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1 Introduction

Up until a decade ago, most commonly used frameworks in macroeconomics were either

explicitly linearized, or almost linear when solved exactly (Parker, 2011). A limitation of

such frameworks is that they can lead to imprecise conclusions on aspects of the economy

that are fundamentally nonlinear. While recent research has explicitly emphasized the role

of such nonlinearities (e.g., Kaplan and Violante (2014), Baqaee and Farhi (2017), among

many others), disagreement in particular on the empirical evidence persists. For instance,

there is a lack of consensus as to whether the fiscal multiplier varies with the state of the

business cycle. While Auerbach and Gorodnichenko (2012; 2013a; 2013b) argue that the

multiplier is likely large during severe downturns, Ramey and Zubairy (2018) find that such

state dependence is small or nonexistent. In other applications, the empirical evidence is

largely lacking. Baqaee and Farhi (2017) highlight that disregarding nonlinearities in models

with input-output linkages can have large quantitative implications. As of now, however,

there is limited direct evidence on how important nonlinearities in such settings are.1

In this paper we document robust evidence for one particular nonlinearity, namely that

industry’s supply curves are convex. We show that these supply curves are essentially flat at

low levels of production, but increasing at higher levels—in particular, when production is

close to capacity. Such curvature implies that industries’ production responses to shocks de-

pend on the initial degree of capacity utilization. Compared to an initial capacity utilization

rate at the 95th percentile, the response to the same generic demand shock is approximately

twice as large if the initial utilization rate is instead at the 5th percentile. Convex supply

curves can potentially explain a number of additional phenomena in macro and international

economics. Examples include the missing disinflation which many advanced economies ex-

perienced during the Great Recession, a distribution of GDP growth rates that is skewed to

the left, and so forth.

We begin our analysis with the following three observations. First, as Figure 1 illustrates,

a significant fraction of U.S. manufacturing establishments produces at “full capacity” as de-

fined in the Survey of Plant Capacity, or equivalently, at a utilization rate of one. These

plants presumably have limited room for increasing production in the short run. The re-

maining plants produce below their reported capacity, at times far below: Utilization rates

between 0.2 and 0.5 are not uncommon. Second, the fraction of plants with utilization rates

of unity are procyclical. In 2007 a large fraction of plants produced at full capacity and the

1See Huo, Levchenko, and Pandalai-Nayar (2019) for some evidence.
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Figure 1: Densities of plant capacity utilization

Notes: The data are from the QSPC of the U.S. Census Bureau. The figure shows kernel density
estimates which are truncated below the 5th and above the 95th percentile due to Census disclosure
requirements.

density displays a mode at around 0.8. By 2009 the distribution has shifted to the left and

has a modal point at approximately 0.5. The 2011 density reflects partial recovery relative

to 2009 but utilization rates are still below those of 2007. Third, plants produce below their

available capacity predominantly because they are not able to sell their products. For the

time period from 2013q1 to 2018q2 for which public data is available, 78.4 percent of plant

managers cites insufficient orders as the main reason for producing below capacity. The sec-

ond most cited option is chosen by 11.5 percent of respondents (insufficient supply of local

labor force/skills). In summary, these three observations suggest that firms first build up

capacity and subsequently produce and sell subject to a capacity limit. We discuss details

regarding the data and measurement as well as further facts in Appendix A.

To guide our empirical analysis we develop a simple putty-clay framework that features

this notion of capacity utilization. Drawing on earlier work by Fagnart, Licandro, and Portier

(1999), firms invest into a set of factors that are fixed in the short run and, once chosen,
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determine the firm’s maximum productive capacity. When the demand for a firm’s good ma-

terializes sufficiently high, production becomes constrained by capacity. These constrained

firms are locally unresponsive to shocks because any changes in demand are absorbed in

changes in the markup. The framework permits simple aggregation to the industry level,

where it generates a supply curve that is convex in capacity utilization. A key feature of the

model is that the capacity utilization rate is a sufficient statistic for the slope of the supply

curve. While we use the model to motivate our main empirical specifications, we note that

as long as our identification assumptions hold the results do not depend on the particular

framework adopted here.

Our main contribution is to provide empirical evidence that industry’s supply curves are

convex. We estimate both the structural form of the supply curve and the reduced form using

three alternative instruments to trace out the slope and curvature of the supply curve. First,

we use a version of the World Import Demand (WID) instrument (Hummels et al., 2014).

This instrument assumes that appropriately purified changes in foreign import demand are

uncorrelated with the industry’s unobserved supply shocks. Second, and building on Shea

(1993a,b) we construct an instrument from changes in downstream demand. The idea of this

instrument is to alleviate simultaneity concerns in production networks by isolating variation

from unidirectional linkages. Third, we consider changes in industry’s effective exchange

rates. Conditional on holding industry’s costs constant, depreciations in the exchange rate

stimulate demand from abroad.2 We emphasize that our estimates are comparable for all

three instruments.

The estimates suggest that supply curves are highly elastic at low levels of capacity

utilization. At capacity utilization rates below the 5th percentile, we cannot reject the null

hypothesis that industries’ supply curves are horizontal. This contrasts to an estimated

inverse supply elasticity of approximately 0.3 at the median and in excess of 0.4 above

the 95th percentile. We also find that the production response to the same sized demand

shock is decreasing in the capacity utilization rate and approximately twice as large at the

5th percentile when compared to the 95th percentile. Our estimation uses the measures

of capacity utilization from the Federal Reserve Board (FRB) which are close empirical

analogues to the corresponding object in the model.

Our findings are relevant for a number of applications in macro and international eco-

nomics. First, our estimates imply that responses to shocks are state-dependent. Policies

2We have also tried an additional defense spending instrument, but it is too weak at the industry level to deliver
useful results.
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which stimulate demand will raise output more when implemented in times of slack. These

results are consistent with the findings of Auerbach and Gorodnichenko (2012, 2013a,b), but

are not limited to government spending shocks. Further applications—to be completed.

Our empirical strategy uses capacity utilization as a sufficient statistic for estimation.

Capacity utilization measures how much a firm or plant produces relative to how much it

can produce (capacity). It is important to note that this concept is different from, though

related to, capital utilization which measures the fraction of time the capital stock operates.

A large literature in macroeconomics has studied models in which capital services vary at high

frequencies due to a utilization choice (see, e.g. Greenwood, Hercowitz, and Huffman, 1988,

Bils and Cho, 1994, Cooley, Hansen, and Prescott, 1995, Burnside and Eichenbaum, 1996,

Fagnart, Licandro, and Sneessens, 1997, Gilchrist and Williams, 2000, Hansen and Prescott,

2005).3 Relative to that literature the nonlinear implications of capacity utilization have

received less attention. Two exceptions are Michaillat (2014), who develops the idea that

slack in the labor market (or a convex labor supply curve) leads to state-dependent fiscal

multipliers, and Kuhn and George (2017) who study the quantitative implications of convex

supply curves in general equilibrium.4 Unlike models in which utilization is subject to convex

costs, our putty-clay framework allows for an explicit distinction between the short run and

the long run at which capacity adjusts.

Our paper also complements earlier work on state-dependent responses to shocks. These

papers include, but are not limited to, Weise (1999), Peersman and Smets (2005), Lo and

Piger (2005), Baum, Poplawski-Ribeiro, and Weber (2012), Owyang, Ramey, and Zubairy

(2013), Fazzari, Morley, and Panovska (2015), Jordà, Schularick, and Taylor (2017), and

those cited above. All of these papers study one particular shock, rather than a mechanism—

as we do. Further, we conduct our empirical analysis at the industry level to obtain more

statistical power.

We begin in Section 2 with presenting a simple model that features utilization of capacity

and motivates our empirical strategy. After discussing the data and identification we present

our baseline empirical results in Section 3. We discuss the implications of our findings for

a number of applications and provide guidance on how to calibrate convex supply curves in

Section 4. Section 5 concludes.
3See also Alvarez-Lois (2004, 2006).
4For empirical work on capacity and capital utilization, see Shapiro (1989), Stock and Watson (1999), and

Gorodnichenko and Shapiro (2011).
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2 Theoretical framework

This section lays out the theoretical foundation for estimating supply curves. We begin with

a simple and stylized putty-clay model which features a concept of capacity that aligns well

with measured capacity in the data. When aggregated to the industry level, this framework

generates a supply curve which is typically increasing and convex in capacity utilization. We

subsequently specify the demand side and present our estimating equations.

2.1 A simple theory of capacity constraints and convex supply curves

Our framework features a competitive aggregating firm and monopolistically competitive

intermediate goods firms. In order to generate a notion of capacity and utilization we

assume a putty-clay-type production function (as in Fagnart, Licandro, and Portier, 1999)

which requires firms to choose their maximum scale prior to making the actual production

decision. If demand materializes sufficiently high, production will be constrained by capacity.

2.1.1 Aggregating firm

A competitive aggregating firm uses a unit continuum of varieties, indexed j, as inputs into

a constant elasticity of substitution (CES) aggregator to produce the industry’s composite

good,

Xt =

(∫ 1

0

ωt (j)
1
θ xt (j)

θ−1
θ dj

) θ
θ−1

. (1)

Parameter θ is the elasticity of substitution and the weights ω represent firm-specific and

time-varying demand shocks for intermediate goods producers. For simplicity, we assume

these shocks are drawn independently and identically from distribution G with E [ω] = 1

and E [ω3] <∞.

Taking prices as given, the final goods firm maximizes profits subject to the production

function (1). The resulting input demand curves are

xt (j) = ωt (j)Xt

(
pxt (j)

PX
t

)−θ
(2)

for all j, where the industry’s price index is given by

PX
t =

(∫ 1

0

ωt (j) pxt (j)1−θ dj

) 1
1−θ

. (3)
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2.1.2 Intermediate goods producers

Consistent with our motivating facts in Section 1, we assume that a firm’s capacity can limit

production in the short run. Following Fagnart, Licandro, and Portier (1999), the firm has

to decide ex-ante on the maximum of variable inputs, v̄t, that it can employ (or process) in

the short run. Since short-run variable inputs vt include primarily production workers and

intermediates, v̄t has a natural interpretation as the number of workstations or the capacity

to process intermediates. To preserve clarity we drop the index j throughout this section.

Production and capacity Let qt denote the firm’s idiosyncratic production capacity which

is predetermined within the period. The firm’s production function is

xt = qt
vt
v̄t
, where vt ≤ v̄t. (4)

That is, production xt is linear in short-run variable inputs vt, but subject to an upper bound

in the short run because the variable inputs vt cannot exceed the predetermined value v̄t.

Letting zt denote productivity and kt capital, firm’s production capacity takes the form

qt = ztF (kt, v̄t) . (5)

The function F is increasing in kt and v̄t, and exhibits constant returns to scale in its two

arguments. The latter assumption implies that firm’s actual production can be written as

xt = ztF (κt, 1) vt where κt = kt/v̄t. That is, the marginal product of vt is ztF (κt, 1) which is

increasing in zt and κt. Letting pvt denote the price of the variable input bundle vt, short-run

marginal costs are

mct =
pvt

ztF (κt, 1)
. (6)

Dynamic problem Firms own their capital stock k and maximize the present value of

profits. We allow firm’s investment to be subject to possibly non-convex adjustment costs

φ (i, k). The firm’s Bellman equation is then

V (k, v̄, z, ω) = max
x,i,v,v̄′

{
pxx− pvv − pii− φ (i, k) +

1

1 + r
E [V (k′, v̄′, z′, ω′)]

}
,

where the maximization is subject to

x ≤ q, (7)
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k′ = (1− δ) k + i, (8)

as well as equations (2), (4), and (5). Equation (7) is the capacity constraint and (8) is

the standard capital accumulation equation. For simplicity, we assume that productivity

z only has an industry-specific and an aggregate (i.e. economy wide), but no firm-specific

component.

Our estimation strategy does not require us to take a stance on the functional form of

adjustment costs φ. Nor are the precise features of the firm’s investment decision or the

choice of v̄′ important for the estimation. What matters for our estimation is the evolution

of capacity, or more precisely the industry’s capacity—which we directly observe in the data.

We discuss the role of changes in capacity for the estimation below and relegate a discussion

the firm’s choices of k′ and v̄′ to Appendix B.

Price setting If the firm operates below its capacity limit, it sets prices at a constant

markup over marginal costs. Once production is constrained by capacity, however, the firm

raises its markup so as to equate the quantity demanded to its production capacity. Formally,

px =
θ

θ − 1
(mc+ ψ) , ψ = 0 whenever x < q,

where ψ is the multiplier on the capacity constraint (7). In this baseline version of the model

rising markups are the key mechanism generating the convex supply curve. In Appendix B

we discuss a number of alternative mechanisms that lead to such convexity. These include

rationing (in the presence of sticky prices) and kinks in the cost function (for instance due

to a shift premium).

Since the idiosyncratic demand shock ω is the only source of heterogeneity, there exists a

threshold variety ω̄ above which firms’ production is constrained by their capacity. A lower

value of ω̄ implies that more firms are capacity constrained. We next show that ω̄ plays a

critical role for characterizing the degree to which the industry uses its productive capacity.

2.1.3 Industry capacity and utilization

Using equation (1) the industry’s output can be written as

X (qt, ω̄t) = qt

(
(ω̄t)

− θ−1
θ

∫ ω̄t

0

ωdG (ω) +

∫ ∞
ω̄t

(ω)
1
θ dG (ω)

) θ
θ−1

.
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In particular, the industry’s output is only a function of the common idiosyncratic plant

capacity qt, and the threshold variety ω̄t.

We define the industry’s capacity as the level of output that would be attainable if every

intermediate firm produced at full capacity, that is

Q (qt) := lim
ω̄t→0

X (qt, ω̄t) .

Further, we define the industry’s utilization rate as the ratio of actual production to full

capacity production,

ut :=
X (qt, ω̄t)

Q (qt)
. (9)

Note that this definition aligns well with its empirical counterpart. The Federal Reserve mea-

sures capacity utilization at the industry level by dividing an index of industrial production,

i.e. a measure of gross output, by an estimate of capacity.

Lemma 1. The utilization rate as defined in (9) has the following properties:

1. ut ∈ [0, 1] is only a function of ω̄t: ut = u (ω̄t)

2. limω̄→0 u (ω̄) = 1, limω̄→∞ u (ω̄) = 0

3. u′ < 0

4. The sign of u′′ is ambiguous

The lemma highlights that the industry’s utilization rate is only a function of the threshold

value ω̄t above which firms produce at full capacity. The utilization rate approaches zero if

no firm produces at full capacity and it tends to one if all firms become capacity constrained.

Further, u is decreasing everywhere, and thus u is invertible and we can write ω̄t = ω̄ (ut).

We will make extensive use of this property, both for the remainder of the theoretical analysis

and when taking the model to the data.

2.1.4 The supply curve

One immediate application of the invertibility of u is that the industry’s price index (3) can

be written as

lnPX
t =M (lnut) + ln (mct) . (10)

This (inverse) supply curve is the starting point for our empirical analysis. It depends on the

industry’s marginal costs mct, and the industry’s average markup M. This markup is only
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a function of the industry’s utilization rate, or equivalently, of output relative to capacity.

For the subsequent empirical analysis it is convenient to define the markup as a function of

the logarithm of the utilization rate.

Proposition 1. M has the following properties:

1. M′ ≥ 0

2. limu→0M (lnu) = ln θ
θ−1

, limu→1M (lnu) =∞

3. limu→0M′ (lnu) = 0, limu→1M′ (lnu) =∞

4. Without further restrictions on G, the sign of M′′ is generally ambiguous.

BecauseM is increasing in utilization everywhere, the industry’s supply curve (10) is upward-

sloping. In contrast to standard models, the industry’s markup rises when production Xt

increases relative to capacity Qt. As utilization rises, more suppliers become capacity con-

strained and those that are constrained respond by raising their markups. As the utilization

rate approaches one, all suppliers become constrained andM and its derivative tend to infin-

ity. Conversely, when the utilization rate tends to zero, fewer and fewer suppliers are capacity

constrained. As a result M tends to ln θ
θ−1

and its derivative to zero. While M (lnu) is

convex everywhere for many choices of G, it is possible to construct examples in which it is

locally concave. Thus, whether M is convex in the relevant range of utilization remains an

empirical question which we will address below. (Add figure here on how the supply curve

depends on θ and G.)

2.2 Demand and market clearing

We next specify the demand side of the model and impose market clearing. As we demon-

strate below, the estimation of the reduced form benefits from a detailed specification of the

demand side which closely resembles industry’s sales patterns in the data.

Each industry sells its product both domestically and abroad. For domestic sales we

distinguish sales to downstream industries in the form of intermediates and final sales of

consumption and investment goods. We assume for simplicity that demand (locally) takes

the constant elasticity form.
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Domestic final demand Depending on whether industry i produces a consumption or

investment good, domestic final demand takes the form

Ci,t = ωCi,tCt

(
Pi,t
PC
t

)−σ
,

Ii,j,t = ωIi,j,tIj,t

(
Pi,t
P I
j,t

)−σ
.

Here, Ct are real personal consumption expenditures (PCE), and PC
t is the PCE price index.

Similarly, Ij,t is real investment into goods of category j (e.g. equipment investment), and P I
j,t

is the associated price index. The elasticity σ parameterizes the substitutability of varieties

within each of these aggregates. Unlike the quantity Ct and price PC
t , ωCi,t is an unobserved

demand shifter (and analogously ωIi,j,t).

Intermediate demand Industry i further sells its output to other industries downstream.

Letting Mj,t denote the aggregate of industry j’s purchases of intermediates, and PM
j,t the

corresponding price index, its demand for industry i’s output is

Mi,j,t = ωMi,j,tMj,t

(
Pi,t
PM
j,t

)−σ
.

Again, ωMi,j,t is an unobserved demand shock.

Foreign demand Exports abroad constitute an additional component of industry i’s de-

mand. Analogous to the earlier specification, we assume that demand of destination d is

given by

EXi,d,t = ωex
i,d,tEXd,t

(
P ∗i,d,t
P ex,∗
d,t

)−σ
.

Here, prices with asterisks are measured in foreign currency units. The dollar-denominated

price for sales abroad is PX
i,t = Ed,tPX,∗

i,d,t, where Ed,t is the nominal exchange rate in U.S.

dollars per unit of foreign currency.

Market clearing Letting X inv
i,t denote the stock of inventories at time t, IMi,t imports of

the good that industry i produces, and Gi,t sales to the government, market clearing for
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industry i requires that

X inv
i,t−1 +Xi,t + IMi,t =

∑
j

Mi,j,t + Ci,t +
∑
j

Ii,j,t +Gi,t +
∑
d

EXi,d,t +X inv
i,t . (11)

Note that this framework is sufficiently general to precisely match industries’ sales patterns

in the data.

2.3 Estimating equations

We estimate the slope and curvature of the supply curve based on both the structural form

and the reduced form.

2.3.1 Structural form

Linearizing the supply curve (10) around its t − 1 values, and letting ∆ denote the first

difference operator, yields

∆ lnPX
i,t =M′ (lnui,t−1) (∆ lnXi,t −∆ lnQi,t) + ∆ lnmci,t. (12)

If the inverse supply elasticity M′ is increasing in lnui,t−1 the supply curve is convex. In

that case, the initial equilibrium utilization rate determines how much prices and quantities

respond locally to a demand shock. This intuition is illustrated in Figure (2).

2.3.2 Reduced form

We next define the following objects

∆ξi,t =
∑
j

sMi,j,t−1∆ lnMj,t + sCi,t−1∆ lnCt +
∑
j

sIi,j,t−1∆ ln Ij,t + sGi,t−1∆ lnGi,t (13)

+
∑
d

sex
i,d,t−1∆ lnEXd,t

∆πi,t =
∑
j

sMi,j,t−1∆ lnPM
j,t + sCi,t−1∆ lnPC

t +
∑
j

sIi,j,t−1∆ lnP I
j,t (14)

+
∑
d

sex
i,d,t−1∆ lnP ex,∗

d,t

∆ei,t =
∑
d

sex
i,d,t−1∆ ln Ed,t. (15)

11



Figure 2: The utilization rate as a sufficient statistic

In these expressions, si,j,t−1 denotes the share of industry i’s overall sales to industry j,

dated t − 1. ∆ξi,t is an observable demand shifter which captures changes in industry i’s

customer’s size. For instance, if industry j increases its demand for intermediates Mj,t by

one percent, industry i’s demand rises, ceteris paribus, by sMi,j,t−1 percent. Similarly, a change

in government purchases ∆ lnGj,t affects industry i’s demand.

∆πi,t reflects changes in demand due to changes in industry i’s customers’ prices. Con-

tinuing with the earlier example, industry i would, ceteris paribus, experience an increase in

demand through substitution if downstream industry j’s materials price index PM
j,t increased.

∆ei,t is the change of industry i’s effective nominal exchange rate. sex
i,d,t−1 denotes the

t − 1 sales share of industry i to country d. Notice that ∆ei,t varies by industry because

existing trade linkages differentially expose industries to fluctuations of a common set of

currencies. Further, this definition takes into account that some industries sell more of their

goods abroad than others. A positive value of ∆ei,t reflects a depreciation of the U.S. dollar

relative to the relevant basket of foreign currencies. From the viewpoint of industry i which

sets prices in dollars such a depreciation leads to an increase in demand through substitution

towards the industry’s product.

We next solve for the reduced form after log-linearizing around the equilibrium in t− 1.

12



Proposition 2 (Reduced form). The industry’s quantity, linearized around the equilibrium

in t− 1, is

∆ lnXi,t = βξ (lnui,t−1) ∆ξi,t + βπ (lnui,t−1) ∆πi,t + βe (lnui,t−1) ∆ei,t

+ βQ (lnui,t−1) ∆ lnQi,t + βmc (lnui,t−1) ∆ lnmci,t (16)

+ βIM (lnui,t−1)
∆IMi,t

Xi,t−1

+ βinv (lnui,t−1)
∆X inv

i,t −∆X inv
i,t−1

Xi,t−1

+ ωXi,t.

All coefficients are only functions of the log utilization rate lnui,t−1 and βξ > 0, βπ > 0,

βe > 0, βmc < 0, βQ > 0, βIM < 0, and βinv > 0. The error term is a weighted average of

changes in the unobserved demand shocks ωCi,t, ω
I
i,j,t, ω

M
i,j,t, and ωexi,d,t.

The equilibrium quantity is a function of all demand and supply shifters which—in this

linearized version of the model—are ∆ξi,t, ∆πi,t, ∆ei,t, ∆ lnQi,t, ∆ lnmci,t, ∆IMi,t/Xi,t−1,(
∆X inv

i,t −∆X inv
i,t−1

)
/Xi,t−1 as well as ωXi,t. The critical fact for our empirical analysis is that

all coefficients β depend only on log utilization rates lnui,t−1. This implies, for instance,

that if the supply curve is convex, the elasticity βξ (lnui,t−1) is decreasing in the utilization

rate so that the quantity response to a demand shock is larger if the initial utilization rate

is low (see Figure 2). Detailed expressions for all coefficients in Proposition 2 are listed in

Appendix B.

2.4 Discussion

Measurement of marginal costs In practice, the estimation of equations (12) and (16) is

complicated by the fact that marginal costs are not observed. Further, subsuming marginal

costs into the error term potentially leads to an omitted variable bias. An alternative is to

proxy for marginal costs with unit variable costs which are observed. We briefly discuss the

econometric implications of this strategy.

In our framework the industry’s marginal costs differ from the industry’s unit variable

costs. This feature follows from the non-linear aggregation across varieties with aggregator

(1).5 Further, the wedge between unit variable cost and marginal cost is a function of

utilization, that is, lnmci,t = ln
P vi,tX

v
i,t

Xi,t
+ Ω (ui,t). Substituting for marginal costs in equation

(10) yields

lnPX
i,t =M (lnui,t) + Ω (lnui,t) + ln

P v
i,tX

v
i,t

Xi,t

. (17)

5See Appendix B for details.
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This expression makes clear that if, instead of marginal costs, unit variable costs are held

constant, variation in u does not identify M′, but M′ + Ω′. A similar argument applies to

M′′.

Proposition 3. Ω ≤ 0, Ω′ ≤ 0, and often Ω′′ ≤ 0.

Hence, empirical strategies that aim to estimateM′ andM′′ based on equation (12), exhibit

a downward bias (for both the slope and the curvature ofM) when marginal costs are proxied

for with unit variable costs. It is thus possible that supply curves are upward-sloping and

convex, but the researcher finds no evidence supporting this, even in large samples.

Capacity and anticipation effects cite Ramey 2011

Model misspecification Different sectors could have other determinants of markups. Par-

tially address this by including changes in future prices.

Demand elasticities could be different across customers and time-varying.

2.5 Relationship to other frameworks

3 Empirical analysis

In this section we test empirically whether the data support the hypothesis that supply

curves are convex at the industry level.

3.1 Data

3.1.1 Industrial production, capacity and utilization

We use the Federal Reserve Board’s (FRB) measures of capacity and utilization. To obtain

series for utilization, the FRB first constructs indexes of industrial production and capacity.

The industrial production series are indexes of real gross output. The FRB’s capacity indexes

aim to capture the sustainable maximum level of output, that is, “the greatest level of output

a plant [or industry] can maintain within the framework of a realistic work schedule after

factoring in normal downtime and assuming sufficient availability of inputs to operate the

capital in place”.6 The FRB’s measure of capacity is primarily based on establishment-level

6See https://www.federalreserve.gov/releases/g17/Meth/MethCap.htm. A consequence of this definition is
that utilization can exceed unity for short periods of time. In practice, this rarely happens. In our 3-digt NAICS
sample from 1972 to 2011 only one industry (Primary Metal Manufacturing, NAICS 331) exceeded a utilization rate
of 100 and only for two months (December of 1973 and January of 1974).

14

https://www.federalreserve.gov/releases/g17/Meth/MethCap.htm


Figure 3: Capacity utilization at the industry level

Notes: The data are from the Federal reserve Board. The figure plots the mean, minimum, maximum and
interquartile range of the capacity utilization series constructed using the FRB capacity utilization data and
industrial production. The left panel shows the level of the utilization rate and the right panel industry-demeaned
utilization series. Shaded areas represent NBER recessions.

utilization rates from the Survey of Plant Capacity (prior to 2007), the Quarterly Survey

of Plant Capacity (from 2007 onwards), and measures of capital from the Annual Survey

of Manufacturers.7 As in our model, utilization is then calculated by dividing industrial

production by capacity (see equation 9).

The left panel in Figure 3 illustrates the capacity utilization rates of the 21 3-digit NAICS

manufacturing industries in our sample. As is clear from the figure, utilization rates dis-

play significant variation both in the cross-section and over time. Capacity utilization is

strongly procyclical and experiences a mild downward trend towards the end of the sample,

presumably reflecting the well-documented shrinkage of the U.S. manufacturing sector. An

additional salient feature which we document in Appendix Table (D1) is that average utiliza-

tion rates differ across industries. Since it is not clear to what extent these differences reflect

measurement problems or industry-specific capacity choices we subtract from all utilization

series their industry-specific means. The resulting series are shown in the right panel of

Figure 3. We note that demeaning the utilization series does not drive our results.

7For further details on the data sources and methodology underlying of the capacity indexes, see Gilbert, Morin,
and Raddock (2000) and https://www.federalreserve.gov/releases/g17/About.htm.
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3.1.2 Additional data sources

We take data on prices, sales, input costs, and inventories from the NBER CES Manufactur-

ing Industry Database. These data are constructed mainly from sources of the U.S. Census

Bureau, the Bureau of Economic Analysis (BEA), and the Bureau of Labor Statistics (BLS)

and provide a detailed picture of the U.S. manufacturing sector. For a description of this

database, see Bartelsman and Gray (1996) and Becker, Gray, and Marvakov (2016). To ob-

tain our measure of unit variable costs, P v
i,tX

v
i,t/Xi,t we sum production worker wages, costs

of materials, and expenditures on energy and then divide by real gross output.

Our preferred measure of prices is a “deflator” constructed by dividing the nominal value

of production (from the NBER CES) by the industrial production index (from the FRB).

Relative to the price measure from the NBER CES database, this measure is consistent with

the quantity measure (industrial production). We also show results using the price index

from the NBER CES database. The results are very similar.

We calculate the sales shares si,j,t from the Use Tables of the BEA’s Input-Output ac-

counts. For the sales shares to foreign countries, we complement these data with data on

U.S. exports from the U.S. Census available from Peter Schott’s website. The construction

of ∆ξi,t and ∆πi,t as given in equations (13) and (14) further requires data on quantity and

price indexes. We use data from the following sources. First, for domestic sales of final goods

we use data on personal consumption expenditures, equipment investment, and nonresiden-

tial fixed investment from the BEA’s National Income and Product Accounts. Second, for

intermediate sales to downstream industries, we use quantity and price indexes of industries’

material use from the BEA’s Industry Accounts. Third, for foreign quantity and price in-

dexes we use real GDP and the GDP deflator in local currency from the United Nation’s

(UN) Statistics Division. The nominal exchange rate series for the calculation of ∆ei,t (equa-

tion 15) also come from the UN’s Statistics Division. To guarantee high data quality, we

limit ourselves to countries that joined the Organisation for Economic Co-operation and

Development (OECD) prior to year 2000 when constructing ∆ξi,t, ∆πi,t, and ∆ei,t. Details

on the data and the construction of these variables are available in Appendix C. Our sample

is annual, includes all 21 3-digit NAICS manufacturing industries, and ranges from 1972 to

2011.
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3.2 Empirical specifications

To estimate the structural form (12) and the reduced form (16), we approximate the coeffi-

cients linearly around the industry-specific mean ln ūi, so that, for instance,

M′ (lnui,t−1) = M′ (ln ūi) +M′′ (ln ūi) · (lnui,t−1 − ln ūi)

≈ M′ (ln ūi) +M′′ (ln ūi) · (ui,t−1 − ūi) .

Here, ui,t−1 − ūi are the demeaned utilization series plotted in the right panel of Figure 3.

We always add a main effect of utilization ui,t−1 to each specification in order to obtain the

conventional interpretation of interaction terms.

We begin with estimating the structural form (12). In most specifications we use unit

variable costs to proxy for marginal costs, although we keep in mind that doing so could

generate downward biases in the slope and curvature of the supply curve (see Section 2.4).

In a second step we estimate the reduced form for quantities (16).

3.2.1 Instruments and identification

Estimation of the slope and curvature of the supply curve requires an instrumental variable

which shifts the demand curve and is excluded from the supply curve. When estimating the

structural form (12), the instrument addresses the endogeneity of ∆ lnXi,t. Since we also

estimate the reduced form, we use the same instrument for the supply shifter ∆ξi,t as defined

in equation (13).8

We consider three different instruments in our empirical analysis. In all cases, the iden-

tification assumption requires that conditional on the control variables, the instrument is

uncorrelated with the unobserved supply shifters. Whether this assumption is broadly sat-

isfied depends on the instrument and the unobserved supply shocks (see Section 2.4). We

emphasize that all instruments deliver comparable results.9

World import demand The first instrument aims to use variation in foreign demand to

estimate the supply curve. Letting Yd,t denote GDP in destination d, our World Import

8We recognize the ambiguity of the term reduced from in the context of this paper. We will use the term to refer
to the equilibrium quantity and price as a function of all shifters.

9We have also considered a fourth instrument based on defense spending. Since the first stage of this instrument
is uniformly weak and the estimates noisy, we do not report the results.
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Demand instrument is

instWID
i,t =

∑
d

sex
i,d,t−1∆ lnYd,t. (18)

To better understand the identification assumption, we decompose the change in foreign

GDP into a common and a destination-specific component, ∆ lnYd,t = ∆ lnY com
t +∆ lnY spec

d,t .

Letting s̄ex
d,t−1 denote the average export share of all manufacturing industries to destination

d, the variation of the World Import Demand instrument can be split into three components,

instWID
i,t = ∆ lnY com

t

∑
d

sex
i,d,t−1 +

∑
d

s̄ex
d,t−1∆ lnY spec

d,t +
∑
d

(
sex
i,d,t−1 − s̄ex

d,t−1

)
∆ lnY spec

d,t . (19)

The first term on the right hand side captures variation common to all foreign countries.

Since this variation reflects the “global” business cycle and may affect the industries in the

sample through channels not captured by other controls, we control for it by interacting a

time fixed effect with the foreign sales share of industry i,
∑

d s
ex
i,d,t−1.

The second term on the right hand side weighs destination-specific changes in GDP with

the average export share. Since most of our specifications will include a time fixed effect—in

addition to the time fixed effect interacted with the foreign sales share—this variation will be

purged as well. Hence, the identifying variation of this instrument entirely comes from the

third term,
∑

d

(
sex
i,d,t−1 − s̄ex

d,t−1

)
∆ lnY spec

d,t , reflecting destination-specific changes in GDP

which are weighted with the deviations of sales shares from the average. Instruments of this

type have been used by Hummels et al. (2014), among others.

Shea’s instrument Our second instrument builds on Shea (1993a,b), who argues that

material demand of industry j from industry i is more likely to constitute an “exogenous”

demand shock if industry i does not rely on inputs from industry j. Recall that sMi,j,t−1 denotes

industry i’s sales share to industry j. Further, let scost
i,j,t−1 denote industry i’s materials cost

share from industry j. Our version of the Shea-instrument is then

instShea
i,t =

∑
j

sMi,j,t−11
{
sMi,j,τ > 10 · scost

i,j,τ ∀τ
}

∆ lnMj,t. (20)

The condition in the indicator function requires that in every period for which we have data

the sales share from industry i to j exceeds ten times industry i’s materials cost share from

j. It aims at generating a high degree of relevance while containing the degree of endogeneity

(see Shea (1993a,b) for details).
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Note that this instrument only partially addresses concerns on reverse causality. Supply

shocks that affect industry i and spill over to industry j through input linkages, and shocks

which are correlated across industries must be dealt with by adding appropriate control

variables. We will do so by controlling for unit variable costs to address the former concern

and by adding time fixed effects and time fixed effects interacted with the foreign sales share

to address the latter.

The exchange rate We further use a purified change in an industry’s effective exchange rate

(equation 15) to identify the slope and curvature of the supply curve. A dollar depreciation

relative to the relevant basket of foreign currencies makes U.S.-produced goods cheaper for

foreign customers. If firms in the U.S. set prices in U.S. dollars (as 97 percent of U.S.

exporters do, see Gopinath and Rigobon (2008)), such depreciations materialize as outward

shifts in demand. A one percent depreciation of the effective exchange rate raises demand

by the value of the demand elasticity (σ in Section 2.2).

Analogously to the World Import Demand instrument, we purge changes in the effec-

tive exchange rate ∆ei,t by decomposing the nominal exchange rate into a common and

destination-specific component ∆ ln Ed,t = ∆ ln Ecomt + ∆ ln Especd,t . This decomposition can

be implemented by regressing the observed changes in exchange rates on a set of time fixed

effects. In our sample, the R2 of this regression is 28.3 percent, implying that 28.3 percent

of changes in the dollar value of foreign currencies are common to all foreign currencies.

Similar to the World Import Demand instrument in equation (19), we decompose the

effective exchange rate into three components,

∆ei,t = ∆ ln Ecom
t

∑
d

sex
i,d,t−1 +

∑
d

s̄ex
d,t−1∆ ln E spec

d,t +
∑
d

(
sex
i,d,t−1 − s̄ex

d,t−1

)
∆ ln E spec

d,t . (21)

When the specification includes a time fixed effect and a time fixed effect interacted with

the foreign sales share, the identifying variation of the exchange rate instrument is limited

to destination-specific exchange rate changes which are weighted with the deviations of sales

shares from the average (the third term on the right hand side).

As Amiti, Itskhoki, and Konings (2014) emphasize, most exporters also import and hence

dollar depreciations raise the cost of intermediates inputs. To prevent this channel from

confounding our interpretation of dollar depreciations as demand shocks, we control for unit

variable costs as suggested by the model in most specifications.
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3.2.2 Additional notes on identification

To be completed.

3.3 Results

We begin with presenting the estimates of the structural form and subsequently turn to the

estimates of the reduced form.

3.3.1 Estimates of the structural form

Table 1 shows the estimates of the supply curve when we impose linearity. Specification (1)

begins with an estimate of the inverse supply elasticity without controls. As expected, the

slope estimate is insignificantly different from zero since unobserved supply shocks confound

the estimation. When we add the change in unit variable costs in specification (2), the

R-squared rises to 87 percent and the estimate of the slope coefficient becomes positive and

significant. Adding unit variable costs to the specification partially addresses the simultane-

ity problem arising from the existence of unobserved supply shocks because they explain

such a large fraction of the variation. Specification (3) further adds the change in capacity

to the equation. As expected from equation (12), the coefficient is negative. Further, the

slope coefficient rises to 0.13. In specification (4) we also add industry fixed effects, time

fixed effects and time fixed effects interacted with the industry’s export share. The estimate

of the inverse supply elasticity rises to 0.17. When we simultaneously use the World Im-

port Demand instrument, Shea’s instrument, and the effective exchange rate instrument in

specification (5), we obtain a slope estimate of 0.21. This estimate is greater than the OLS

estimate and precisely estimated. The first stage F-statistic is 12.97. We pass Hansen’s J

test with a p-value of 0.418.

We next relax the assumption of linearity and allow the inverse supply elasticity to de-

pend on last period’s utilization rate (see Figure 2). Table 2 specification (1) shows the OLS

estimates. The main effect is 0.17 and the interaction term is negative and insignificant.

We next use the World Import Demand instrument, Shea’s instrument, and the effective

exchange rate to instrument for the main effect (as in specification (5) of Table 1), and addi-

tionally use the World Import Demand instrument interacted with the demeaned utilization

rate ui,t−1− ūi for the interaction term. As specification (2) shows, the interaction term be-

comes positive and significant. This suggests that the inverse supply elasticity is increasing

in the initial capacity utilization rate.
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Table 1: Estimates of the linear model

Dependent variable: ∆ lnPi,t

Estimator OLS OLS OLS OLS 2SLS

Instruments - - - - WID, Shea,
∆ei,t

(1) (2) (3) (4) (5)

∆ lnXi,t -0.09 0.08 0.13 0.17 0.21
(0.08) (0.02) (0.02) (0.02) (0.06)

∆ lnQi,t -0.16 -0.12 -0.14
(0.03) (0.04) (0.05)

∆ lnP v
i,tX

v
i,t/Xi,t 0.91 0.90 0.89 0.89

(0.02) (0.02) (0.03) (0.03)

R-squared 0.010 0.873 0.880 0.910 0.909

First stage F 12.97

Hansen J (p-value) 0.418

Fixed Effects no no no yes yes

Notes: The estimates are based on equation (12). Driscoll-Kraay standard errors are reported in
parentheses.

Little changes when we alternatively instrument for the interaction term with Shea’s in-

strument interacted with ui,t−1− ūi as shown in specification (3). The estimate of the inverse

supply elasticity also changes little when we use the effective exchange rate instead (specifi-

cation 4), although this instrument is potentially weak. When we use all three instruments

interacted with the demeaned utilization rate, the coefficient on the interaction term is 0.89

and precisely estimated (specification 5).

Because the exchange rate instrument is potentially weak, we drop it from our set of

instruments both of the main effect and the interaction term. This leaves us with the

WID instrument and Shea’s instrument. As specification (6) demonstrates, both the main

effect and the interaction term are positive and highly significant (p < 0.01). Under the

identification assumption that the WID and Shea’s instrument are orthogonal to unobserved

supply shocks, supply curves at the industry level are increasing and convex. We next turn

to a number of robustness checks.

Table (3) specification (1) reports the estimates when we drop unit variable costs from

the set of controls. As discussed in Section (2.4), including this control potentially leads to a

downward bias in both the slope and the curvature of the supply curve. On the other hand,

21



Table 2: Estimates of the non-linear model

Dependent variable: ∆ lnPi,t

Estimator OLS 2SLS 2SLS 2SLS 2SLS 2SLS

Instrument(s):

Main effect WID, Shea, ∆ei,t WID, Shea

Interaction (· (ui,t−1 − ūi)) WID Shea ∆ei,t all WID, Shea

(1) (2) (3) (4) (5) (6)

∆ lnXi,t 0.17 0.23 0.23 0.23 0.23 0.22
(0.02) (0.06) (0.07) (0.06) (0.06) (0.06)

∆ lnXi,t · (ui,t−1 − ūi) -0.33 0.88 0.73 0.83 0.89 0.90
(0.24) (0.31) (0.37) (0.54) (0.29) (0.29)

ui,t−1 − ūi 0.01 0.02 0.02 0.02 0.02 0.02
(0.02) (0.04) (0.04) (0.04) (0.04) (0.04)

∆ lnQi,t -0.11 -0.19 -0.19 -0.18 -0.18 -0.18
(0.04) (0.07) (0.08) (0.08) (0.07) (0.08)

∆ lnQi,t · (ui,t−1 − ūi) -0.32 -1.05 -0.96 -1.01 -1.05 -1.05
(0.43) (0.40) (0.40) (0.33) (0.40) (0.40)

∆ lnP v
i,tX

v
i,t/Xi,t 0.89 0.89 0.89 0.89 0.89 0.89

(0.03) (0.03) (0.03) (0.03) (0.03) (0.03)

R-squared 0.910 0.904 0.905 0.905 0.904 0.904

SW First stage F: main effect 17.62 14.82 24.07 8.99 14.61

SW First stage F: interaction 14.83 16.12 5.31 22.49 18.23

Hansen J (p-value) 0.748 0.576

Fixed Effects yes yes yes yes yes yes

Notes: The estimates are based on equation (12). Driscoll-Kraay standard errors are reported in parentheses.

this control explains approximately 87 percent of the variation in price changes and is thus

critical for obtaining precise results. Dropping unit variable costs from the controls indeed

increases the estimate of the slope and curvature. Due to the increase in error variance,

however, the interaction term becomes insignificant. To obtain precise estimates we continue

the empirical analysis including unit variable costs as a control, but keep in mind that this

control potentially leads to downward biases.

The estimating equation (12) suggests that the slope coefficient is the negative of the

coefficient on capacity (and similarly for the interaction term). Inspection of the estimates

in Table 2 suggests that this cross-coefficient restriction broadly holds. However, this obser-

vation also raises the concern that the estimates of the slope and curvature of the supply
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curve are dependent on the inclusion of capacity and its interaction with the utilization rate.

Specifications (2) and (3) drop these controls from the equation. The estimates of the slope

and curvature fall slightly but remain positive and significant.

We next add a number of additional controls to the equation. Specification (4) adds the

percent change of the industry’s price from t to t + 1. Extensions of the model with sticky

prices suggest that this variable should capture the firm’s expectations of changes in future

marginal costs. Adding this control has essentially no effect on the estimates. In specification

(5) we include an interaction term of changes in unit variable costs with the utilization rate.

This variable is positive and highly significant, suggesting that pass-through of cost shocks

into prices may be stronger when capacity utilization is high. The slope and curvature of

the supply curve change little.

A number of studies have used the capacity utilization rate to forecast inflation—with

varying conclusions (see Shapiro (1989) and Stock and Watson (1999)). In line with Shapiro’s

(1989) conclusion, the coefficient on the utilization rate is small and insignificant in all

specifications of Table 2. Yet, when we add the squared utilization rate in specification (6)

of Table (3), both the linear and the squared term are positive and significant. Consistent

with the convex shape of the supply curve, the utilization rate appears to have predictive

power for price changes when utilization is high, but not when it is low. The slope and

curvature estimates of the supply curve increase slightly when this additional control is

included.

In specification (7) we add ∆πi,t as defined in equation (14) to address the possibility

that strategic complementarities lead the industry to change prices when its competitors

change prices. While the control is highly significant, the slope and curvature estimates

remain broadly unchanged. In our preferred specification (8) we simultaneously include all

additional controls. The slope estimate is 0.30 and the coefficient on the interaction term

1.31. The estimates are similar when we replace the left hand side variable (the change in

the implicit “deflator”) with changes in the price index (specification 9).
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Table 3: Robustness of the non-linear model

Dependent variable: ∆ lnPi,t

(1) (2) (3) (4) (5) (6) (7) (8) (9)

∆ lnXi,t 0.54 0.21 0.19 0.22 0.26 0.28 0.23 0.30 0.27
(0.15) (0.06) (0.05) (0.06) (0.07) (0.07) (0.07) (0.08) (0.08)

∆ lnXi,t · (ui,t−1 − ūi) 1.09 0.75 0.64 0.89 0.88 1.34 1.01 1.31 1.07
(0.82) (0.27) (0.25) (0.30) (0.30) (0.34) (0.29) (0.38) (0.30)

ui,t−1 − ūi 0.39 0.01 -0.02 0.02 0.00 0.07 0.02 0.05 0.00
(0.09) (0.03) (0.02) (0.04) (0.03) (0.03) (0.04) (0.03) (0.02)

∆ lnQi,t -0.64 -0.16 -0.18 -0.20 -0.24 -0.19 -0.25 -0.16
(0.19) (0.08) (0.08) (0.08) (0.08) (0.09) (0.09) (0.08)

∆ lnQi,t · (ui,t−1 − ūi) -1.73 -1.04 -0.96 -2.47 -1.25 -2.21 -1.69
(0.86) (0.40) (0.38) (0.56) (0.40) (0.70) (0.55)

∆ lnP v
i,tX

v
i,t/Xi,t 0.89 0.89 0.89 0.90 0.90 0.85 0.87 0.91

(0.03) (0.03) (0.03) (0.02) (0.03) (0.03) (0.03) (0.09)

∆ lnPi,t+1 0.00 0.01 -0.10
(0.02) (0.02) (0.06)

∆ lnP v
i,tX

v
i,t/Xi,t · (ui,t−1 − ūi) 1.12 0.74 1.67

(0.30) (0.34) (0.48)

(ui,t−1 − ūi)2 1.08 0.80 0.54
(0.24) (0.26) (0.24)

∆πi,t 0.27 0.25 -0.09
(0.09) (0.09) (0.14)

R-squared 0.516 0.905 0.904 0.904 0.908 0.903 0.905 0.906 0.858

SW First stage F: main effect 14.08 15.21 14.39 13.58 13.69 11.14 14.72 10.97 6.97

SW First stage F: interaction 18.09 24.59 30.40 17.18 15.59 12.30 20.12 11.57 9.30

Hansen J (p-value) 0.440 0.504 0.522 0.580 0.533 0.501 0.492 0.432 0.291

Fixed Effects yes yes yes yes yes yes yes yes yes

Notes: The estimates are based on equation (12). Driscoll-Kraay standard errors are reported in parentheses.
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Figure 4: Non-parametric estimates

Figure 4 Panel A shows non-parametric estimates of the inverse supply elasticity. We

allow the slope coefficient to differ depending on whether the utilization rate of the previous

period (ui,t−1− ūi) was below -0.06 (approximately the 15th percentile), between -0.06 and 0,

between 0 and 0.06, and above 0.06 (approximately the 85th percentile). The non-parametric

estimates broadly align with those based on the interaction term.

Based on specification (8) of Table (3) the figure also demonstrates that below the fifth

percentile of the utilization distribution (ui,t−1 − ūi = −0.13), the estimated inverse supply

elasticity is below 0.12 and statistically indistinguishable from zero. This contrasts to a

value of 0.42 at the 95th percentile (ui,t−1− ūi = 0.10). The non-parametric estimate for the

highest utilization rates suggests an even large value of 0.53, but it is imprecisely estimated.

Panel B of Figure 4 plots the quadratic and the partially-linear approximation of the supply

curve.

3.3.2 Estimates of the reduced form

We next turn to the estimates of the reduced form (equation 16). The object of primary

interest in this section is the coefficient on ∆ξi,t, which captures how much production

responds to a generic demand shock. This coefficient, for instance, can be interpreted as the

industry-level fiscal multiplier under the assumption that the model is correctly specified.

That is, it captures by how much the industry’s production expands when the government

purchases goods worth one dollar. We are also interested in the coefficient on ∆ei,t, which
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measures the production response to a depreciation of the U.S. dollar.

Specifications (1) and (2) of Table 4 show these estimates of a linear model without and

with controlling for changes imports and inventory accumulation. All coefficients have the

expected sign, and those on ∆ξi,t and ∆ei,t are highly significant. Since imports and inventory

accumulation are presumably correlated with the error, it is not clear as to whether to include

them in the regression. Since doing so has little effect on the other coefficients, we proceed

with including them.

In specification (3) we add industry fixed effects, time fixed effects, and time fixed effects

interacted with the foreign sales share. While the coefficients on ∆ξi,t and ∆ei,t change

little, the standard error on the coefficient of ∆ei,t more than doubles. The reason is that,

taken together, these fixed effects explain approximately 94 percent of the variation in the

exchange rate variable (the time fixed effects interacted with the foreign sales share alone

explain 92.6 percent). An implication of this is that the main effect of the effective exchange

rate will be imprecisely estimated in all specifications.

When we instrument for ∆ξi,t with the WID instrument, Shea’s instrument, or both

(specifications 4 to 6), the estimates remain very stable between 0.8 and 0.9. This finding

is not obvious because shocks that affect one industry could spill over to other industries

via input-output linkages and ultimately feed back to the first industry, thereby creating a

simultaneity problem. Shea’s instrument ameliorates this issue by considering changes in

downstream demand without such feedback. Yet, the 2SLS estimates are very similar to

the OLS estimates, suggesting that, conditional on the controls, such feedback loops do not

drive much of the variation in industry’s production.

Specification (1) in Table 5 presents OLS estimates of the non-linear reduced form. This

specification is based on equation (16) and all coefficients are allowed to linearly depend on

the utilization rate. To preserve space, we only report the coefficients on the variables of

interest. The coefficient on the interaction term ∆ξi,t ·(ui,t−1 − ūi) is negative and significant.

Similarly, the interaction term associated with the exchange rate ∆ei,t·(ui,t−1 − ūi) is negative

and significant. Consistent with the implications of a convex supply curve, demand shocks

appear to stimulate production more when the utilization rate is initially low.

The interaction term ∆ξi,t · (ui,t−1 − ūi) becomes more negative when we estimate the

specification by 2SLS. With the WID instrument (specification 2), the coefficient becomes

-4.11, and with Shea’s instrument it becomes -2.58 (specification 3). When we combine both

instrument in specification (4), the coefficient is -2.98. Hence, the initial utilization rate

determines how much production responds to demand shocks.
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Table 4: Estimates of the linear reduced form

Dependent variable: ∆ lnXi,t

Estimator OLS OLS OLS 2SLS 2SLS 2SLS

Instrument(s) WID Shea WID, Shea

(1) (2) (3) (4) (5) (6)

∆ξi,t 0.89 0.91 0.84 0.90 0.82 0.82
(0.08) (0.09) (0.11) (0.41) (0.14) (0.14)

∆πi,t -0.02 -0.01 -0.05 -0.06 -0.05 -0.05
(0.11) (0.12) (0.12) (0.12) (0.11) (0.11)

∆ei,t 1.89 2.03 1.66 1.57 1.70 1.69
(0.59) (0.44) (1.02) (1.29) (0.98) (0.99)

∆ lnQi,t 0.68 0.78 0.64 0.63 0.65 0.65
(0.07) (0.07) (0.08) (0.11) (0.08) (0.08)

∆ lnP v
i,tX

v
i,t/Xi,t -0.08 -0.05 -0.12 -0.12 -0.12 -0.12

(0.05) (0.05) (0.04) (0.04) (0.04) (0.04)(
∆X inv

i,t −∆X inv
i,t−1

)
/Xi,t−1 0.10 0.03 0.03 0.03 0.03

(0.03) (0.02) (0.02) (0.02) (0.02)

∆IMi,t/Xi,t−1 -0.08 0.14 0.11 0.15 0.15
(0.08) (0.08) (0.18) (0.09) (0.09)

R-squared 0.689 0.703 0.810 0.810 0.810 0.810

First stage F 10.06 543.39 315.73

Hansen J (p-value) 0.843

Fixed Effects no no yes yes yes yes

Notes: The estimates are based on equation (12). Driscoll-Kraay standard errors are reported in paren-
theses.

We next consider a number of robustness checks. In specifications (1) of Table 6, we

drop unit variable costs and its interaction with the utilization rate from the regression. The

estimates change very little. The estimates are also robust to alternatively dropping the

change in capacity and its interaction from the regression (specification 2). In specifications

(3) and (4) we add the change in future prices and a lagged dependent variable. Both of these

variables are significant, but including them in the regression barely affects the estimates. We

further estimate a specification with all second order terms. Specification (5) includes squares

and interactions of all control variables. The interaction term ∆ξi,t · (ui,t−1 − ūi) falls slightly

in absolute magnitude (to -2.27), but it remains significant at the one percent level. Finally,

specification (6) presents estimates when we include all second order terms in addition to

the change in future prices and a lagged dependent variable. In this preferred specification
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Table 5: Estimates of the non-linear reduced form

Dependent variable: ∆ lnXi,t

Estimator OLS 2SLS 2SLS 2SLS

Instrument(s):

Main effect WID, Shea

Interaction (· (ui,t−1 − ūi)) WID Shea WID, Shea

(1) (2) (3) (4)

∆ξi,t 0.81 0.74 0.74 0.74
(0.09) (0.12) (0.13) (0.13)

∆ξi,t · (ui,t−1 − ūi) -1.72 -4.11 -2.58 -2.98
(0.64) (0.91) (1.02) (0.74)

∆ei,t 1.16 1.12 1.22 1.19
(0.96) (0.90) (0.90) (0.90)

∆ei,t · (ui,t−1 − ūi) -21.42 -20.77 -21.00 -20.95
(4.72) (4.98) (4.62) (4.67)

(ui,t−1 − ūi) -0.28 -0.24 -0.27 -0.26
(0.06) (0.04) (0.05) (0.05)

R-squared 0.834 0.828 0.833 0.836

SW First stage F: main effect 372.51 355.04 277.05

SW First stage F: interaction 18.50 35.39 44.70

Hansen J (p-value) 0.903 0.886 0.623

Other controls yes yes yes yes

Fixed Effects yes yes yes yes

Notes: The estimates are based on equation (12). Driscoll-Kraay standard errors are reported in parentheses.

coefficient on ∆ξi,t · (ui,t−1 − ūi) is -2.14 and that on ∆ei,t · (ui,t−1 − ūi) is −16.85. Hence,

that the production response depends on the initial utilization rate is robust to including or

dropping a large number controls.

Figure 5 plots the estimated inverse supply elasticity. The estimates are based on specifi-

cation (6) of Table 6. The figure also plots non-parametric estimates that allow for different

production responses depending on whether the initial utilization rate is below -0.06 , be-

tween -0.06 and 0, between 0 and 0.06, and above 0.06. These estimates align well with

those based on the interaction term. As Panel A demonstrates, production responds by

approximately twice as much when the initial utilization rate is below the fifth percentile

(-0.13) than when it is above the 95th percentile (0.10). The exchange rate response drops

to zero at high utilization rates (Panel B).
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Table 6: Robustness of the reduced form

Dependent variable: ∆ lnXi,t

Estimator 2SLS

Instruments

Main effect WID, Shea

Interaction (· (ui,t−1 − ūi)) WID, Shea

(1) (2) (3) (4) (5) (6)

∆ξi,t 0.73 0.81 0.73 0.74 0.73 0.71
(0.13) (0.14) (0.13) (0.13) (0.12) (0.12)

∆ξi,t · (ui,t−1 − ūi) -2.92 -2.83 -2.98 -2.79 -2.27 -2.14
(0.73) (0.56) (0.78) (0.75) (0.82) (0.86)

∆ei,t 1.15 1.55 1.08 1.41 1.94 1.90
(0.86) (1.23) (0.90) (0.88) (1.01) (1.03)

∆ei,t · (ui,t−1 − ūi) -20.68 -22.52 -20.47 -19.45 -18.82 -16.85
(4.72) (5.80) (4.54) (4.27) (5.51) (5.08)

(ui,t−1 − ūi) -0.27 -0.07 -0.26 -0.27 -0.22 -0.23
(0.05) (0.06) (0.05) (0.05) (0.07) (0.07)

∆ lnPi,t+1 0.07 0.07
(0.02) (0.02)

∆ lnXi,t−1 0.12 0.15
(0.04) (0.05)

R-squared 0.831 0.787 0.833 0.835 0.845 0.850

SW First stage F: main effect 274.35 282.38 275.91 235.86 250.44 218.58

SW First stage F: interaction 52.66 47.15 43.59 46.40 46.11 46.45

Hansen J (p-value) 0.757 0.580 0.596 0.623 0.892 0.716

Other controls yes yes yes yes yes yes

Drop ∆ lnP v
i,tX

v
i,t/Xi,t and interaction yes no no no no no

Drop ∆ lnQi,t and interaction no yes no no no no

Second order terms no no no no yes yes

Fixed Effects yes yes yes yes yes yes

Notes: The estimates are based on equation (12). Driscoll-Kraay standard errors are reported in parentheses.

We finally ask the question whether the estimates of the structural form and the reduced

form are consistent with one another. How much production responds to an outward shift

in demand depends both on the supply elasticity and the elasticity of demand. In Figure

6 we plot this elasticity of production with respect to the demand shock ∆ξi,t. The figure

shows both the direct estimate based on the reduced form and the response implied by

29



Figure 5: Non-parametric estimates of the reduced form

the estimated supply elasticity. We plot this latter response for three alternative demand

elasticities, σ = 1, 2, and 3. As is clear from the figure, both estimates are broadly consistent

with on another. The fact that both estimates are consistent with one another suggests that

it is indeed the slope of the supply curve that determines locally how much industries respond

to demand shocks—and not an alternative mechanism such as rationing.

4 Applications

4.1 State-Dependent Multipliers

To be completed.

4.2 A non-linear Phillips Curve

To be completed.
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Figure 6: The production response to demand shocks

5 Conclusion

This paper studies whether supply curves are convex in the short-run. To guide our empirical

analysis we develop a putty-clay model in which short-run capacity constraints can generate a

convex supply curve at the industry level. Using a sufficient statistics approach, we estimate

the model and find strong support for the convexity of supply curves. Industries with low

initial capacity utilization rates expand production much more after dollar depreciations or

defense spending shocks than industries that produce close to their capacity limit. Further,

prices rise after such demand shocks only if the initial level of capacity utilization is high.

Our evidence of convex supply curves at the industry level has a number of applications,

including that that capacity constraints are a likely candidate for generating state-dependent

responses to shocks, etc.

To be completed.
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A Appendix: Capacity utilization at the plant level

Add figure on qualitative responses.
We begin with presenting several basic facts on plants’ capacity utilization using microdata from

the Quarterly Survey of Plant Capacity Utilization (QSPC). The survey is conducted by the U.S.
Census Bureau and funded jointly by the Federal Reserve Board and the Department of Defense.
The sample is drawn from all U.S. manufacturing and publishing plants with 5 or more production
employees. Among other things, establishments are asked about the market value of their actual
production and the estimated market value of their full production capacity. Respondents are
asked to construct this estimate under the following assumptions: 1) only the current functional
machinery and equipment is available, 2) normal downtime, 3) labor, materials, and other non-
capital inputs are fully available, 4) a realistic and sustainable shift and work schedule, and 5) that
the establishment produces the same product mix as its current production.10 Capacity utilization
rates are then obtained by dividing the market value of actual production by the estimate of full
capacity production.

Figure 1 plots the density estimates of utilization rates for the years 2007, 2009 and 2011.
Utilization rates display substantial cross-sectional variation and three facts emerge from the figure.
First, a significant fraction of establishments produces at full capacity. In all three years, a discrete
mass of establishments bunches at a utilization rate of unity. Second, an even larger share of plants
produces below their reported capacity, at times far below: Utilization rates between 0.2 and 0.5
are not uncommon. Finally, capacity utilization rates and the fraction of firms with utilization
rates of unity are highly procyclical. In 2007 a large fraction of plants produced at full capacity
and the density displays a mode at around 0.8. By 2009 the distribution has shifted to the left and
has a modal point at approximately 0.5. The 2011 density reflects partial recovery relative to 2009
but utilization rates are still below those of 2007.

We next turn to the question why establishments produce at levels below their capacity. Re-
spondents of the QSPC are asked: “If this plant’s actual production in the current quarter was
less than full production capacity, mark (X) the primary reasons.” Possible answers include “Insuf-
ficient supply of materials”, “Insufficient orders”, “Insufficient supply of local labor force/skills”,
and others. Multiple answers are permitted. It turns out that the vast majority of plants produce
below capacity because they are not able to sell their products. For the time period from 2013q1
to 2017q2 for which public data is available, 79.7 percent of plant managers cite insufficient orders
as the main reason for producing below capacity. The second most cited option is chosen by 10.0
percent of respondents (insufficient supply of local labor force/skills).

10A survey form of the Quarterly Survey of Plant Capacity Utilization is available at https://bhs.econ.census.
gov/bhs/pcu/watermark_form.pdf.
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B Appendix: Model Extensions
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C Data Appendix

C.1 Sample and data sources

Our baseline sample is annual and includes all 21 3-digit NAICS manufacturing industries. It
ranges from 1972 to 2011.

The sales shares to foreign countries si,d,t are constructed based on sales to all countries that
joined the OECD prior to year 2000. These are Australia, Austria, Belgium, Canada, Czech
Republic, Denmark, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Japan,
the Republic of Korea, Luxembourg, Mexico, Netherlands, New Zealand, Norway, Poland, Portugal,
Spain, Sweden, Switzerland, Turkey, the United Kingdom, and the United States.

Export data The data on exports are from the U.S. Census and are available from Peter
Schott’s website http://faculty.som.yale.edu/peterschott/sub_international.htm. This
data is available with SIC industry codes between 1972 and 1997, and with NAICS industry codes
thereafter. We use the NBER CES SIC4 to NAICS6 concordance based on sales weights to convert
the SIC codes into NAICS equivalents and then aggregate to the 3-digit NAICS level.

37

http://faculty.som.yale.edu/peterschott/sub_international.htm


D Appendix: Additional Results
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Table D1: Summary Statistics of Utilization Rates by 3-digit NAICS Manufacturing Industries

Industry NAICS p10 Median p90 Mean S.D. Skewness Kurtosis Durable

Food 311 79.6 82.3 85.2 82.4 2.4 0.3 2.5 no
Beverage and Tobacco Products 312 68.3 79.2 83.0 77.3 5.3 -0.5 2.1 no
Textile Mills 313 68.3 82.0 89.5 79.8 8.6 -0.8 3.2 no
Textile Product Mills 314 69.8 82.3 90.4 80.9 8.3 -0.8 3.2 no
Apparel 315 71.0 80.2 84.2 79.0 4.9 -0.9 3.4 no
Leather and Allied Products 316 59.3 74.9 82.1 72.8 8.8 -1.2 3.7 no
Wood Products 321 63.8 79.2 85.2 77.1 8.4 -1.2 4.6 yes
Paper 322 81.4 87.6 91.4 86.9 4.2 -0.2 2.4 no
Printing and Related Support Activities 323 72.2 82.7 89.3 81.3 7.6 -1.0 3.8 no
Petroleum and Coal Products 324 77.3 87.1 92.6 85.7 5.8 -0.7 2.8 no
Chemicals 325 72.1 77.8 83.1 77.7 4.3 -0.4 2.3 no
Plastics and Rubber Products 326 71.4 83.7 89.6 82.4 7.2 -0.9 3.3 no
Nonmetallic Mineral Products 327 62.3 77.2 84.0 75.3 9.2 -1.6 5.3 yes
Primary Metals 331 68.2 79.6 89.5 79.3 9.3 -0.7 3.4 yes
Fabricated Metal Products 332 71.7 77.7 84.4 77.4 5.7 -0.2 3.1 yes
Machinery 333 67.6 78.9 87.0 77.8 7.8 -0.2 2.5 yes
Computer and Electronic Product 334 70.1 79.0 84.2 78.2 5.7 -1.0 4.0 yes
Electrical Equipment, Appliances, and Components 335 73.2 82.8 90.6 82.6 6.7 -0.2 2.6 yes
Transportation Equipment 336 66.4 75.6 81.5 74.4 6.1 -1.0 4.1 yes
Furniture and Related Products 337 68.0 77.8 84.1 76.8 7.4 -0.2 3.9 yes
Miscellaneous 339 72.8 76.9 79.7 76.3 3.1 -0.5 3.1 yes

All 70.0 79.8 88.6 79.1 7.6 -0.8 4.4

Source: Federal Reserve Board
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