2 reviews the behavioral regularities
listed in Table 1. Section 3 presents the theoretical model. Section 4 examines how a
preference between two alternatives can be affected by a third alternative, and relates these
effects to the notion advanced by Tversky and Russo (1969) and Natenzon (2018) that
similar alternatives are “easy to compare.” Section 5 considers choices among alternatives
defined on three dimensions. Section 6 considers various allocation problems. Section 7
explores a one-parameter generalization of the model. Section 8 elaborates on the varying
representations of attribute-level comparisons in the relevant theoretical literature.

2 Behavioral Patterns: A Review

We now review the behavioral patterns listed in Table 1.

(I) Compromise Effect. The ‘compromise effect’ refers to the tendency for decision-
makers — whether subjects in a laboratory experiment (e.g. Simonson, 1989) or real-
world shoppers (Geyskens et al., 2010) — to show a stronger preference for an alternative
if it is presented in a choice set where it is the intermediate option on each dimension. For
example, if car A is safer but less fuel-efficient than car B, an individual who prefers A to
B in a binary choice may instead prefer B when a third car is included, C, that is even
less safe and more efficient than B (see Figure 1).

Fuel Efficiency

Safety

A

B

CDs

Dw

While Car A may be preferred to Car
B in binary choice, Car B may be
preferred with Car C in the choice
set, reflecting a compromise effect,
or with some Car D, whether weakly
(Dw) or strictly (Ds) dominated by
Car B, reflecting a dominance effect.

Figure 1. Illustration of Compromise and Dominance Effects

(II) Dominance Effect. The ‘(asymmetric) dominance effect,’ also known as the ‘at-
traction’ or ‘decoy’ effect, refers to the tendency to show a stronger preference for an
alternative when presented with a ‘decoy’ that is worse on each dimension (e.g. Huber et
al., 1982; Doyle et al., 1999). That is, while the safer but less efficient car A is preferred
to car B in a binary choice, B may be preferred with the addition of a decoy, car D, that is
even less safe and less efficient than B (yet still more efficient than A). Though sometimes
demonstrated using weakly-dominated decoys that match the dominant alternative on its
comparatively weak attribute dimension (e.g. Kivetz et al.’s, 2004b, economist subscrip-
tion study), the dominance effect appears stronger for decoys that are worse — thereby

5For detailed explanations of how each model’s predictions were classified in Table 1, see Appendix D.
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Table 1. Behavioral Patterns Generated by Pairwise Normalization*

P
ai
rw

is
e
N
or
m
al
iz
at
io
n

B
or
da

lo
,G

en
na

io
li,

Sh
le
ife

r
(2
01

3)

B
us
ho

ng
,R

ab
in
,S

ch
w
ar
tz
st
ei
n
(2
01

7)

K
iv
et
z,

N
et
ze
r,
Sr
in
iv
as
an

(2
00

4a
)

Tv
er
sk
y
&

Si
m
on

so
n
(1
99

3)

(I) Compromise Effect Y S Y Y Y

(II) Dominance Effect
{Weak

Strict

Y

Y

S

S

N

Y

N

Y

Y

Y
...Decoy-Range Effect Y S Y Y N

(III) Relative Difference Effect Y S N N N

(IV) Majority-Rule Preference Cycles Y S Y Y N

(V) Splitting Bias Y S Y Y N

(VI) Alignability Effect Y S Y Y N

(VII) Diversification Bias Y S N N N

(VIII) Feature Bias Y Y N N N

Key behavioral regularities predicted by the basic PN model as compared to several prevailing
multi-attribute choice theories. Here, ‘Y’ means the model robustly predicts the behavior (i.e. never
predicts the opposite or no effect under conditions for which it would be expected), ‘N’ means the
model does not predict the behavior, and ‘S’ means the model sometimes predicts the behavior and
sometimes predicts the opposite effect. See Appendix D for a detailed explanation of how these
predictions were classified and Figure 2 for illustrations of the predictions for items (I) and (II).

* This table only includes theories that are directly comparable to the basic PN model in that the
domains of their analyses have sufficient overlap with ours. For instance, to consistently classify
a theory’s predictions for the above items, alternatives must be defined on exogenous attribute
dimensions and the theory must allow more than two attributes. Notable theories addressing the
compromise and/or dominance effects in somewhat different domains include Kamenica’s (2008)
contextual inference theory (which, unlike the theories listed above, models a market with both
consumers and a firm), de Clippel and Eliaz’s (2012) dual-self intrapersonal bargaining theory,
Soltani et al.’s (2012) theory of range (instead of divisive) normalization across two attributes, Ok et
al.’s (2015) endogenous reference point theory, and Natenzon’s (2018) Bayesian probit theory. That
said, a static version of Koszegi and Szeidl’s (2013) dynamic ‘focusing’ model is directly comparable to
our model. While this theory does not seek to address the context-dependent phenomena addressed
by other theories, for completeness we derive their predictions for the above items in Appendix D.
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expanding the range between the best and worst alternatives — on that dimension (Hu-
ber et al., 1982; Soltani et al., 2012). This ‘decoy-range effect’ suggests that a preference
reversal from car A to car B is more likely with the strictly dominated decoy Ds than with
the weakly dominated Dw.

(III) Relative Difference Effect. The ‘relative difference effect’ refers to the tendency to
treat a difference between small values as if it were greater than an equal-sized difference
between large values. For example, Kahneman and Tversky (1984) find that people are
often willing to drive twenty minutes to save $5 on a $15 calculator, but not to save $5 on a
$125 jacket — a finding that has since been confirmed and generalized by many others (see
Azar, 2008, for a review). Among many illustrations of relative difference effects in the
contingent valuation literature, Shiell and Gold (2002) find that subjects value immunity
to a syndrome more on its own than as part of a bundle that already includes immunity
to another syndrome.

(IV) Majority-Rule Preference Cycles. Suppose each of three potential alternatives is
best on one dimension, second best on another, and worst on a third as follows:

Attribute 1 Attribute 2 Attribute 3
Alternative A Best Middle Worst
Alternative B Middle Worst Best
Alternative C Worst Best Middle

As shown by May (1954), binary choices among three such alternatives often exhibit a
‘majority-rule preference cycle’ whereby each alternative is preferred to that for which it is
better on two of three attributes — here, A would be preferred to B, B would be preferred
to C, yet C would be preferred to A.6 In a recent study with alternatives designed such
to put subjects on the cusp of indifference, Tsetsos et al. (2016) show that majority-rule
preference cycles can even be more common than transitive preferences.

(V) Splitting Bias. The ‘splitting bias’ refers to the tendency to place more (cumulative)
weight on an attribute when it is split into two subattributes. For example, job applicants
weighted “job security” of a potential job more heavily if the attribute was decomposed
into “personal job security” and “stability of the firm/risk of bankruptcy,” and likewise
weighted “income” more heavily if it was decomposed into “starting salary” and “future
salary increases” (Weber et al., 1988).7 Two direct analogs (or arguably special cases)

6 In May’s experiment, 17 of 62 subjects exhibited this particular preference ordering among hypothet-
ical spouses, while no subjects exhibited the opposite ‘minority-rule’ cycle. As detailed in Appendix B,
we also conducted an incentivized experiment confirming a statistically significant tendency for subjects
to exhibit majority-rule preference cycles in choices among vacation packages. Russo and Dosher (1983)
and Zhang et al. (2006) similarly report a tendency for subjects to overvalue an alternative in relation to
another for which it is better on most attribute dimensions.

7Also see Weber and Borcherding (1993) for a brief review of this literature, as well as more recent
evidence by Jacobi and Hobbs (2007) and Hamalainen and Alaja (2008).
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of the splitting bias are the ‘event-splitting’ (or ‘coalescing’) effect in risky choice, which
refers to the tendency to value a probabilistic reward more if the event for which the
reward is attained is described as two sub-events (Starmer and Sugden, 1993; Humphrey,
1995; Birnbaum and Bahra, 2007), and the ‘part-whole bias’ in contingent valuation, which
refers to the tendency to value a good more when its components are evaluated separately
than when evaluated holistically (Kahneman and Knetsch, 1992; Bateman et al., 1997).

(VI) Alignability Effect. The ‘alignability effect’ refers to the tendency to place more
weight on an attribute that is ‘alignable’ in the sense that it is present (though not neces-
sarily equal) for all alternatives (Markman and Medin, 1995; Zhang and Markman, 1998;
Gourville and Soman, 2005). For example, when considering a 1000-watt microwave or a
1100-watt microwave, one of which has a moisture sensor and the other an adjustable-speed
turntable, the alignability effect implies that the wattage difference may be overweighted
relative to the other, nonalignable features. Similarly, individuals tend to weight alignable
attributes more heavily when alternatives are evaluated jointly rather than separately. For
example, Hsee et al. (1999) find that a complete 24-piece dinnerware set is often rated
more favorably than an incomplete 31-piece set when the sets are separately rated, but
not when they are jointly rated.

(VII) Diversification Bias. The ‘diversification bias’ refers to the tendency to dispro-
portionately favor equal allocations of an asset or resource across its components. For
instance, Read and Loewenstein (1995) find that Halloween trick-or-treaters often select
a mixed bundle of candy bars featuring one Milky Way and one Three Musketeers over a
bundle with two of the same kind, despite selecting the same candy bar in two consecutive
choices between one Milky Way and one Three Musketeers. In quite different settings,
diversified gambles are often preferred to undiversified gambles that stochastically domi-
nate the former (Rubinstein, 2002), while investors often exhibit a strong preference for
savings plans that allocate contributions equally across the different funds included in the
plan (Benartzi and Thaler, 2001; Bardolet et al., 2007).8

(VIII) Feature Bias. The ‘(extra) feature bias’ refers to the tendency to overvalue
products with the most available features. As one example, demand for a video game
rises substantially after the development of a new “button” or “scrollbar” control, despite
buyers’ negligible usage of the new feature (Meyer et al., 2008), while more generally
buyers commonly report dissatisfaction, stress, and anxiety with many-feature products
after purchase (Thompson et al., 2005; Mick and Fournier, 1998). For a firm, the addition
of an irrelevant product feature may create a sustained competitive advantage, even when
consumers acknowledge the feature’s irrelevance (Carpenter et al., 1994). Supply-side

8As noted in these studies, investors favoring equal allocations across funds will end up investing more
(or less) in stocks than in bonds simply because the available plans happen to include a greater (smaller)
number of stock funds than bond funds.
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responses to the feature bias appear to be common in light of the widely-noted proliferation
of products with an excessive number of features — a trend known as “feature bloat” or
“feature creep” (Thompson and Norton, 2011).

3 Basic Theoretical Model

Our basic setting is standard. A decision-maker (DM) faces a choice set X, where each
x = (x1, . . . , xN) ∈ X is defined on N > 0 attribute dimensions and xn ≥ 0 denotes x’s
unnormalized attribute value (in utils) on attribute n.9 In the basic PN model, the DM’s
valuation of x is given by:

V (x; X) =
N∑
n=1

∑
y∈X\x

xn
xn+yn

, (1)

where the DM (strictly) prefers x to y given X if V (x; X) > V (y; X) and is indifferent if
V (x; X) = V (y; X). Although xn

xn+yn
is undefined when xn = yn = 0, this case will not be

relevant to our analysis. For this reason and without loss of insight, we assume throughout
that, for all n ≤ N , there is at most one x ∈ X with xn = 0.

The normalized valuation in (1) can be thought of as arising from a series of pairwise
comparisons, where each of x’s attribute values are normalized in relation to the corre-
sponding attribute value of each other alternative y ∈ X\x. That is, when ‘compared’ to
y, the normalized value of x on attribute n is simply xn

xn+yn
, while the overall valuation

of x is the sum of all such terms.10,11 Note, in the baseline model it is implicit that the
DM attends to all attributes of all alternatives when computing V (x;X).12 A setting in
which there are too many attributes and/or alternatives can be readily accounted for if
X and n = 1, . . . , N instead represent the subsets of alternatives and attributes that are
attended to, as in Noguchi and Stewart (2018). To see how our theoretical model may
be adapted for empirical analyses, including subjective weights on measurable attributes
defined in non-util units, see Daviet and Webb (2019). Also see Sullivan et al. (2019) for

9We interpret xn as being expressed in utils to maintain consistency with existing multi-attribute choice
theories. Other theories often make this more explicit by expressing attribute values through a utility
function, e.g. letting un(x) denote the value of x on attribute n. We just use xn to economize on notation.

10We can readily adapt the model to accommodate an attribute, such as price, for which larger values
are less desirable by subtracting (instead of adding) the normalized attribute value. For instance, if
x = (px, qx) and y = (py, qy) are defined by their price and a single quality measure, the DM’s normalized
valuation of x in relation to y would simply be V (x; {x,y}) = qx

qx+qy
− px

px+py
.

11Following the literature, here the un-normalized attribute values are implicitly presumed to be separa-
ble across dimensions, so that a standard additive preference model, V +(x) =

∑
n xn, may be regarded as

a logical benchmark in the absence of pairwise normalization. V + is also typically regarded as a candidate
for representing welfare, although this interpretation is not necessary for our analysis.

12This does not prevent the model from addressing the context-dependent behaviors described in Sec-
tion 2. For example, the analysis of the dominance and compromise effects conducted by Noguchi and
Stewart (2014) finds that all attributes of all alternatives are typically attended to in two-attribute,
three-alternative choice sets.
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an additional empirical test of the model.

3.1 Binary Choice with Two Attributes

We first consider two-attribute binary choice:

Lemma 1 Given N = 2 and X = {x,y}, x is preferred to y if and only if x1x2 > y1y2.

Proof of Lemma 1. From (1), x is preferred to y given X = {x,y} if and only if
x1

x1+y1
+ x2

x2+y2
> y1

x1+y1
+ y2

x2+y2
. Multiplying through by (x1+y1)(x2+y2)

2 > 0, then sub-
tracting x1y2+y1x2

2 from both sides, we see this is equivalent to x1x2 > y1y2. �

Thus, with two attributes, binary-choice preferences under (1) can be equivalently rep-
resented by a symmetric Cobb-Douglas preference model, V cd(x) = x1x2, which is well-
known to generate preferences that are convex and well-behaved. Later in this paper (see
Section 7 and Appendix C.5), we will see how some other familiar microeconomic prefer-
ence representations can relate to parameteric generalizations of the basic PN model.

Much of our subsequent analysis builds on the two-attribute binary-choice problem
addressed by Lemma 1. Except where otherwise noted, we will assume that x is stronger
on the first attribute and y is stronger on the second, x1>y1 and x2<y2, thus ensuring
the DM’s preference among x and y is nontrivial. In some cases, it will also be useful to
work from the following benchmark of indifference between x and y in binary choice:

Assumption BCI (Binary-Choice Indifference) The DM is indifferent between x =

(x1, x2) and y = (y1, y2) given X = {x,y}.

Our next result describes how identical improvements to both alternatives on the same
dimension will shift preferences towards the alternative that is weaker on that dimension.

Proposition 1 Under Assumption BCI, let x′ = (x1, x2+k) and y′ = (y1, y2+k) for some
k > 0. Then x′ will be preferred to y′ with X = {x′,y′}.

Proof of Proposition 1. From Lemma 1, x′ will be preferred to y′ given X = {x′,y′} if and
only if x1(x2 +k) > y1(y2 +k). Noting x1x2 = y1y2 under Assumption BCI, this inequality
reduces to x1k > y1k, which must hold since x1 > y1 and k > 0. �

Proposition 1 captures evidence of the relative difference effect (see Section 2). In con-
trast, most prevailing theories predict that the DM would remain indifferent after both
alternatives are improved by the same amount on the same dimension. The exception is
Bordalo et al.’s (2013) theory, which allows the preference to shift in both directions.13

13The direction of this preference shift can depend on many factors, including the extent to which the
alternatives are improved (i.e. the magnitude of k > 0, in our notation). See Appendix D.3 for details.
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To aid our interpretation of Proposition 1 (and several later results), we define

∆(a, b) ≡
∣∣∣a−ba+b

∣∣∣, (2)

which provides a metric of the perceptual “distance” or contrast between two values, after
each value has been normalized in relation to the other.14 For our two-attribute binary-
choice problem, it is then readily verified that x will be preferred to y if and only if
∆(x1, y1) > ∆(y2, x2), in which case there is greater contrast on the dimension where x

has an advantage than on the dimension where y has an advantage.
Given this link between preferences and contrast, Proposition 1 can be understood as

arising from a key property of ∆, diminishing sensitivity, whereby increasing two input
values by the same amount decreases the perceived distance between them: in this case,
∆(y2 + k, x2 + k) < ∆(y2, x2). The notion that diminishing sensitivity may be important
in understanding how individuals perceive value in multi-attribute choice settings was
previously highlighted by Bordalo et al. (2013). Along similar lines, we may also regard
Proposition 1 as a choice analog of Weber’s (1834) Law of Perception, which describes how
increasing the intensities of two stimuli diminishes the perceptibility of their difference —
for example, a one-gram difference in the weights of two rocks is more easily detected if
the rocks weigh 1 gram and 2 grams than if they weigh 101 grams and 102 grams.

4 Adding a Third Alternative to the Choice Set

We now examine how preferences between x and y may be impacted by adding a third
alternative z. To aid our understanding, let mxy ≡

(x1+y1
2 , x2+y2

2

)
denote the midpoint

between x and y. Noting x1
x2
>

mxy
1

mxy
2
> y1

y2
(since x is better than y on the first dimension

and worse on the second), we will say that z is more similar to x than to y if and only
if z1

z2
>

mxy
1

mxy
2
, in which case z’s attribute values are tilted towards x and away from y in

relation to the midpoint.
The next lemma demonstrates the importance of relative similarity in determining the

effect of z on preferences between x and y. For ease of exposition, here we consider our
benchmark of binary-choice indifference (Assumption BCI), so that a strict preference
between x and y in trinary choice is necessarily caused by the introduction of z.

Lemma 2 Under Assumption BCI, suppose z is more similar to x than to y. Then, given
X = {x,y, z}, x is preferred to y if and only if x is also preferred to z.

Proof of Lemma 2. See Appendix.
14This definition of ∆ — which parallels the standard conceptualization of contrast in the visual per-

ception literature (Carandini and Heeger, 2012) — qualifies as a metric (distance) function because it
satisfies: (a) ∆(a, b) ≥ 0 for all a, b; (b) ∆(a, b) = 0 if and only if a = b; (c) ∆(a, b) = ∆(b, a); and (d)
∆(a, c) ≤ ∆(a, b) + ∆(b, c). The last property (i.e. the Triangle Inequality) is addressed in Section 5.
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Given z is more similar to x than to y and with x and y equally-valued in binary choice,
the basic PN model predicts that the magnitude of the perceived value difference will be
larger when comparing z to x than when comparing z to y: |V (x;{x, z})−V (z;{x, z})| >
|V (y;{y, z})−V (z;{y, z})|. In this way, pairwise normalization makes it “easier to compare”
more similar alternatives, as proposed by Tversky and Russo (1969) and Natenzon (2018).
Consequently, if z is inferior to x and y, it will enhance the perception of x more than it
enhances the perception of y, causing the DM’s preference to shift in favor of x.15 This
naturally yields the well-known dominance and compromise effects:16

Proposition 2 Under Assumption BCI, x will be preferred to y with X = {x,y, z} in
each of the following scenarios:
(i) x is a compromise between y and z in that z1 > x1 > y1 and y2 > x2 > z2, provided z

is not preferred to x and y.
(ii) x asymmetrically dominates z 6= x in that x1 ≥ z1 > y1 and y2 > x2 ≥ z2.

Proof of Proposition 2. It is readily apparent that x is preferred to z in both parts (i) and
(ii). Next, observe z1

z2
> x1

x2
>

mxy
1

mxy
2

given z1 > x1 and z2 < x2 in part (i), and z1
z2
> y1

x2
=

mxy
1

mxy
2

given z1 > y1 and z2 < x2 in part (ii), where y1
x2

=
mxy

1

mxy
2

is verified by cross multiplication
with x1x2 = y1y2 (which holds from Lemma 1 with Assumption BCI). The preferences for
x over y with X = {x,y, z} then follow from Lemma 2. �

The predicted effect of z on the preference between x and y is depicted in the top-left
graph in Figure 2. The curved, dashed line on which x and y reside is the binary-choice
indifference curve, where z is neither inferior nor superior to x and y. The dashed line
projecting from the origin through the midpoint mxy represents the boundary where z is
equally similar to x and to y. Therefore, in the lower pink region, z is more similar to x

than to y and inferior to both, implying x is preferred to y in trinary choice (Lemma 2)
as in the compromise and dominance effects (see the points labeled ‘C,’ ‘Dw,’ and ‘Ds’).
As shown in the other graphs, prevailing theories do not always predict these effects.

15While Lemma 2 does not make reference to the DM’s preference between y and z, Assumption BCI
ensures that the status of z as preferred or not preferred to x also applies to y (and that this holds in
both binary and trinary choice). This property is formally established in Appendix C.4. The ease of
comparison result as well as a stochastic choice variant of the result are formalized in Appendix C.1.

16Note, in both the compromise (part i) and dominance (part ii) effects, z is more similar to x than to
y (i.e. z1

z2
>

mxy
1

mxy
2
) and inferior to both. Also note, the requirement for the compromise effect that z is

not preferred to x and y fits with empirical demonstrations, as a shift in preference among x and y will
not be observed if z is preferred (and hence, chosen) over both. As discussed in Section 4.1, however, the
basic PN model’s prediction that the preference shifts away from the compromise alternative x in relation
to y when z is preferred to both is experimentally testable using a so-called “phantom” choice design.
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Figure 2: The Effect of Adding z to the Choice Set.
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Each graph shows the effect of z on the preference between x and y, as predicted by the indicated
model. With one exception (see *), the graphs were created using x=(2, 1) and y=(1, 2) as a simple
illustration that ensures binary-choice indifference in all models considered. Additional parametric and
functional form restrictions needed to create the graphs are described in Appendix E.
* While Bordalo et al.’s (2013) model can be analyzed for alternatives defined by two quality attributes
(Bordalo et al., 2013, Appendix B), it is primarily analyzed for alternatives defined by their price and
a single quality attribute. For this reason, both model variations are considered here, where we use
x=(px, qx)=(1, 1) and y=(py, qy)=(2, 2) to create the ‘price-quality’ graph.
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4.1 The “Strength” of the Compromise and Dominance Effects

Besides simply describing the regions in which z will break the DM’s binary-choice indif-
ference in favor of x or of y, pairwise normalization also provides a measure of where z

must be located to shift any preference relation. This allows a characterization of how
changing z can strengthen or weaken its effect on the preference between x and y.

Proposition 3 For N = 2, suppose the DM prefers y to x given X = {x,y} and is
indifferent between x and y given X = {x,y, z}. Then x will be (strictly) preferred to y

with X = {x,y, z′} in each of the following scenarios:
(i) x1 > z1 = z′1 > y1 and y2 > x2 ≥ z2 > z′2.
(ii) z1 > x1 > z′1 > y1 and y2 > x2 > z2 = z′2.

Proof of Proposition 3. Using V (x;{x,y, z}) = V (y;{x,y, z}) and (1), V (x;{x,y, z′}) −
V (y;{x,y, z′}) =

(z2−z′2)(y2−x2)(x2y2−z2z′2)
(x2+z2)(x2+z′2)(y2+z2)(y2+z′2)

in part (i) and V (x;{x,y, z′})−V (y;{x,y, z′})

=
(z1−z′1)(x1−y1)(z1z

′
1−x1y1)

(x1+z1)(x1+z′1)(y1+z1)(y1+z′1)
in part (ii). Both expressions must be positive since y2 > x2 ≥

z2 > z′2 and z1 > x1 > z′1 > y1, ensuring x is preferred to y given X = {x,y, z′}. �

Part (i) of Proposition 3 considers a variation of the dominance effect whereby z now
causes a shift from a strict binary-choice preference for y over x to indifference in trinary
choice. We then see that an alternate decoy z′, which is identical to z on the first dimension
but worse on the second, instead creates a strict preference for x. This prediction fits with
evidence of a decoy-range effect (see Section 2), in which the dominance effect becomes
more prominent when the decoy becomes worse on the dimension for which it is the weakest
alternative in the choice set.

Part (ii) of Proposition 3 analogously considers a variation of the compromise effect
whereby z causes a shift from a strict binary-choice preference for y over x to indifference
in trinary choice. In turn, an asymmetrically dominated decoy z′, which is the same as
z on the second dimension but is now worse than x on the first dimension, will create
a strict preference for x over y. The model therefore predicts that the dominance effect
is “stronger” than the compromise effect. While additional tests would be useful, a re-
cent experiment by Noguchi and Stewart (2018) provides preliminary evidence that the
dominance effect is indeed stronger than the compromise effect.

To help illustrate how z’s location in attribute space determines the “strength” of its
effect on the preference between x and y, Figure 3 reproduces the graph in Figure 2
depicting the predictions of the basic PN model, except the regions are now shaded based
on the magnitude of the difference between the normalized valuations of x and y in trinary
choice. The gray arrows indicate that an asymmetrically-dominated decoy zd enhances the
perception of x relative to y, but this effect weakens as zd2 increases — effectively shrinking
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the range (y2− zd2 ) of values on this dimension, as in the decoy-range effect — and also as
zd1 increases to a point where x no longer dominates zd, becoming a compromise instead.

Figure 3: The “Strength” of z’s Effect on Preferences Between x and y.

maxmin 0

Left: V (x; {x,y, z})− V (y; {x,y, z})

Below: Pr[choose x]−Pr[choose y] (est.)

Soltani et al. (2012) data:

z1

z2

xx

zdzd

yy

xx

The graph on left re-illustrates the predicted effect of z on the preference between x and y,
as originally shown in Figure 2, except here the regions are shaded based on the magnitude
of the normalized value difference between x and y with z included in the choice set. The
inset on right provides a visualization of choice data from Soltani et al.’s (2012) experiment,
showing z’s effect on the relative likelihood of choosing the more similar alternative x
relative to the less similar alternative y (which were calibrated to reside on the same binary-
choice indifference curve). The choice data at each location (pooled over all subjects) is
smoothed using a locally-weighted linear regression with smoothing parameter 1/3.

For comparison, the inset in Figure 3 depicts the estimated difference in the choice
probabilities of x and y as a function of the z’s location in attribute space using choice
data from Soltani et al. (2012). In this experiment, the locations of x and y were chosen
so that each subject was just indifferent between them (therefore relative valuations, or
weights, on each attribute were controlled for). The introduction of z necessarily revealed
their preference between x and y because it was only a “phantom” (i.e. it was presented
with x and y but could not actually be chosen). While only suggestive, the observed
patterns align with the model’s predictions that increasing zd1 and zd2 would weaken the
effect of zd in shifting preference in favor of x relative to y. The phantom design also
allows us to consider the effect of a superior z, which would presumably be chosen over x
and y if it were feasible. In this case, subjects’ preferences appear to shift in favor of y
instead of x (see the blue region above and to the right of x). This matches the prediction
of the basic PN model.17

17Note, while our units (utils) differ from the units of the attributes (which reflected the values of various
lotteries) in Soltani et al. (2012), this does not affect the qualitative interpretation of the analysis under
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5 Binary Choice with Three Attributes

So far, our analysis has only considered choices with alternatives defined on two attribute
dimensions. In this section, we consider (binary-choice) preferences among alternatives
that vary on three attribute dimensions. Our first such example shows that, with three-
attribute choice alternatives, preferences can now be intransitive:

Example 1 Suppose x = (a, b, c), x′ = (b, c, a), and x′′ = (c, a, b) with a > b > c. Then:

V (x;{x,x′})− V (x′;{x,x′}) = V (x′;{x′,x′′})− V (x′′;{x′,x′′})

= V (x′′;{x,x′′})−V (x;{x,x′′}) = ∆(a, b)+∆(b, c)−∆(a, c) =
(a−b)(b−c)(a−c)
(a+b)(b+c)(a+c) > 0.

Thus, in binary choices, x is preferred to x′, x′ is preferred to x′′, and x′′ is preferred to x.

In Example 1, x, x′, and x′′ satisfy a ‘cyclical majority-dominance’ property whereby x

is better than x′ on two of three attributes, x′ is better than x′′ on two of three attributes,
and x′′ is better than x on two of three attributes. In turn, the DM exhibits a majority-
rule preference cycle, as each alternative is preferred to that for which it is better on two
out of three attributes. This particular preference cycle arises directly from the fact that,
as a metric of perceptual distance, the contrast function satisfies the triangle inequality
(see footnote 14). That is, if a > b > c > 0, then

∆(a, b) + ∆(b, c) > ∆(a, c).

This relation implies that, for any two alternatives among x, x′, and x′′ in Example 1,
the total contrast on the two dimensions for which the majority-dominant alternative has
an advantage will be greater than the contrast on the dimension for which the minority-
dominant alternative has an advantage.

In general, with three potential alternatives that satisfy the cyclical majority-dominance
property, PN does not necessarily imply that all binary-choice preferences are intransitive.
Instead, it predicts that if they are intransitive, they will only be intransitive in one
direction. In principle, intransitivity could arise in one of two ways: a majority-rule
preference cycle (as in Example 1); or an opposite ‘minority-rule’ cycle. The next result
clarifies that only majority-rule preference cycles can arise under PN, which matches
evidence discussed in Section 2:

Proposition 4 Given N = 3, suppose x, x′, and x′′ satisfy x1 > x′1 > x′′1, x′′2 > x2 > x′2,
and x′3 > x′′3 > x3. Then, if binary-choice preferences among x, x′, and x′′ are intransitive,
it must be the case that x is preferred to x′, x′ is preferred to x′′, and x′′ is preferred to x.

the natural assumption that these units are positively related.
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Proof of Proposition 4. See Appendix.

Our next result considers the effect of splitting an attribute into two sub-attributes,
effectively re-framing a choice between two-attribute alternatives, x and y, as a choice
between three-attribute alternatives, x′ and y′:

Proposition 5 Under Assumption BCI, let x′ = (x1a, x1b, x2) and y′ = (y1a, y1b, y2) with
x1a + x1b = x1, y1a + y1b = y1, x1a ≥ y1a, and x1b ≥ y1b. Then x′ is preferred to y′ given
X = {x′,y′}.

Proof of Proposition 5. x′ will be preferred to y′ if and only if ∆(x1a, y1a) + ∆(x1b, y1b) >

∆(y2, x2). Under Assumption BCI, ∆(y2, x2) = ∆(x1, y1) = ∆(x1a + x1b, y1a + y1b), which
implies the previous condition is equivalent to ∆(x1a, y1a)+∆(x1b, y1b) > ∆(x1a+x1b, y1a+

y1b), which itself is equivalent to (x1a−y1a)(x1b+y1b)
2+(x1b−y1b)(x1a+y1a)2

(x1a+y1a)(x1b+y1b)(x1a+y1a+x1b+y1b)
> 0 and must hold

since both terms in the numerator are non-negative and at least one is strictly positive
given x1a ≥ y1a and x1b ≥ y1b (with at most one inequality binding). �

Consistent with evidence of the splitting bias (see Section 2), attribute-splitting shifts
preferences toward the alternative that is stronger on the split attribute, in this case x,
provided its advantage is maintained on each sub-attribute. The reason x’s advantage over
y on attribute 1 is perceived to be larger when spread over two sub-attributes naturally
follows from the fact that the contrast function ∆ satisfies the triangle inequality.18

Next, we examine the effect of attribute alignability on binary-choice preferences. Here,
an attribute is considered ‘alignable’ if the corresponding attribute values are strictly
positive for both alternatives. To isolate the effect of alignability, we will work from
Assumption BCI, while presuming that both attributes are alignable. We then consider
preferences among two modified alternatives with only one alignable attribute:

Proposition 6 Under Assumption BCI with min{x1, x2, y1, y2} > 0, let x′ = (x1, x2, 0)

and y′ = (y1, 0, y2). Then x′ is preferred to y′ given X = {x′,y′}.

Proof of Proposition 6. V (x′;{x′,y′})−V (y′;{x′,y′}) = x1−y1
x1+y1

+ x2
x2
− y2

y2
= x1−y1

x1+y1
> 0. �

The preference for x′ over y′ described by Proposition 6 (along with indifference between
x and y) indicates that the advantage y2 > x2 is weighted more heavily if y2 and x2
exist on the same attribute dimension than if they exist on separate (i.e. non-alignable)
dimensions. This matches evidence of the alignability effect described in Section 2.

18This effect is also amplified by diminishing sensitivity in ∆. To illustrate, suppose x1 = 6, y1 = 4,
x1a = x1b = 3, and y1a = y1b = 2. The triangle inequality implies ∆(6, 4) < ∆(6, 5) + ∆(5, 4), while
diminishing sensitivity implies ∆(6, 5)<∆(5, 4)<∆(3, 2). Thus, ∆(6, 4)<∆(3, 2)+∆(3, 2), which means
the total contrast between x1a and y1a and between x1b and y1b exceeds the contrast between x1 and y1.
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6 Allocation Problems

We now consider a choice between different allocations of an asset (or resource), with
total value A > 0, across N dimensions. A given allocation x of the asset then satisfies∑

n≤N xn = A. For simplicity, this setup implicitly presumes that allocations generate the
same rate of return on all dimensions. Unequal returns are considered in Appendix C.2.

While stylized, the formulation described above provides a simple baseline that can
be related to a variety of allocation problems. For example, A could represent a budget
that is spent on consumption bundles defined over N goods or an investor’s recurring
contribution to a savings plan that includes N different funds.

Proposition 7 Given N > 1 and A > 0, suppose xn = A
N for all n ≤ N . Then, for any

x′ 6= x with
∑

n≤N x
′
n = A, x is preferred to x′ given X = {x,x′}.

Proof of Proposition 7. See Appendix.

From Proposition 7, a balanced allocation that allocates an equal 1
N share of the asset

to each dimension will be strictly preferred to any other possible allocation of the asset.
This result aligns with evidence of a diversification bias, such as Benartzi and Thaler’s
(2001) finding that investors often follow a “ 1

N heuristic” by selecting a balanced savings
plan that allocates contributions equally across the N available funds. Note, since we
abstract from the possibility of uncertain returns, this preference for a balanced allocation
cannot be rationalized as a variance-reduction strategy and thus represents a “bias” in
relation to a standard additive preference model (V +(x) =

∑
n xn), which would predict

indifference between any two allocations of the same asset. Furthermore, Proposition 7
still applies even if allocations yield higher returns on some dimensions than others (see
Appendix C.2), in which case the interpretation as a “bias” may be more self-evident.

Considering this preference for a balanced allocation, it is natural to suspect that a
DM would generally favor allocations for which all dimensions receive a positive share of
the asset. To explore this idea, suppose two firms previously offered identical products
defined on N − 1 > 0 dimensions, each of which may be thought of as representing a
distinct product feature. However, both firms have since invested q > 0 in research and
development to improve their products. One firm improved the quality (i.e. unnormalized
attribute value) of an existing product feature, from xn′ > 0 to xn′ + q, on dimension
n′ ≤ N − 1. The other firm innovated a Nth product feature, attaining a quality level of
xN = q on this new dimension. As our next result shows, the product with the new feature
will now be preferred to the product with the improvement to an existing feature:

Proposition 8 Given N > 1 and q > 0, suppose xN = q, x′N = 0, x′n′ = xn′ + q for some
n′ <N , and x′n = xn > 0 for all other n<N . Then x is preferred to x′ given X = {x,x′}.
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Proof of Proposition 8. V (x;X)− V (x′;X) = ∆(q, 0)−∆(xn′ + q, xn′) = 2xn′
q+2xn′

> 0. �

This prediction that a new product feature will be valued more than an otherwise-
equivalent improvement to an existing product feature fits with evidence of the feature
bias (see Section 2). Here, the feature bias can be understood as a consequence of dimin-
ishing sensitivity in ∆. Since the mean attribute value between the two products is higher
for the existing feature than for the new feature (i.e. xn′+ q

2 >
q
2), the value difference on

the new dimension N will, as a result of diminishing sensitivity, be perceived as greater
than the equal-sized value difference on the existing dimension n′.

Proposition 8 applies even if allocations yield higher returns on some dimensions than
others (see Appendix C.2). This is especially noteworthy if the return to investing q (in
terms of the increase in the corresponding attribute value) is lower on the new dimension.
In this case, the product with the new feature would be preferred despite its lower overall
quality. Thus, in product-level investment decisions, firms would naturally have an incen-
tive to allocate research and development resources towards innovating new features, even
if they add little actual value to the product. In this way, pairwise normalization offers
a potential explanation for the phenomenon known as “feature bloat” or “feature creep”
— i.e. the proliferation of products with an excessive number of features (e.g. Thompson
and Norton, 2011) — as well as the related observation that developing “irrelevant” new
product features can foster a sustained competitive advantage (Carpenter et al., 1994).

7 A One-Parameter Generalization

This section considers a generalization of our model based on a common one-parameter
formulation of the normalization computation in neuroscience. The exercise will allow us
to assess the extent to which the predictions of the basic model are maintained under this
generalization, while also revealing some new predictions.

In this formulation, the normalized value of a single input a in relation to b is now
a

σ+a+b with σ ≥ 0. As with the a
a+b model, we adapt the a

σ+a+b model to multi-attribute
choice through our notion of pairwise, attribute-level comparisons as

V ∗(x; X) =
∑
n≤N

∑
y∈X\x

xn
σ+xn+yn

. (3)

A more detailed discussion of how σ affects the perception of attributes in the model, and
its foundation in the neuroscience literature, is provided in Appendix C.5.

7.1 Binary-Choice Preferences

Binary-choice preferences with two attributes can now be represented as a composite of
preferences under the (symmetric) Cobb-Douglas and additive preference models.
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Lemma 3 Given V cd(x′) = x′′1x
′′
2 and V +(x′′) = x′′1 + x′′2 with N = 2 and x′′ ∈ {x,x′}:

(i) If V cd(x) ≥ V cd(x′), V +(x) ≥ V +(x′), and σ ≥ 0 with at least two of these inequalities
non-binding, then x is preferred to x′ given X = {x,x′}.
(ii) If V cd(x)> V cd(x′) and V +(x′)> V +(x), then x is preferred to x′ given X = {x,x′}
if and only if σ < 2(V cd(x)−V cd(x′))

V +(x′)−V +(x)
.

Proof of Lemma 3. See Appendix.

Thus, if the Cobb-Douglas (V cd) and additive (V +) preference models agree in their
rankings among two alternatives, the DM’s preference will align with this ranking. If
there is disagreement, the DM’s preference will coincide with the additive model if and
only if σ is sufficiently large. Thus, a larger σ effectively implies a larger weight on additive
relative to Cobb-Douglas preferences in determining the preference under (3).

The role of σ in arbitrating binary-choice preferences is depicted in Figure 4. Compared
to the basic PN model (equivalently represented by Cobb-Douglas preferences, top left),
the model with σ > 0 predicts flatter indifference curves (top right).19 In the large-
σ limit, binary choice preferences converge to additive preferences, which also describes
binary-choice preferences in most prevailing multi-attribute choice theories (bottom right).

7.2 Robustness of Key Behavioral Predictions

Next, we see that many key predictions of the basic PN model are maintained with σ > 0:

Proposition 9 For all σ ≥ 0, the following results still hold under (3):
(i) the relative difference effect (Proposition 1);
(ii) majority-rule preference cycles (Proposition 4);
(iii) the splitting bias (Proposition 5);
(iv) the alignability effect (Proposition 6);
(v) the diversification bias (Proposition 7);
(vi) the feature bias (Proposition 8).

Proof of Proposition 9. See Appendix.

To clarify the one-parameter model’s predictions regarding the compromise and dominance
effects, which are not addressed in Proposition 9, we will now examine the effect of adding
a third alternative z on preferences between x and y under (3), and how this effect may
depend on the magnitude of σ > 0. To do this, we will again work from a benchmark

19 In addition to Cobb-Douglas and additive preferences, pairwise normalization can also be related to
constant elasticity of substitution (CES) preferences and rank-based lexicographic preferences, both of
which are nested as special cases of a two-parameter version of our model. See Appendix C.5.
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Figure 4: Binary-Choice Preferences.

Basic PN Model
(Cobb-Douglas)
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Bordalo et al. (2013)*

y1

y2

xx

All Others**
(Additive)

y1
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xx

The shaded region(s) of each graph indicate the region(s) where x is preferred to y given
X = {x,y} with N = 2, as predicted by the indicated model(s) with x = (1, .1).

* Bordalo et al.’s (2013) model can generate many geometric configurations of the binary-
choice preference regions. For example, the shapes of the regions can vary with a ‘salience
distortion’ parameter δ ∈ (0, 1) (this illustration uses δ = .5) as well as the choice of x
(e.g. using a different x on the boundary between the shaded and unshaded regions can
yield different preference regions than those shown here). For an exact description of the
version of Bordalo et al.’s (2013) model used to generate this graph, see Appendix E.

** Includes the three remaining comparable models from Table 1: Tversky and Simonson
(1993), Kivetz et al. (2004a), and Bushong et al. (2017), as well as Koszegi and Szeidl
(2013). Again, see Appendix D and Appendix E for additional details on these models.
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of indifference between x and y in binary choice. An added complication, however, is
that allowing σ to vary may undo binary-choice indifference in light of Lemma 3. For this
reason, we will adopt a stronger version of Assumption BCI, which ensures binary-choice
indifference is preserved even as σ varies:

Assumption BCI* The DM is indifferent between x = (x1, x2) and y = (y1, y2) given
X = {x,y} for all σ ≥ 0 under (3) (equivalently, x1 = y2 and y1 = x2).

Lemma 4 Under Assumption BCI* and given X = {x,y, z}, if x is preferred to y with
σ = 0, then x will still be preferred to y with σ > 0 unless V cd(z) < V cd(x) < V cd(z′),
where z′ ≡ (z1 + σ, z2 + σ).

Proof of Lemma 4. See Appendix.

Lemma 4 states that the trinary-choice preference between x and y predicted by the basic
PN model may be reversed with σ > 0, but only in the event that z is “modestly inferior”
to x in the sense that x is preferred to z according to the Cobb-Douglas preference model,
but would not be preferred to some z′ featuring a magnitude-σ improvement to z on each
dimension (see Figure 5). It follows that the compromise and dominance effects still hold
with σ > 0, unless z is only modestly inferior, in which case the opposite trinary-choice
preference — favoring y over x — is predicted:

Proposition 10 Under Assumption BCI* and with z′ defined as in Lemma 4, suppose z

satisfies the conditions for either the compromise or dominance effect in Proposition 2,
implying x is preferred to y given X = {x,y, z} with σ = 0. With σ > 0, x is still preferred
to y given X = {x,y, z} if V cd(x) > V cd(z′), but y is preferred to x if V cd(x) < V cd(z′).

Proof of Proposition 10. See Appendix.

To aid our understanding of this result, consider a modestly inferior decoy zd, that is
asymmetrically dominated by x. Since it is only modestly inferior, zd will not just be
more similar to x than to y (as described in Section 4), it will also be sufficiently similar
to x in an absolute sense — i.e. its proximity in attribute space. In Figure 5, for example,
this decoy must reside in the region bounded by the green lines in close proximity of x.

Proposition 10’s implication that zd would create a preference for the dissimilar alterna-
tive y instead of x — in apparent opposition of the dominance effect — fits with Tversky’s
(1972) “similarity hypothesis.”20 Though the dominance effect is still widely-accepted as

20Unlike the dominance effect, a reversal of the compromise effect with σ > 0 and a modestly inferior z
is not necessarily observable. This is because “modest inferiority” is based on Cobb-Douglas preferences,
which do not necessarily align with preferences under (3). Consequently, a modestly inferior z may
actually be preferred to x and y in trinary choice with σ > 0, in which case a preference for y over x may
be concealed as z would be selected over both.
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Figure 5: The Effect of a Third Alternative z when σ > 0.
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This graph shows the effect of adding z to the choice set on the DM’s preference
between x and y, as predicted by the one-parameter PN model. The green lines
denote the boundaries of the ‘similarity’ subregion, as described in the text.

a robust empirical regularity (e.g. Huber et al., 2014), some support for the similarity hy-
pothesis comes from Frederick et al.’s (2014) recent unincentivized choice experiment. In
this study, the share of subjects who preferred the dominant (and more similar) alternative
increased by more than one percent in just one of the eleven product classes considered —
and actually decreased in most classes — when an asymmetrically-dominated decoy was
added to the choice set.

While research investigating the precise boundaries of the dominance effect is ongoing,
the one-parameter model allows for the possibility that the dominance effect might not
arise in all situations. Our next result offers more specific guidance on this point, showing
that the dominance effect must hold with sufficiently high-value goods:

Corollary 1 Under Assumption BCI*, with σ > 0 and z asymmetrically dominated by
x, suppose the DM is indifferent between x and y given X = {x,y, z}. Also let w′ =

(γ · w1, γ · w2) for each w ∈ {x,y, z}. Then, x′ is preferred to y′ given X = {x′,y′, z′} if
γ > 1, while y′ is preferred to x′ if γ < 1.

Proof of Corollary 1. See Appendix.

Corollary 1 first considers a benchmark in which the DM is indifferent between x and y

in both binary and trinary choice — here, z neither helps nor hurts the perception of x
relative to y. In turn, x′, y′, and z′ are defined as analogs to x, y, and z, except with
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their attribute values scaled by a constant γ > 0. As seen, x′ will then be preferred to y′

in trinary choice with z′ — consistent with the dominance effect — if (and only if) γ > 1,
in which case x′, y′, and z′ represent higher-value alternatives than x, y, and z.

Corollary 1’s implication that the dominance effect will be more prominent for higher-
value goods has support in the empirical literature. For example, in Frederick et al.’s
(2014) study mentioned above, the lone product class in which the decoy created a non-
negligible shift in subjects’ preferences towards the dominant option was also the highest-
value product class considered in their study; in Huber et al.’s (1982) original study
documenting the dominance effect, the decoy shifted subjects’ preferences in favor of the
dominant alternative in all six product classes considered, but the largest effects were
likewise observed in the two highest-value product classes.21 In fact, a study by Malkoc
et al. (2013) directly manipulated alternatives’ desirability within each product class. A
robust dominance effect was observed with more desirable alternatives, but not with less
desirable alternatives. As the authors conclude, their results “establish (un)desirability as
an important boundary condition” for the dominance effect, as Corollary 1 would suggest.

8 “Comparisons” in Multi-Attribute Choice Theories

This paper presented a theory of multi-attribute choice based on a notion of pairwise
attribute-level comparisons, implemented by (divisive) normalization— a well-documented
and normatively-grounded form of relative value encoding used in neural processing. As
we have shown, pairwise normalization can explain a wide range of context-dependent be-
haviors, including several that are not well-addressed in the theoretical literature (again,
see Table 1).

Like our model, other multi-attribute choice theories typically suggest that an alter-
native’s attributes are “compared” (or otherwise valued in relation) to the corresponding
attributes of other alternatives. While formal representations of attribute-level compar-
isons vary from model to model, the use of the normalization computation for this general
purpose is not unique to our theory. For instance, Bordalo et al. (2013)’s proposed form of
their “salience function” (eq. 4, p. 809) is identical to our contrast function ∆(a, b) =

∣∣a−b
a+b

∣∣.
However, their implementation differs. While we use ∆ to express the perceived, decision-
relevant value difference between two attribute values, Bordalo et al.’s salience function is
used to compare an attribute value to the average over the choice set (along that dimen-
sion), and as an intermediate step in computing the perceived value of that attribute.

Tversky and Simonson’s (1993) model also uses normalization to express the total
21The highest-value product class considered by Frederick et al. (2014) was apartments, while the others

were bottled water, fruit, hotel rooms, jelly beans, kool-aid, mints, movies, and popcorn; the two highest-
value product classes considered by Huber et al. (1982) were cars and televisions, while the others were
beer, photographic film, lotteries (with expected payoffs on the order of $20), and restaurant meals.
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“advantage” of x over y, A(x,y) =
∑

n max{xn − yn, 0} relative to its “disadvantage,”
D(x,y) = A(y,x) in its simplest form, as A(x,y)

A(x,y)+D(x,y)
(eq. 8, p. 1185). Although this

computation is applied only after attribute information is aggregated across dimensions
(unlike our use of normalization), Tversky and Simonson conceptualize the advantage and
disadvantage functions as arising from pairwise comparisons of attribute values.22

Table 2 describes these shared features as well as other representations of attribute-
level comparisons used in the prevailing multi-attribute choice theories listed in Table
1. As seen, attribute-level comparisons are either implemented through normalization,
through the use of attribute-weights, or through subtraction (with possible additional
transformations). In these comparisons, attribute values are either compared to each
other (in pairs) or to a summary statistic, such as the average, minimum, or range of
attribute values on that dimension.

Table 2. “Comparisons” in Multi-Attribute Choice Models

Attribute-level “comparisons”...

Computation What is each
used in each attribute value
comparison compared to?

Inter-attribute
“comparisons” of
attribute-level

outputs?

Pairwise
Normalization normalization other attribute

values, in pairs no

Bordalo et al. (2013) normalization∗ average of
attribute values

yes, outputs
are ranked

Bushong et al. (2017) weight by decr.
function of...

range of attribute
values (max - min) no

Kivetz et al. (2004a) subtraction∗∗ minimum of
attribute values no

Koszegi and
Szeidl (2013)

weight by incr.
function of...

range of attribute
values (max - min) no

Tversky and
Simonson (1993) subtraction other attribute

values, in pairs
yes, through

normalization∗

* See text for relevant caveats and Appendix D for technical details.

** Additional transformations of the difference between two attribute values may be applied.

Regarding the objects of attribute-level comparisons, there are certainly advantages
and disadvantages to each approach. Our pairwise formulation, in which attribute values
are compared directly to other attribute values, is largely motivated by eye-tracking ev-
idence (discussed in Section 1). It is also worth considering the computational demands

22Also see Marley (1991) and Tserenjigmid (2015) for axiomatizations of pairwise comparisons.
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of each approach. For binary-choice problems, our approach is certainly simple, as it only
requires a single computation to express the perceived value of an attribute, i.e. xn

xn+yn
,

while comparisons to summary statistics would require at least two distinct computations
— the computation of the summary statistic itself and the computation used to imple-
ment the comparison between the attribute value and that summary statistic. With many
alternatives, however, the use of a summary statistic could certainly simplify the problem.
This observation reinforces the sentiment (expressed in Section 3) that in choice envi-
ronments where there are too many alternatives to realistically carry out every possible
pairwise comparison, the model would have different predictions. Therefore the reported
results should be interpreted as applying to settings when all attributes and alternatives
are considered.23

Models that entail attribute-level comparisons to a summary statistic are naturally
equipped to address evidence that preferences can be sensitive to that particular statistic.
For instance, behavior dependent on the average attribute value is evident from empirical
evidence of the relative difference effect (see Section 2). Experimental research has also
revealed range-dependence, whereby a fixed difference between two attribute values is
weighted less when the range of attribute values on that dimension is wider (Mellers and
Cooke, 1994; Yeung and Soman, 2005). Although pairwise normalization does not embed
attribute-level comparisons to the average or range of attribute values in the choice set,
it nonetheless captures both average- and range-dependence in choice, as Proposition 1
established average-dependence (in the form the relative difference effect) while range-
dependence is demonstrated in Appendix C.3.

As mentioned in Section 4, pairwise normalization also implies that more similar al-
ternatives will be “easier to compare” than less similar alternatives.24 This idea is also
prominent in Natenzon’s (2018) Bayesian probit model, in which an imperfectly-informed
(yet rational) decision-maker can exhibit the compromise and dominance effects due to the
relative ease of comparing an inferior third alternative to the existing alternative to which
it is more similar. In Natenzon’s model, the ease of comparison concept is operationalized
as an assumption about value correlations among alternatives that may be encountered
in one’s environment. Pairwise normalization not only provides a potential foundation for

23Of course, with arbitrarily many alternatives and/or attributes, it may also be impractical to compute
summary statistics across all alternatives on every dimension, not to mention carrying out the additional
intra-attribute comparisons embedded in some models (see Table 2). With that said, Koszegi and Szeidl’s
(2013) focusing theory may be regarded as providing a reduced-form description of how decision-makers
allocate attention across attributes when there are many possible attributes to consider (as opposed to
providing an explanation for the context effects addressed by other theories).

24Formally, if x and y are equally-valued in binary choice, and z is more similar to x than to y (in
that its attributes are “tilted” towards x and away from y relative to their midpoint), then the (absolute)
perceived value difference will be larger — suggesting a “more conspicuous” preference — between x and
z than between y and z. See Appendix C.1 for a formal demonstration of this relationship as well as an
observable, stochastic choice version of the result.
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Natenzon’s assumption, it also indicates that the relative ease of comparing more similar
alternatives does not need to reflect an inherent feature of the alternatives themselves. In-
stead, our model suggests that the manner in which our brains encode sensory information
effectively makes it easier to compare more similar alternatives.
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A Additional Proofs

A.1 Proof of Lemma 2

Using (1), we can see that x will be preferred to y given X = {x,y, z} given Assumption
BCI if and only if x1

x1+z1
+ x2

x2+z2
> y1

y1+z1
+ y2

y2+z2
, which we re-express as x̃1

x̃1+z̃1
+ x̃2

x̃2+z̃2
>

ỹ1
ỹ1+z̃1

+ ỹ2
ỹ2+z̃2

with w̃n ≡ wn√
x1x2

for w ∈ {x,y, z} and n ∈ {1, 2}. Using x̃1x̃2 = ỹ1ỹ2 = 1

to substitute out x̃2 and ỹ2, cross-multiplying and collecting terms, then factoring out
x̃1 − ỹ1 > 0, we can see this condition holds if and only if (1 − z̃1z̃2)(z̃1 − x̃1ỹ1z̃2) > 0.
Multiplying the first term by x1x2 > 0 and the second by

√
x1x2
z2

> 0, then substituting

out y1
x2

=
mxy

1

mxy
2

(which holds since y1mxy
2 = y1x2+y1y2

2 = y1x2+x1x2
2 = x2m

xy
1 ) along with each

w̃n = wn√
x1x2

, we can then see this is equivalent to (x1x2 − z1z2)
(
z1
z2
− mxy

1

mxy
2

)
> 0. Noting z1

z2

− mxy
1

mxy
2
> 0 since z is more similar to x than y and, from Lemma 1 and Proposition 13 (see

Appendix C.4), x1x2− z1z2 > 0 holds if and only if x is preferred to z given X = {x,y, z}
under Assumption BCI, this condition yields the desired result. �

A.2 Proof of Proposition 4

We proceed by contradiction. If there is a minority-rule preference cycle, then x′ is pre-
ferred to x, x′′ to x′, and x to x′′. Let λ1 ≡ 1

x′1
, λ2 ≡ 1

x2
, λ3 ≡ 1

x′′3
, and w̃n ≡ λnwn

for all w ∈ {x,x′,x′′} and n = 1, 2, 3. Also define kn ≡ max{w̃n} − 1 > 0 and
qn ≡ 1−min{w̃n} > 0 so that the ordered, rescaled attribute values are (1 + kn, 1, 1− qn)

for each n. Noting normalized valuations are invariant to scaling all attribute-n values by
λn > 0, our preference cycle implies:

V (x′; {x,x′}) > V (x; {x,x′}) ⇒ k1
2+k1

+
q2

2−q2 <
k3+q3

2+k3−q3 ,

V (x; {x,x′}) > V (x′′; {x,x′′}) ⇒ k2
2+k2

+
q3

2−q3 <
k1+q1

2+k1−q1 ,

V (x′′; {x′,x′}) > V (x′; {x′,x′′}) ⇒ k3
2+k3

+
q1

2−q1 <
k2+q2

2+k2−q2 .

Summing these conditions yields
∑3

n=1

(
kn

2+kn
+ qn

2−qn
)
<
∑3

n=1

( kn+qn
2+kn−qn

)
. Thus, kn

2+kn
+

qn
2−qn <

kn+qn
2+kn−qn for at least one n ∈ {1, 2, 3}. Combining the fractions on the left-side, we

get 2(kn+qn)
(2+kn)(2−qn)

< kn+qn
2+kn−qn , which holds if and only if 2(2 + kn − qn) < (2 + kn)(2 − qn),

i.e. if and only if −qnkn > 0, a contradiction. �

A.3 Proof of Proposition 7

Follows from Proposition 7* with Rn = 1 for all n ≤ N (see Appendix C.2). �
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A.4 Proof of Lemma 3.

Multiplying through by (σ+x1+x′1)(σ+x2+x′2) > 0 and reducing the resulting expression,
we see V ∗(x; {x,x′}) > V ∗(x; {x,x′}) holds if and only if σV +(x) + 2V cd(x) > σV +(x′) +

2V cd(x′). Parts (i) and (ii) are then readily verifiable from this inequality. �

A.5 Proof of Proposition 9

Part (i). Using the notation in Proposition 1, ∂[V ∗(x′;{x′,y′})−V ∗(y′;{x′,y′})]
∂k =

−2(y2−x2)
(σ+y2+x2+2k)2

< 0 since y2 > x2, which ensures the relative difference effect holds under (3) for all σ ≥ 0.

Part (ii). Let ŵn = wn + σ
2 for w ∈ {x, x′, x′′} and n = 1, 2, 3. Thus, a majority

dominance relationship among x, x′, and x′′ exists if and only if it also exists among
x̂, x̂′, and x̂′′. From Proposition 4, if binary-choice preferences among x̂, x̂′, and x̂′′

are intransitive, they must follow a majority-rule cycle in the basic PN model. Noting
V (ŵ; {ŵ, ŵ′}) = V ∗(w; {w,w′}), if preferences among x, x′, and x′′ are intransitive under
(3) with σ ≥ 0, they must also follow the same majority-rule cycle.

Part (iii). Using the notation in Proposition 5, x1a−y1a
σ+x1+y1

< min
{ x1a−y1a
σ+x1a+y1a

, x1b−y1b
σ+x1b+y1b

}
holds

since x1 + y1 > max{x1a + y1a, x1b + y1b}. Thus, x1a−y1a
σ+x1a+y1a

+ x1b−y1b
σ+x1b+y1b

> x1a−y1a+x1b−y1b
σ+x1+y1

= x1−y1
σ+x1+y1

, which ensures the splitting bias holds under (3).

Part (iv). Using the notation in Proposition 6 and given V ∗(x; {x,y}) = V ∗(y; {x,y}), we
get V ∗(x′; {x′,y′})− V ∗(y′; {x′,y′}) = V ∗(x′; {x′,y′})− V ∗(x; {x,y})− V ∗(y′; {x′,y′}) +

V ∗(y; {x,y})) = x2
σ+x2

− y2
σ+y2

− x2−y2
σ+x2+y2

=
(y2−x2)x2y2

(σ+x2)(σ+y2)(σ+x2+y2)
> 0 for any σ ≥ 0 since

y2 > x2. Thus, the alignability effect holds under (3).

Part (v). Using the notation in Proposition 7, we see V ∗(x′; {x,x′}) − V ∗(x; {x,x′}) =∑
n≤N

x′n−xn
σ+x′n+xn

=
∑

n<N
x′n−AN−1

σ+x′n+AN−1 +
A−

∑
n<N x

′
n−AN−1

σ+A−
∑

n<N x
′
n+AN−1 . Differentiating by x′n, n ≤ N−

1 and substituting x′N back in using
∑

n≤N x
′
n = A gives σ+2AN−1

(σ+AN−1+x′n)2
= σ+2AN−1

(σ+AN−1+x′N )2
.

Thus, the system of N −1 first-order conditions is solved by x′n = x′N , implying x′n = A
N =

xn for all n ≤ N , thus ensuring V ∗(x′; {x,x′}) < V ∗(x; {x,x′}) for x′ 6= x.

Part (vi). Using the notation in Proposition 8, V ∗(x; {x,x′}) − V ∗(x′; {x,x′}) = q
σ+q −

q
σ+2xn′+q

> 0 since xn′ > 0. Thus, the feature bias holds for any σ ≥ 0 under (3). �

A.6 Proof of Lemma 4

Using (1) and (3), we see V ∗(x; {x,y, z}) > V ∗(y; {x,y, z}) if and only if V (x; {x,y, z′}) >
V (y; {x,y, z′}). Noting z′1

z′2
= z1+σ

z2+σ and mxy
1

mxy
2

= 1 under Assumption BCI*, z′ is more similar
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to x than to y if and only if z is more similar to x than to y. From Lemmas 1 and 2, it
then follows that V ∗(x; {x,y, z}) < V ∗(y; {x,y, z}) if and only if z1z2 < x1x2 < z′1z

′
2. �

A.7 Proof of Proposition 10

Since x1x2 > z1z2 must hold in the case of the compromise and dominance effects with
σ = 0, the desired result then follows from Lemma 4. �

A.8 Proof of Corollary 1

Given V ∗(x; {x,y, z}) = V ∗(y; {x,y, z}) under Assumption BCI*, Proposition 10 implies
V cd(x) = V cd(z′). For n = 1, 2, let z̃′n = z̃n + σ = γzn + σ and z′′ = zn + σ

γ . Noting x̃

and x̃ must also satisfy Assumption BCI*, Proposition 10 also implies V ∗(x̃; {x̃, ỹ, z̃}) >
V ∗(ỹ; {x̃, ỹ, z̃}) if and only if V cd(x̃) > V cd(z̃′). Since V cd(x̃) = γ2V cd(x) = γ2V cd(z′),
V cd(z̃) = γ2V cd(z′′), and V cd(z′) ≷ V cd(z′′) if γ ≷ 1, x̃ will then be preferred to ỹ given
X = {x̃, ỹ, z̃} if γ > 1, while ỹ will be preferred to x̃ if γ < 1. �

B Additional Evidence of Majority-Rule Preference Cycles

Some of the context-dependent behaviors captured by the basic PN model — most notably,
majority-rule preference cycles, the splitting bias, the alignability effect, the diversification
bias, and the feature bias (see Section 2) — are not explicitly addressed by prevailing multi-
attribute choice theories. One may wonder if the lack of attention to these behaviors
arises from concerns of empirical robustness. However, we are not aware of any research
challenging the robustness of any of these effects, while each of these behaviors has been
demonstrated in multiple empirical studies.

Even so, we still considered it worthwhile to test the robustness of majority-rule prefer-
ence cycles due to their clear theoretical relevance — they directly contradict the canonical
axiom that preferences are transitive — and also because the strongest existing evidence
(at the time we decided to run the experiment) came from a rather dated, unincentivized
study by May (1954).25 While this study is not addressed by prevailing multi-attribute
choice theories, it is worth noting that it has received some attention in the broader theo-
retical choice literature. In particular, Gans’ (1996) ‘small worlds’ and Masatlioglu et al.’s
(2012) ‘limited consideration’ theories both address May’s (1954) findings.

In our experiment, 173 subjects (undergraduate students at the University of Toronto,
Mississauga) were asked to make a sequence of binary choices among vacation packages

25Notably, we were not yet aware of Tsetsos et al.’s (2016) experiment, the results of which lend addi-
tional support to the notion that majority-rule preference cycles are a robust empirical phenomenon.
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Figure 6: Example of Alternatives Used in Niagara Falls Choice Experiment

to Niagara Falls. Each package was defined on three attribute dimensions: dining, tour-
ing, and lodging accommodations. The choice alternatives were constructed so that a
majority-dominance relationship existed among them. The total cost of each option was
approximately $350 CAD. The choices were fully incentivized, with each subject entered
into a lottery for which the winning subject received the package corresponding to one of
their randomly-selected binary choices.

Of the 173 subjects, we found that 17, or 10% of subjects, displayed an intransitive
cycle in their binary choices. This is a proportion of intransitivity typically observed
in experimental data, though slightly lower than observed by May (1954). Of the 17
transitivity violations we observed, 13 of them (76.5%) were of the majority-rule form.
This proportion is significantly greater than the proportion displaying the alternative
minority-rule cycle (p = 0.044, two-tailed).

Certainly the basic PN model predicts a 100% incidence of majority-rule (and 0%
minority-rule) violations when preferences are intransitive. With that said, it is well-known
that choice is inherently random — an aspect that we abstract from in our deterministic
model — and that randomness can generate intransitive choice. All else equal, however,
majority- and minority-rule violations would be equally probable if stochasticity was the
sole driver of intransitivity, yet a straightforward adaptation of our model (along the lines
proposed in equation 4) would naturally predict that majority-rule preference cycles would
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still be more probable than minority-rule preference cycles. Thus, pairwise normalization
still provides a mechanism to explain evidence indicating a greater propensity for majority-
rule preference cycles.

C Additional Results

C.1 Ease of Comparisons

In Section 4, we mentioned that pairwise normalization makes more similar alternatives
“easier to compare” than less similar alternatives. Here, we formalize this idea:

Proposition 11 Under Assumption BCI, suppose the DM is not indifferent given X =

{x, z} or X = {y, z}. Also suppose z is more similar to x than to y in that z1
z2
>

mxy
1

mxy
2
.

Then |V (x; {x, z})− V (z; {x, z})| > |V (y; {y, z})− V (z; {y, z})|.

Proof. V (x; {x, z})≷ V (z; {x, z}) implies V (x; {x,y, z})≷ V (y; {x,y, z}) from Lemma 2.
Noting V (w; {x,y, z}) = V (w; {x,y}) + V (w; {x, z}) for w ∈ {x,y} and V (x; {x,y}) =

V (y; {x,y}) under Assumption BCI, we see that V (x; {x, z}) ≷ V (z; {x, z}) implies
V (x; {x, z}) ≷ V (y; {y, z}). This inequality, along with V (x; {x, z}) + V (z; {x, z}) =

V (y; {y, z}) + V (z; {y, z}) = 2, implies V (z; {x, z}) ≶ V (z; {y, z}) for V (x; {x, z}) ≷
V (z; {x, z}), ensuring |V (x; {x, z})−V (z; {x, z})|> |V (y; {y, z})−V (z; {y, z})|. �

Proposition 11 indicates that the total perceived value difference will be larger when
comparing z to a more similar alternative x than when comparing z to a less similar
alternative y, despite x and y being equally valued when compared to each other. However,
the implication that z is easier to compare to x than to y in this deterministic sense is not
directly observable as x and y would either both be preferred to (and hence, chosen over)
z with certainty in binary choice, or z would be preferred to both. With this in mind, the
following corollary shows how an adaptation of the basic PN model to a stochastic choice
environment captures the ease of comparison concept in an observable form:

Corollary 2 Given the assumptions of Proposition 11, consider a stochastic extension of
the deterministic basic PN model given in (1), with binary-choice probabilities given by

Pr[x′; {x′,x′′}] = f(V (x′; {x′,x′′}), V (x′′; {x′,x′′})), (4)

where f is strictly increasing in its first argument and strictly decreasing in its second
argument. Then

∣∣Pr[z; {x, z}]− 1
2

∣∣ < ∣∣Pr[z; {y, z}]− 1
2

∣∣.
Proof. As shown in the proof of Proposition 11, V (x; {x, z}) ≷ V (z; {x, z}) implies
V (x; {x, z}) ≷ V (y; {y, z}) and V (z; {x, z}) ≶ V (z; {y, z}). Noting Pr[z; {w, z}] =

f(V (z; {w, z}), V (w; {w, z})) for w ∈ {x,y}, Pr[z; {x, z}] ≶ Pr[z; {y, z}] is assured for
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V (x; {x, z}) ≷ V (z; {x, z}) since f is increasing in its first argument and decreasing in
its second argument. Thus, either Pr[z; {x, z}] < Pr[z; {y, z}] < 1

2 or Pr[z; {x, z}] >
Pr[z; {y, z}] > 1

2 must hold, ensuring
∣∣Pr[z; {x, z}]− 1

2

∣∣ < ∣∣Pr[z; {y, z}]− 1
2

∣∣. �
Corollary 2 can be understood as follows. Suppose x and y are equally likely to be

chosen in binary choice (as indirectly implied by (4)). Also suppose that the probabilities
of choosing z in binary choices with x and with y are both less than one half, suggesting z

is inferior to x and y. Then, if z is more similar to x than to y, the likelihood of choosing
z in a binary choice is lower with X = {x, z} than with X = {y, z}. That is, z is easier to
compare to the similar alternative x than to the less similar alternative y in the sense that
there is a lower probability that the DM will “mistakenly” choose the inferior alternative
z with x than with y.

C.2 Allocation and Investment Results with Unequal Returns

As mentioned in Section 6, the results capturing the diversification and feature biases still
hold in the basic PN model even if the returns to allocations along each dimension are not
equal. We will now formalize and prove these results.

To begin, we now distinguish between the amount of an allocation to a given dimension
and the attribute value generated by that allocation. In particular, we now let an denote
the allocation of A > 0 to dimension n ≤ N , where the (unnormalized) attribute value
generated by this allocation is now Rnan given Rn > 0 is the (gross) rate of return on
dimension n. In the following generalization of Proposition 7, we will assume that x and x′

are the alternatives associated with the allocations a1, . . . , aN and a′1, . . . , a′N , respectively
(with

∑
n≤N an =

∑
n≤N a

′
n = A), implying xn = Rnan and x′n = Rna

′
n for all n ≤ N .

Proposition 7* Given N > 1, A > 0, and Rn > 0 for all n ≤ N , suppose xn = Rnan with
an = A

N for all n ≤ N . Then, for any x′ 6= x satisfying x′n = Rna
′
n with

∑
n≤N a

′
n = A, x

is preferred to x′ given X = {x,x′}.

Proof. Using
∑

n≤N a
′
n = A and xn = Rn

A
N to substitute out x′N = RNa

′
N and each xn

from (1) while canceling all Rn terms gives V (x′;X) =
∑N−1

n=1
a′n

AN−1+a′n
+

A−
∑N−1

n=1 a
′
n

AN−1+A−
∑N−1

n=1 a
′
n

.
Differentiating by a′n, n ≤ N − 1, setting each derivative equal to zero, and substituting
a′N back in using

∑
n≤N a

′
n = A gives AN

(A+a′nN)2
= AN

(A+a′NN)2
. Thus, the system of N − 1

first-order conditions is solved by a′n = a′N , implying a′n = A
N (and x′n = xn) for all n ≤ N ,

ensuring V (x′;X)< V (x;X) for x′ 6= x. �

Thus, the diversification bias as captured in Proposition 7 still holds when we allow the
rates of return to vary across dimensions.
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To formalize the feature bias with unequal returns, we now assume that an investment
of q > 0 on dimension n ≤ N yields a Rnq increase in the unnormalized attribute value
on dimension n. We can then generalize Proposition 8 as:

Proposition 8* Given N > 1, q > 0, and Rn > 0 for n = 1, . . . , N , suppose xN = RN ·q,
x′N = 0, x′n′ = xn′ + Rn′ · q for some n′ < N , and x′n = xn > 0 for all n < N . Then x is
preferred to x′ given X = {x,x′}.

Proof. V (x; {x,x′})− V (x′; {x,x′}) = ∆(RN · q, 0)−∆(xn′ +Rn′ · q, xn′) = 2xn′
Rn′ ·q+2xn′

> 0

given q > 0, Rn′ > 0, and xn′ > 0. �

Thus, the feature bias as captured in Proposition 8 also still holds when we allow the rates
of return to vary across dimensions.

C.3 Range-Dependent Preferences

The following result shows how the perceived value difference between two attribute values
decreases with the range of values on that dimension (holding the average fixed):

Proposition 12 Suppose the DM is indifferent between x and y given X = {x,y,x′,y′},
with x′2 < x2 < y2 < y′2. Also suppose x′′1 = x′1, y′′1 = y′1, x′′2 = x′2 − k, and y′′2 = y′2 + k for
some k > 0. Then x is preferred to y given X = {x,y,x′′,y′′}.

Proof. Using x′′1 = x′1, y′′1 = y′1, x′′2 = x′2 − k, and y′′2 = y′2 + k, we can express
V (z; {x,y,x′′,y′′}) − V (z; {x,y,x′,y′}) = z2

z2+x′2−k
+ z2

z2+y′2+k −
z2

z2+x′2
− z2

z2+y′2
for each

z2 ∈ {x2, y2}. Hence, ∂2

∂z2∂k

[
V (z; {x,y,x′′,y′′}) − V (z; {x,y,x′,y′})

]
k=0

= x′2−z2
(z2+x′2)3

−
y′2−z2

(z2+y′2)3
< 0 given x′2 < z2 < y′2. Thus, V (x; {x,y,x′′,y′′}) − V (x; {x,y,x′,y′}) >

V (y; {x,y,x′′,y′′}) − V (y; {x,y,x′,y′}) since y2 > x2, implying V (x; {x,y,x′′,y′′}) >
V (y; {x,y,x′′,y′′}) given V (x; {x,y,x′,y′}) = V (y; {x,y,x′,y′}). �

While Proposition 1 demonstrated how an increase in the average attribute value shifted
preferences in favor of the alternative that was weaker on that dimension, Proposition 12
demonstrates how an increase in the range of attribute values has the same effect, in line
with evidence from Mellers and Cooke (1994) and Yeung and Soman (2005).

C.4 Superiority/Inferiority Result

As mentioned in footnote 15, the following result shows that, when the DM is indifferent
between x and y in binary choice, the superiority or inferiority of z relative to x and y is
maintained in trinary choice.

39



Proposition 13 Under Assumption BCI, the following are equivalent:
(i-a) z is preferred to x given X = {x, z},
(i-b) z is preferred to y given X = {y, z},
(ii-a) z is preferred to x given X = {x,y, z},
(ii-b) z is preferred to y given X = {x,y, z}.

Proof. From Lemma 1, V (z; {x, z}) > V (x; {x, z}) (i-a) is equivalent to z1z2 > x1x2
while Assumption BCI implies x1x2 = y1y2. Taken together, (i-a) must be equivalent to
V (z; {y, z}) > V (y; {y, z}) (i-b). In turn, we can see V (x′; {x′,x′′}) + V (x′′; {x′,x′′}) =
x′1+x′′1
x′1+x′′1

+ x′2+x′′2
x′2+x′′2

= 2. Therefore, V (x′; {x′,x′′}) > V (x′′; {x′,x′′}), 1 > V (x′′; {x′,x′′}), and
V (x′; {x′,x′′}) > 1, are all equivalent. Since V (z; {x, z}) > V (x; {x, z}) and V (z; {y, z}) >
V (y; {y, z}) are equivalent (seen above), V (z; {x, z}) > V (x; {x, z}) implies V (z; {x, z})+

V (z; {y, z}) > V (x; {x, z}) + 1. Since V (x; {x,y}) = V (y; {x,y}), V (x; {x,y}) = 1.
Thus, V (z; {x, z}) > V (x; {x, z}) implies V (z; {x,y)} = V (z; {x, z}) + V (z; {y, z}) >
V (x; {x, z}) + V (x; {x,y}) = V (x; {y, z}) (ii-a). In turn, we can also see V (z; {x,y}) =

V (z; {x, z})+V (z; {y, z}) > V (x; {x, z})+V (x; {x,y}) = V (x; {y, z}) implies V (z; {x, z})
> V (x; {x, z}) or V (z; {y, z}) > V (x; {x,y}) = 1 or both. Since V (z; {y, z}) > 1 is equiva-
lent to V (z; {y, z}) > V (y; {y, z}), which itself is equivalent to V (z; {x, z}) > V (x; {x, z}),
since at least one among V (z; {x, z}) > V (x; {x, z}) and V (z; {y, z}) > V (x; {x,y}) = 1

are true, they must both hold. This establishes the equivalence of (ii-a) and (i-a). By
switching x and y in the arguments outlined above, we can likewise establish the equiva-
lence of (ii-b) and (i-b). �

C.5 Two-Parameter Model Results

Next, we provide additional results arising from a two-parameter version of the pairwise
normalization model (based on a common formulation of the normalization computation
studied in neuroscience). Given σ ≥ 0 and α > 0, the two-parameter model is given by:

V ∗∗(x; X) =
N∑
n=1

∑
y∈X\x

xαn
σα+xαn+yαn

. (5)

The following result shows how the two-parameter model nests some classic microeco-
nomic preference representations when applied to two-attribute binary choice problems:

Proposition 14 Given X = {x,x′} and N = 2 under (5). For each of the following
specifications of Ṽ (a, b) with the indicated parametric restrictions, x is preferred to x′ if
Ṽ (x) > Ṽ (x′):

(i) Ṽ (a, b) = V cd(a, b) ≡ ab, with σ = 0 and any α > 0.

(ii) Ṽ (a, b) = V ces(a, b) ≡ (aα + bα)1/α, with σ > 0 sufficiently large and any α > 0.
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(iii) Ṽ (a, b) = max{a, b}, with σ > 0 and α > 0 both sufficiently large; if Ṽ (x) = Ṽ (x′), x
is then preferred to x′ if and only if Ṽ0(x) > Ṽ0(x

′), where Ṽ0(a, b) = min{a, b}.

Proof. Given X = {x,x′}, x is preferred to x′ if and only if V ∗∗(x; {x,x′})−V ∗∗(x′; {x,x′}) =∑
n

xαn−x′n
α

σα+xαn+x′n
α > 0. Combining terms, factoring out the denominator, and taking N = 2

yields:
σα(xα1 + xα2 ) + 2xα1x

α
2 > σα(x′1

α
+ x′2

α
) + 2x′1

α
x′2
α
, (6)

so that x is preferred to x′ given σ = 0 if and only if xα1xα2 > x′α1x
′α
2, which is equivalent

to x1x2 > x′1x
′
2. This establishes part (i).

For part (ii), Ṽ (x) > Ṽ (x′) if and only if Ṽ (x)α > Ṽ (x′)α, which is equivalent to

xα1 + xα2 > x′1
α + x′2

α given Ṽ (a, b) = (aα + bα)1/α. Let σ0 =
(

2(yα1 y
α
2−xα1 xα2 )

xα1 +xα2−x′1
α−x′2

α

)1/α
< ∞.

Observe σα0 (xα1 + xα2 ) + 2xα1x
α
2 = σα0 (x′1

α + x′2
α) + 2x′1

αx′2
α. Thus, σα(xα1 + xα2 ) + 2xα1x

α
2 >

σα(x′1
α+x′2

α)+2x′1
αx′2

α for all σ > σ0, implying x is preferred to x′ from (6). The converse
is established by contradiction. Namely, suppose x is preferred to x′ but Ṽ (x) < Ṽ (x′), or
equivalently, xα1 +xα2 < x′α1 +x′2

α. From (6), we see that, together, these conditions require
xα1x

α
2 > x′1

αx′2
α, so that xα1xα2 − x′1

αx′2
α > 0. By inspection, we can now see σ > σ0 with

σ0 > 0 as defined above implies σα(xα1 + xα2 ) + 2xα1x
α
2 < σα(x′1

α + x′2
α) + 2x′1

αx′2
α, which

from (6) implies x′ is preferred to x. Hence, we have a contradiction, so that a preference
for x over x′ necessarily requires Ṽ (x) > Ṽ (x′) for sufficiently large σ > 0, as desired.

For part (iii), given Ṽ (a, b) = max{a, b}, letting x = max{x1, x2} and x′ = max{x′1, x′2},
without loss of generality, we see Ṽ (x) > Ṽ (x′) holds if and only if x > x′. Observe,
σα(xα1 + xα2 ) + 2xα1x

α
2 ≥ σαxα. Given any σ > x′, we also see σα(x′1

α + x′2
α) + 2x′1

αx′2
α ≤

2σαx′1
α + 2x′1

2α < 4σαx′α. From (6), we can then see that a sufficient condition for x to
be preferred to x′ given any σ > x′ is σαxα > 4σαx′α. Factoring out σα > 0 then taking
the natural log, we see this condition is equivalent to α ln(x) > α ln(x′) + ln(4). Taking
α0 ≡ ln(4)

ln(x)−ln(x′)
> 0, we see α ln(x) > α ln(x′) + ln(4) holds for any α > α0 and σ > x′, so

that x must be preferred to x′ for sufficiently large α and σ. The converse is established
by contradiction. Suppose x is preferred to x′ but Ṽ (x) < Ṽ (x′), or equivalently, x′ > x.
Using (6) while applying the logic outlined above (except switching the roles of x and x′),
it must be the case that, for any σ > x, α ln(x)+ln(4) > α ln(x′) by virtue of the preference
for x over x′. Defining α′0 ≡

ln(4)
ln(x′)−ln(x)

> 0 (positive because x′ > x), we can see α > α′0
implies α ln(x) + ln(4) < α ln(x′). Hence, we have a contradiction, so that a preference
for x over x′ (with Ṽ (x) 6= Ṽ (x′)) must require Ṽ (x) > Ṽ (x′) for sufficiently large σ > 0

and α > 0. In the case of Ṽ (x) = Ṽ (x′), i.e., x = x′, we see from (6) that, in this case,
x will be preferred to x′ if and only if σα(xα + xα−) + 2xαxα− > σα(xα + x′−

α) + 2xαx′−
α

with x− ≡ min{x1, x2} and x′− ≡ min{x′1, x′2}. Subtracting σαxα from both sides, then
factoring out σα+2xα > 0, we see this is equivalent to x− > x′−. Given Ṽ0(a, b) ≡ min{a, b}
with x ≥ x− and x′ ≥ x′−, we see that x− > x′− is equivalent to Ṽ0(x) > Ṽ0(x

′). �
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Part (i) of Proposition 14 shows that the previously-established equivalence between the
basic PN model and the (symmetric) Cobb-Douglas preference model (Lemma 1) extends
to any α > 0, provided σ = 0 is maintained. Part (ii) shows that preferences converge
to those represented by a constant elasticity of substitution (CES) preference model in
the large-σ limit of the two-parameter PN model. In this case, (1 − α)−1 represents the
effective elasticity of substitution across attributes, implying preferences are nonconvex if
α > 1 (i.e. if (1−α)−1 < 0). Lastly, part (iii) shows that when σ and α are both arbitrarily
large, preferences align with those given by a rank-based lexicographic model, in which
the preference between x and x′ is determined by each alternative’s larger attribute value
(max{x1, x2}, max{x′1, x′2}). In the event of a tie, the preference is then determined by
their smaller attribute values (min{x1, x2}, min{x′1, x′2}).

More generally, binary-choice preferences among two-attribute alternatives in the two-
parameter model are a composite of preferences under the Cobb-Douglas and CES pref-
erence models, with σ determining the relative weight of each representation:

Proposition 15 Given N = 2 and X = {x,x′} under (5):

(i) If V cd(x) ≥ V cd(x′), V ces(x) ≥ V ces(x′), and σ ≥ 0 with at least two of these inequal-
ities non-binding, then x is preferred to x′.

(ii) If V cd(x) > V cd(x′) and V ces(x′) > V ces(x), there exists a σ0 > 0 (determined by x1,
x2, x′1, x′2, and α) for which x is preferred to x′ if and only if σ < σ0.

Proof. Using (6), we can see that x will be preferred to x′ if and only if (σV ces(x))α +

2(V cd(x))α > (σV ces(x′))α + 2(V cd(x′))α, from which the result in part (i) is readily
verified. Part (ii) is also readily verifiable from the condition for x to be preferred to x′, as

re-expressed in part (i), where σ0 ≡
(

2((V cd(x))α−(V cd(x′))α)
(V ces(x′))α−(V ces(x))α

)1/α
is derived from the implied

indifference condition. �

Thus, if the Cobb-Douglas and CES preference models agree in their rankings among
the two alternatives, the DM’s preference will align with this ranking. If they disagree,
preferences will coincide with Cobb-Douglas if σ < σ0 and with CES if σ > σ0, for some
threshold σ0 > 0 — in effect, a higher σ implies a larger weight of CES relative to Cobb-
Douglas preferences in determining the DM’s preference.

The next result shows that, unlike the contrast function ∆ from the basic PN model,
the analogous contrast function under (5), denoted as ∆∗∗, does not exhibit diminishing
sensitivity over its full domain:

Proposition 16 Given xn ≥ yn (without loss of generality), σ̂(yn) ≡
(

2
α−1

)1/α
yn, and

∆∗∗(xn, yn) ≡
∣∣ xαn−yαn
σα+xαn+yαn

∣∣:
(i) ∆∗∗(xn, yn) satisfies diminishing sensitivity if and only if σ = 0 or α ≤ 1 (or both).
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(ii) If α > 1 and σ ≤ σ̂(yn), ∆∗∗(xn, yn) exhibits diminishing sensitivity (locally) and is
concave in xn for all xn ≥ yn.

(iii) If α > 1 and σ > σ̂(yn), there exist increasing functions x̄(σ) > yn and x̂(σ) > yn such
that ∆∗∗(xn, yn) exhibits diminishing sensitivity if and only if xn > x̄(σ), and is concave
in xn if and only if xn > x̂(σ).

Proof. For part (i), note d[∆∗∗(xn+ε,yn+ε)]
dε =−αx

α
ny

α
n(2(xαn−yαn)+σα(x1−αn −y1−αn ))

xnyn(xαn+yαn+σα)2
given xn ≥ yn

(without loss of generality). Thus, d[∆∗∗(xn+ε,yn+ε)]
dε < 0 if and only if 2(xn−yn)+σα(x1−αn −

y1−αn ) > 0. With xn ≥ yn, this clearly holds for σ = 0 and also for α ≤ 1 because, together,
α ≤ 1 and xn ≥ yn guarantee x1−α − y1−α ≥ 0. Thus, ∆∗∗(xn + ε, yn + ε) < ∆∗∗(xn, yn)

for all ε > 0 given σ = 0 or α ≤ 1 (or both). Thus, to complete the proof, we only need
to show that for any σ > 0 and α > 1, there exist a xn ≥ 0 and yn ≥ 0 with xn ≥ yn
such that 2(xn − yn) + σα(x1−α − y1−α) < 0. Take yn =

σ(α−1)1/α

2 and let xn = yn + δ.
Substituting these into 2(xn−yn)+σα(x1−α−y1−α) then differentiating with respect to δ,
we get 2−2α < 0 for α > 1. Also note 2(xn−yn)+σα(x1−α−y1−α) = 0 given xn = yn, i.e.,
given δ = 0. Together, these imply 2(xn − yn) + σα(x1−α − y1−α) < 0 for yn =

σ(α−1)1/α

2

and xn = yn + δ, provided δ > 0 is sufficiently small, as desired.
For part (ii), let h(xn|yn, σ, α) ≡ 2(xn− yn) + σα(x1−αn − y1−αn ). From our above

work, we can see that ∆∗∗(xn, yn) exhibits diminishing sensitivity for all xn ≥ yn if and
only if h(xn|yn, σ, α) > 0 for all xn ≥ yn. Note h′(xn|yn, σ, α) = 2 − (α−1)σα

xαn
, so that

h′(xn|yn, σ, α) = 0 if and only if xn = x∗n ≡ σ
(
α−1

2

)1/α. Also note, h′′(xn|yn, σ, α) =
α(α−1)σα

xα+1 > 0. Thus, xn = x∗n uniquely maximizes h(xn|yn, σ, α). Given h′(xn|yn, σ, α) > 0

for all xn > x∗n and h(yn|yn, σ, α) = 0, ∆∗∗(xn, yn) satisfies diminishing sensitivity for all
xn ≥ yn if and only if x∗n ≤ yn or h(x∗n|yn, σ, α) ≥ 0 (or both). Given h′(xn|yn, σ, α) < 0

for all xn < x∗n and h(yn|yn, σ, α) = 0, x∗n > yn implies h(x∗n|yn, σ, α) < 0. Taken to-
gether, these last two observations imply ∆∗∗(xn, yn) satisfies diminishing sensitivity for
all xn ≥ yn if and only if x∗n ≤ yn, which, using the definitions of x∗n and of σ̂(yn), we
can see this is equivalent to σ̂(yn) =

(
2

α−1

)1/α
yn. Computing ∂2∆∗∗(xn,yn)

∂x2n
, multiplying

through by x2n(xαn + yαn + σα) > 0, diving by αxαn(2yαn + σα) > 0, and rearranging, we see
∆∗∗(xn, yn) is concave in xn for all xn ≥ yn if and only if xαn(1 + α) ≥ (α − 1)(yαn + σα)

for all xn ≥ yn. Since the left-side of this inequality is clearly increasing in xn, ∆∗∗(xn, yn)

is concave in xn for all xn ≥ yn if and only if the inequality holds at xn = yn, i.e., if and
only if yαn(1 + α) ≥ (α− 1)(yαn + σα). Solving for σ, we see this condition is equivalent to
σ ≤ σ̂(yn) =

(
2

α−1

)1/α
yn, as desired.

For part (iii), let x̄(σ) ≡
{
xn : σα =

2(xn−yn)

x1−αn −y1−αn

}
> yn, and x̂(σ) ≡

( (α−1)(yαn+σα)
α+1

)1/α
>

yn. Using our definitions of h(xn|yn, σ, α) and x̄(σ), h(x̄(σ)|yn, σ, α) = 0 is readily verifi-
able. Given x∗n > yn for σ > σ̂(yn) from part (i), h(yn|yn, σ, α) = 0, h′(xn|yn, σ, α) < 0 for
all xn < x∗n, and h′(xn|yn, σ, α) > 0 for all xn > x∗n, it follows that x̄(σ) > x∗n, implying
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h(xn|yn, σ, α) < 0 for yn < xn < x̄n and h(xn|yn, σ, α) > 0 for xn > x̄n. Recalling from
part (i) that ∆∗∗(xn, yn) is concave in xn if and only if xαn(1 + α) ≥ (α − 1)(yαn + σα),
we can rearrange this inequality to see that it binds at x̂(σ). By inspection, we can
then see that xn < x̂(σ) implies xαn(1 + α) < (α − 1)(yαn + σα) and xn > x̂(σ) im-
plies xαn(1 + α) > (α − 1)(yαn + σα), implying the desired result. Expressing h̃(x̄, σ, y) ≡
h(x̄(σ)|yn, σ, α) = 2(x̄− yn) + σα(x̄1−α − y1−αn ) = 0, we see ∂h̃(x̄,σ,y)

∂x̄ = 2− (α − 1)x̄−ασα,
∂h̃(x̄,σ,yn)

∂yn
= −2 + (α − 1)y−αn σα, and ∂h̃(x̄,σ,yn)

∂σ = ασα−1
(

1
x̄α−1 − 1

yα−1
n

)
< 0. Next, observe

∂h̃(x̄,σ,y)
∂x̄ = 2 + (1 − α)σαx̄−α > 0. Together, from the implicit function theorem, these

inequalities imply x̄(σ) is increasing in σ. By inspection, we can also readily verify that
x̂(σ) is increasing in σ since, holding α > 1 fixed, x̂(σ) is clearly increasing in (yα + σα)

and (yα + σα) is clearly increasing in σ. �

To help convey key features of ∆∗∗(xn, yn), Proposition 16 effectively fixes the smaller
attribute value, taken here to be yn, while allowing the larger attribute value xn to vary.
Of particular relevance, if σ is sufficiently small in relation to yn, ∆∗∗(xn, yn) will exhibit
diminishing sensitivity and strict concavity (in xn) for all xn ≥ yn. If σ is large in relation
to yn, however, ∆∗∗(xn, yn) will instead exhibit increasing sensitivity and convexity for
values of xn that are sufficiently close to yn.

Figure 5. The Effects of σ and α on Contrast.

On left: increasing σ leads to the emergence and then the expansion of a convex
region with a corresponding right-ward shift of the point at which contrast is max-
imally responsive to changes in xn (for fixed α > 1). On right: with α ≤ 1, the
the contrast function will not be S-shaped, while its responsivity becomes more
concentrated over a smaller range for larger α (for fixed σ > 0).

Therefore σ determines where the direct contrast function is maximally responsive to
a change in xn relative to yn. Since ∆∗∗(xn, yn) is most responsive to changes in xn at the
threshold x̂(σ), the effect of increasing σ can also be understood here as shifting this point
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of maximum responsiveness further to the right (Figure 5, left).26 As noted by by Rayo
and Becker (2007), a bounded value function with such properties is optimal when agents
are limited in their ability to discriminate small differences. While σ has been typically
treated as a constant in the neuroscience literature (e.g. Shevell, 1977; Heeger, 1992; Louie
et al., 2011), recent work suggests σ may arise dynamically in neural systems from the
history of stimuli (LoFaro et al., 2014; Louie et al., 2014; Tymula and Glimcher, 2016;
Khaw et al., 2017), thus acting as a dynamic reference point.

The constant α > 1 determines the extent to which the responsiveness of ∆∗∗(xn, yn)

is concentrated over a small range of xn, as opposed to being dispersed over a large range.
That is, as α > 1 increases, ∆∗∗(xn, yn) becomes more responsive to changes in xn near
x̂(σ), but becomes less responsive for xn further from x̂(σ). For example, in the limit as
α → ∞, ∆∗∗(xn, yn) assumes the shape of a step-function that is infinitely responsive at
x̂(σ) but unresponsive to changes in xn everywhere else (Figure 5, right).

D Classifying Other Theories’ Predictions

This appendix explains how other models’ predictions were classified in Table 1. For each of
the comparable models listed, we will describe the value function V (x;X) used to classify
the model’s predictions and demonstrate that it generates the corresponding predictions
listed in Table 1 (these value functions were also used to generate the corresponding graphs
shown in Figures 2 and 4).

For clarity and to facilitate consistent comparisons across models, certain restrictions
were applied to some models. For instance, we only considered deterministic versions of
each model and presumed that attributes are ex-ante symmetric, so that any attribute-
specific parameters or functions were taken to be the same across dimensions. These
and other model-specific restrictions (discussed below) may lead to a classification of ‘Y’
(robustly captures the behavior) or ‘N’ (predicts no effect or the opposite effect) in Table
1 when a more general version of the model would imply ‘S’ (captures the behavior in
some cases, but predicts the opposite in other cases). However, these restrictions can
never prevent a ‘Y’ or ‘N’ classification (thus, if we re-created Table 1 using more general
versions of each model, each classification would either remain the same or change to ‘S’).

The rules used to classify each prediction are then based on whether or not V (x;X) as
given for that model predicts the corresponding result as formalized in this paper:

• Compromise Effect : part (i) of Proposition 2.

• Dominance Effect, Weak : part (ii) of Proposition 2 with z2 = x2.

26This interpretation of x̂(σ) follows because ∂∆∗∗(xn,yn)
∂xn

> 0 is increasing where ∆∗∗(xn, yn) is convex
and decreasing where ∆∗∗(xn, yn) is concave.
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• Dominance Effect, Strict : part (ii) of Proposition 2 with z2 < x2.

• Decoy-Range Effect : part (ii) of Proposition 3.

• Relative Difference Effect : Proposition 1.

• Majority-Rule Preference Cycles : Proposition 4.

• Splitting Bias : Proposition 5.

• Alignability Effect : Proposition 6.

• Diversification Bias : Proposition 7.

• Feature Bias : Proposition 8.

D.1 Tversky and Simonson (1993)

For Tversky and Simonson’s (1993) model, we use the following value function (for con-
sistency, we will express other models using the notation of the basic PN model, except
where new notation is needed):27

V (x;X) =
N∑
n=1

xn + θ ·
∑

y∈X\x

∑
n max{xn−yn,0}∑

n max{xn−yn,yn−xn} , θ > 0. (7)

Compromise Effect (Y). Applied to (7), Assumption BCI holds if and only if x1 +x2 =

y1+y2. Taking x1+x2 = y1+y2 = 1 (without loss of generality), we know z1+z2 = 1−ω for
some ω ∈ (0, 1) since z is not preferred to x and y. In turn, if z makes x a compromise,
it is readily verifiable that x will be preferred to y given X = {x,y, z} if and only if
z1−x1+ω

2(z1−x1)+ω
> z1−y1+ω

2(z1−y1)+ω
, which must hold since z1 > x1 > y1.

Dominance Effect, Weak (Y) and Strict (Y). If x asymmetrically dominates z, x will
be preferred to y given X = {x,y, z} since x1−z1+x2−z2

x1−z1+x2−z2 = 1 > y2−z2
y2−z2+z1−y1 with z1 > y1.

Decoy-Range Effect (N). It is also verifiable that the decoy-range effect is captured
if x1−z1+x2−z2

x1−z1+x2−z2 −
y2−z2

y2−z2+z1−y1 = 1 − y2−z2
y2−z2+z1−y1 > 0 is increasing in z2. However, this

expression is decreasing in z2 since y2 > z2.

Relative Difference Effect (N). Using (7) and with x′ and y′ as defined in Proposition
1, V (x; {x,y}) = V (y; {x,y}) implies V (x′; {x′,y′}) = V (y′; {x′,y′}). Thus, the relative
difference effect is not captured.

Majority-Rule Preference Cycles (N). Using (7), V (x; {x,y}) > V (y; {x,y}) if and
only if

∑N
n=1 xn >

∑N
n=1 yn. Since

∑N
n=1 xn >

∑N
n=1 yn >

∑N
n=1 zn >

∑N
n=1 xn is a

contradiction, intransitive preferences (majority-rule or otherwise) are not possible.
27For simplicity, here we take δi(t) = t (in their notation, see page 1885) and omit any influence of

“background context” (besides the choice set) on preferences.
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Splitting Bias (N). Using the notation in Proposition 5, x′ is preferred to y′ given X =

{x′,y′} (capturing the splitting bias) under (7) if and only if (x1a−y1a)+(x1b−y1b)−(y2−x2)
x1a−y1a+x1b−y1b+y2−x2 >

(x1−y1)−(y2−x1)
x1−y1+y2−x2 , but these expressions are equal given x1a + x1b = x1 and y1a + y1b = y1.

Alignability Effect (N). Using the notation in Proposition 6, x′ is preferred to y′

given X = {x′,y′} (implying the alignability effect is captured) under (7) if and only
if (x1−y1)+(x2−0)−(y2−0)

(x1−y1)+(x2−0)+(y2−0)
> 0. However, under Assumption BCI, x1 +x2 = y1 + y2, implying

the left-side expression is equal to zero.

Diversification Bias (N). V (x;X)−V (x′;X) ∝
∑

n≤N max
{
A
N−x

′
n, 0
}
−
∑

n≤N max
{
x′n−

A
N , 0

}
= 0 given X = {x,x′},

∑
n≤N x

′
n = A, and xn = A

N for n ≤ N . Thus, the DM is
indifferent between x and x′, implying the diversification bias is not captured.

Feature Bias (N). With x and x′ as defined in Proposition 8, V (x; {x,x′}) = V (x′; {x,x′}) =
q
2q +

∑
n/∈{n′,N} xn under (7), implying indifference between the product x with the new

feature and the other product x′.

D.2 Kivetz et al. (2004a)

For Kivetz et al.’s (2004a) model, we use:

V (x;X) =
N∑
n=1

(xn − min
x′∈X
{x′n})c, 0 < c < 1. (8)

Compromise Effect (Y). Noting Assumption BCI holds if and only if x1 + x2 = y1 + y2
under (8), the compromise effect is captured since (x1 − y1)c + (x2 − z2)c − (y2 − z2)c > 0

must hold given (x1 − y1) + (x2 − z2)− (y2 − z2) = x1 + x2 − y1 − y2 = 0 and 0 < c < 1.

Dominance Effect, Weak (N) and Strict (Y). The dominance effect likewise holds as a
result of (x1 − y1)c + (x2 − z2)c − (y2 − z2)c > 0, provided z2 < x2. If z2 = x2, however,
(x1 − y1)c + (x2 − z2)c − (y2 − z2)c = (x1 − y1)c − (y2 − x2)c = 0.

Decoy-range Effect (Y). The decoy-range effect is captured if ∂
∂z2

[
(x2−z2)c−(y2−z2)c

]
=

c((x2 − z2)c−1 − (y2 − z2)c−1) > 0, which must hold since y2 > x2 > z2 and c < 1.

Relative Difference Effect (N). Under (8), the relative difference effect holds if ((x1 +

k)− (y1 + k))c > (x1 − y1)c for k > 0. However, both expressions are clearly equal.

Majority-Rule Preference Cycles (Y). We first provide an example that shows majority-
rule preference cycles are possible under (8). Namely, if x = (3, 2, 1), x′ = (2, 1, 3),
x′′ = (1, 3, 2), and c = 1

2
, we can then see from

√
3− 2+

√
2− 1 −

√
3− 1 = 2 −

√
2 > 0

that, in any binary choice, the alternative that is superior on two out of three dimensions is
strictly preferred. To show that minority-rule preference cycles are not possible, suppose x,
x′, x′′ satisfying the cyclical majority-dominance property where, without loss of generality,
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x1 +x2 +x3 = miny∈{x,x′,x′′}{y1 + y2 + y3}, x′ is superior to x on two out of three attribute
dimensions, and x1 > x′1. Hence, if a minority-rule preference cycle exists among x,
x′, and x′′, we must have δc1 − δc2 − δc3 > 0 for δn = |xn − x′n|. Since x1 + x2 + x3 =

miny∈{x,x′,x′′}{y1 + y2 + y3}, δc1− δc2− δc3 ≤ (δ2 + δ3)
c− δc2− δc3, while (δ2 + δ3)

c− δc2− δc3 < 0

given 0 < c < 1, a minority-rule preference cycle is impossible under (8).

Splitting Bias (Y). The splitting bias is likewise captured under (8) since (x1a− y1a)c +

(x1b − y1b)c > (x1a + x1b − y1a − y1b)c = (x1 − y1)c with 0 < c < 1.

Alignability Effect (N). The alignability effect is likewise captured under (8) since (y2−
x2)

c + xc2 > yc2 with 0 < c < 1, where (as is readily verifiable) this condition ensures
V (x′; {x′,y′}) > V (y′; {x′,y′}) with x′ and y′ as defined in Proposition 6.

Diversification Bias (N). To show that (8) does not predict the diversification bias, it
suffices to show an example for which the balanced allocation x is not strictly preferred
to some x′ 6= x given X = {x,x′}. As one example, take x′2 = 2A

N , x′1 = 0, and x′n = A
N

for all n > 2. Under (8), we then have V (x;X) = V (x′;X) = Ac

Nc , implying indifference
between x and x′.

Feature Bias (N). Under (8) and with x and x′ as defined in Proposition 8, V (x; {x,x′}) =

V (x′; {x,x′}) = qc, implying there is no bias in favor of the product x with the extra fea-
ture over the product x′ with the improvement to an existing feature.

D.3 Bordalo et al. (2013)

For Bordalo et al.’s (2013) model, we use:

V (x;X) =

∑N
n=1 δ

∑
m 6=n I[ρm(x;X)≥ρn(x;X)]·xn∑N

n=1 δ
∑
m6=n I[ρm(x;X)≥ρn(x;X)] , ρn(x; X) =

∣∣∣xn−µXnxn+µXn

∣∣∣, 0< δ < 1, (9)

where µXn ≡ ||X||−1
∑

x∈X xn is the mean attribute value in X on dimension n. This
formulation uses the degree-zero homogeneous salience function given in equation (4) of
Bordalo et al. (2013), which is denoted here as ρn(x; X). For the special case of binary
choice (taking X = {x,y}) with two attributes, the model in (9) reduces to:

V (x;X) =


δx1+x2

1+δ , ρ1(x;X)< ρ2(x; X),

x1 + x2, ρ1(x; X) = ρ2(x; X),

x1+δx2
1+δ , ρ1(x; X)> ρ2(x; X),

ρn(x; X) =
∣∣∣ xn−yn3xn+yn

∣∣∣. (10)

As mentioned in the footnote of Table 2, Bordalo et al.’s model could be evaluated using
a version in which one attribute is the price of the alternative or using a version in which
all attributes represent different quality dimensions. To facilitate consistent comparisons
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across models, here we consider the latter version.28

Compromise Effect (S). To show that (9) sometimes predicts the compromise effect and
sometimes predicts the opposite, it suffices to use examples. For instance, with δ = .5,
the DM is indifferent between x and y in binary choice but prefers x in trinary choice if
x = (3, .5), y = (2, 1), and z = (3.2, 0), in which case a compromise effect is predicted,
while the DM is indifferent between x and y in binary choice but prefers y in trinary choice
if x = (1, 2), y = (.5, 3), and z = (1.2, 0), in which case the opposite effect is predicted.

Dominance Effect, Weak (S) and Strict (S). Maintaining δ = .5, it is similarly verifiable
that the DM is indifferent between x and y in binary choice but prefers x in trinary choice
if x = (3, .5), y = (2, 1), and z = (2.8, 0), in which case a dominance effect with a strictly
dominated decoy is predicted, while the DM is indifferent between x and y in binary
choice but prefers y in trinary choice if x = (1, 2), y = (.5, 3), and z = (.8, 0), in which
case the opposite effect is predicted. In turn, the DM is indifferent between x and y in
binary choice but prefers x in trinary choice if x = (2, 1), y = (.5, 3), and z = (.75, 1), in
which case a dominance effect with a weakly dominated decoy is predicted, while the DM
is indifferent between x and y in binary choice but prefers y in trinary choice if x = (3, .5),
y = (1, 2), and z = (1.5, .5), in which case the opposite effect is predicted.

Decoy-Range Effect (S). Take x = (5, 1), y = (3, 2), z = (4.6, 1), and z′ = (4.6, .5) with
δ = .5. We can then compute V (x; {x,y, z}) = V (y; {x,y, z}) = V (y; {x,y, z′}) = 7

3 and
V (x; {x,y, z′}) = 11

3 , implying (9) predicts the decoy-range effect in this scenario. Now
take x = (4, 3), y = (1, 9), z = (1.25, 3), and z′ = (1, 25, 0), with δ = .5. We can then
compute V (x; {x,y, z}) = V (y; {x,y, z}) = V (x; {x,y, z′}) = 11

3 and V (y; {x,y, z′}) =
19
3 , implying (9) predicts the opposite of the decoy-range effect in this scenario.

Relative Difference Effect (S). Maintaining δ = .5 while taking x = (2.5, .75) and
y = (2, 1), so that x′ = (2.5, .75 + k), and y′ = (2, 1 + k), we can see that the DM
is indifferent in a binary choice between x and y. In particular, we can use (10) to
compute ρ1(x; X) = 1

19 < 1
13 = ρ2(x; X) and ρ1(y; X) = 1

17 < 1
15 = ρ2(y; X), implying

V (x; X) = .5·2.5+.75
1.5 = 4

3 = .5·2+1
1.5 = V (y; X). Next, we can verify that in a binary choice

28Following very similar arguments and examples as those used here, it is readily verifiable that all of the
Table 1 classifications for Bordalo et al.’s model would be the same for the version of their model with price
as an attribute, with the possible exception of the diversification bias, which would (depending on how a
model with price as an attribute was translated to the formal setting considered in Proposition 7) either:
(a) no longer be testable, since allocating an equal share of an asset A to a price dimension — formally,
allocating more to this dimension would mean a higher price paid — would be unnatural and in violation
of the “equal returns” assumption (i.e. there would be a negative return on this dimension and a positive
return on others), or (b) would be unchanged if we presume that both allocations have the same price
(which may naturally be the case if the asset represents a consumption budget or a monthly contribution
to a savings plan, as examples) and where the asset itself can only be allocated to the remaining quality
dimensions. In this case, the salience of each alternative’s price would be zero, according to ρ as defined
in (9), so that the salience rankings of the quality dimensions for each alternative would be the same as
the rankings with price omitted from the model.
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between x′ and y′, y′ is preferred if k = .25 since (10) implies ρ1(x′; X′) = 1
19 < 1

17 =

ρ2(x
′; X′) and ρ1(y

′; X′) = 1
17 > 1

19 = ρ2(y
′; X′), implying V (x′; X′) = .5·2.5+.75

1.5 = 4
3 <

5
3 = 2+.5·1

1.5 = V (y′; X′) with k = .25. If k = .5, however, x′ is preferred since (10)
implies ρ1(x′; X′) = 1

19 >
1
21 = ρ2(x

′; X′) and ρ1(y′; X′) = 1
17 >

1
23 = ρ2(y

′; X′), implying
V (x′; X′) = 2.5+.5·.75

1.5 = 23
12 >

5
3 = 2+.5·1

1.5 = V (y′; X′) with k = .5. Thus, the model captures
the relative difference effect with k = .5 as well as its opposite with k = .25.

Majority-Rule Preference Cycles (S). Take x = (2, 1, 0), x′ = (1, 0, 2), x′′ = (0, 2, 1)

and δ = .5. Then a minority-rule preference cycle will exist where V (x; {x,x′}) =

V (x′; {x′,x′′}) = V (x′′; {x,x′′}) = δ+2δ2

1+δ+δ2 = 4
7 and V (x′; {x,x′}) = V (x′′; {x′,x′′}) =

V (x; {x,x′′}) = 2δ+δ2

1+δ+δ2 = 5
7 > 4

7 . If we instead take x = (20, 4, 1), x′ = (4, 1, 20),
and x′′ = (1, 20, 4) while maintaining δ = .5, then V (x; {x,x′}) = V (x′; {x′,x′′}) =

V (x′′; {x,x′′}) = 1+20δ+4δ2

1+δ+δ2 = 48
7 and V (x′; {x,x′}) = V (x′′; {x′,x′′}) = V (x; {x,x′′}) =

4+δ+20δ2

1+δ+δ2 = 38
7 < 48

7 , in which case a majority-rule preference cycle will exist.

Splitting Bias (S). Maintaining δ = .5, take x = (3, .5) and y = (2, 1), implying
x′ = (x1a, 3 − x1a, .5) and y′ = (y1a, 2 − y1a, 1). Then it is readily verifiable that the DM
is indifferent in a binary choice between x and y under (9) and that, in a binary choice
between x′ and y′, x′ is preferred if x1a = .5, which captures the splitting effect, while y′

is preferred if k = .25, which captures the opposite.

Alignability Effect (S). Maintaining δ = .5, we can verify that the alignability effect
is captured under (9) if x = (6, 1) and y = (3, 2) but the opposite effect is predicted if
x = (2, 1) and y = (1, 2).

Diversification Bias (S). Here, we show that the diversification bias is always captured
for N = 2 and never captured for N > 2. Given X = {x,x′}, with N = 2 it is readily
verifiable that V (x;X) = A

2 . Without loss of generality, suppose x′1 < x′2, implying x′2 =

A − x′1. Then ρ1(x′;X) = A−2x′1
A+6x′1

and ρ2(x′;X) = A−2x′1
7A−6x′1

, implying ρ1(x′;X) > ρ2(x
′;X)

since 7A − 6x′1 > A − 2x′1 given x′1 < x′2 = A − x′1. Hence, V (x;X) =
x′1+δ(A−x′1)

1+δ <
A
2 = V (x;X), as we can verify through cross-multiplication given 2x′1 < A, implying the
diversification bias is captured. For N > 2, suppose x′1 = x′2 = 3A

4N , x′3 = 3A
2N , and x′n = xn

for all n > 3. We then have ρ1(x′;X) = ρ2(x
′;X) = 1

13 < 1
11 = ρ3(x

′;X), implying

V (x′;X) = A
N ·

3(1+δ2)+2(N−3)δN−1

2+4δ2+2(N−3)δN−1 > A
N = V (x;X), with the inequality holding for all

δ < 1 since 3(1 + δ2) > 2 + 4δ2, contradicting the diversification bias.

Feature Bias (Y). To show that the feature bias is robustly captured under (9), note
that ρn′(x;X) = q

4xn′+q
given X = {x,x′}, ρN(x;X) = 1

3 , ρn′(x
′;X) = q

4xn′+3q , and
ρN(x′;X) = 1, where x and x′ are defined as in Proposition 8. We can also see ρn(x;X) =

ρn(x′;X) = 0 for all n /∈ {n′, N}. From this, we get V (x′;X) =
δ(xn′+q)+δ

N−1 ∑
n/∈{n′,N} xn

1+δ+(N−2)δN−1 .
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If q
4xn′+q

= 1
3 , then V (x;X) =

δ(xn′+q)+δ
N−1 ∑

n/∈{n′,N} xn

2δ+(N−2)δN−1 , ensuring V (x;X) > V (x′;X)

given δ < 1. If q
4xn′+q

6= 1
3 , then V (x;X) ≥ min{xn′+δq,δxn′+q}+δN−1 ∑

n/∈{n′,N} xn

1+δ+(N−2)δN−1 , which also
ensures V (x;X) > V (x′;X) since min{xn′ + δq, δxn′ + q} > δ(xn′ + q). Thus, x must be
preferred to x′, capturing the feature bias.

D.4 Koszegi and Szeidl (2013)

For Koszegi and Szeidl’s (2013) model, we use:

V (x;X) =
N∑
n=1

h
(
max
x′∈X
{x′n} − min

x′∈X
{x′n}

)
· xn, (11)

where h is strictly increasing.

Compromise Effect (N). We can readily verify that the compromise effect holds under
(11) if h(z1 − y1) · (x1 − y1) > h(y2 − z2) · (y2 − x2). Given z is not preferred to y,
y2 − z2 > z1 − y1 must hold, while Assumption BCI implies x1 − y1 = y2 − x2. Thus, the
above condition is violated since h(y2 − z2) > h(z1 − y1) with h increasing.

Dominance Effect — Weak (N) and Strict (N). The dominance effect holds under (11)
if h(x1 − y1) · (x1 − y1) > h(y2 − z2) · (y2 − x2). Since z2 ≤ x2, x1 − y1 = y2 − x2, and h is
increasing, this condition cannot hold.

Decoy-Range Effect (N). Given y2 > x2 ≥ z2, ∂
∂z2

[
V (x, {x,y, z}) − V (y, {x,y, z})

]
=

(y2 − x2)h′(y2 − z2) > 0 under (11). Thus, if the DM is indifferent between x and y given
X = {x,y, z}, y must be preferred to x given X = {x,y, z′} with z′1 = z1 and z′2 < z2,
which is the opposite of the decoy-range effect.

Relative Difference Effect (N). The relative difference effect holds if h((y2+k)−(x2+k))·
((y2+k)−(x2+k)) is decreasing in k ≥ 0. Since h((y2+k)−(x2+k))·((y2+k)−(x2+k)) =

h(y2 − x2) · (y2 − x2), the expression is clearly independent of k, implying the relative
difference effect is not captured.

Majority-Rule Preference Cycles (N). To allow majority-rule preference cycles while pre-
cluding minority-rule preference cycles, it suffices to show that V (x, {x, z}) > V (z, {x, z})
for any x and z satisfying x1 > z1, x2 > z2, and x1 + x2 + x3 = z1 + z2 + z3 with
N = 3. Noting these conditions imply z3 > x3 and z3 − x3 = x1 + x2 − z1 − z2 while
letting δn ≡ xn − zn > 0 for n = 1, 2, under (11) we have V (x, {x, z}) − V (z, {x, z}) =

(h(δ1)−h(δ1 +δ2)) ·δ1 +(h(δ2)−h(δ1 +δ2)) ·δ2. Thus, V (x, {x, z})−V (z, {x, z}) > 0 can-
not hold since h(δ1 + δ2) > h(δn) for n = 1, 2 with h(·) increasing, implying majority-rule
preference cycles are not captured under (11).
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Splitting Bias (N). Letting δa = x1a−y1a and δb = x1b−y1b, we can see that the splitting
bias is captured under (11) if (h(δa)− h(δa + δb)) · δa + (h(δb)− h(δa + δb)) · δb > 0, but
this condition cannot hold since h(δa + δb) > max{h(δa), h(δb)} with h increasing.

Alignability Effect (N). Since Assumption BCI implies x1 + x2 = y1 + y2 under (11),
x1 − y1 = y2 − x2. We can then see that the alignability effect is captured if (h(y2 −
x2) − h(y2)) · (y2 − x2) + (h(x2) − h(y2)) · x2 > 0, which cannot hold since h(y2) >

max{h(x2), h(y2 − x2)} with h(·) increasing.

Diversification Bias (N). To show that (11) does not predict the diversification bias,
suppose x′1 = 0, x′2 = 2A

N , and x′n = A
N for all n > 2. Then, with xn = A

N for all n ≤ N and
X = {x,x′}, we get V (x;X)− V (x′;X) = h

(
A
N − 0

)
·
(
A
N − 0

)
− h
(

2A
N −

A
N

)
·
(

2A
N −

A
N

)
=

h
(
A
N

)
· AN − h

(
A
N

)
· AN = 0, implying indifference between x and x′.

Feature Bias (N). With the new feature, x has an effective advantage fof h(q) · q on
dimension N . With the improved existing feature, x′ has an effective advantage of h(xn′+

q−xn′) · (xn′ + q−xn′) = h(q) · q on dimension n′. Since these advantages are equal under
(11), V (x; {x,x′}) = V (x′; {x,x′}) must hold, implying the feature bias is not captured.

D.5 Bushong et al. (2017)

For Bushong et al.’s (2017) model, we use V (x;X) as given in (11), except now h is strictly
decreasing and h(z) · z is strictly increasing in z.

Compromise Effect (Y). As before, the compromise effect holds if h(z1−y1) ·(x1−y1) >
h(y2 − z2) · (y2 − x2). Given z is not preferred to y, y2 − z2 > z1 − y1 must hold, while
Assumption BCI implies x1 − y1 = y2 − x2. Thus, the above condition holds (ensuring a
compromise effect) since h(y2 − z2) < h(z1 − y1) given h is decreasing.

Dominance Effect, Weak (N) and Strict (Y). The dominance effect holds if h(x1− y1) ·
(x1−y1) > h(y2− z2) · (y2−x2). Since x1−y1 = y2−x2 and h is decreasing, the condition
holds for z2 < x2 but not for z2 = x2. Thus, the dominance effect is captured for a strictly
dominated decoy z but not if z is only weakly dominated.

Decoy-Range Effect (Y). As seen, ∂
∂z2

[
V (x, {x,y, z})−V (y, {x,y, z})

]
= (y2−x2)h′(y2−

z2) given y2 > x2 ≥ z2 under (11), except now (y2−x2)h′(y2−z2) < 0 since h′(y2−z2) < 0.
Thus, with indifference between x and y given X = {x,y, z}, x will be preferred to y

given X = {x,y, z′} with z′1 = z1 and z′2 < z2, capturing the decoy-range effect.

Relative Difference Effect (N). Same as Koszegi and Szeidl (2013) — see above.

Majority-Rule Preference Cycles (Y). To allow majority-rule preference cycles while
precluding minority-rule preference cycles, it suffices to show V (x, {x, z}) > V (z, {x, z})
for any x and z satisfying x1 > z1, x2 > z2, and x1 + x2 + x3 = z1 + z2 + z3 with
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N = 3. Noting these conditions imply z3 > x3 and z3 − x3 = x1 + x2 − z1 − z2 while
letting δn ≡ xn − zn > 0 for n = 1, 2, under (11) we have V (x, {x, z}) − V (z, {x, z}) =

(h(δ1)−h(δ1 +δ2)) ·δ1 +(h(δ2)−h(δ1 +δ2)) ·δ2. Thus, V (x, {x, z})−V (z, {x, z}) > 0 must
hold since h(δ1 + δ2) < h(δn) for n = 1, 2 given h is decreasing, implying majority-rule
preference cycles are robustly captured.

Splitting Bias (Y). Given δa = x1a − y1a and δb = x1b − y1b, the splitting bias is
captured if (h(δa)− h(δa + δb)) · δa + (h(δb)− h(δa + δb)) · δb > 0, which must hold since
h(δa + δb) < min{h(δa), h(δb)} with h decreasing.

Alignability Effect (Y). Since Assumption BCI implies x1 + x2 = y1 + y2 under (11),
x1 − y1 = y2 − x2. Using this relation, we can then see that the alignability effect is
captured if (h(y2−x2)−h(y2)) · (y2−x2) + (h(x2)−h(y2)) ·x2 > 0, which must hold since
h(y2) < min{h(x2), h(y2 − x2)} with h decreasing.

Diversification Bias (N). Same as Koszegi and Szeidl (2013) — see above.

Feature Bias (N). Same as Koszegi and Szeidl (2013) — see above.

E Model Restrictions in Figure 2

This appendix describes parametric and functional form assumptions used to create the
graphs in Figure 2 for the Tversky and Simonson (1993), Kivetz et al. (2004a), and Bordalo
et al. (2013) models. As noted in the text, these graphs depicted each model’s predicted
effect of adding a third alternative z on the DM’s preference between two alternatives,
x and y, where the DM was indifferent between x and y in binary choice. With one
exception (addressed below), we used x = (2, 1) and y = (1, 2) while expressing the DM’s
trinary-choice preference between x and y in terms of z’s attribute values, z1 and z2. In
turn, the parametric and functional form assumptions described below were selected due
to their simplicity and adherence to the more general restrictions of the model to which
they were applied.

Tversky and Simonson (1993). To generate the graph for Tversky and Simonson’s
(1993) model, we used the value function (7) described in Appendix D. For any θ > 0, it
is then readily verifiable under (7) that, with x = (2, 1) and y = (1, 2) and X = {x,y, z},

V (x;X)− V (y;X) ∝
max{2−z1,0}+max{1−z2,0}

|2−z1|+|1−z2| −
max{1−z1,0}+max{2−z2,0}

|1−z1|+|2−z2| ,

which generates the regions shown in Figure 2 for Tversky and Simonson’s (1993) model.

Kivetz et al. (2004a). To generate the graph for Kivetz et al.’s (2004a) model, we used
the value function (8) described in Appendix D. It is then readily verifiable under (8)
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that, with x = (2, 1) and y = (1, 2) and X = {x,y, z},

V (x; X)− V (y; X) =
2∑

n=1

(3− n−min{1, zn})c − (n−min{1, zn})c,

which, taking any c ∈ (0, 1), generates the regions shown in Figure 2 for the Kivetz et al.
(2004a) model.

Bordalo et al. (2013) — Two Quality Attributes. To generate the graph for Bordalo et
al.’s (2013) model with alternatives defined on two quality dimensions, we used the value
function (9) described in Appendix D. It is then readily verifiable under (9) that, with
x = (2, 1) and y = (1, 2) and X = {x,y, z},

V (x; X)− V (y; X) =
2δgx(z)+δ1−gx(z)

δgx(z)+δ1−gx(z)
− δgy(z)+2δ1−gy(z)

δgy(z)+δ1−gy(z)
,

where gx(z) ≡ I
[ |3−z1|

9+z1
> z2

6+z2

]
and gy(z) ≡ I

[
z1

6+z1
>
|3−z2|
9+z2

]
. We can then see that, for

any δ ∈ (0, 1), these expressions generate the regions shown in Figure 2.

Bordalo et al. (2013) — Price and Quality. To generate the graph for Bordalo et
al.’s (2013) model with alternatives defined by its price and a single quality attribute, we
used x = (px, qx) = (1, 1) and y = (py, qy) = (2, 2) while otherwise applying the same
restrictions in (9), which can still be applied with price as an attribute simply by treating
the price of z ∈ {x,y} as a negative quality attribute with value −pz. GivenX = {x,y, z},
the predicted value difference between x and y in trinary choice is then

V (x; X)− V (y; X) =
δ1−gx(z)−δgx(z)
δgx(z)+δ1−gx(z)

− 2 · δ
1−gy(z)−δgy(z)
δgy(z)+δ1−gy(z)

,

where now gx(z) ≡ I[pz > qz] and gy(z) ≡ I
[ |3−pz|

9+pz
<
|3−qz|
9+qz

]
. In turn, these expressions

(again, with any δ ∈ (0, 1)) generate the regions shown in Figure 2.
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