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1 Introduction

In this paper we aim to provide an overview of recent research in international trade, from the

perspective of the theory of industrial organization (henceforth IO). There are two aspects to

this perspective, mirroring the two different interpretations of our title. On the one hand, we

are interested in “IO for Exports”: what is the structure of export markets?; and how does

it affect which firms export, whether or not trade fosters competition, and a host of other

similar questions? On the other hand, we want to think about “IO for Export”: which IO

models are used in trade? As is well-known, the answer to the latter question is not any of

the many varieties of oligopoly used in IO itself, but rather the monopolistically competitive

model of Chamberlin (1933), as formalized by Dixit and Stiglitz (1977); especially with CES

preferences, introduced as a special case by Dixit and Stiglitz (1977), brought to center stage

by Dixit and Norman (1980) and Krugman (1980) among many others, and extended to firm

heterogeneity by Melitz (2003). Ironically, though monopolistic competition originated in

IO, it is used relatively rarely there, so it could be described as “IO for export only.”1

While monopolistic competition is by far the dominant paradigm in international trade,

it is by no means the only approach. First there is a large literature on “strategic” trade

policy, dating from the 1980s, that uses off-the-shelf IO models of oligopoly to address

standard issues of trade policy, mostly at the level of a single industry.2 Second, there

have been some attempts to explore the implications of oligopoly in general equilibrium for

trade questions, both of the traditional kind such as trade patterns, gains from trade and

pricing-to-market,3 and also with applications to topics such as cross-border mergers and

multi-product exporters.4 Finally, there is a small literature on the theory of superstar firms

that compete oligopolistically, while coexisting with a monopolistically competitive fringe.5

1See Neary (2003b) for further discussion.
2See Brander (1995) for an overview, and Mrázová (2011), Mrázová et al. (2013), and Mrázová (2015)

for applications to trade agreements.
3See, for example, Neary (2003a), Atkeson and Burstein (2008), Neary (2016), and Nocke and Schutz

(2018).
4See, for example, Neary (2007), Eckel and Neary (2010) and Eckel et al. (2015).
5See, for example, Neary (2010), Shimomura and Thisse (2012), Parenti (2018), and Cabral (2018).



However, there are good reasons why the monopolistically competitive paradigm has

remained dominant in trade. The availability of large data sets on exporting firms, and the

desire to allow for entry and exit and to take account of general-equilibrium feedbacks to

and from factor markets, makes bespoke modelling of individual sectors infeasible, and a

“one-size-fits-all” approach to the choice of market structure very convenient.

Two general themes emerge from our analysis, one old, one new. First, the widespread

assumption of CES preferences, implying demand functions that are log-linear in price, is

extremely convenient for deriving analytic results, but also extremely restrictive in its the-

oretical and empirical implications.6 Second, we introduce the class of “constant-response

demand functions” to describe a group of related families of demand functions, all of which

nest CES demands, that imply an equal absolute or relative response of some firm-level vari-

able to an exogenous change in marginal cost. As we shall see, this class of demands provides

a unifying principle for much recent work, including our own, that explores alternatives to

CES demands.

The plan of the paper is as follows. Section 2 introduces the notation and also discusses

recent evidence that questions a key implication of CES preferences. Section 3 considers the

issue of how cost changes are passed through to goods prices, and introduces an approach

to comparing different demand functions that we use throughout. Sections 4 and 5 turn

to consider the central topics of selection and competition effects respectively. Section 6

explores the relationship between the distribution of firm productivity, and the distributions

of the level and growth rate of sales. Finally, Section 7 provides an overview of the constant-

response demand functions introduced in earlier sections, while Section 8 concludes. Proofs

and further details can be found in our other papers: Mrázová and Neary (2017) for Sections

3 and 5, Mrázová and Neary (2019) for Section 4, and Mrázová et al. (2015) for Section 6.

6For convenience, with a slight abuse of terminology, we refer to these demands as “CES demands”.
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2 Preliminaries

2.1 A Core Model

We begin by presenting a simple core model of a monopoly firm. This serves to introduce

the notation and setting that we will use throughout the remainder of the paper.

Consider a monopoly firm facing an inverse demand function p(x), giving price as a

strictly decreasing function of firm output x. This is consistent with monopolistic competi-

tion where the firm takes the “perceived” demand function as given. In general equilibrium,

the demand function has extra arguments: we will see examples of that later. As for technol-

ogy, we adopt the simplest specification popularized by Dixit and Stiglitz (1977): all firms

incur a fixed cost f, often assumed to be constant across firms, and a constant marginal

cost of production c.7 Profit maximization therefore implies simple first- and second-order

conditions:

p+ xp′ = c and 2p′ + xp′′ < 0 (1)

In words, marginal revenue must equal marginal cost, and marginal revenue must be declining

in output at the optimum. It will prove convenient to write these conditions in terms of two

key demand parameters:

ε(x) ≡ − p(x)

xp′(x)
> 0 and ρ(x) ≡ −xp

′′(x)

p′(x)
(2)

Here ε(x) is the demand elasticity and ρ(x) the convexity of demand; these are unit-free

measures of the slope and curvature of the demand function, respectively. Reexpressing the

first- and second-order conditions in (1) in terms of these parameters yields, first, a simple

expression linking the price-cost margin or markup, p/c, to the elasticity of demand, and,

7Dixit and Stiglitz should not be held responsible for the widespread use of CES preferences: they
presented them only as an example, albeit with the unique implication of constrained efficiency (see their
Section I), and each of them is on record as expressing reservations about them: see Dixit (2004) and Stiglitz
(2004). However, they deserve credit for popularizing, and perhaps making respectable, the very simple
{f, c} technology. Ironically, this is another example of IO for export only: it is now ubiquitous in trade,
whereas more complicated cost functions are often used in the IO literature.
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second, a restriction that convexity must be less than two:

p

c
=

ε

ε− 1
and ρ < 2 (3)

A key benchmark is the CES special case, where the inverse demand function and the markup

take the special forms:

p(x) = −βx−1/σ ⇒ p

c
=

σ

σ − 1
(4)

This illustrates two key implications of CES preferences: the elasticity of demand is constant,

equal to σ, and the markup is the same for all firms, equal to σ/(σ − 1).

2.2 Evidence on Variable Markups

It has been recognised for some time that the prediction of CES demands that markups

are always the same, and depend only on the preference parameter σ, is unsatisfactory.

However, it is only recently that persuasive evidence against this prediction has become

available. A key reference is De Loecker et al. (2016), who calculate markups for a sample

of Indian firms without making prior assumptions about market structure or the form of

demand. Their results show that the distribution of markups from is very far from being

concentrated at a single value. A possible explanation is that such markup heterogeneity

arises from aggregation across sectors with different elasticities of substitution. However,

Lamorgese et al. (2014), who use data on Chilean firms, shows that even greater heterogeneity

is observed when the data are disaggregated by sector. Taken together, this evidence suggests

that markup distributions are far from the Dirac form implied by CES preferences, but to

date little attention has been paid to seeking explanations for the pattern of markups revealed

in these new studies.
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3 Pass-Through

The first substantive question we address is that of pass-through from costs to prices. The

topic is of interest in itself but also as an illustration of the differences in how essentially the

same problem is addressed in IO and in international economics.

3.1 Pass-Through in Industrial Organization

The archetypical pass-through question posed in industrial organization is both simple and

important: If marginal cost rises by a euro, by how much will a profit-maximizing firm

raise its price; i.e., how large is dp/dc? The answer is easy to calculate from the first-order

condition in (1) above:

p+ xp′ = c ⇒ dp

dc
=

1

2− ρ
(5)

Thus a shock to costs is passed through to prices by more the more convex is the demand

function. Moreover, the threshold for full, or “euro-for-euro”, pass-through is that the degree

of convexity is exactly one:

dp

dc
− 1 =

ρ− 1

2− ρ
= 0 (6)

Demand functions implying constant pass-through are members of the Bulow-Pfleiderer

family, due to Bulow and Pfleiderer (1983):8

p(x) = β
(
x

1−κ
κ + γ

)
, β

1− κ
κ

< 0 (7)

This implies a constant pass-through equal to κ: dp/dc = κ. Special cases of this include

linear demand, with convexity ρ equal to zero and a constant pass-through of κ = 1/2; and

log-linear direct demand, log x(p) = γ + δp, corresponding to the limiting case of (7) as κ

8This is more familiar when written, following Bulow and Pfleiderer, as p = α − βxδ. We write it
differently to facilitate comparison with other demand functions to be introduced later. Bulow and Pfleiderer
considered only the cases where δ is either strictly positive or asymptotically zero, when the function becomes
p = α− β log x.
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approaches one. The latter demand function has convexity ρ = 1, and so is the demand

function implied by the condition in (6) holding globally. In general, values of κ > 1 and

ρ > 1 correspond to log-convex direct demand, and values of κ < 1 and ρ < 1 to log-concave

demand.

3.2 Pass-Through in International Economics

Pass-through is also widely studied in international economics, both pass-through from tariffs

to domestic prices in international trade, and pass-through from exchange rates to domestic

prices in international monetary economics. However, the approach is totally different from

that in industrial organization: compare for example Gopinath and Itskhoki (2010) with

Weyl and Fabinger (2013), both important papers that refer to large literatures but have

only a single reference in common. It is not merely the answers that differ between the two

fields, but the questions too. In IO the focus is on absolute or euro-for-euro pass-through as

we have seen, whereas in international economics the question posed relates to proportional

pass-through: how large is d log p/d log c? Both approaches make perfect sense in their

respective contexts: IO scholars are typically analysing the effects of a cost or tax change on

a single industry, whereas in international economics the focus is on a change in policy or

exchange rates at the economy-wide level. The first question is a partial-equilibrium one, so

it is natural to work with absolute changes, whereas the second is a general-equilibrium one,

mandating a focus on relative prices and proportional changes. However, it is important to

understand the differences between the two.

Once again, the proportional pass-through coefficient can be derived from the first-order

condition:

d log p

d log c
=
ε− 1

ε

1

2− ρ
(8)

Unlike the corresponding term for absolute pass-through, (5), this depends on the elasticity of

demand as well as its convexity. So, the threshold for full (100%) proportional pass-through
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is:

d log p

d log c
− 1 =

ερ− ε− 1

2− ρ
= 0 (9)

This must be equivalent to the demand function taking the CES form, as we have already seen

that only in that case is the ratio p/c constant. This is confirmed by calculating explicitly

the convexity of CES demand and substituting into (9):

p(x) = βx−1/σ ⇒ ε = σ, ρ =
σ + 1

σ
⇒ d log p

d log c
= 1 (10)

This suggests that pass-through will be more than 100% if and only if the demand function

at the initial equilibrium is more convex than a CES demand function. We will return to

this below.

We saw in the previous sub-section that an important benchmark is the Bulow-Pfleiderer

demand family, which implies constant absolute pass-through. So it is natural to ask if there

are demand functions that imply constant proportional pass-through (CPPT): d log p/d log c =

κ. The answer to this question is the CPPT family, introduced in Mrázová and Neary (2017):9

p(x) =
β

x

(
x

κ−1
κ + γ

) κ
κ−1

, β > 0 (11)

This family also has the property that it implies a constant proportional response of markups

to marginal costs: d log(p/c)/d log c = κ− 1. Casual inspection suggests that these demand

functions are very different from the Bulow-Pfleiderer demands in equation (7). However, it is

difficult to compare the two directly: each has three parameters and they have very different

functional forms. Indeed, comparing any two demand functions is difficult in general. To

address this problem, we digress in the next sub-section to review the approach introduced

in Mrázová and Neary (2017) that provides a way of doing this.

9The parameter γ must be positive to ensure that the elasticity of demand exceeds one.
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3.3 Digression: How to Compare Demand Functions?
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Figure 1: The Admissible Region in Convexity-Elasticity Space

With three parameters each, it is not clear how we can compare the two demand functions

in (7) and (11). A clue is that for many questions of interest – both absolute and proportional

pass-through as here, as well as other questions later in the paper – only two parameters

implied by each demand function matter: the elasticity and convexity of demand already

introduced above. Hence it makes sense to illustrate different demand functions in the space

of these two parameters, as in Figure 1. The shaded area represents the admissible region

implied by the restrictions in equation (3): at a profit-maximising equilibrium, a monopoly

firm must be at a point on its demand function where the elasticity is greater than one, and

the convexity is less than two.10

The space illustrated in Figure 1 may seem unfamiliar at first, so it is desirable to have

some landmarks. One such is the linear demand curve: it implies that convexity is zero, and

so it is represented by the vertical dashed line at ρ = 0 in Figure 2. It turns out that a more

important benchmark is that of CES demands. Note first that this is the only exception

10Of course, the admissible values of ε are unbounded above and those of ρ are unbounded below. The
range of values illustrated in the figures is broadly in line with the available empirical evidence: see for
example Mrázová and Neary (2017), footnote 8 and Section IV.A.
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to the general rule that both ε and ρ vary with sales: as we saw in equation (10), their

values are uniquely determined by the elasticity of substitution σ. Eliminating σ from those

expressions gives the relationship between elasticity and convexity implied by CES demands:

ε =
1

ρ− 1
(12)

This relationship is illustrated by the curve labelled “SC” in Figure 2; it ranges from an

asymptotically infinite value of ε as ρ approaches one to a value of ε equal to one when ρ

equals two. Each point on this curve represents a particular CES demand function corre-

sponding to a particular value of σ; for example, the point {ρ = 2, ε = 1}, just on the

boundary of the admissible region, corresponds to the Cobb-Douglas special case.

0.0

1.0

2.0

3.0

4.0

-2.0 -1.0 0.0 1.0 2.0 3.0





SC

Sub-Convex Super-
Convex

Figure 2: The Sub- and Super-Convex Regions

This locus is not just of interest in itself, it also relates to the argument already made that

pass-through is less than 100% when demand is less convex than a CES demand function

with the same elasticity, i.e., when ρ < (ε+ 1)/ε.11 Mrázová and Neary (2019) call demand

functions with this property “subconvex”, and in Figure 2 they are represented by points

11Formally, subconvexity is a local property, and is defined as log p(x) being concave in log x at a point.
Mrázová and Neary (2019) show that this property is equivalent to those stated in the text.
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in the region to the left of the SC locus.12 A key property they exhibit is an elasticity of

demand that is decreasing in output:

εx =
ε

x

[
ρ− ε+ 1

ε

]
(13)

which is negative when ρ is less than its CES value. When the demand curve exhibits this

property, larger firms face a lower elasticity of demand and hence have higher markups in

the cross section, and all firms enjoy higher profit margins as they move down their demand

curves over time. (The arrows in the figure indicate how elasticity changes as firm output

rises.) In the converse case, of superconvexity, all these properties are reversed. However,

subconvexity is theoretically more plausible, both on introspective grounds (see Marshall

(1920));13 and also in that it leads to more plausible predictions (see Dixit and Stiglitz

(1977) and Krugman (1979)). It is also consistent with a substantial body of empirical

evidence that finds pass-through to be less than 100%.

The linear and CES demand functions are not the only ones that can be illustrated in

{ρ, ε} space. As shown in Mrázová and Neary (2017), any demand function can be illustrated

in this space by a smooth curve, which they call the “demand manifold” corresponding to

the demand function. (The only exception is CES demands, where as we have seen the

manifold is a single point.) Figure 3 illustrates the manifolds for three other widely-used

demand functions: the translog (which from a firm’s perspective is observationally equivalent

to the “Almost Ideal” system of Deaton and Muellbauer (1980)), the Stone-Geary LES

12It is possible for the same demand function, with given parameters, to be subconvex for some levels of
output and superconvex for others. (For an example, see Mrázová and Neary (2017), Online Appendix B10.)
However, this property is rare, at least as far as most widely-used demand functions is concerned. Moreover,
as the argument in the text shows, the manifold implied by such a demand function must be horizontal at
the point where it crosses the SC locus, since it is falling in output to the left and rising to the right: see
the horizontal arrows in Figure 2.

13In Chapter 3 of Book 4 of his Principles, Marshall introduced his “law of demand” – in modern parlance,
demand curves slope downwards – while in Chapter 4 he introduced what he called “the general law of
variation of the elasticity of demand”: “The elasticity of demand is great for high prices, and great, or at
least considerable, for medium prices; but it declines as the price falls; and gradually fades away if the fall
goes so far that satiety level is reached.” Hence the property is sometimes called “Marshall’s Second Law of
Demand.”
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Figure 3: Demand Manifolds for Some Common Demand Functions

(“linear expenditure system”), and the negative exponential or CARA (“constant absolute

risk-aversion”) system.14 (Explicit expressions are in Appendix B.)

There are a number of advantages to considering demand functions through the lens

of their manifolds. First, different demand functions can be directly compared with each

other. For example, Figure 3 shows that, despite their very different origins and system-

wide properties, all three of the CARA, Stone-Geary and translog have properties at the

firm level that are midway between those of linear and CES demands. In particular, they

are all subconvex, though less so than linear demands. Second, demand manifolds make it

possible to relate assumptions about demand directly to comparative statics properties: we

will see examples of this later. Finally, though the location of a demand function in {x, p}

space is affected by the values of all its parameters, the location of its manifold in {ρ, ε}

space is often unaffected by, or invariant to, the values of these parameters. Mrázová and

Neary (2017) call this property “manifold invariance”, and provide necessary and sufficient

conditions for it to hold. Not all demand functions exhibit this property with respect to

14The non-CES demand functions whose manifolds are shown in Figure 3 have been explored in monopo-
listic competition with heterogeneous firms by a number of authors. Melitz and Ottaviano (2008) consider
linear demands; Simonovska (2015) the Stone-Geary LES; Behrens and Murata (2007) the negative expo-
nential; and Feenstra and Weinstein (2017) the translog.
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some of their parameters, far less to all of them. This is true of the CES for example: the

CES point-manifold is invariant with respect to changes in the level parameter β but not to

changes in the elasticity of substitution σ. However, many demand functions have manifolds

that are invariant to some of their parameters, and some (including all those other than the

CES in Figure 3) have manifolds that are invariant to all of them. This makes it much easier

to think about the implications of different demand assumptions using the demand manifold

than the demand function itself, since the latter is never invariant to any parameter changes.

3.4 Back to Pass-Through

Armed with this way of comparing demand functions in general, we can now return to the

question of how to compare the demand functions from Sections 3.1 and 3.2 in particular.

This also allows us to compare visually the conditions that imply constant absolute and

proportional pass-through. Direct calculations show that the demand manifold implied by

the Bulow-Pfleiderer demand function in equation (7) is given by:

ρ = 2− 1

κ
(14)

while that implied by the CPPT demand function in equation (11) is given by:

ρ̄(ε) = 2− 1

κ

ε− 1

ε
(15)

These manifolds are illustrated for different values of κ in the two panels of Figure 4.

It is clear that the manifolds are much easier to compare than the corresponding demand

functions. Whereas each demand function has three distinct parameters, each manifold is

invariant with respect to two of these parameters, and depends only on the pass-through

coefficient κ. The manifolds show clearly how demand adjusts as output rises (which in the

subconvex region is equivalent to the elasticity falling). Bulow-Pfleiderer demands have con-

stant convexity (given the one-to-one relationship between demand convexity and absolute
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Figure 4: Constant Pass-Through Demand Manifolds

pass-through from (5) and (14)), while CPPT demands become more convex as elasticity

falls.

The demand manifolds in Figure 4 are not only the manifolds implied by the Bulow-

Pfleiderer and CPPT demand functions, they are also contour lines corresponding to different

values of κ, the degree of either absolute or proportional pass-through. As a result, they can

be combined with the demand manifolds for any other demand functions to read off the rates

of pass-through implied by those demands. For example, recalling the three new demand

manifolds in Figure 3, we can see that all three imply a higher level of absolute pass-through

for large firms; Stone-Geary demands imply a constant rate of proportional pass-through

for all firms, equal to 0.5, whereas CARA demands imply that the rate of proportional

pass-through decreases with firm size, and translog demands imply that it increases.

4 Selection Effects

We turn next to one of the most distinctive features of models with heterogeneous firms: their

ability to predict which firms will select into which activities. Consider first the question of

which firms will choose to export. Here the key prediction of the Melitz (2003) model is that
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more productive firms select into exporting. It turns out that this is an extremely robust

result. It requires only that ex post profits π are decreasing in c, which must be true in all

models of this kind. To see this, write the maximized value of operating profits as follows:

π(τ, c) ≡ max
x

π̃(x, τ, c), π̃(x, τ, c) = (p(x)− τc)x (16)

where τ is an iceberg trade cost: τ units must be produced and shipped to the export market

in order for one unit to arrive. For simplicity, assume that π(τ, c) is continuous in {τ, c}.

Differentiating (16) and invoking the envelope theorem, we can see that operating profits

are unambiguously decreasing in c:

πc = π̃c = −τx < 0 (17)

This result is independent of the form of the demand function; in particular, it is not sensitive

to whether demands are CES or not. Hence ranking firms by their productivity, or inverse

marginal cost, unambiguously predicts their ranking by total profits: Π = π − f . So there

must be a unique threshold level of productivity, with all firms more productive than the

threshold choosing to export and all those less productive choosing not to.



1c1
Ec 1

Fc

First-Order
Selection Effects

1
Sc

Second-Order
Selection Effects

FDIExportsExit

E

F

 fF

 fE

Figure 5: Selection into Exports versus FDI
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Consider next the case where each firm has the option of choosing to serve a market in

two alternative ways, either by exporting (E) or by engaging in foreign direct investment

(FDI). Firms therefore face a “proximity-concentration trade-off”: FDI entails operating a

foreign plant and selling to foreign consumers without incurring the trade cost, so τ = 1;

however, it foregoes the benefits of concentrating production at home, since it incurs a fixed

cost fF that is higher than the fixed cost of exporting fE:

Π(τ, c) = max

 ΠF (c) = π(1, c)− fF

ΠE(τ, c) = π(τ, c)− fE
(18)

The outcome under CES demand has been shown by Helpman et al. (2004) and is illustrated

in Figure 5. Profits under both regimes are linear in an increasing power function of produc-

tivity; profits under FDI are lower than under exporting for the lowest-productivity firms,

since FDI incurs a higher fixed costs; and the two profit schedules intersect once as shown.15

As the lower set of labels indicates, there is now three-way selection, with the least efficient

firms not serving the market as before, firms of intermediate efficiency exporting, and the

most efficient firms engaging in FDI.

However, Mrázová and Neary (2019) show that this predicted selection pattern is less

robust than that for the choice between exporting or not. To see why, consider the upper

set of labels in Figure 5. These categorise productivity levels not in terms of their predicted

outcomes but in terms of the choices they offer to firms. Low-productivity firms, with costs

higher than cS (represented by points to the left of c1−σ
S in the figure), face the same choice

as before: FDI is not profitable, so the only decision they face is whether to export or not.

Mrázová and Neary (2019) call the outcomes of such a decision a “first-order selection effect”:

firms face a choice between one activity, exporting, whose profits vary with productivity, and

another, not exporting, whose profits are the same for all firms. This is in contrast to the

15To ensure that both exports and FDI are observed we require that the two curves intersect in the positive
quadrant, which is equivalent to the “freeness” of trade (the variable trade cost adjusted by the degree of
substitutability) being greater than the ratio of fixed costs: τ1−σ > fE/fF .
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“second-order selection effect” that arise from the choices of high-productivity firms with

costs lower than cS. For such firms both exports and FDI are profitable, and their profitability

in both modes varies with productivity. Hence, the conventional sorting, where more efficient

firms select into FDI, is only guaranteed if the two curves have a single intersection as in

Figure 5; in the language of monotone comparative statics, if they exhibit the single-crossing

property.16

When might we expect the single-crossing property to hold? One consideration which

suggests that second-order selection effects may be less robust than first-order ones comes

from Appendix A. We show there that CES demands are the only case in which variable

profits are a power function of marginal cost, and so total profits are affine in some simple

transformation of marginal cost as in Figure 5. Thus, with any demands other than CES,

we cannot be sure without further investigation whether the single-crossing property holds

and so whether the second-order selection effects will be as illustrated in Figure 5.

Checking directly whether the single-crossing property holds in any particular application

is not easy. However, it is easy to check for an important sufficient condition. Recall that π

is continuous in c, and assume also that the two profit functions ΠF and ΠE have different

slopes at any point where they intersect. Given this, the single crossing property is equivalent

to ΠF being steeper than ΠE at any productivity level where they intersect, the configuration

shown in Figure 5. This suggests a sufficient condition for second-order selection effects which

is much easier to check: if ΠF is steeper than ΠE at any level of productivity, then single

crossing must hold. This condition is equivalent to πc(1, c) < πc(τ, c) at every value of c,

which, provided π is twice differentiable in {τ, c}, is equivalent to a restriction on its second

derivative: πcτ is positive, or π(τ, c) is supermodular in {τ, c}. A necessary and sufficient

condition for πcτ > 0 can be found in turn by differentiating (17) with respect to τ :

πcτ = −x− τ ∂x
∂τ

= −x
(

1 +
d log x

d log c

)
(19)

16See for example Milgrom and Roberts (1990) and Vives (1990).
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Hence π(τ, c) is supermodular in {τ, c} if and only if −d log x/d log c > 1; i.e., if and only if

the elasticity of output with respect to marginal cost is greater than one in absolute value.

(In what follows we use the more convenient mnemonic “EMR” for the elasticity (of output)

with respect to marginal revenue.) To understand this condition, note that supermodularity

is a restriction on a second derivative, that is, on a difference in differences: not whether

higher trade costs reduce profits, but whether they do so by less for lower-productivity firms.

The final term on the right-hand side of (19) shows that they are more likely to do so the

more elastic is the volume sold to an increase in costs. Offsetting this is the first term, equal

to one: this reflects the fact that higher trade costs reduce profits by less for a firm that is

selling less to begin with. Whether or not supermodularity obtains depends on the balance

between these two forces.

An alternative way of writing the condition for supermodularity in (19) allows us to

illustrate it in demand-manifold space. It can be expressed in terms of demand parameters

by noting that it equals the elasticity of demand times the elasticity of price with respect to

marginal cost, already given in (8) above:

−d log x

d log c
= ε

d log p

d log c
=
ε− 1

2− ρ
(20)

Supermodularity therefore requires that the following expression be positive:

−
(

1 +
d log x

d log c

)
=
ε+ ρ− 3

2− ρ
(21)

Thus, from (19), selection into FDI by large firms is only guaranteed if the EMR is greater

than one in absolute value, which from (21) is equivalent to the demand function being

sufficiently elastic and/or sufficiently convex that ε and ρ sum to more than three.

To understand these results, it is helpful first to consider Figure 6, which shows the

demand and marginal revenue functions for three canonical special cases. Panel (a) illustrates

the CES case. It is easy to check from (20), using the CES values for ε and ρ from (10), that
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Figure 6: Second-Order Selection Effects and Demand

the EMR in this case equals σ, which is greater than one. Hence, if we compare two firms

facing the same CES demand function, one with marginal costs 10% lower than the other,

the more productive firm will have an output more than 10% higher than the less productive

one. This helps explain the result of Helpman et al. (2004), which exhibits what is often

called the “Matthew Effect” (“to those who have, more shall be given”): more efficient firms

enjoy higher profits when they engage in FDI.

Panel (c), by contrast, illustrates the case of linear demands. Now the EMR is less

than one for larger firms. Intuitively, for such large firms the additional trade cost they

must pay if they export is small, since their production cost is low to begin with, and trade

costs are proportional to production costs; moreover it reduces their sales very little, since

the marginal revenue curve is not steep. Hence, supermodularity fails for larger firms under

linear demands, and it can be shown that the largest ones will indeed exhibit reverse selection

effects, choosing to export rather than to engage in FDI.

Finally, Panel (b) illustrates a third special case with the property that the EMR equals

one. As a result, the proximity-concentration trade-off yields the same outcome for all firms

irrespective of their productivity: the ΠX and ΠF curves in Figure 5 are parallel. Hence, no

firms will find it profitable to engage in FDI since it incurs a higher fixed cost, and so no

selection will be observed. Mrázová and Neary (2019) show that this demand function is the

inverse translog, p(x) = β
x
(log x+γ). It is a special case of a family of demand functions that

exhibit a constant EMR: d log x/d log c = −κ. Mrázová et al. (2015) call this the “CEMR”
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family:17

p(x) =
β

x

(
x

κ−1
κ + γ

)
β(κ− 1) > 0 (22)

The corresponding CEMR manifold is ρ̄(ε) = 2− 1
κ
(ε− 1), which implies a family of affine

curves in {ρ, ε} space, some of which are illustrated for different values of κ in Figure 7. Of

these, the inverse translog, where the EMR is unity, corresponds to the boundary between

the sub- and supermodular regions in {ρ, ε} space, the curve labelled “SM” in Figure 7.
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Figure 7: CEMR Demand Manifolds

5 Competition Effects

While selection effects are the most distinctive and novel feature of heterogeneous firms

models, competition effects, and especially how they differ across firms, are also a key feature.

The term “competition effect” can be used in two different senses in this context. On the

one hand, competition effects often refer to the fact that markups vary across firms in the

cross-section. In this sense, as we have already seen in Section 3, CES demands rule out

competition effects, and subconvex demands are necessary and sufficient for monopolistic

17 Mrázová and Neary (2019), who first considered these demands in this context, called them the Inverse
PIGL (“price-independent generalized linear”) demand family, drawing on Muellbauer (1975). The inverse
translog is the limiting case of the CEMR family as κ→ 1, as can be shown using l’Hôpital’s Rule.
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competition to exhibit the empirically plausible case where larger firms have higher markups.

On the other hand, there is a different sense in which competition effects arise following any

exogenous shock to industry equilibrium: such shocks typically affect firms both directly,

and also indirectly by changing the competitive environment in which they operate. An

important and interesting example of this is the effects of globalization, in the sense of an

increase in the size of the global economy. Here too subconvexity is crucial: it is necessary

and sufficient for a “Matthew Effect” on the profile of profits across firms, whereby larger

firms expand but smaller ones are squeezed.

To see how competition effects arise following a globalization shock, we need to go beyond

the “firm’s eye view” we have adopted so far, and consider the determination of industry

equilibrium.18 Also, since we want to allow for firms to sell in many markets, we distinguish

for the first time between their total output y and the amount they sell to an individual

consumer x. Following Krugman (1979), we take the simplest setting, where all consumers

are identical, there are L of them in each country, and the world consists of k identical

countries, so y = kLx. In addition, though this is not needed for all our results, it is

convenient to assume that preferences are additively separable, so the demand function for a

typical good is given implicitly by the consumer’s first-order condition u′(x) = λp, where λ

is the marginal utility of income. With these assumptions, we can write the ex post profits

of a typical firm as follows:

π(c
−
, λ
−
, k

+
) ≡ max

y

[
p(y, λ, k)− c

]
y where p(y, λ, k) = λ−1u′(y/kL) (23)

In previous sections we considered the demand function from a firm’s perspective only.

Now we want to solve explicitly for industry equilibrium, so we need to consider demand

determinants additional to their sales. In (23) these are k, the exogenous globalization shock,

equal to the number of identical countries in the world, and λ, the marginal utility of income

18This section is based on Mrázová and Neary (2017), Section III.B. See also Zhelobodko et al. (2012),
Bertoletti and Epifani (2014), Mrázová and Neary (2014), and Bache and Laugesen (2015).
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under additive separability, which plays the role of the level of competition in the industry.19

This is exogenous to each firm, but is determined endogenously in industry equilibrium by

the free-entry condition, which implies that an entrant has zero expected value:

v̄(λ
−
, k

+
) ≡
∫ c

c

v(c, λ, k)g(c) dc = fe, v(c, λ, k) ≡ max [0, π(c, λ, k)− f ] (24)

Here g(c) is the distribution of firm marginal costs. Prospective firms know this but do not

know their own marginal cost; to find that out they have to pay a sunk entry cost fe in order

to make a draw from the distribution. This sunk cost must therefore equal the expected

return to sampling from g(c), which with rational expectations and risk neutrality equals

v̄(λ, k) as given in (24).

We can solve for the effects of globalization on every firm’s profits by totally differentiating

(23):

d log π(c)

d log k
=
∂ log π(c)

∂ log k︸ ︷︷ ︸
(M)

+
∂ log π(c)

∂ log λ

d log λ

d log k︸ ︷︷ ︸
(C)

(25)

where the change in the level of competition is determined in turn by (24):

d log λ

d log k
= −∂ log v̄

∂ log k

/
∂ log v̄

∂ log λ
(26)

(25) shows that globalization is a two-edged sword from the perspective of firms. On the one

hand it has a market-size effect, given by (M), which tends to raise each firm’s profits. on

the other hand it has a competition effect, given by (C): because all firms’ profits rise at the

initial level of competition, the latter must increase to ensure that the expected value of a

firm remains equal to the fixed cost of entry; this in turn tends to reduce each firm’s profits.

The net outcome is indeterminate in general. However, with additive separability, equation

19Pollak (1972) introduced the case of generalized additive separability, where inverse demand for each
good depends on its own quantity consumed and on a single aggregate λ: p(y, λ, k). Many of our results
hold in this case, though their interpretation is simpler when we specialize to additive separability, which
implies that λ equals the marginal utility of income.
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(25) takes a particularly simple form:

d log π(c)

d log k
= 1︸︷︷︸

(M)

− ε(c)

ε̄︸︷︷︸
(C)

(27)

Now the market expansion effect is just one: other things equal, a 1% increase in market size

leads to a 1% increase in the profits of each firm. As for the competition effect, it depends

on the ratio of the demand elasticity the firm faces to ε̄:

ε̄ ≡
∫ c

c

v(c, λ, k)

v̄(λ, k)
ε(c)g(c) dc (28)

Here ε̄ is the firm-value-weighted average elasticity of demand across all firms, which we

can interpret as the elasticity faced by the average firm. Higher competition reduces an

individual firm’s profits by ε(c), while it reduces the average value of a firm by ε̄. Recalling

from (13) that elasticity rises with output if and only if demand is subconvex, we see from

(27) that the ambiguity in the general case is resolved in a very simple way when preferences

are additively separable: globalization raises profits of larger firms and reduces those of

smaller firms if and only if demands are subconvex.
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Figure 8: The Matthew Effect of Globalization
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Figure 8 illustrates these effects in the case of subconvexity. The curve labelled Π0

shows the initial profit profile across firms of different productivity, while that labelled Π1

shows the profit profile after globalization, assuming that demand is strictly subconvex.

The productivity level denoted T0 is that corresponding to threshold firms in the initial

equilibrium: they make zero profits and so are indifferent between producing or not; while

that denoted A corresponds to the average firm that faces the demand elasticity ε̄. As can

be seen, in line with equation (28), the direct, market-expansion, effect dominates for firms

of above-average size, ε(c) < ε̄, so they expand; the indirect, competition, effect dominates

for firms below average size, ε(c) > ε̄, so they contract; and threshold firms cease to be

profitable and exit. Thus with subconvex demand, globalization has a clear Matthew Effect.

An important consequence of these responses is that the average productivity of active

exporters rises. Finally, recall that all these effects are reversed with superconvex demands.

Moreover, the CES case is very special: the direct and indirect effects of globalization exactly

offset each other, so the profit profile in Figure 8 is unaffected.

6 Matching Productivity and Sales Distributions

The final substantive topic we want to discuss goes to the heart of firm heterogeneity in

models of monopolistic competition. It concerns the relationship between the shape of the

underlying distribution assumed for firm productivities, and the shape of the predicted dis-

tribution of firm outcomes, whether the level or the rate of growth of output, sales or

employment.20

There is a relatively small number of results of this kind. First is the canonical result in

the field, due to Helpman et al. (2004) and Chaney (2008): in the Melitz (2003) model of

heterogeneous firms, if firm productivities follow a Pareto distribution and demands are CES,

then firm sales must also follow a Pareto distribution. Second, going beyond the canonical

result, Head et al. (2014) retain the assumption that demands are CES, and show that if

20This section draws on Mrázová et al. (2015).
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firm productivities follow a Lognormal distribution instead of a Pareto then firm sales must

also follow a Lognormal distribution. This result is important as there is abundant evidence

that the distribution of firm sales is approximately Pareto for the “long tail” of large firms,

but is more closely approximated by a Lognormal distribution for the whole population of

firms, especially smaller ones: see, for example, Bee and Schiavo (2018).21 A third result

concerns the distribution of the rate of growth of sales rather than their level. The classic

result of Gibrat (1931), source of the eponymous Law, predicts that a firm’s rate of growth

should be independent of its size. Empirical evidence is broadly in favour of this, at least for

larger and older firms: see, for example, Haltiwanger et al. (2013).22 While most theoretical

studies of Gibrat’s Law have explored it under perfectly competitive assumptions, recent

work by Luttmer (2007) and Arkolakis (2010, 2016) shows that it also holds in models of

monopolistic competition with heterogeneous firms and CES demands. There are in fact

two distinct results of this kind: first, a uniform improvement in all firms’ productivity

will raise their growth rate by an equal proportion; and second, more in line with Gibrat’s

original result, if firm productivities evolve as a result of idiosyncratic shocks that lead to an

asymptotically Lognormal distribution of productivity growth, then the growth rate of sales

will also follow a Lognormal distribution.

All these results share two features. First, they assume CES demands, and so imply

that all firms have the same markups which do not vary over time. Second, they exhibit a

property that Mrázová et al. (2015) call “self-reflection”: the distribution predicted for the

endogenous random variable takes the same form as, or “reflects,” the distribution assumed

for the exogenous random variable. Self-reflection is an attractive property even in the cross-

section: for example, it is desirable to understand in what circumstances the analytically

tractable Pareto distribution can be used. It is particularly attractive for the evolution of

21Some authors have explored models of heterogeneous firms with other productivity distributions, includ-
ing generalizations or combinations of the Lognormal and Pareto such as mixtures of thin- and fat-tailed
Pareto or piecewise Lognormal-Pareto distributions, although these are typically not analytically tractable.
See, for example, Luttmer (2007), Eaton et al. (2011), Edmonds et al. (2012), and Nigai (2017).

22Sutton (1997) points out that different authors have interpreted Gibrat’s Law as applying to different
firm aggregates, whether sales, employment or assets. Here we focus on sales.

25



firm size over time: there is no theory that is consistent with Gibrat’s Law in monopolistic

competition if self-reflection from the distribution of productivity shocks to the distribution

of firm growth rates does not hold. Hence, it is very desirable to know whether there are

demand functions other than the CES that are consistent with this property. Putting this

differently, is Gibrat’s Law consistent with demand functions that allow for variable markups

within and between firms?

Mrázová et al. (2015) show that the answer to this question is “yes” by deriving conditions

for self-reflection of two distributions, where the firm-level variables are linked by a functional

relationship. Assume that the distributions of both variables are members of the same family,

drawn from a wide class of distributions that includes Pareto, Lognormal and Fréchet. It then

follows that the relationship between the two variables must take a simple power-law form.

Moreover, these three conditions are necessary and sufficient for each other in the sense that

any two imply the third. In the present context, the variables of interest are productivity

and sales revenue, so the requirement for self-reflection is that sales revenue is a power-law

function of productivity. Productivity is the inverse of marginal cost, so this is equivalent to a

constant elasticity of sales revenue with respect to marginal cost: d log r/d log c = −κ. Since

marginal cost equals marginal revenue in equilibrium, this condition can also be expressed

as a “Constant Revenue Elasticity of Marginal Revenue,” whence the acronym “CREMR”.

The final step is to derive the demand functions that exhibit the CREMR property. It is

straightforward to express the elasticity in terms of ε and ρ, using the fact that r(x) = xp(x)

and the expression for the elasticity of output with respect to marginal cost from (20):

d log r

d log c
=
ε− 1

ε

d log x

d log c
= − (ε− 1)2

ε(2− ρ)
(29)

Mrázová et al. (2015) show that the demand functions which ensure that this is constant are

given by the following:

p(x) =
β

x
(x+ γ)

κ
κ+1 , κ > 0, x+ γ(κ+ 1) > 0, β > 0 (30)
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Figure 9: CREMR Demand Manifolds

Once again, this is a generalization of CES demands, and reduces to them when γ is zero. The

results of Mrázová et al. (2015) imply that it is the only demand function that is consistent

with self-reflection of the productivity and sales distributions in monopolistic competition.

Hence it is also the only demand function that is consistent with Gibrat’s Law, either in the

sense that a uniform shock to all firms’ productivities generates a uniform change in their

sales; or in the sense that idiosyncratic productivity shocks cumulate to give a Lognormal

distribution of sales, with firm growth independent of firm size in the long run. Mrázová

et al. (2015) show that it also has other desirable properties: it implies distributions for

both sales and markup that are theoretically plausible and empirically realistic, in that they

provide a better fit for these distributions than other widely-used demand functions. The

CREMR demand manifold is given by the following:

ρ̄(ε) = 2− 1

κ

(ε− 1)2

ε
(31)

It is illustrated in Figure 9. Once again, these are very different from the demand manifolds

for standard demand functions, as shown in Figure 3.

27



Response Demand Function Demand Manifold
p(x; β, γ, κ) ρ̄(ε;κ)

Bulow-Pfleiderer dp
dc

= κ β
(
x

1−κ
κ + γ

)
2− 1

κ

CPPT d log p
d log c

= κ β
x

(
x

κ−1
κ + γ

) κ
κ−1

2− 1
κ
ε−1
ε

CEMR/Inverse PIGL d log x
d log c

= −κ β
x

(
x

κ−1
κ + γ

)
2− 1

κ
(ε− 1)

CREMR d log r
d log c

= −κ β
x
(x+ γ)

κ
κ+1 2− 1

κ
(ε−1)2

ε

Table 1: Constant-Response Demand Functions

7 Constant Response Demand Functions

Table 1 summarizes the demand functions that have been discussed in the paper. Each

of them is a “constant-response demand function,” which is necessary and sufficient for an

exogenous change in marginal cost to induce an equal absolute or relative response in some

firm-level variable, whether price, output or sales. Each of them nests CES demands, and

reduces to the CES case when the parameter γ is zero.23 Putting this differently, only CES

demands imply constant responses to costs of all these variables, and each of the four demand

functions in Table 1 allows for variable markups if and only if γ is non-zero.

The explicit expressions for the different demand functions given in the third column

of the table are suggestive. Yet even though they are written in ways that makes them as

comparable as possible, their behavior relative to each other is not immediately obvious. It

is easier to compare their properties using their manifolds, as shown in the fourth column,

and as illustrated in Figures 4, 7, and 9. While each demand function depends on three

parameters, each of the manifolds depends only on κ, the parameter that measures the

23The CES special case also imposes restrictions on κ. Setting ε and ρ in the final column of Table 1
equal to their CES values (given in (10)), the implied values of κ with CES demands are: σ/(σ − 1) for
Bulow-Pfleiderer, one for CPPT, σ for CEMR, and σ − 1 for CREMR, where σ is the CES elasticity of
demand.
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response of the variable in question to the change in marginal cost. Thus, as we saw in

Section 3.4, each manifold is a locus along which the relevant response to an increase in

marginal cost is constant.

Except for the Bulow-Pfleiderer case, the other three demand functions in Table 1 have

manifolds that are mostly quite different from those of the better-known and more widely-

used demand functions shown in Table 3. If we concentrate on the subconvex case, we can see

that these demand functions allow for much more concavity than most widely-used demands.

This is especially true for firms that are small and relatively unresponsive to shocks (i.e., for

high values of ε and low values of κ). Mrázová et al. (2015) point out that this ability to

allow small firms to face very concave demand may be why CREMR demands give a better

fit to both sales and markups than other demand systems. By contrast, for larger firms (i.e.,

for lower values of ε), Bulow-Pfleiderer demands have constant convexity by construction,

whereas the others become steadily more convex: CPPT and CEMR asymptote to Cobb-

Douglas, and CREMR to a general CES with elasticity of demand σ equal to κ+ 1.

While the manifolds in Table 1 are invariant with respect to the other two demand

parameters β and γ, this does not imply that these have no role. Consider first the non-

CES parameter γ: its sign is a key determinant of whether a given demand function is

sub- or superconvex. More specifically, if, for a given value of κ, a demand function can be

either sub- or superconvex, then it is superconvex if and only if γ is positive. Table 3 in

Appendix C illustrates the possible configurations in detail. As for the parameter β, its role

in these demand functions is similar to the one it plays in the CES itself: it affects only the

level of demand, and is taken as given by firms, but is determined endogenously in general

equilibrium. We saw in Section 5 how this gives rise to competition effects. In general,

any exogenous shock to an industry equilibrium will have both a direct effect on individual

firms and an indirect competition effect working through the free entry condition and the

demand function. As we saw in Section 5, the competition effect operates in a particularly

simple way when demand is generated by additively separable preferences, since it affects
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only β, which is inversely proportional to the marginal utility of income. Finally, a further

role played by the β parameter arises if we want to move from demands to preferences. All

of the demand functions in Table 1 can be integrated to get the corresponding preference

system, given assumptions about cross-price effects, and this is relatively straightforward in

the case of additive separability, once again with β now endogenous. (For example, Mrázová

et al. (2015) derive the additively separable utility function implied by CREMR demands.)

Hence, these demand functions can potentially be used in explicit calculations of the general-

equilibrium welfare effects of policy and other shocks.

8 Conclusion

In this paper we have reviewed and extended recent work by ourselves and others on mo-

nopolistic competition in benchmark models of international trade. We have not discussed

trade under oligopoly, which provides an alternative explanation for the evidence of vari-

able markups cited in Section 2.2. (See, for example, Neary (2003, 2016) and Atkeson

and Burstein (2008).) Nor have we discussed the extensive recent literature in trade that

uses calibration methods to quantify the effects of exogenous shocks, often in CES-based

frameworks. (See Costinot and Rodŕıguez-Clare (2014) for an overview.) Instead, we have

concentrated on the implications of monopolistically competitive models for a number of

important results, including pass-through, selection effects, competition effects, and the size

distribution of firms.

The fact that the monopolistically competitive paradigm has become the dominant one

in international trade may seem surprising from an IO perspective. However, there are good

reasons for this. The availability of large data sets on exporting firms, and the desire to take

account of general-equilibrium feedbacks between goods and factor markets, make a “one-

size-fits-all” approach to the choice of market structure very convenient. Moreover, as we

have shown, relaxing the assumption of CES preferences in monopolistic competition makes
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its view of firms more realistic and its predictions more flexible. In this context, a unifying

principle that we have highlighted is the class of constant-response demand functions that

provide a parsimonious suite of alternatives to the CES case. Each of these functions adds a

single parameter to the CES, so avoiding the counter-factual prediction of constant markups,

while preserving one or other of its key properties.

Of course, while leaving the comfort zone of CES goes part of the way to a more realistic

view of imperfectly competitive markets, it raises new problems. To paraphrase Tolstoy

(1878), CES demand functions are all alike, every non-CES demand function is non-CES in

its own way.24 The CES benchmark is sure to retain a central place in this field, both because

of its tractability and also because it alone exhibits all the constant-response properties that

we have discussed.

In conclusion, we have already noted some ironies in the selective way in which inter-

national trade has borrowed from industrial organization in how it models firms in open

economies. In particular, Dixit and Stiglitz proposed using additively separable preferences

as a way of modelling product differentiation, and viewed CES preferences as just a special

illustrative case; whereas it is the latter that has become the workhorse model for exploring a

huge range of issues in trade. There is a further irony. The substantive issue they addressed

was the efficiency of the market equilibrium, and in particular whether an unregulated mo-

nopolistically competitive market would lead to too many or too few varieties. This issue

has not been addressed much in trade, but in recent years there has been a revival of interest

in it: see for example Feenstra and Kee (2008) and Dhingra and Morrow (2019). In ongoing

work with Mathieu Parenti (see, for example, Section 4.3 of Mrázová et al. (2015)) we show

how the tools from Section 6 above can be used to throw light on this issue.

24From the opening sentence of Anna Karenina: “Happy families are all alike; every unhappy family is
unhappy in its own way.”
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Appendices

A Constant Response of Profits Demand Functions

We would like to characterize the demand functions with the property that operating profits

have a constant proportional response to marginal cost: d log π
d log c

= κ. We know that this holds

in the CES case, where π = Bc1−σ.25 To find the necessary condition for this property, note

that, since π = (p− c)x, we have in general:

d log π = d log (p− c) + d log x (32)

Equation (20) gives the proportional response of output to changes in marginal cost, d log x/d log c.

The next step is to consider d log (p− c). Consider first d (p− c). From the firm’s first-order

condition this equals d (−xp′) = −p′dx− xp′′dx = − (p′ + xp′′) dx. Hence:

d log (p− c) =
d (−xp′)
−xp′

=
(p′ + xp′′) dx

xp′
=
p′ + xp′′

p′
d log x = (1− ρ) d log x (33)

Collecting terms gives, from (20) and (32):

d log π

d log c
=
d log (p− c)
d log c

+
d log x

d log c
= (2− ρ)

d log x

d log c
= − (ε− 1) (34)

Clearly the CES case is the only one that yields a constant value of this. Hence CES

demands are necessary and sufficient for a constant proportional response of operating profits

to marginal cost.
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Demand Function Demand Manifold

CARA x(p) = γ + δ log p ρ̄(ε) = 1
ε

Stone-Geary/LES p(x) = β
γx+1

ρ̄(ε) = 2
ε

Translog/AI x(p) = 1
p

(γ + δ log p) ρ̄(ε) = 3ε−1
ε2

Table 2: Some Common Demand Functions and Their Manifolds

B Manifolds for Some Common Demand Functions

Table 2 gives some common demand functions and their manifolds, as illustrated in Figure

3. Further details are given in Mrázová and Neary (2017). As elsewhere in the paper, the

demand functions are written from the perspective of an individual firm in monopolistic

competition. They also depend on aggregate expenditure and on indices of the prices of

all goods, including the good in question; these are taken as given by the firm, since it is

of measure zero, and are subsumed into the demand parameters. (See Dixit and Stiglitz

(1993) for further discussion.) All three manifolds are invariant with respect to these other

variables. To take a specific example, Stone-Geary demands are more familiar when written

as: x(i) = α(i) + (p(i))−1
(
I −

∫
i′∈Ω

p(i′)α(i′)di′
)
, which, when γ = (−α(i))−1 and β =

γ
(
I −

∫
p(i′)α(i′)di′

)
, is equivalent to the expression in Table 2. The latter expression is the

special case of the CPPT demands from (11) when κ = 1/2.

C The Role of γ in Determining Superconvexity

Table 3 illustrates schematically the conditions under which each of the non-CES constant-

response demand functions is either sub- or superconvex, depending on the values of the γ

and κ parameters. In four of the eight cases, the demand functions can only be either sub-

25Here B is exogenous from the firm’s perspective, but it depends on the price index and on aggregate
income, and so is endogenous in general equilibrium. See, for example, Melitz (2003), equation (4).
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γ < 0 γ > 0

κ < 1

BP: n/a BP: Subconvex
CPPT: n/a CPPT: Subconvex
CEMR: n/a CEMR: Subconvex
CREMR: Subconvex CREMR: Superconvex

κ > 1

BP: Subconvex BP: Superconvex
CPPT: n/a CPPT: Superconvex
CEMR: Subconvex CEMR: Superconvex
CREMR: Subconvex CREMR: Superconvex

Table 3: Possible Configurations of Sub- and Superconvexity

or superconvex, irrespective of the sign of γ. The remaining cases are represented in Figures

4, 7, and 9 by manifolds with two branches, one in the subconvex region and the other in

the superconvex one. It is in these cases that the sign of γ is crucial, with a positive value

corresponding to the superconvex branch.
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