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1 Introduction

Lumpiness in microeconomic adjustment is pervasive in many economic environments. For instance,

capital investment, inventory management, consumption of durable goods, price setting, portfolio adjust-

ment, and many other economic decisions faced by firms and households are characterized by periods of

inaction followed by bursts of activity. Recurrent questions that arise in these environments relate to the

macroeconomics consequences of this micro lumpiness. How does lumpiness in microeconomic adjustment

a↵ect aggregate dynamics? After a policy change or an aggregate shock, how long do transitions last

until the lumpy economy reaches its new long-run equilibrium? Understanding these issues is key for

the design and implementation of policies aiming at stabilizing the business cycle or generating long-run

growth.

Our work contributes by developing new theoretical tools to study transitional dynamics in lumpy

economies. We consider environments with heterogeneous agents that make decisions subject to ad-

justment frictions. These frictions can take the form of fixed adjustment costs, random opportunities

of adjustment, fixed dates of adjustments, among many other. Following Álvarez, Le Bihan and Lippi

(2014), we measure transitional dynamics through the cumulative impulse-response function (CIR), which

equals the cumulative deviations of a variable with respect to its steady state value during the transition.

We contribute by formally characterizing three properties of the CIR that hold in any inaction model,

whether it is state-dependent, time-dependent, or a hybrid of both.

The first property, aggregation, expresses transitional dynamics as the solution to a representative

agent’s recursive problem. The second property, representation, expresses the representative agent’s

problem as a function of steady state moments. The third property, observation, recovers the steady

state moments and parameters using information about observable actions, such as the frequency and

size of adjustments. Taking the three results in conjunction, our theory provides a tight link between

observable actions (in micro panel data), steady state moments, and business cycle dynamics.

With our theoretical results at hand, we illustrate the potential of our framework with an application

to capital misallocation and investment dynamics. For this purpose, we set-up a canonical model of

lumpy investment à la Khan and Thomas (2008), Bachmann, Caballero and Engel (2013) and Winberry

(2016), that features idiosyncratic productivity shocks, depreciation and productivity growth, asymmetric

policies, and random capital adjustments costs. Defining the capital gap as the log di↵erence between

the current capital and its static optimum, the CIR of average capital depends on two cross-sectional

steady state moments: the variance of capital gaps and the covariance between capital gaps and the

time since their last adjustment. We show analytically how to measure these unobservable statistics

using observable micro data on manufacturing plants in Chile and Colombia. A key contribution lies

in demonstrating that certain micro statistics that were never computed in the data and ignored when

calibrating models, such as the covariance above, are crucial determinants of aggregate dynamics. We

show that the canonical investment model with adjustment costs misses these statistics. In this spirit,

our tools can aid researchers in improving their models for the aggregate implications of inaction.

Let us now discuss in more detail the three properties of the CIR.
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1. Aggregation. Transitional dynamics towards steady state are characterized as the solution to the

recursive problem of a representative agent. By requiring certain degree of history independence in the

processes and policies, we are able to characterize all ex-post heterogeneity due to idiosyncratic shocks

through the problem of one agent. Intuitively, consider an environment in which upon adjustment,

all agents adjust to bring their state to the same value. Then, agents become ex-ante identical at the

moment of adjustment, and they will only di↵er ex-post due to the idiosyncratic shocks. Thus any ex-post

heterogeneity due to di↵erent initial conditions or conditional dynamics can be summarized by one of

these ex-ante agents. Importantly, our aggregation result does not imply that heterogeneity is irrelevant

for aggregate dynamics; it says that all heterogeneity can be summarized in a compact way.

2. Representation. The solution to the representative agent’s problem can be represented through

a combination of steady state cross-sectional moments. The idea behind this result lies in that, in an

approximation around the steady state, the ergodic moments encode information about agents’ respon-

siveness to idiosyncratic shocks, and thus these moments inform us about the representative agent’s

policy. We show that in certain cases, the ergodic moments are not su�cient to fully characterize the

CIR and additional information about micro-level elasticities is needed. In the case of the canonical

lumpy investment model, this structural relation becomes a function of the two cross-sectional moments

of the distribution discussed above.

3. Observation. Our previous results express transitional dynamics as a function of steady state

moments. However, such moments, in many cases, may be hard to observe in the data. For instance,

firms’ markups are unobservable, since we only observe average cost and not marginal costs, and it is

even harder to think about capital gaps, the distance between firms’ capital and their optimal level.

Then, how we can discipline steady state moments of these variables? Our third and most applicable

result shows how to recover the steady state moments with observable actions, namely, adjustments and

stopping times, both of which are very likely to be observable in micro datasets. The logic behind this

mapping is that, by assuming a structure for the state’s evolution during inaction and merging it with

information revealed through agents’ adjustments, we can back out ergodic moments and the process of

shocks a↵ecting them.

In our baseline analysis, we focus on the CIR of the first moment following a horizontal shift of the

distribution, and assume that the idiosyncratic shocks are described by a random walk with drift. Then,

we extend our results to study the transition of any moment of the distribution (first, second, etc.), for

any initial condition away from the steady state (mean preserving spreads, etc.), and general stochastic

processes (e.g. with mean-reversion). While the specific mappings between the micro data, the steady

state moments and the aggregate dynamics change in each of these environments, the existence of a

structural relationship among them continues to hold.

General equilibrium e↵ects. Our analysis takes as a premise that the steady state policies hold

along the transition path. This assumption is valid as long as the general equilibrium feedback from

the aggregate distribution to the individual policies though prices is quantitatively insignificant. There
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are several general equilibrium frameworks in which this is the case.1 When general equilibrium e↵ects

are quantitative relevant, the tools developed in this paper do not fully characterize aggregate dynamics.

Nevertheless, there exist lumpy environments in which the partial equilibrium mechanisms continue to

hold in general equilibrium.

A concrete example of this logic is found in the context of pricing literature with Calvo-type adjust-

ments. In a model with negligible first order general equilibrium e↵ects, Álvarez, Le Bihan and Lippi

(2014) show analytically that the e↵ectiveness of monetary policy is a function of the average duration of

pricing spells, independent of any type of heterogeneity. Following this result, Blanco and Cravino (2018)

reach a similar conclusion in a model with large general equilibrium e↵ects (arising from real rigidities)

in the context of real-exchange dynamics. Therefore, the role of heterogeneity and inaction in shaping

aggregate dynamics is not altered by general equilibrium forces.

Related literature. Aggregate dynamics in inaction models has been widely studied. The ground-

breaking work of Caplin and Spulber (1987), Caballero and Engel (1991) and Caplin and Leahy (1991)

provided theoretical guidelines in stylized models to understand the role of micro lumpiness in shaping

aggregate dynamics. With the surge of micro data, more realistic models that incorporated idiosyncratic

shocks were developed, such as Cooper and Haltiwanger (2006), Golosov and Lucas (2007), Midrigan

(2011), Berger and Vavra (2015), Carvalho and Schwartzman (2015) and Alvarez, Lippi and Paciello

(2016), with the objective of understanding how the interaction of heterogeneity and lumpiness mattered

for aggregate dynamics. We contribute by providing novel theoretical insights and an empirical strategy

that exploits the micro data to its maximum while imposing a minimum structure to the inaction model.

Our paper is closely related to the work by Álvarez, Le Bihan and Lippi (2014), who consider a

multi-product menu cost model with random opportunities to freely adjust and Brownian innovations to

markup gaps. In that setup, they study the real e↵ects of monetary shocks. In our view, one of the key

results in their paper is that the cumulative impulse-response (CIR) for average markup gaps—a measure

of the real e↵ects of a money shock—equals the kurtosis of price changes times the average duration of

prices divided by 6. They show this result analytically for the case of one product (n = 1) and infinite

products (n = 1), and more generally, they construct power series of each of the terms in the equality

and confirm numerically that the relationship holds. Our contribution lies in proving a formal proof to

their result in a more general framework using the structural relation between the CIR and the steady

state moments. Moreover, our strategy allows to extend the results to richer environments.

Structure of the paper. Section 2 presents a standard model of lumpy investment that allows us

to introduce the objects of interest. Section 3 develops the theory and explains the logic behind the

aggregation, representation and observation properties of the CIR. Section 4 applies the theory using

micro-level data. Section 5 generalizes and extends the results.

1For the e↵ect of monetary shocks, see Woodford (2009), Golosov and Lucas (2007), and the vast literature that builds on
them. For real exchange dynamics, see Carvalho and Nechio (2011) and Kehoe and Midrigan (2008). Regarding investment
models, Bachmann, Caballero and Engel (2013) and Winberry (2016), building on Khan and Thomas (2008), show that
partial equilibrium dynamics are not undone by general equilibrium e↵ects whenever the model is calibrated to match the
cyclical properties of aggregate investment or interest rates. Web Appendix B describes some of these frameworks.
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2 Baseline Model: Lumpy Investment

This section describes the economic environment in which we apply the theory we develop. We build

a partial equilibrium lumpy investment model in the spirit of Khan and Thomas (2008), Bachmann,

Caballero and Engel (2013) and Winberry (2016), with a few simplifications that are discussed below.

2.1 Environment

Time is continuous and infinite. There is a representative household and a continuum of ex-ante identical

firms. There is no aggregate uncertainty and firms face two types of idiosyncratic shocks: productivity

shocks and a random adjustment cost to be paid with each capital adjustment. We denote with ! 2 ⌦

the full history of these two shocks and consider (⌦, P,F) to be a probability space equipped with the

filtration F = {Ft : t � 0}. We use the notation g!,t : ⌦ ⇥ R ! R to denote an adapted process (a

function Ft-measurable for any t � 0) and E[g!,t] to denote its expectation under P .

Firms. Firms operate in competitive markets. They produce output Y using capital K as the only

input through a decreasing returns technology:

Y!,t = E
1�↵
!,t K

↵
!,t, (1)

where the log of idiosyncratic productivity E evolves according to a Brownian motion with drift µ and

volatility �, as follows:

d log(E!,t) = µdt+ �dW!,t, W!,t ⇠ Wiener. (2)

A firm chooses capital to maximize its expected stream of profits. For every capital adjustment, a firm

pays a random fixed adjustment cost proportional to its productivity tE!,t, where t is described by a

compound Poisson process. In a period of length dt, the adjustment cost equals a constant  > 0 with

probability 1 � �dt, or it is given by random variable ⇠!,t with probability �dt, where ⇠!,t follows the

distribution H(⇠) with support [0,]. Letting Ñ!,t describe a Poisson process with arrival rate �, we

write the adjustment cost !,t as

!,t =

(
 if dÑ!,t = 0

⇠!,t if dÑ!,t = 1.
(3)

Profits are discounted at the Arrow–Debreu time-zero price Qt. Capital between adjustments depreciates

at a constant rate  . With all the elements above, a firm’s problem entering at time t consists in

choosing a sequence of adjustment dates (⌧!,i), and investment rates (�K⌧!,i = K⌧!,i �K⌧�!,i
) that solve

the following stopping-time problem:

max
{⌧!,i,�K⌧!,i}

1

i=1

E
"Z 1

0
QsY!,s ds�

1X

i=1

Q⌧!,i

�
!,⌧!,iE!,⌧!,i +�K⌧!,i

�
#
, (4)
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where output, productivity, and fixed costs follow (1), (2), and (3), respectively, and capital follows

log(K!,s) = log(K!,0)�  (s� t) +
X

⌧!,is

�K⌧!,i . (5)

Household. The household chooses the stochastic process for consumption to maximize its expected

utility subject to a budget constraint. The household problem is given by

Z 1

0
e
�⇢t

Ctdt, subject to

Z 1

0
Qt (Ct �⇧t) dt = 0. (6)

where ⇧t ⌘ E[⇡!,t] denotes aggregate firm’s profits and Ct denotes household’s consumption.

Aggregate feasibility. Aggregate output Yt is used for household’s consumption Ct and firms invest-

ments It, which includes capital adjustments adjustment costs2:

E
⇥
E

1�↵
!,t K

↵
!,t

⇤
| {z }

Yt

= Ct + E
⇥

{⌧,t} [!,tE!,t +�K!,t]
⇤

| {z }
It

. (7)

Equilibrium. Given an initial distribution of {K!,0, E!,0}, an equilibrium is a set of stochastic processes

for prices {Qt}, household’s policy {Ct}, and firms’ policies {⌧!,i,�K!,i} such that:

(i) Given {Qt}, {Ct} solve the household’s problem (6).

(ii) Given {Qt}, {⌧!,i,�K!,i} solve the firm’s investment problem (4).

(iii) Goods market clears (7).

Price system dynamics. In principle, the price system may depend on two types of states variables:

endogenous state variables, such as the distribution of capital holdings across firms, or exogenous state

variables. The challenge under the first scenario, is that firms’ values and policies would depend on the

aggregate state (which in turn depends on their distribution) and thus steady state policies would not

be adequate to characterize the transitional dynamics. To circumvent this issue in order to use steady

state policies, we have specified a general equilibrium structure that generates a price system which is

independent from the firm distribution. In this case, due to linearity of preferences, the only price in

the economy is that of the Arrow security Qt, which satisfies Qt = Q0e
�⇢t and is independent of the

firm distribution. This assumption does not imply that the aggregate state is independent of the firm

distribution, since for example, aggregate output does depend on the joint distribution of capital and

productivity; but prices are.

Discussion of simplifying assumptions. Let us compare our environment with one of the benchmark

models in this literature in Khan and Thomas (2008). First, in contrast to that paper, we do not consider

labor as a factor of production. Given that we consider a partial equilibrium setting, and the labor

decision is static in their model, this assumption is innocuous since adding labor would only a↵ect

2Here {⌧,t} = {! : 9i s.t. ⌧!,i = t} indicates the set of adjusters.
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the value of the output-capital elasticity. Second, all the investments in our model, regardless if these

fall within a small range, require the payment of the fixed adjustment cost (in the language of these

authors, we do not consider unconstrained investments). This assumption is quantitatively irrelevant for

transitional dynamics, as in the calibration, most investments are constrained anyways due to the large

size of idiosyncratic shocks relative to aggregate shocks.

Lastly, we consider a random-walk process for idiosyncratic productivity instead of mean reversion.

This assumption is considered to simplify the exposition at this stage and it is relaxed in Section 5.

Moreover, this assumption is also motivated by empirical observation: considering mean-reverting shocks

generates a negative autocorrelation in investment rates at the firm level that is not observed in the data.

A random-walk process generates iid investment rates which are more aligned with the data.

2.2 Characterization of investment policy

Firms’ investment policy. The firm’s policy is described by three objects. An inaction region, de-

noted with C = (k, k), such that the firm adjusts with probability 1 if kt /2 C. An adjustment hazard,

denoted with ⇤(k), that describes investments within the inaction region C that happen with a su�ciently

low realization of the fixed cost. A reset capital gap, denoted with k̂, that describes the new capital gap

after investment. Proposition 1 characterizes these three objects. For convenience, let us define the total

drift ⌫ ⌘ �( + µ) and the adjusted discount ⇢̃ ⌘ ⇢ + � � µ � �2

2 . Recall that H(⇠) denotes the cdf of

the adjustment costs.

Proposition 1. Let V (K,E) be the value of a firm with initial capital K and initial productivity E:

V (K,E) = E
Z ⌧

0
e
�⇢t

E
1�↵
t K

↵
t dt+ e

�⇢⌧

✓
⌧E⌧ +max

K⇤
V (K⇤

, E⌧ )� (K⇤ �K⌧ )

◆�
. (8)

Then we can reexpress the value as V (K,E) = Ev
�
log
�
K
E

��
, where v(k), the continuation region C and

the reset capital k̂ satisfy the Hamilton-Jacobi-Bellman equation

⇢̃v(k) = e
↵k + ⌫v

0(k) +
�
2

2
v
00(k) + �

Z
max

n
v(k̂)� ⇠ � (k̂ � k), v(k)

o
dH(⇠) 8k 2 C, (9)

together with the value matching conditions

v(k)� e
k = v(k)� e

k = v(k̂)� e
k̂ � , (10)

and the optimality for the reset capital and smooth pasting conditions

v
0(z) = e

z
for z 2 {k k, k̂}. (11)

The adjustment dates ⌧!,i (when capital is reset to k⌧!,i = k̂) are given by

⌧!,i+1 = inf
n
t � ⌧!,i : k!,t /2 C or N

k
!,t �N

k
!,⌧!,i

� 1
o
, ⌧!,0 = 0. (12)
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where N
k
!,t is a Poisson process with arrival rate ⇤(k) = �H(v(k̂)� v(k)� (k̂ � k)).

Capital gaps and aggregate variables. Given the firms investment policy, we are interested in

characterizing the log deviations of aggregate capital from its steady state. To this end, we define three

variables. First, we define the capital gap k!,t ⌘ log(K!,t/E!,t) as the log of the ratio of a firm’s capital

to its productivity. Second, we define kss ⌘ E [log(K!/E!)] to be the average of capital gaps in the

steady state.3 Lastly, we define the normalized capital gap x!,t ⌘ k!,t � kss as a firm’s capital gap minus

the steady state average. Redefining the state in this way is convenient to characterize the investment

policy, and moreover, it has useful properties to think about aggregate objects.4

With these definitions, we compute the aggregate capital log deviation from steady state, denoted

with K̂t, which up to a first order approximation, it is equal to the average normalized capital gap E[x!,t]:

K̂t ⌘ E [log(K!,t)]� E [log(K!)] = E [k!,t]� kss = E[x!,t], (13)

where we use the assumption that productivity distribution is in the steady state. Notice that, in this

normalization, we first centralize the capital-gap distribution around its steady state average and then

we aggregate across firms. By the previous analysis, we may shift the focus from aggregate capital to

moments of the normalized capital gaps. Finally, note that the dynamics of other aggregate variables,

such as output deviations from steady state Ŷt, can also be expressed in terms of moments of normalized

capital gaps:

Ŷt ⌘ E [log(Y!,t)]� E [log(Y!)] = ↵K̂t = ↵E[x!,t] (14)

Law of motion of capital gaps. To derive the law of motion of capital gaps, we use the firm policy

and its adjustment hazard from Proposition 1. Given the investment policy, we normalize the state to

consider deviations from steady state: (x, x̂, x) ⌘ (k � kss, k̂ � kss, k � kss). The uncontrolled capital

gaps—not considering any investments—follow the process

dx̃!,t = ⌫dt+ �dW!,t, (15)

where we use tildes to show explicitly that these variables evolve exogenously. The initial conditions x̃!,0

are exogenously given. By the discussion above, the initial condition of the uncontrolled capital gap is

by x̃!,0 = k!,0 � kss.

In contrast, the controlled capital gaps—taking into account investments—evolves as

x!,t = x̃!,t +
X

⌧!,it

�x⌧!,i , (16)

where the adjustment dates are defined in (12) and the investment rates �x⌧!,i are defined implicitly by

3The notation without time index t refers to moments computed with the steady state distribution.
4Note that we are able to transform the state from capital and productivity (K,E) to capital gaps x due to the homothetic

production function and the shape of the fixed cost. For all the proofs in this example see Web Appendix C.
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the di↵erence in the capital stock between date ⌧!,i and immediately before adjustment ⌧�!,i:

�x⌧!,i = x̂� x⌧�!,i
. (17)

2.3 Steady state and transitional dynamics

Steady state moments. Consider the steady state distribution of the controlled state F (x). Define

G(a|x) the distribution of the time since x’s last adjustment, which we refer to it as “age”. For any

numbers k, l 2 N, we define the ergodic cross-sectional moment of capital gaps and age as

Mk,l[x, a] ⌘
Z

x

Z

a
x
k
a
l
dG(a|x) dF (x) 8k, l 2 N, with M1,0[x, a] = 0. (18)

We use the notation Mk[x] ⌘ Mk,0[x, a] and Ml[a] ⌘ M0,l[x, a].

Transitional dynamics. Fix an initial distribution of the state F0(x) = E
⇥

{x!,0x}
⇤
. We define

the impulse-response function for the m � th moment of the capital gap distribution under the initial

distribution F0, denoted by IRFm,t(F0), as the di↵erence between its time t value and its ergodic value:

IRFm,t(F0, t) ⌘ E
⇥
x
m
!,t

⇤
| {z }
transition

� Mm[x].| {z }
steady state

(19)

Following Álvarez, Le Bihan and Lippi (2014), we define the cumulative impulse-response (CIR), denoted

by Am(F0), as the area under the IRFm,t(F0) curve across all dates t 2 (0,1):

(CIR) Am(F0) ⌘
Z 1

0
IRFm,t(F0, t) dt. (20)

Figure I illustrates these two objects. In the left panel, we plot the initial distribution F0 and the steady

state distribution F , and also highlight the m-th moment of capital gaps E[xm0 ] which will be tracked in

its way towards steady state. In the right panel, the solid line represents the impulse-response of E[xmt ],

which is a function of time, and the area underneath it is the cumulative impulse-response or CIR.

The CIR is our key measure of the convergence speed towards the steady state. The smaller is the

CIR, the faster the convergence. The following Lemma expresses the CIR in a recursive way, and it is a

generalization of the result in Álvarez, Le Bihan and Lippi (2014). Although at this stage we are working

in a particular example, the result holds true for any moment of the distribution m > 1, for an arbitrary

Markovian stopping policy, and for any Markovian law of motion of the uncontrolled state.

Lemma 1. The CIR can be written recursively as:

Am(F0) =

Z
vm(x)dF0(x). (21)

where the value function for an agent with initial state x is given by:

vm(x) ⌘ Ex

Z ⌧

0
(xmt �Mm[x]) dt

�
(22)
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Figure I – Cumulative Impulse-Response (CIR)

State (x)

A. Distribution of State

steady state F (x)

initial condition F0(x)

E[xm1] E[xm0 ]

CIR =
R1
0 (E[xmt ]� E[xm1]) dt

Time

B. Dynamics for E[xmt ]� E[xm1]

IRFm,t = E[xmt ]� E[xm1]

1

The idea behind Lemma 1 is to exchange the integral across agents (the cross-section) with the

infinite time integral (the time-series).5 Then, it is key to recognize that the first time a firm adjusts

its capital it incorporates the deviations into its policy, and thus we only need to keep track until its

first adjustment; any additional adjustment is driven by idiosyncratic conditions. The average of these

additional adjustments equals the ergodic moment Mm[x], implying that the value function vm(x) is

equal to zero after the first adjustment. For that reason, the infinite time integral gets substituted for an

integral between t = 0 and the stopping-time t = ⌧ .

3 The Three Properties in a Baseline Environment

This section derives the three properties of the CIR function. The first result—aggregation—approximates

the transitional dynamics, measured via the CIR, as the stopping time problem of a representative

firm that captures adjustments through the intensive and the extensive margins. The second result—

representation—expresses the intensive and extensive margins in terms of moments of the state’s ergodic

distribution. Finally, the third result—observation—connects the state’s ergodic moments with the dis-

tribution of policies �x and ⌧ , which are observable statistics in most micro-data sets.

Our baseline environment focuses on the inaction model of investment presented in Section 2. Here,

we study transitional dynamics for average capital gaps, i.e. m = 1, when the initial condition consists of

a mean translation of the steady state distribution. In Section 5, we extend the results for an arbitrary

state space, arbitrary policies, and other additional features.

5This can be done due to the ergodic properties of the problem and the fact that moments are finite.
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Initial conditions as �-perturbations around steady state. For ease of exposition, we interpret

the initial condition as a perturbation of the steady state distribution, that can be described in terms

of one parameter �. In particular, in the baseline case analyzed here, we consider a perturbation that

translates horizontally the distribution of capital gaps. If f(x � �) denotes the new density of capital

gaps, and we approximate it as f(x� �) ⇡ f(x)� �f 0(x), we observe that it is equal to a right shift of the

steady state density by �f 0(x). Afterwards, the distribution will evolve according to the agents’ policies

and will converge back to its steady state. Under this interpretation, we denote Am(F0) with Am(�).

3.1 Aggregation

Starting from its recursive representation, Proposition 2 computes the cumulative CIR as the sum of

intensive margin � and extensive margin ⇥ components, defined below.

Proposition 2. To a first order, the transitional dynamics towards the steady state, measured through

the CIR, are given by

A1(�) = � ⇥
✓
�1 +⇥1 �

�
2

2⌫
⇥0

◆
+ o(�2) (23)

where the intensive margin component �1 and the extensive margin components ⇥1 and ⇥0 are:

�1 ⌘
Ex̂
⇥R ⌧

0 '
�
1 (xt)dt

⇤

Ex̂[⌧ ]
with '

�
1 (x) ⌘

1

⌫
(Ex [x⌧ ]� x) (24)

⇥m ⌘
Ex̂
⇥R ⌧

0 '
⇥
m(xt)dt

⇤

Ex̂[⌧ ]
with '

⇥
m(x) ⌘ 1

⌫

 
@Ex

⇥
x
m+1
⌧ /(m+ 1)

⇤

@x
� Ex [xm⌧ ]

!
(25)

Equation (23) measures the total e↵ect of the �-perturbation as an area, with a height of �, and a

base given by two components: �1, which measure of adjustments through the intensive margin, and

⇥1,⇥0, that measure adjustments through the extensive margin. In turn, each component is expressed

through two nested HJB equations of a representative firm in (24) and (25), what is sometimes known

as recursively squared. The inner HJBs denoted by '�
1 (x), and '

⇥
m(x) track conditional dynamics for

any initial condition x. They captures the evolution of the state from the initial condition towards the

new steady state. The outer HJBs measures the mass of firms at each initial condition by computing the

occupancy measure or local time spent at such state between any two adjustments. Together, the nested

recursive problems capture the total deviations between the initial condition and the final destination,

i.e., the steady state.6

The result uses four steps. The first step consists in a first order Taylor approximation of A1(�)

together with integration by parts that delivers

A1(�) =

Z x

x
v(x)f(x� �)dx ⇡ � ⇥

Z x

x
v
0(x)f(x)dx. (26)

where we have used that there is no mass at the boundary of the inaction region (or the regularity of the

boundary of the cotinuation region).

6Convergence to the steady state is not needed for the aggregation result. For example, the property goes through in an
Ss model without idiosyncratic shocks that features cycles, as in Caplin and Spulber (1987).
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The second step consists in decomposing the base into an intensive and an extensive margin. Since

M1[x] = 0 by the normalization, we have that v(x) = Ex
⇥R ⌧

0 xtdt
⇤
and its derivative is v

0(x) =

dEx
⇥R ⌧

0 xtdt
⇤
/dx. Substitute this derivative into (26); then add and subtract the expectation of the

derivative of the state with respect to the initial conditions, Ex
⇥R ⌧

0
dxt
dx dt

⇤
, which equals Ex[⌧ ] to obtain7:

A1(�) ⇡ �

Z x

x
Ex[⌧ ]f(x)dx

| {z }
�1 = intensive margin

+ �

Z x

x

 
dEx

⇥R ⌧
0 xtdt

⇤

dx
� Ex[⌧ ]

!
f(x)dx

| {z }
⇥1��2

2⌫ ⇥0 = extensive margin

. (27)

The first component measures aggregate adjustments through the intensive margin: changes in the path

xt due to the new initial condition x keeping the duration fixed. The second component measures the

aggregate adjustments through the extensive margin: changes in duration due to the new initial condition

keeping the state’s path fixed. To see this clearly, suppose the state evolves deterministically, then the

second term becomes xt · d⌧/dx.
The third step consists in finding an equivalent recursive representation for the conditional dynamics

inside the integrals in (27). Let us show the steps for the intensive margin. Using the law of motion of

xt, we have that dxt = ⌫dt + �dWt. Then, integrating from 0 to ⌧ and taking expectations with initial

condition x, we have that Ex[x⌧ ] = x+ ⌫Ex[⌧ ] + �Ex
⇥R ⌧

0 dWt
⇤
. By the Optional Sampling Theorem, the

last term is equal to zero because it is a martingale with zero initial condition. Therefore, we can express

Ex[⌧ ] = Ex[x⌧ ]�x
⌫ . With similar steps, we find the expression for the extensive margin.

In the final step, we focus on the unconditional dynamics, that is, the measure used to integrate

the conditional dynamics outlined above. For this purpose, we use an alternative representation of

the steady state distribution as the occupancy measure.8 Intuitively, the mass of agent in x—given

by f(x)dx—is equal to the amount of time spent at x. Formally, we have the following equivalence:

F (x) ⌘ Pr [xt  x] = Ex̂
⇥R ⌧

0 {xtx} dt
⇤
/Ex̂[⌧ ]. Thus, we rewrite A1(�)

� in (27) as

Ex̂

"
R ⌧
0

='�

1
(xt)z }| {✓

Ex[x⌧ ]� x

⌫

◆
dt

#

Ex̂[⌧ ]| {z }
�1

+

Ex̂

"
R ⌧
0

='⇥

1
(xt)z }| {

@Ex
⇥
x
2
⌧/2
⇤
/@x� Ex [x⌧ ]

⌫
dt

#

Ex̂[⌧ ]| {z }
⇥1

��
2

2⌫

Ex̂

"
R ⌧
0

='⇥

0
(xt)z }| {

@Ex [x⌧ ] /@x� 1

⌫
dt

#

Ex̂[⌧ ]| {z }
⇥0

(28)

Usefulness of aggregation. We have shown that transitional dynamics (measured through the CIR)

can be written a the solution of a recursive problem for a single agent. The intuition lies in the fact

that after adjustment, firms become identical, and then any di↵erences in their dynamics arise due to

di↵erences in their initial conditions at the moment of the perturbation. All the information regarding

these ex-post di↵erences is neatly summarized in the representative agent problem.

The usefulness of the aggregation result in Proposition 2 is twofold. Within the scope of this paper,

it allows us to derive a connection between the intensive and extensive margins and the steady state

7Ex
⇥R ⌧

0

dxt
dx dt

⇤
= Ex

hR ⌧

0

d(x+⌫t+�Wt)

dx dt

i
= Ex

⇥R ⌧

0
1dt
⇤
= Ex[⌧ ].

8See Stokey (2009) for details.
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moments of the distribution as we show next. More generally, its usefulness lies in aiding researchers

with an aggregation result in models with inaction in which the cross-sectional distribution is part of the

state.

3.2 Representation

With a recursive expression for the transitional dynamics at hand, the second step consists in express-

ing the three components of the CIR, �1 and ⇥1 and ⇥0, as a function of the steady state cross-sectional

moments. We derive a mapping that does not depend on a particular inaction model, therefore di↵erent

models will produce di↵erent aggregate e↵ects if and only if they change the ergodic moments.

Characterization of intensive margin �1. The first component of the CIR, �1, measures the ag-

gregate e↵ects keeping any changes in aggregate duration fixed. Proposition 3 shows that the intensive

margin equals the capital’s average age across firms.

Proposition 3. The intensive margin component is given by:

�1 = M1[a] (29)

Technically, the proof consists on finding an equivalence between the average age M1[a] and �1 by

using the occupancy measure, Itō’s lemma, and the law of iterated expectations. First, by the equivalence

between the ergodic distribution and the occupancy measure, we have that

�1 =
Ex̂
⇥R ⌧

0 (x⌧ � xt) dt
⇤

⌫Ex̂ [⌧ ]
=

Ex̂ [x⌧⌧ ]

⌫Ex̂ [⌧ ]
�

Ex̂
⇥R ⌧

0 xt
⇤

⌫Ex̂ [⌧ ]
=

Ex̂ [x⌧⌧ ]

⌫Ex̂ [⌧ ]
, (30)

where we have used that
Ex̂[

R ⌧
0
xt]

⌫Ex̂[⌧ ]
= M1[x]

⌫ = 0 by the normalization. Lastly, following similar steps

as before (using Itō’s Lemma and the Optional Sampling Theorem), it is easy to show that Ex̂[x⌧ ⌧ ]
⌫Ex̂[⌧ ]

=
M1[x]

⌫ +M1[a] = 0 +M1[a]. Substituting this equivalence above, we have the result.

How do we understand the connection between the intensive margin and the capital’s average age?

Average age provides information about the speed at which the average firm adjusts to the perturbation

from the steady state. The older is average capital in the economy, the longer the transition. Consider a

frictionless limit in which all firms continuously invest to brings capital gaps to zero. Since capital in all

firms would have age equal to zero, the economy reaches its steady state immediately. The reason is that

any deviation from steady state is immediately absorbed into the representative firm’s policy and there

are no persistent deviations from steady state.

Characterization of extensive margin ⇥1 and ⇥0. Now, it is the turn to characterize the evolution

of the extensive margin ⇥m in terms of ergodic cross-sectional moments. There are two main challenges.

First, the extensive margin does not only depend on the immediate response of the aggregate adjustment

frequency, but it also reflects all current and future changes in frequency. Second, even if we had the whole

sequence of adjustment frequency that follows a perturbation, the extensive margin also depends on the
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capital-gaps of the particular set of firms selected to invest. This is clearly seen again in the deterministic

case, where the extensive margin becomes xt ·d⌧/dx0, thus the change in frequency is scaled by the state,

di�culting its characterization. Next, we develop a theory to discipline these two objects.

Proposition 4 presents a characterization of the extensive margin in terms of two objects: how in-

vestment responds to idiosyncratic initial conditions (a micro-elasticity) and the aggregate moments of

the distribution. Together, these objects imply a macro-elasticity of the extensive margin with respect

to the perturbation. Additionally, as known in the literature, we show that in time-dependent models,

the extensive margin does not play a role.

Proposition 4. Let gm(x) be a smooth function such that for all m

gm(x) = Ex̂+x[(x̂��x)m]� Ex̂ [(x̂��x+ x)m] , (31)

and define the micro-elasticities as ✓m,j ⌘ 1
⌫

P1
k�j

x̂k�j

k!j!

h
dk+1gm+1(0)/m+1

dxk+1 � dkgm(0)
dxk

i
. Then, the extensive

margin is given by

⇥m =
1X

j=0

✓m,jMj [x]. (32)

Moreover, if ⌧ is independent of x, then gm(x) = ✓m,j = 0 for all m and ⇥m = 0 as well.

First, let us describe each object in equation (31). Recall that the expected capital gap at the moment

of adjustment is equal to x⌧ = x̂��x. Now, the first term, given by Ex̂+x[(x̂��x)m], equals the expected

capital gap at the moment of adjustment when the initial condition is x̂+x; while the second term, given

by Ex̂ [(x̂��x+ x)m], equals the expected capital gap at the moment of adjustment plus a deterministic

increase of size x when the initial condition is x̂. The di↵erence between these two functions of x provides

information of how the stopping time depends on the initial condition and how it correlates with the

state. To see this more clearly, notice that we can re-express gm(x) in the following way

gm(x) = E
h
(x̂+ x� ⌫⌧

x̂+x � �W⌧ x̂+x)m
i
� E

h
(x̂+ x� ⌫⌧

x̂ � �W⌧ x̂)
m
i
, (33)

where ⌧ z is the stopping time with initial condition z. In equation (33) we observe that if ⌧ is independent

of the initial condition, i.e. ⌧ x̂+x = ⌧
x̂, as in time-dependent models, then gm(x) = 0 for all x. Thus,

gm(x) provides a micro-elasticity of firms idiosyncratic response to the new initial conditions though

changes in its stopping-time ⌧ . To construct the aggregate elasticity, we aggregate the micro-elasticities

with weights equal to the capital-gap’s ergodic moments, which encode information about the state’s

distribution.

Constructing gm(x) from the data. To construct the micro-elasticities, we need to ask: what is

observable in the data and what is not? The object Ex̂ [(x̂��x+ x)m] is an observable statistic as it

depends on the steady state investment rates.9 The objects Mj [x] and x̂ can also be recovered from the

9If idiosyncratic volatility is large enough with respect to aggregate volatility, then steady state micro-statistics can be
recovered with average statistics in a model with business cycles. See Blanco (2015) for a verification of this statement in
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data as we show in the next section. Therefore, the only object that might not be directly observable is

Ex̂+x [(x̂��x)m], which measures the elasticity of investment with respect to changes in initial conditions.

Guided by the theory, we suggest that this elasticity is the key object that future research should focus

on computing, both in the data and in the models.

There are two papers that use an adequate methodology and data to construct the micro-elasticities.

First, in the pricing literature, Karadi and Rei↵ (2014) study the immediate monthly price response

to a change in the VAT with Hungarian CPI. Since a change in the VAT proxies a cost-push shock,

the experiment is equivalent to an increase in firm’s markup in the same proportion; this design would

allow to compute the micro-elasticity of the expected price change to initial conditions. Second, in the

investment literature, Zwick and Mahon (2017) exploit shifts in accelerated depreciation to estimate the

e↵ect of temporary tax incentives on equipment investment; such a design would allow to compute the

micro-elasticity of expected investment to initial conditions.

The role of micro-elasticities: two examples. Are the micro-elasticities necessary to discipline the

extensive margin? Moreover, can we provide an analytic value for the infinite sum in ⇥m, that can be

related to ergodic moments? The answer to these questions is model-dependent as we illustrate with one

example and one counterexample. First, we show that in the random Ss model presented in Section 2

(known in the pricing literature as the CalvoPlus model, see Nakamura and Steinsson (2008)), the micro-

elasticities are not needed to compute the CIR, since there exists a one-to-one mapping from ergodic

moments to the CIR. Second, we provide a counterexample where two di↵erent models that generate

the same ergodic moments have di↵erent CIR; thus, in this case, micro-elasticities play a key role in

determining the CIR through the extensive margin.

Example 1. In the random Ss model where H(⇠) = 1 for all ⇠, then CIR is given by

A1(�) = �

✓
M2[x]� ⌫ M1,1[a, x]

�2

◆
+ o(�2). (34)

Equation (34) shows that there exists a one-to-one mapping from the ergodic cross-sectional moments

to the CIR, which is determined by the steady state variance of the capital-gaps, normalized by the shock

volatility, minus the covariance between capital age (or vintage) and the investment rate. Consequently,

micro-elasticities are not needed to characterize transitional dynamics.

To build the intuition for this result, consider the case ⌫ = 0 so that the CIR is given exclusively by

the normalized dispersion of capital gaps. This dispersion encodes information about agents’ responsive-

ness to idiosyncratic shocks (the higher the ratio the less responsive), and in turn, the responsiveness

determines the speed of convergence to the steady state. For instance, high levels of capital misallocation

or large price dispersion (normalized by the volatility of idiosyncratic shocks) signal little responsiveness

to idiosyncratic shocks, from where we infer that there is also slow adjustment to aggregate shocks. In

the case ⌫ 6= 0, the covariance between capital vintage and the investment rate (which is negative in this

model) appears as a way to correct for the e↵ects of the drift.

From Example 1 a natural question arises: Is this a general result? Are the micro-elasticities presented

in Proposition 4 actually not relevant? The answer to both questions is no, as we show with the following

the context of firm pricing decisions.
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counterexample.10

Example 2. Let T ⌘ Ex̂[⌧ ] denote average duration. Consider an inaction model with adjustments at

fixed dates (Taylor-type) and a standard Ss model; assume away idiosyncratic shocks (� = 0) and allow

for a non-zero drift (⌫ 6= 0). In these two models there exists a steady state with a uniform distribution

of capital-gaps and an investment distribution with an atom at �⌫T ; thus they produce the same ergodic

moments.11 Now, let us study transitional dynamics for � < 0. As stated by the theory, in both models

the intensive margin is equal to the average age: �1 = T/2. Since the Taylor model is time-dependent,

⇥1 = 0 and its CIR equals: ATaylor(�)/� ⇡ T/2. In the Ss model, the extensive margin is equal to

⇥1 = ✓1,0M0[x] = �T/2 (as ✓1,j = 0 for j > 0), and its CIR equals ASs(�)/� ⇡ T/2 � T/2 = 0. This

result mirrors the classic money non-neutrality outcome in Caplin and Spulber (1987).

The previous counterexample illustrates that two models may produce the same steady state statistics,

but nevertheless, they can exhibit completely di↵erent transitional dynamics. Our explanation lies in the

di↵erences in micro-elasticities, zero in the Taylor-type model and ��1 in the Ss model. Therefore, there

exist cases for which the micro-elasticities are relevant objects for characterizing the extensive margin,

and our theory can guide researchers in finding experiments or exogenous variation to compute them.

3.3 Observation

In the third set of results, we express the ergodic cross-sectional moments of the state distribution

and the structural parameters in terms of the investment distribution �x and adjustment dates ⌧ . The

relevance of this result lies in that in many applications, the state x is likely to be unobservable, but

the adjustments �x and ⌧ are. This is the case in our example, as capital gaps are hard to observe

but investment rates are readily available in the data.12 As a consequence of the results in the following

Proposition 5, we can track unobservable states using observable statistics. In the next proposition, we

use the conditional coe�cient of variation squared given by CV2[X] = Vx̂[X]
Ex̂[X]2

for any random variable X.

Proposition 5. Let (�x, ⌧) denote the adjustment size and the adjustment dates and denote with Ex̂[·]
the unconditional cross-sectional moments observed in the data.

1. The reset capital gap is given by the covariance between adjustment size and duration:

x̂ =
Ex̂[�x]

2

�
1� CV2[⌧ ]

�
+

Covx̂[⌧,�x]

Ex̂[⌧ ]
. (35)

2. The volatility of idiosyncratic productivity shocks and the drift are recovered as:

⌫ = �Ex̂[�x]

Ex̂[⌧ ]
; �

2 =
Ex̂[�x

2]

Ex̂[⌧ ]
+ 2⌫x̂. (36)

10See Web Appendix E.4 for the proof.
11These two models have several ergodic time-varying distributions that depend on the initial condition. To generate an

unique ergodic distribution for any initial condition, we add a small and random probability of free adjustment. Besides
generating a unique ergodic distribution, it gives di↵erentiability to the CIR at � = 0 in the Ss model.

12Our formulas require us to compute the change in log capital gaps �x in the data. Due to the continuity assump-
tion for the idiosyncratic productivity, the changes in the capital-gap equal the observed investment rates: �x!,⌧ =
limt"⌧i log(K!,⌧i/K!,t)� limt"⌧i log(E!,⌧i/E!,t) = limt"⌧i log(K!,⌧i/K!,t). Therefore, we can compute the changes in the
capital gap using changes in the capital stock.
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3. The steady state moments are given by:

Mm[x] =
x̂
m+1 � Ex̂

⇥
(x̂��x)m+1

⇤

Ex̂ [�x] (m+ 1)
� �

2
m

2⌫
Mm�1[x], (37)

M1[a] =
1

2
Ex̂[⌧ ]

�
1 + CV2[⌧ ]

�
, (38)

Mm,1[x, a] =
Ex̂
h
⌧ (x̂��x)m+1

i

⌫(m+ 1)Ex̂[⌧ ]
� Mm+1[x]

⌫(m+ 1)
� �

2
m

2⌫
Mm�1,1[x, a], (39)

with initial conditions M1[x] = 0 and M0,1[x, a] = M1[a].

Equation (35) shows the observability property for the reset state x̂, which is derived from the cross-

equation restriction imposed by the normalization of the ergodic mean M1[x] = 0. The expression has

two components: the first one mainly reflects the e↵ect of the drift in the reset state, while the second

one mainly reflects the asymmetry in the policies.

To explain the drift component consider an Ss model without idiosyncratic shocks and a negative

drift. In such a model, ⌧ and �x have a degenerate distribution and the capital-gap distribution is

uniform in the domain [x̂��x, x̂]. Our formula implies a reset state of x̂ = Ex̂[�x]
2 > 0, which centers the

distribution around zero. By compensating the negative drift, the positive reset state ensures that the

ergodic mean is zero. To explain the second component, set the drift to zero and consider an asymmetric

inaction region |x � x̂| > |x � x̂| such that the upper trigger is closer to x̂ than the lower trigger. In

this case, the capital-gap distribution is skewed towards values lower than x̂. Our formula implies a reset

state given by x̂ = Covx̂[⌧,�x]
Ex̂[⌧ ]

> 0.13 By reflecting the bias in the policy, the positive reset state shifts the

distribution to the right to ensure that the ergodic mean is zero.

Expressions in (36), which extend those in Álvarez, Le Bihan and Lippi (2014) for the case with

drift, provide a guide to infer the parameters of the stochastic process. The first expression shows how

to infer the drift from the average investment rate in the data, scaled by the adjustment frequency; and

the second expression shows how to infer the volatility from the dispersion in investment rates, scaled by

the frequency and corrected by the drift (which also generates dispersion, but not due to fundamental

volatility).

Equation (38) relates average age to the average and the dispersion in duration, measured through the

coe�cient of variation. The relationship with the average duration is straightforward. To understand why

the dispersion of duration a↵ects average age, it is important to recall a basic property in renewal theory:

the probability that a random firm has an expected time between capital changes of ⌧ is increasing in ⌧ ,

i.e. larger stopping times are more representative in the capital-gap distribution.14 Therefore, dispersion

in duration means there are firms that take a long time to adjust, and on top of that, those firms are

more representative in the economy; this rises the average age.

Lastly, equation (37) provides a recursively formula to compute the centralized moments using ob-

served investment rates. By assuming a stochastic process for the uncontrolled capital gaps (dxt =

13The covariance is positive since the longer the duration, the higher is the probability to hit the lower trigger and to do
an upward adjustment.

14This property has been widely studied in labor economics when thinking about long-term unemployment. For example,
Mankiw (2014)’s textbook Principles of Macroeconomics mentions that: “[...] many spells of unemployment are short, but
most weeks of unemployment are attributable to long-term unemployment”.
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⌫dt+�dWt), together with Itō’s lemma and the Optional Sampling Theorem, we can connect the average

slope of moment m+ 1 to the level of the previous moments m and m� 1 as follows:

Et
⇥
dx

m+1
t

⇤
| {z }

slope

= ⌫(m+ 1) x
m
t|{z}

level

dt+
�
2

2
(m+ 1)mx

m�1
t| {z }
level

dt+ �(m+ 1)Et [x
m
t dWt]| {z }
=0

(40)

Therefore, the average investment to the power m + 1, gives information about the centralized moment

m of capital gaps. To see this clearly, set x̂ = 0 and m = 2, then equation (37) reads M2[x] =
Ex̂[(�x)3]
3Ex̂[�x]

,

relating the dispersion of capital gaps in the LHS to the skewness of investment rates in the RHS. A

similar argument holds for (39).

3.4 Relationship to the literature

We conclude this section by explaining the connections and contributions to the literature on pricing and

investment.

Pricing literature. The representation property establishes a formal and direct link between the slope

of the Phillips curve and the cost of sticky prices, given by the dispersion of relative prices. Additionally,

our results complement in two dimensions the analysis in Álvarez, Le Bihan and Lippi (2014). That

paper establishes a connection between the first moment’s CIR and the kurtosis of price changes �x in

the case of a symmetric menu-cost model with zero drift: A1(�)/� =
1
6E[⌧ ]Kur[�x]. First, we show how

to extend this formula to take into account asymmetric policies and non-zero drift. Second, as explained

in Example 1, we derive a connection between the first moment’s CIR and the normalized ergodic variance

of prices. This connection holds in the cases of symmetric and asymmetric Ss models. To our knowledge,

this is the first time such connection is established.

Investment literature. There is a vast theoretical and empirical literature that aims to measure and

analyze the consequences of capital misallocation across firms (see Restuccia and Rogerson (2013) for a

survey). Misallocation is defined as the dispersion in the marginal product of capital in the cross-section.

The problem is that the marginal product cannot be directly observed in the data. The traditional

approach to study this phenomenon, as in Hsieh and Klenow (2009), consists in specifying a production

function at the micro level that generates an equivalence between misallocation and the average capital-

output ratio. However, as argued by Oberfield (2013), this approach su↵ers from a specification error, as

it is hard to test the validity of the technological assumptions.

We propose an alternative way that circumvents this specification problem. Our approach—embedded

in the observation property—consists in directly assuming a stochastic process for the unobserved marginal

product of capital, and then adding discipline to the parameters of the stochastic process using observable

micro data on investment. While this approach clearly depends on the assumptions on the stochastic

process (e.g. mean-reversion vs. drift), the theory imposes cross-equation restrictions that allow us to

validate such assumptions.
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4 Application: Capital Misallocation

In this section, we revisit the investment model from Section 2 and apply our new tools to understand

the magnitude of capital misallocation in steady state as well as the dynamics of capital gaps along the

business cycle.

4.1 Data description and construction of capital gaps changes

Data description. We use micro data on the cross-section of manufacturing plants in Chile and Colom-

bia.The Chilean data comes from the Encuesta Nacional Industrial Anual (Annual National Manufac-

turing Survey, ENIA) for the period 1995-2007.15 The ENIA includes approximately 3,500 observations

per year. The Colombian data comes from the Encuesta Anual Manufacturera (Annual Manufacturers

Survey, EAM) for the period 1995-2016.16 The EAM includes about 6500 observations per year. See

Table I for other descriptive statistics.

Data cleaning and other issues. We exclude establishments with less than 10 workers and eliminate

outlier observations with investment rates in the 1st and 99th percentiles. Additionally, in order to make

our data comparable to previous studies, we consider a balanced panel of establishments that appear

throughout the whole sample period.

Constructing capital gaps changes. To construct the capital stock series, we include machinery,

equipment, transport, buildings and structures, while excluding land, o�ce equipment and systems, as

well as other depreciable and non-depreciable assets. Then, we construct nominal gross investment using

information on purchases and sales of capital reported by each establishment

I!,t = Purchases!,t � Sales!,t. (41)

To construct the investment rate i!,t, we divide investment by initial capital:

i!,t =
I!,t

K!,t
, (42)

where K!,t is the nominal value of fixed assets at the start of year t (adjusted by depreciation and

inflation). Recall that the change in capital gaps is given by �x!,t = log
⇣
K⌧!,i/K⌧�!,i

⌘
= log (1 + i!,t),

thus

�x⌧!,i = x̂� x⌧�!,i
. (43)

15This data has been used by Liu (1993) to examine the role of turnover and learning on productivity growth; by Tybout
(2000) to survey the state of the manufacturing sector in developing economies; and more recently, by Oberfield (2013) to
study productivity and misallocation during crisis time.

16This data has been used by Eslava, Haltiwanger, Kugler and Kugler (2004, 2013) to study the e↵ect of structural reforms
and trade liberalization on aggregate productivity.
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Using the information on investment rates, we construct log capital gaps as:

�x!,t =

8
<

:
log (1 + i!,t) if |i!,t| > i

0 if |i!,t| < i,

(44)

where i > 0 is a parameter that captures the idea that small maintenance investments do not incur

the fixed cost of investment. Following Cooper and Haltiwanger (2006), we set i = 0.01, such that all

investments smaller than 1% in absolute value are excluded and considered as inaction.

Investment rate distribution. Table I presents some characteristics of the samples we consider as

well as the descriptive statistics on investment rates (averages, inaction and spikes). Besides Colombia and

Chile, we include numbers for the US from Cooper and Haltiwanger (2006) and from Zwick and Mahon

(2017). Inaction is defined as investment below 1% in absolute value; positive spikes are investments

above 20% and negative spikes below �20%.

Table I – Descriptive statistics

Chile Colombia US I US II
Sample characteristics
Period 1995-2007 1995–2016 1972–1988 1993–2010
Establishments per year (yearly avg.) 3,470 5,615 7,000 128,151
Size (avg. number of workers) 87 92

Investment rates (%)
Average 9.68 8.8 12.2 10.4

Positive fraction i > 1 65.1 68.7 81.5
Negative fraction i < �1 3.9 9.2 10.4

Inaction rate |i| < 1 31.0 22.1 8.1 23.7

Spike rate |i| > 20 17.1 16.0 20.4 14.4
Positive spikes i > 20 16.2 14.4 18.6
Negative spikes i < �20 0.8 1.6 1.8

Serial correlation corr(it, it�1) 0.15 0.1 0.09 0.40

Sources: Authors’ calculations using establishment-level survey data for Chile, Colombia and Mexico. US I shows data
from Cooper and Haltiwanger (2006) and US II shows data reported in Zwick and Mahon (2017) for the balanced panel.
Following these papers, investment rates reported in this table are computed as Investment divided by Initial Capital. We
use the book value of capital instead of perpetual inventories.
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Figure II – Histogram of Capital Gap Changes �x
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4.2 Putting the theory to work

The observation results tell us how to use cross-sectional data on investment rates and adjustment

frequency to pin down the parameters of the stochastic process and the ergodic moments, which in turn

map into the CIR. Table II summarizes the statistics calculated from the micro data which serve as

inputs into the formulas, as well as the theory’s output. Throughout the discussion, we present the

numbers for Colombia and Chile in a vector (Col, Chile). When we refer to the literature, we consider

the following abbreviations: Khan and Thomas (2008) [KT], Bachmann, Caballero and Engel (2013)

[BCE] and Winberry (2016) [W].

Inputs from Micro Data. Consider first the distribution of expected times ⌧ . We obtain an average

expected time to adjustment of Ex̂[⌧ ] = (1.4, 1.2) years with dispersion Std
x̂[⌧ ] = (1.2, 0.86). This large

dispersion suggests substantial heterogeneity in adjustment times across establishments. Now consider the

distribution of capital gaps; it has an average of Ex̂[�x] = (0.108, 0.071) with a dispersion of Stdx̂[�x] =

(0.146, 0.130), and it is right-skewed. The covariance between adjustment size and expected time is almost

zero Covx̂[⌧,�x] = (0.001, 0.009), which implies almost zero correlation between time of adjustment and

their size. This zero covariance is surprising, as one would expect a positive covariance: the longer the

inaction period, the stronger the e↵ect of the drift; consequently, upon taking action, the investment rate

should be larger. As we show below, this moment is key for computing the CIR.

Output from theory: parameters. The implied drift is ⌫ = �Ex̂[�x]
Ex̂[⌧ ]

= (�0.078,�0.058), which

includes the sum of the depreciation rate and productivity growth. This number is �0.085 in KT and

�0.088 in BCE. Regarding the volatility of idiosyncratic shocks, the formula implies that

� =

vuuuut
Ex̂[�x

2]

Ex̂[⌧ ]| {z }
(0.024, 0.018)

+ 2⌫x̂|{z}
(�0.003, �0.001)

= (0.146, 0.122)

Note that the dispersion in investment rates primarily drives the volatility estimate and the drift compo-

nent is negligible. Volatility of the innovations in the literature falls within a very wide range, from 0.052
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Table II – Inputs from Micro Data and Outputs from the Theory

Inputs from Micro Data Chile Colombia Model

Frequency
Ex̂[⌧ ] 1.392 1.223 1.360
CV2[⌧ ] 0.692 0.497 0.895

Capital Gaps
Ex̂[�x] 0.108 0.071 0.106
Ex̂[�x

2] 0.033 0.022 0.048
Ex̂[(x̂��x)3] -0.009 0.006 -0.008

Covariances
Covx̂[⌧,�x] 0.001 0.009 0.193
Ex̂[⌧(x̂��x)2] 0.033 0.027 0.091

Outputs from Theory Chile Colombia Model

Parameters
⌫ -0.078 -0.058 -0.078
� 0.146 0.122 0.146
x̂ 0.017 0.025 0.090

Steady State Moments
M2[x] 0.027 0.022 0.027
M0,1[a] 1.178 0.915 1.289
M1,1[x, a] 0.132 0.119 -0.082

Transitional Dynamics
M2[x]/�

2 1.315 1.463 1.268
�⌫M1,1[x, a]/�

2 0.480 0.461 -0.300
A1(�) 1.796 1.923 0.968

Notes: Capital-gap changes is described above. For the model moments, we use the model in
Section 2 with parameters for preferences and technology (⇢,↵,,�) = (0.04, 0.58, 0.45, 0.71) with
H(⇠) = 1 for all ⇠ 2 [0, ⇠̄] and parameters for the stochastic process of the capital-gaps (µ, ,�) =
(0.016, 0.0620, 0.146).

in KT to 0.117 in W and 0.202 in BCE.17 It is worth noting that the calibration of � in these papers is

done jointly with the fixed adjustment cost within a particular inaction model; in contrast, our estimate

for the volatility is pinned down directly from the data as our theory generates a mapping between data

and parameters that is model independent.

Now recall the observation formula for the reset capital gap in (35):

x̂ =
Ex̂[�x]

2| {z }
(0.054, 0.036)

�
1� CV2[⌧ ]

�
| {z }
(0.308, 0.503)

+
Covx̂[⌧,�x]

Ex̂[⌧ ]| {z }
(0.0007, 0.0074)

= (0.017, 0.025)

17The original numbers used in the papers are 0.022 and 0.049, respectively. Since we abstract from labor and our
productivity is rescaled, we must adjust their volatilities by a factor 1/1� ↵ in order to make their numbers comparable to
ours. We assuming a labor share of ↵ = 0.58 and obtain the numbers above. Additionally, for BCE and W, we convert their
quarterly volatilities �q = 0.021, 0.047 to yearly taking into account the persistence as follows: �a = �

q
p

1 + ⇢+ ⇢2 + ⇢3),
with ⇢ = 0.94, 0.86. Lastly, for BCE, we only consider the idiosyncratic shocks (excluding the sectorial shocks).
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The values we obtain imply that upon adjustment, capital gaps are reset about 2% above the average cap-

ital gap. Given a negative drift of minus 8%, this means that the rest of the drift must be accommodated

by an asymmetric policy.

Output from theory: ergodic moments. We define misallocation as the ergodic second moment of

capital gaps M2[x]. According to the observation formula, the steady state value of misallocation can be

expressed in terms of average investment rates and the reset state as follows:

M2[x] =
x̂
3 � Ex̂[(x̂��x)3]

3Ex̂[�x]
= [0.027, 0.022], (45)

where the cubic powers capture asymmetries in the distributions. Note that the ratio M2[x]/�2 is above

one in both datasets and quantitatively close to the expected duration. This suggests that the ergodic

dispersion—a measure of ex-post heterogeneity—is almost the same as fundamental volatility �2 times

expected duration, even if there is an 8% drift. This suggests that, even though firms are reacting to

their structural shocks, they adjust by less than in a standard Ss model (where it is equal to 1/5).

Another moment of interest is the average age M0,1[x, a] = M1[a], recovered using information about

the average and the dispersion of adjustment times:

M1[a] =
1

2
Ex̂[⌧ ]| {z }

(1.392,1.223)

�
1 + CV2[⌧ ]

�
| {z }
(1.692,1.497)

= [1.178, 0.915] (46)

Following our earlier discussion on renewal theory—larger stopping times are more representative in

the sample—the heterogeneity in expected times increases the average age in the economy. Lastly, the

covariance between age and adjustment size M1,1[x, a] is recovered as

M1,1[x, a] =
1

2⌫

0

BBB@

Ex̂
h
⌧ (x̂��x)2

i

Ex̂[⌧ ]| {z }
(0.024,0.022)

� M2[x]| {z }
(0.027,0.022)

� �
2M1[a]| {z }

(0.025,0.014)

1

CCCA
= [0.132, 0.119] (47)

The covariance implied by the data is positive. This is counterintuitive as it says that, for the average

plant, the older is its capital the more positive is the capital gap. In other words, there is a stronger

incentive to disinvest for plants with old capital (contrary to what one would expect).

Misallocation Dynamics. Now we focus on transitional dynamics. Consider an unanticipated perma-

nent aggregate productivity shock that shifts horizontally the distribution of idiosyncratic productivity

i.e. a first moment perturbation. From Example 1, we know that the transitional dynamics of capital

gaps after a first moment perturbation are given by

A1(�)

�
⇡ M2[x]

�2| {z }
(1.315,1.463)

� ⌫ M1,1[a, x]

�2| {z }
(�0.480,�0.461)

= (1.796, 1.923). (48)
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In order to interpret these numbers, assume that the IRF is exponential exp(��t). Then the CIR is equal

to CIR = 1/�. Its half-life is equal to the date T such that exp(�T ⇤ �) = 0.5 or T = � log(0.5)/�.

Therefore, T = log(2) ⇤ CIR = (1.25, 1.33), i.e. it takes 5 quarters for half of the e↵ect of the shock to

vanish.

Can the random Ss model generate the CIR? Now we study the quantitative implications of the

random Ss model we presented in Example 1, where H(⇠) = 1. We have two parameters to calibrate: the

size of the adjustment cost  = 0.45 and the arrival rate of free adjustment opportunities � = 0.71. We

set these parameters in order to match the average expected time to adjustment Ex̂[⌧ ] and the ergodic

second moment of capital gaps M2[x]. The parameters for the stochastic process of the capital-gaps are

taken from the data and our formulas above (µ, ,�) = (0.016, 0.0620, 0.146). The rest of the parameters,

the discount ⇢ = 0.04 and the capital share ↵ = 0.58, are set externally. The moments produced by the

model are reported in the last column of Table II.

We find that the model is able to match most moments from the data, except for two moments: the

covariance Covx̂[⌧,�x] is equal to 0.193 (almost zero in the data), and the Ex̂[⌧(x̂��x)2] equal to 0.091

(and 2/3 smaller in the data). In particular, missing the second covariance has important implications for

the CIR through its e↵ect on M1,1[x, a]. While the model is successful in matching the first component

of the CIR, equal to the normalized steady state misallocation M2[x]/�2, it dramatically misses the

second component that includes the covariance between age and capital gap �⌫ M1,1[a, x]/�2 > 0. Since

this second component is positive (the negative drift times the negative covariance), the implied CIR

from the model is substantially below the one implied by our formulas. For illustration, consider a 1%

permanent increase in aggregate productivity. The model suggests a CIR of 0.968%; in contrast, the data

together with our theory, suggests a CIR between 1.8%–1.9%. These numbers suggest that the model

underestimates the e↵ect of aggregate shocks.
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5 Extensions and Generalization

In the previous sections we specified parametric restrictions to the inaction model and to the firms’

state space. Such assumptions exclude from our analysis models with fixed adjustment dates as in

Taylor (1980), models with observation costs as in Álvarez, Lippi and Paciello (2011), and several others.

Nevertheless, it is possible to extend our theory to accommodate richer models. In this section, we

generalize our results to consider any stopping-time model or state space, explaining the assumptions on

policies and processes that are key to apply our tools.

Second, we extend the analysis in three directions, to consider: (i) transitions of higher moments

(m > 1) of the distribution; (ii) transitions starting from any general initial condition F0; and (iii)

transitions for a mean-reverting process. In each case, we focus on the one property that delivers the

most interesting mechanism.18 We denote conditional distributions as Z|Y , conditional expectations with

initial condition z as Ez[Z], and the minimum between two stopping times as t ^ s ⌘ min{t, s}.

5.1 Generalization

Let (⌦, P,F) be a probability space equipped with a filtration F = (Ft; t � 0). We consider an econ-

omy populated by a continuum of agents indexed with ! 2 ⌦, where agent !’s information set at time

t is the filtration Ft. Each agent’s uncontrolled state is given by S̃t(!) = [x̃t(!), S
�x
t (!)] 2 R1+K�x .

The state is split between a main state x̃ and a set of complementary states S̃
�x
t . The main state

follows a Brownian motion dx̃t(!) = �dWt(!). Agent’s policies consist of a sequence of adjustment

dates {⌧k}1k=1 and adjustments sizes {�S⌧k}
1
k=1, measurable with respect to Ft. Given these policies

{⌧k(!),�S⌧k(!)}1k=1, the controlled state St(!) evolves as the sum of the uncontrolled state plus the

adjustments: St(!) = S̃t(!) +
P

⌧k(!)t�S⌧k(!).

The first premise for our theory is a recursive representation of the conditional CIR, both between

and within stopping dates. This demands St(!) to be a su�cient statistic for the conditional CIR, which

in turn requires that the policy is history independent. Formally, this mean that

E
"Z ⌧i+1

⌧i^t(!)
f(xt)dt|F⌧i^t(!)

#
= E

Z ⌧

0
f(xt)dt|S⌧i^t(!)

�
= v

f (S⌧i^t(!)), for all t(!)  ⌧i+1.

Since the main state follows a Brownian motion, the burden of this requirement falls completely on the

complementary state and the policy. Assumption 1 and 2 formalize these requirements.

Assumption 1 (Markovian complementary state). The complementary state S̃
�x
t follows a Strong

Markov process:

S̃
�x
(t^⌧k)+h(!)|Ft^⌧k = S̃

�x
h (!)|S̃(t^⌧k)(!), 8k. (49)

To understand this assumption, consider a history ! such that t < ⌧k(!). In this case, the comple-

mentary state’s law of motion depends only on its current value; thus it is independent of its own history.

Additionally, the complementary state is an homogenous process, since its law of motion at date t is

18The Web Appendix presents the full characterization and analysis of the three properties.
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equivalent to its law of motion at zero, given an initial condition. In the complementary case t � ⌧k(!),

these properties continue to hold, thus the stopping policy does not reveal new information about the

complementary state’s law of motion.

Assumption 2 (Markovian policies). Policies satisfy the following conditions:

⌧k+1|F⌧k+h = ⌧1|S⌧k+h for all h 2 [0, ⌧k+1 � ⌧k]. (50)

A second premise in our theory is that we can characterize the CIR with the first stopping time of

every agent. This means that, upon taking action, agents fully adjust to include any deviations from their

steady state behavior and come back to the steady state process. This would imply that S⌧k is iid across

time and independent of the history previous to the adjustment. The challenge with stochastic iid resets

is that is makes it more di�cult to identify the parameters of the stochastic process, e.g. di↵erentiating

the fundamental volatility � from the volatility arising from a random reset state. Therefore, in order for

the reset state to be su�ciently informative, we ask that it is a constant x⌧i = x̂.19

Assumption 3 (Constant reset state). The reset state is constant: x⌧k = x̂ for all k.

It is straightforward to check that the previous assumptions hold in the investment example developed

in Section 2. For Assumption 1, the complementary state is given by the arrival of free adjustment

opportunities Nt, which is assumed to be a Poisson counter process and thus a Strong Markov process.

The requirements in Assumption 2 and 3 are also satisfied. We showed that the reset capital gap is

constant; and since the stopping policy is an inaction set with respect to the controlled state, the stopping

policy is history independent within and between adjustments.

Finally, in order to apply the Optional Sampling Theorem, we require several stopping processes to

be well-defined (finite moments at the stopping-time).20

Assumption 4 (Well-defined stopping processes). The processes
⇣nR t

0 s
j
x
m
s dBs

o

t
, ⌧

⌘
for all m

and j = 0, 1, are well-defined stopping processes.

The previous Markovian requirements are enough in order to characterize the aggregation, represen-

tation of the intensive margin, and observation properties; however, in order to apply the representation

property to the extensive margin, we must require one additional assumption. There must exist an

equivalent representation of the extensive margin as a function exclusively of the main state x. For this,

we require that there exists a stopping policy ⌧⇤ that only depends on the main state x and can fully

describe the extensive margin by itself. For instance, a stopping policy given by a Poisson counter with

hazard ⇤(x)dt satisfies this requirement.

Assumption 5 (Hazard). Assume that there exist a stopping policy ⌧⇤ s.t.

Ex̂

"Z ⌧

0

 
@ES

⇥
x
m+2
⌧ /m+ 2

⇤

@x
� ES

⇥
x
m+1
⌧

⇤
!
dt

#
= Ex̂

"Z ⌧

0

 
@Ex

⇥
x
m+2
⌧⇤ /m+ 2

⇤

@x
� Ex

⇥
x
m+1
⌧⇤

⇤
!
dt

#
,

(51)

19In this paper, we ignore ex-ante heterogeneity across agents (that could be reflected in di↵erent reset states and policies),
but this can be relaxed. Nevertheless, it remains crucial that history is erased at the moment of reseting the state.

20See Web Appendix A for a formal definition of a well-defined stopping process.
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and there exist a smooth function gm(x) such that

gm(x) = Ex̂+x [(x̂��x)m]� Ex̂ [(x̂��x+ x)m] , 8m. (52)

where �x is under the policy ⌧⇤.

5.2 Extensions

Now that we have stated the formal requirements needed to apply our theory, we proceed to develop

the three extensions. To highlight the new mechanisms, in all the extensions we focus on the driftless

case ⌫ = 0, but the proofs are straightforward to extend to consider a non-zero drift.

Extension I: Transitional dynamics for higher moments We first consider the transitional dy-

namics for higher moments of the distribution (m � 1). The initial condition remains to be a mean

translation of the steady state distribution. In this case, we focus the discussion on the representation of

the intensive margin.

Proposition 6. Assume dx̃t = �dWt. To a first order, the transitional dynamics of the m-th moment

are given by

Am(�) = � ⇥ (�m +⇥m �Mm[x]⇥0) + o(�2) (53)

where the intensive margin relates to ergodic moments as follows:

�m = mMm�1,1[x, a], (54)

Mm�1,1[x, a] =
2

m(m+ 1)

2

4
Ex̂
h
⌧ (x̂��x)m+1

i

Ex̂ [�x2]
� Mm+1[x]

�2

3

5 . (55)

To focus on the intensive margin, assume ⇥m = 0 for all m and consider the transitional dynamics

for the state’s first three moments by setting m = 1, 2, 3. We have that

A1(�)/� = �1 = M1[a] (56)

A2(�)/� = �2 = 2M1,1[x, a] (57)

A3(�)/� = �3 = 3M2,1[x, a] (58)

As discussed earlier, the dynamics of the first moment (m = 1)—average capital gaps—are fully driven

by the state’s average age. The dynamics of the second moment (m = 2)—dispersion of capital gaps

or misallocation—are driven by the covariance between the age and the size of capital gaps. If this

covariance is zero, then the distribution’s second moment remains constant along the transition path.

Asymmetry in in the agents’ investment policy, which generates a skewed ergodic distribution, is one

way to generate a non-zero covariance. This interaction between the business cycle dynamics of capital

misallocation and the asymmetry of the ergodic capital distribution is studied by Ehouarne, Kuehn and

Schreindorfer (2016) and Jo and Senga (2014). Finally, the dynamics of the third moment (m = 3)—

skewness of capital gaps—are driven by the covariance between age and the square of capital gaps. Note
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that if the ergodic distribution features excess kurtosis, then the skewness of the distribution will change

along the transition.

Proposition 6 provides formulas for the CIR of the m-th moment. Additionally, these formulas have

two useful applications. They can be used to (i) derive bounds for the dynamics of functions of the

m-th moments, and (ii) study transitions of any arbitrary function of the state. To illustrate the first

application, let us consider the transitional dynamics for the variance. Using Jensen’s inequality, we

derive an upper bound on the variance’s CIR:21

CIR(V[x]) ⌘
Z 1

0
(Vt [x]� V [x]) dt  A2(�)�A2

1(�). (59)

To illustrate the second application, consider a smooth function of the state f(x). For example, in

many models the aggregate welfare criteria can be written in this form. Using a Taylor approximation

around zero, we write the CIR of the f(x) function in terms of the state’s CIR, weighted by the Taylor

factors.

CIR(f(x)) =

Z 1

0
Et[f(x)]� E[f(x)]dt =

1X

j=1

df
j(0)

dxj

Aj(�)

j!
. (60)

Extension II: General initial conditions This extension considers transitional dynamics for general

initial conditions. For instance, since the work on uncertainty shocks by Bloom (2009), there has been a

large literature interested in the macroeconomic consequences of uncertainty in the business cycle. Within

our framework, these aggregate uncertainty shocks can be studied by setting the initial distribution

as a mean-preserving spread of the steady state distribution. Moreover, the interaction between first

and second moment shocks, as studied by Aastveit, Natvik and Sola (2013), Vavra (2014), Caggiano,

Castelnuovo and Nodari (2014), Castelnuovo and Pellegrino (2018), and Baley and Blanco (2019), can

be accommodated as well.

For simplicity, we consider perturbations that can be expressed via a single parameter �. The initial

distribution is described through a function G(x, �), such that F0(x) = F (G�1(x, �)). To make progress,

we impose certain smoothness and di↵erentiability properties to the function G.22 Additionally, we focus

on perturbations to the first and second moments. Since this extension does not a↵ect steady state

moments, we omit the characterization of the observation property as it remains as before.

Proposition 7. Assume dx̃t = �dWt and let G(x, �) be a function that satisfies the following properties:

1. G(x, 0) = x.

2. 9z > 0 such that 8✏ 2 (�z, z), G(·, ✏) is bijective.

3. @G(G�1(y,0),0)
@� = �(G0 + G1y) with G2

0 + G2
1 = 1.

21CIR(V[x]) ⌘
R

1

0
(Vt [x]� V [x]) dt =

R
1

0

�
Et

⇥
x
2
⇤
� E

⇥
x
2
⇤�

dt�
R

1

0
Et [x]

2
dt  A2(�)�A

2

1(�).
22See proof in Web Appendix D.3 for details.
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To a first order, the CIR is given by:

A1(G) = � ⇥

0

@G0 (�1,0 +⇥1,0)| {z }
1st moment shock

+G1 (�1,1 +⇥1,1)| {z }
2nd moment shock

1

A+ o(�2) (61)

�1,i = (i+ 1)Mi,1[x, a] (62)

⇥1,i =
1X

j=0

✓1,jMj+i[x] (63)

with ✓1,j are the micro-elasticities.

Proposition 7 points towards the moments that are crucial to characterize the dynamics for a particular

type of initial condition. As long as there exists enough di↵erentiability in the perturbation of the initial

condition, we can find ergodic moments that perfectly describe the dynamics of the model. Interestingly,

the micro-elasticities needed to compute the extensive margin are independent of the number of moments

that are shocked.

As an example, consider G to be a mean preserving spread of the steady state distribution F0. This

means that G(x, �) = x(1 + �) and therefore G0 = 0 and G1 = 1. Again, let us focus only in the intensive

margin by setting ⇥1,i = 0 for all i. Then the CIR is approximated as:

A1(�)

�
⇡ G1�1,1 = M1,1[x, a].

Thus mean-preserving perturbations have first order e↵ects if and only if the covariance between age and

the state is di↵erent from zero. A non-zero covariance is consistent with the data presented in Section 4.

Therefore, suggesting that uncertainty shocks (in the form of mean-preserving spreads of the capital gap

distribution) would have e↵ects on average investment.

Extension III: Mean-reversion This extension considers a mean-reverting process for the uncon-

trolled state. This type of process is wildly used due to its empirical relevance and because it ensures the

existence of an ergodic distribution. For this application, we focus on the observation properties.

Proposition 8. Assume the uncontrolled state follows a Ornstein–Uhlenbeck process dx̃t = ⇢x̃tdt+�dWt.

Then, the reset state and structural parameters are recovered through a system of equations:

x̂ =
Ex̂[e�⇢⌧�x]

Ex̂[e�⇢⌧ ]� 1
(64)

�
2

⇢
= 2

x̂
2 � Ex̂

⇥
e
�2⇢⌧ (x̂��x)2

⇤

Ex̂ [e�2⇢⌧ ]� 1
(65)

erf

 
x̂p
�2/⇢

!
= Ex̂

"
erf

 
x̂��xp
�2/⇢

!#
(66)

where erf(x) ⌘ 2p
⇡

R x
0 e

�t2
dt is the Gauss error function.

To gain some intuitions about the observation formulas above, let us consider the limiting case ⇢! 0.
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Using the approximation e
�⇢⌧ ⇡ 1� ⇢⌧ , it is easy to show that equations (64) and (65) converge to our

baseline observations expressions in (35) and (36) with ⌫ = 0 (no mean-reversion):

x̂ !⇢!0
Ex̂[⌧�x]

Ex̂[⌧ ]
, �

2 !⇢!0
Ex̂
⇥
�x

2
⇤

Ex̂[⌧ ]
. (67)

Therefore, as long mean reversion is “su�ciently small”, the mappings between the data and the reset

state, and between the data and idiosyncratic volatility do not change.

Let us make a deeper comparison of how x̂ is determined with and without mean-reversion. With iid

shocks, we can write (35) as a weighted sum of investment rates across firms:

x̂
iid = Ex̂[⌘(⌧)�x], with ⌘(⌧) ⌘ ⌧

Ex̂[⌧ ]
> 0, Ex̂[⌘(⌧)] = 1,

where the weights ⌘(⌧) are increasing in ⌧ , i.e. more weight is given to the investment rate of firms with

large periods of inaction (with “old” capital). In order to understand this result, note that conditional

of surviving, the distribution of the state is more centered around the reset state for “young” capital

vintages, which cannot reflect policy asymmetries. The opposite happens for firms with “old” vintages,

as the distribution of the state is more centered around the domain’s middle point, reflecting the policy

asymmetries. Thus investment rates associated with large stopping times are more informative about

these asymmetries.

The opposite happens when we consider a mean-reverting process. An analogous decomposition yields

x̂
mr = REx̂[⌘0(⌧)�x], with ⌘

0(⌧) ⌘ e
�⇢⌧

Ex̂[e�⇢⌧ ]
> 0, Ex̂[⌘0(⌧)] = 1, R ⌘ Ex̂[e�⇢⌧ ]

Ex̂[e�⇢⌧ ]� 1
< 0,

where now the weights are decreasing in duration and it is preceded by a negative number. As the inaction

period of increases, the mean-reverting productivity process goes back to its zero long-run mean, and the

distribution gets centered around zero on its own, so there is no need to correct for policy asymmetries

with the initial condition.

6 Conclusion

This paper provides a structural relation in model of inaction between the CIR (a measure of persistence

for aggregate dynamics) and micro-data. This relation holds for any moment of the distribution, any

inaction model, and any initial condition. In the same way we apply our tools to a model of lumpy

investment, we foresee applications in models with labor adjustment costs, inventory models, portfolio

management, government debt management, among others.

For developing our theory, we assume that upon taking action, agents fully adjust to include any

deviations from their steady state behavior. Thus our results do not accommodate partial adjustments

which are due, for instance, to imperfect information or convex adjustment costs. One example of these

frameworks is the menu cost model with information frictions in Baley and Blanco (2019). We leave for

future research the application of the tools developed here to that type of frameworks.
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A Auxiliary Theorems

The following three theorems will be heavily used in the proofs. We only prove the third theorem, and provide references
for the others.

Theorem 1. [Optional Sampling Theorem (OST)] Let Z be a (sub) martingale on the filtered space (⌦,P,F) and ⌧ an

stopping time. If ({Zt}t, ⌧) is a well-define stopping process, then

E[Z⌧ ](�) = E[Z0] (A.1)

Proof. See Theorem 4.4 in Stokey (2009).

Theorem 2. [Ergodic distribution and occupancy measure] Let S be a strong Markov process and g a function of

S. Denote with F is the ergodic distribution of S and with R the renewal distribution (the distribution conditional on

adjustment). If
R
g(S)dF (S) = limT!1

R T
0 g(St)dt

T for all initial conditions S0, then the following relationships hold:

Z
g(S)dF (S) =

R
ES
⇥R ⌧

0
g(St)dt

⇤
dR(S)R

ES [⌧ ] dR(S)
(A.2)

If Pr[S = Ŝ] = 1 under the renewal distribution R, then

Z
g(S)dF (S) =

EŜ
⇥R ⌧

0
g(St)dt

⇤

EŜ [⌧ ]
(A.3)

Proof. (1) Start from the ergodicity assumption and (2) write T as the sum of n stopping times. (3) Take conditional
expectations with respect to the filtration at time t. Since S is a strong Markov process, there is history independence

across stopping times, and thus (4) we can write E
hR ⌧i+1

⌧i
g(St)dt|F⌧i

i
= ES⌧i

⇥R ⌧1
0

g(St)dt
⇤
for each ⌧i. (5) Exchange the

order between the outer expectation and the limit and divide by n; then use the definition of the renewal distribution to (6)

substitute the infinite sum limn!1

Pn
i=1 ES⌧i [

R ⌧1
0 g(St)dt]

n with
R
ES
⇥R ⌧

0
g(St)dt

⇤
dR(S) and we reach the first result.

Z
g(S)dF (S) =(1) lim

T!1

R T

0
g(St)dt

T
=(2) lim

n!1

Pn
i=1

R ⌧i+1

⌧i
g(St)dt

Pn
i=1

R ⌧i+1

⌧i
1dt

=(3) lim
n!1

E
hPn

i=1
E
hR ⌧i+1

⌧i
g(St)dt|F⌧i

ii

E
hPn

i=1
E
hR ⌧i+1

⌧i
1dt|F⌧i

ii

=(4)
limn!1 E

⇥Pn
i=1

ES⌧i
⇥R ⌧1

0
g(St)dt

⇤⇤

limn!1 E
⇥Pn

i=1
ES⌧ [(⌧1)]

⇤ =(5)

E

limn!1

Pn
i=1 ES⌧i [

R ⌧1
0 g(St)dt]

n

�

E
h
limn!1

Pn
i=1 ES⌧ [(⌧1)]

n

i

=(6)
E
⇥R

ES
⇥R ⌧

0
g(St)dt

⇤
dR(S)

⇤

E [ES [⌧ ] dR(S)]

If the renewal distribution has a mass point at Ŝ, then the last expression simplifies to:

E
⇥R

ES
⇥R ⌧

0
g(St)dt

⇤
dR(S)

⇤

E [ES [⌧ ] dR(S)]
=

EŜ
⇥R ⌧

0
g(St)dt

⇤

EŜ [⌧ ]
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B Appendix: Proofs

Proposition 1. Assume that:

• The uncontrolled state follows dx̃t = ⌫dt+ �dWt, with Wt a Wiener process;

•

⇣nR t

0
x
m
s s

n
dWs

o

t
, ⌧

⌘
are a well-defined stopping processes for any m and n = 0, 1; and

• The moments of adjustment size can be decomposed as follows:

gm(x) = Ex̂+x [(x̂��x)m]� Ex̂ [(x̂��x+ x)m] ,

1. Aggregation: To a first order, the CIR is given by

Am(�) = � ⇥ (Zm �Mm[x]⇥0) + o(�2) (B.4)

where the intensive and extensive margin are given by

Zm = ⇥m + �m �
�
2
m

2⌫
Zm�1 (B.5)

�m =
Ex̂
⇥R ⌧

0
'

�

m(xt)dt
⇤

Ex̂[⌧ ]
; '

�

m(xt) =
1
⌫
(Ex [xm

⌧ ]� x
m
t ) (B.6)

⇥m =
Ex̂
⇥R ⌧

0
'

⇥

m(xt)dt
⇤

Ex̂[⌧ ]
; '

⇥

m(St) =
1
⌫

"
@Ex

⇥
x
m+1

⌧ /(m+ 1)
⇤

@x
� Ex [xm

⌧ ]

#
(B.7)

2. Representation for the intensive margin:

�m = mMm�1,1[x, a] +
{m�2}�

2
m(m� 1)

2⌫
Mm�2,1[x, a] (B.8)

3. Representation for the extensive margin:

⇥m =
1X

j=0

✓m,jMj [x] with ✓m,j ⌘
2

�2(m+ 1)

1X

k�j

x̂
k�j

k!j!


d
k+1

gm+2(0)
dxk+1

/m+ 2�
d
k
gm+1(0)
dxk

�
. (B.9)

• If ⌧ |xt ⇠ ⌧ , gm(x) = ✓(m, j) = 0 for all m, i.

4. Observation: The reset state x̂ and structural parameters (⌫,�) are recovered as

x̂ = E[�x]

✓
1� CV2[⌧ ]

2

◆
+

Cov[⌧,�x]
E[⌧ ] , ⌫ = �

E[�x]
E[⌧ ] , �

2 =
E[�x

2]
E[⌧ ] + 2⌫x̂ (B.10)

and the ergodic moments are recovered as:

Mm[x] =
x̂
m+1

� E[(x̂��x)m+1]
E[�x](m+ 1)

�
�
2
m

2⌫
Mm�1[x], (B.11)

Mm,1[x, a] =
E
⇥
⌧/E[⌧ ] (x̂��x)m+1

⇤
�Mm+1[x]

⌫(m+ 1)
�
�
2
m

2⌫
Mm�1,1[x, a] (B.12)

with initial conditions M1[x] = 0 and M0,1[x, a] =
E[⌧2

]

2E[⌧ ] .

The proof is divided into 4 Lemmas for clarity.
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Lemma 1. [Aggregation] To a first order, the transitional dynamics of the m-th moment are given by

Am(�) = � ⇥ (Zm �Mm[x]⇥0) + o(�2) (B.13)

where the intensive and extensive margin are given by

Zm = ⇥m + �m �
�
2
m

2⌫
Zm�1 (B.14)

�m =
Ex̂
⇥R ⌧

0
'

�

m(xt)dt
⇤

Ex̂[⌧ ]
; '

�

m(xt) =
1
⌫
(Ex [xm

⌧ ]� x
m
t ) (B.15)

⇥m =
Ex̂
⇥R ⌧

0
'

⇥

m(xt)dt
⇤

Ex̂[⌧ ]
; '

⇥

m(St) =
1
⌫

"
@Ex

⇥
x
m+1

⌧ /(m+ 1)
⇤

@x
� Ex [xm

⌧ ]

#
(B.16)

Proof. The proof consists of 6 steps.

Characterization of CIR as the recursive problem of a representative agent. Fix an m 2 N. Start from the CIR’s
definition:

Am(�) = E
Z

1

0

(xt(!|�)
m

�Mm[x]) dt

�
, (B.17)

where the expectation is taken across agents !. Let {⌧i}
1

i=1
be the sequence of stopping times after the arrival of the

perturbation. In (1), we write the CIR as the cumulative deviations between time t = 0 and the first stopping time ⌧1 plus
the sum of deviations between all future stopping times. In (2), we use the Law of Iterated Expectations to condition on
the information set F⌧i . In (3), we use the Strong Markov Property of the Brownian motion, the assumption of homogenous
resets and that x̂ is independent of � for i � 1 to change the conditioning from x⌧i+h|F⌧i to xh|x̂ and write the problem
recursively. In (4), we show that every element inside the infinite sum is equal to zero. For this purpose, recall the relationship
between ergodic moments and expected duration derived in Auxiliary Theorem 2, Mm[x] = Ex̂

⇥R ⌧

0
xt(�|!)

m
⇤
/Ex̂[⌧ ], and

thus we are left with the simple expression in the fourth line (we also relabel ⌧1 as ⌧):

Am(�) =(1) E
"Z ⌧1

0

(xt(�|!)
m

�Mm[x]) dt+
1X

i=1

Z ⌧i+1

⌧i

(xt(�|!)
m

�Mm[x]) dt

#

=(2) E
"Z ⌧1

0

(xt(�|!)
m

�Mm[x]) dt+
1X

i=1

E
Z ⌧i+1

⌧i

(xt(�|!)
m

�Mm[x]) dt
���F⌧i

�#

=(3) E
Z ⌧1

0

(xt(�|!)
m

�Mm[x]) dt

�
+ E

2

6664

1X

i=1

E
Z ⌧

0

xt(�|!)
m
dt

���x̂
�
�Mm[x]E[⌧ |x̂]

| {z }
=0

3

7775

=(4) E
Z ⌧

0

(xt(�|!)
m) dt

�
�Mm[x]Ex[⌧ ].

As a final step, define the following value function conditional on a particular initial condition x:

v
m(x) ⌘ Ex

Z ⌧

0

xt(!)
m
dt

�
�Mm[x]Ex[⌧ ], (B.18)

and notice that Am(�) is equal to the average of vm(x) across all initial conditions after the perturbation, given by the shift
in the ergodic distribution (F0(x) = F (x� �)):

Am(�) =

Z
v
m(x)dF (x� �). (B.19)

2. State’s support. Since Brownian motions are continuous in t, and initial conditions are identical across agents (by the
assumption of homogeneous resets), the ergodic set is connected. Thus, the support of x is given by an interval [x, x].

3. Taylor approximation to Am(�) and decomposition into two terms. We do a first order Taylor approximation
of Am(�) around zero: Am(�) = Am(0) + A

0

m(0)�. Since Am(0) = 0 by definition, we have that: Am(�) = �A
0

m(0), which
we now characterize. Start from the representation in (B.19), expressed in terms of the marginal density of x:

Am(�) =

Z
ṽ
m(x)f(x� �)dx. (B.20)
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The derivative with respect to �, at � = 0, is given by:

A
0

m(0) =
@

@�

Z
ṽ
m(x)f(x� �)dx

����
�=0

= �

Z
ṽ
m(x)f 0(x)dx = � ṽ

m(x)f(x)|xx +

Z
d

dx
ṽ
m(x)f(x)dx

=

Z
d

dx
ṽ
m(x)f(x)dx

where in the third equality we do integration by parts, and in the fourth equality we use the result that there are is no mass
at the endpoints (or Pr

x=x[⌧ = 0] = Pr
x=x[⌧ = 0] = 1). The previous expression says that the e↵ect of the perturbation

is equivalent to the changes in the stopping time problem of one agent when her initial conditions change (derivative of vm

with respect to x), averaged across all the possible initial conditions (the steady state distribution). In turn, as we show
next, changes in the stopping time problem are reflected by alterations in the state paths and by shifts in duration.

From v
m’s definition in (B.18), take its derivative with respect to initial conditions and substitute it back into A

0

m(0)

A
0

m(0) =

Z
@

@x
Ex

Z ⌧

0

xt(!)
m
dt

�
dF (x)�Mm[x]

Z
@ES [⌧ ]
@x

dF (x)

Lastly, by adding and subtracting the term
R
ES
hR ⌧

0

@xm
t

@x dt

i
dF (S), we re-express A0

m(0) as the sum of three terms �m, ⇥m,

and ⇥0 defined in the brackets.

A
0

m(0) =

Z
Ex

Z ⌧

0

@x
m
t

@x
dt

�
dF (x)

| {z }
Bm

�Mm[x]

Z
@Ex[⌧ ]
@x

dF (x)
| {z }

⇥0

+

Z ✓
@

@x
Ex

Z ⌧

0

x
m
t dt

�
� Ex

Z ⌧

0

@x
m
t

@x
dt

�◆
dF (x)

| {z }
Cm

. (B.21)

Now we further characterize each of these terms. Note that for various extensions, the proof up to this point is exactly
the same. The results change from this point forward as we make use of the particular stochastic process for the uncontrolled
state.

4. Characterize �m. Since xt = x+ ⌫t+ �Wt, for all t  ⌧ we have that

�m ⌘

Z
Ex

Z ⌧

0

@x
m
t

@x
dt

�
dF (x) =

Z
Ex

Z ⌧

0

mx
m�1

t dt

�
dF (x).

Applying Itō’s Lemma to x
m
t we have dx

m+1

t = ⌫mx
m�1

t dt�mx
m�1

t dWt + �2

2
m(m � 1)xm�1

t dt, and integrating both sides
from 0 to ⌧ and taking expectations with initial condition S we get

Ex [xm
⌧ ]� x

m = m

n
� Ex

Z ⌧

0

x
m�1

t dWt

�

| {z }
=0 by OST

+⌫Ex

Z ⌧

0

mx
m�1

t dt

�
+
�
2(m� 1)

2
Ex

Z ⌧

0

mx
m�2

t dt

�o
.

Given that
R t

0
x
m
s dWt is a martingale with zero initial condition and it is well-defined by assumption, we apply the

Optional Sampling Theorem (OST) to conclude that Ex
⇥R ⌧

0
x
m
t dWt

⇤
= 0. Solve for Ex

⇥R ⌧

0
mx

m�1

t dt
⇤
and recognizing '�

m:

Ex

Z ⌧

0

mx
m�1

t dt

�
=

Ex [xm
⌧ ]� x

m
t

⌫| {z }
'�
m(xt)

�
�
2
m

2⌫
Ex

Z ⌧

0

(m� 1)xm�2

t dt

�
.

Integrating both sides across all initial conditions, using the definition of �m in (B.6), and recognizing Bm and Bm�1 we get:

Bm = �m �
�
2
m

2⌫
Bm�1, �0 = 0, (B.22)

where we used the Auxiliary Theorem 2, exchanging the ergodic distribution for the local occupancy measure.

5. Characterize ⇥m. With similar steps as in the previous point, we characterize ⇥m as follows.
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First we get an expression for the term A. Applying Itō’s Lemma to x
m+1

t we have dx
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t = (m + 1)⌫xm
t dt + �(m +

1)xm+1
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2
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t dt. Integrating both sides from 0 to ⌧ , taking expectations with initial condition S, using

the OST, and rearranging we get: Ex
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0
x
m
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⇤
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⇤
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⇤
, and its derivative
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with respect to initial condition:
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Now, for the term B, recall from the characterization of �m that
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Subtract the equations for A and B and simplify to obtain:
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Integrating with the ergodic distribution and using the definition of ⇥m in (D.10) and recognizing Cm and Cm�1 we get:

Cm = ⇥m �
�
2
m

2⌫
Cm�1, C�1 = 0. (B.23)

Define Zm ⌘ Bm + Cm, which implies Zm = �m + ⇥m �
�2m
2⌫ Zm�1. Combine the results in (D.16), (D.17) and (D.20) to

obtain (D.7): A0

m(0) = (Zm �Mm[x]⇥0).

6. Characterize ⇥0. We corroborate that the expression
R @Ex

[⌧ ]
@x dF (x) is equal to ⇥0. By the OST, we have Ex[x⌧ ]�x =

⌫Ex[⌧ ]. Thus @Ex
[⌧ ]

@x = 1

⌫

h
@Ex

[x⌧ ]

@x � 1
i
. Substituting and using Auxiliary Theorem 2 we recover the expression for ⇥0 in the

definition of ⇥m:
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Z
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� 1
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Lemma 2. [Representation for intensive margin] The intensive margin �m defined as

�m ⌘
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⇥R ⌧

0
'

�(xt)dt
⇤

Ex̂ [⌧ ]
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t ) .

can be represented as a function of steady state moments as:
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2
m(m� 1)

2⌫
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Proof. Start in (1) from the definition of �m and '�

m(S), then (2) exchange the time integral with the expectation conditional
on adjustment Ex̂[·], which introduces an indicator {t⌧}. Use the law of iterated expectations in (3) to condition on the
set {t  ⌧}.
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We now characterize Ex̂
⇥
x
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0
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⇤
. Applying Ito’s lemma followed by the OST to Y
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Using equations (B.24) and (B.26), we have that

�m = {m�1}mMm�1,1[x, a] +
{m�2}�

2
m(m� 1)

2⌫
Mm�2,1[x, a]

Lemma 3. [Representation for extensive margin] Assume the moments of the adjustment size can be written as:

gm(x) = Ex̂+x [(x̂��x)m]� Ex̂ [(x̂��x+ x)m] (B.27)

Then the extensive margin given by ⇥m ⌘
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• If ⌧ |xt ⇠ ⌧ , gm(x) = ✓(m, j) = 0 for all m, i.

Proof. Using a change of variable in assumption (B.27), we have that :
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m] . (B.29)

Using the previous equation we have that
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=
1
⌫

EŜ
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If ⌧ |xt ⇠ ⌧ , then we have that
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Lemma 4. [Observation]The reset state x̂ and structural parameters (⌫,�) are recovered as
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◆
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]

2E[⌧ ] .

Proof. The basis of the proof is the application of Itō’s lemma and the OST.

• Average adjustment size. We show that Ex̂
[�x]

Ex̂[⌧ ]
= �⌫. From the law of motion xt = x̂ + ⌫t + �Wt, we find the

following equalities: �W⌧ = �⌫⌧ + x⌧ � x̂ = �⌫⌧ � �x. Taking expectations on both sides, we have �E[W⌧ ] =

�⌫Ex̂[⌧ ]� E[�x]. Since W⌧ is a martingale, E[W⌧ ] = W0 = 0 by the OST. Therefore, ⌫ = �
E[�x]
E[⌧ ] as well.

• Observation of fundamental volatility: For characterizing � define Yt = xt � ⌫t with initial condition Y0 = x̂.
With similar steps as before we have that
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or equivalently
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Applying the formula (B.35) we have the result.

• Observation of reset state: For the reset state x̂, we apply Itō’s lemma to x
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Completing squares
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Applying the formula for the covariance Ex̂[⌧�x] + Ex̂[⌧ ]Ex̂[�x] = Cov[⌧,�x] and coe�cient of variation square
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, we have the result.

• Observation of ergodic moments with respect to the state: For observability of ergodic moments of x, apply
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Substituting the equivalences Mm[x] = Ex̂
⇥R ⌧

0
x
m
t dt

⇤
/Ex̂[⌧ ] and Ex̂[�x] = �⌫Ex̂[⌧ ] yields:
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• Observation of ergodic moments with respect to the joint moments of state and age: For observability
of ergodic moments of xm

a, where a stand for the duration of the last action, we use Itō’s lemma and the OST on
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and therefore
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with initial condition M0,1[x, a] =
E[⌧2

]

2E[⌧ ] .
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