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1 Introduction

The recent rise in product-market concentration in the U.S. has been viewed as a
driving force behind several macroeconomic trends. For instance, Gutiérrez and
Philippon (2017) document an increase in the mean Herfindahl-Hirschman index
since the mid-nineties, and argue that it has weakened investment. Autor, Dorn,
Katz, Patterson and Van Reenen (2017) and Barkai (2020) relate the rising concentra-
tion of sales over the past 30 years in most US sectors to the fall in the labor share.1

What are the implications of trends in concentration or market power for the
transmission of monetary policy? Do strategic interactions in pricing between in-
creasingly large firms amplify or dampen the real effects of monetary shocks? The
baseline New Keynesian model is not designed to address these questions. Fol-
lowing the recognition that some form of imperfect competition and pricing power
is required to model nominal rigidities, the New Keynesian literature has been
built on the tractable paradigm of monopolistic competition, pervasive in other ar-
eas of macroeconomics and international trade. Under monopolistic competition,
markups only depend on tastes, through consumers’ elasticity of substitution be-
tween competing goods, which leaves no room for changes in concentration to affect
markups or monetary policy.

In this paper, we provide a new framework to study the link between market
structure and monetary policy. We generalize the standard New Keynesian model
by allowing for dynamic oligopolistic competition between any finite number of
firms in each sector of the economy, also allowing for heterogeneity across sectors.
In each sector, firms compete by setting their prices, but they do so in a staggered
and infrequent manner due to nominal rigidities. We use this model to study the
aggregate real effects of monetary shocks and highlight the restrictions imposed
by monopolistic competition. Departing from monopolistic competition to study
oligopoly poses new challenges, because it requires solving a dynamic game with
strategic interactions at the sectoral level and embedding it into a general equilib-
rium macroeconomic model. We focus on Markov equilibria of our dynamic game,
where the pricing strategy, or reaction function, of every firm is a function of the
prices of its competitors.

1Rossi-Hansberg, Sarte and Trachter (2020) document, however, diverging trends in national and
local measures of concentration. We will discuss how to interpret our results in light of these two
views.
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Despite these complexities, our first result derives a closed-form formula for
the response of aggregate output to small monetary shocks. Our formula inputs
the cross-sectoral distribution of three sufficient statistics: market concentration as
captured by the effective number of firms within a sector, demand elasticities, and
markups. The intuition is based on the link between the steady state markup that
can be sustained in an oligopolistic equilibrium and the slope of the reaction func-
tion of each firm to the prices of its competitors. All else equal, steeper reaction
functions lead to higher equilibrium markups: each firm has little incentives to cut
prices when it knows that this would lead its rivals to cut prices as well for some
time. Inverting the logic, we can infer from high observed markups that reaction
functions are steep and therefore complementarities in pricing are strong, which
in turn implies a slow pass-through of monetary shocks into prices and therefore
large real effects on output. In this way, our formula encapsulates a tight restriction
between endogenous markups and stickiness, conditional on demand elasticities.2

While our key sufficient statistics, demand elasticities and markups, can be es-
timated at any given point in time, they are endogenous objects that change in re-
action to shifts in fundamentals. To perform counterfactual experiments, we take
a more structural approach and solve numerically the oligopolistic equilibrium in
terms of fundamentals. We use a flexible Kimball (1995) demand system that allows
us to parametrize separately demand elasticities and superelasticities, as the latter
can affect monetary policy transmission through variable markups even under mo-
nopolistic competition.

In our main exercise, we vary the number of firms n in each sector while keeping
preference parameters fixed. We find that higher concentration (lower n) can signif-
icantly amplify or dampen the real effects of monetary policy, depending on how
properties of the residual demand vary with n. When preferences are CES, higher
concentration amplifies monetary policy transmission. Maximal effects are attained
under duopoly, for which the half-life of the price level in reaction to monetary
shocks is around 40% higher than under monopolistic competition. With Kimball
preferences, higher concentration actually dampens monetary policy transmission
if the superelasticity of demand is high enough, and the dampening can be arbi-
trary large. It is thus essential to first understand the link between concentration

2In the standard monopolistic competition model desired markups are constant and only a func-
tion of the demand elasticity. However, in a strategic environment the endogenous markup is no
longer a simple function of the demand elasticity.
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and demand functions.
We use evidence on the heterogeneity in idiosyncratic cost pass-through across

small and large firms from Amiti, Itskhoki and Konings (2019) to calibrate how con-
centration affects the shape of demand functions, and find substantial amplification.
The rise in the average Herfindahl index observed in the U.S. since 1990 increases
the response of output (and decreases the response of inflation) to monetary shocks
by around 15%.

What explains these results? The number of competitors in a market has an ef-
fect on firms’ strategic incentives, but also on the residual demand faced by each
firm. We disentangle these two ways through which oligopolistic competition dif-
fers from monopolistic competition. On the one hand, “feedback effects” make each
firm care about its rivals’ current and future prices when setting its price. On the
other hand, “strategic effects” arise because each firm realizes its current pricing
decision can affect how its rivals will set their prices in the future. Feedback ef-
fects are present in monopolistic competitive models with non-CES demand, but
strategic effects can only exist when the number of firms is finite. To isolate these
two effects for each n, we compare the oligopolistic model with n firms to a “non-
strategic” scenario in which the n firms act myopically, ignoring the effect of their
prices on competitors’ future incentives. The non-strategic equilibrium is isomor-
phic to a model with monopolistic competition and Kimball preferences modified
to match the elasticity and superelasticity of the residual demand in the finite n
model. We find that departures from monopolistic competition are mostly working
through feedback effects, that is changes in the shape of residual demand. While
strategic effects matter for the level of steady state markups, they only have a mod-
est impact on monetary policy transmission. Of course, this quantitative conclusion
can only be reached after solving the full, strategic, model.

Standard models of monopolistic competition featuring non-CES demand can
thus be viewed as simple approximations to an oligopolistic reality, and our frame-
work provides a rigorous mapping from micro-evidence on pass-through and con-
centration, that may change over time and with competition policy, to the reduced-
form Kimball parameter driving these models. It does not follow, however, that
oligopoly is isomorphic to monopolistic competition up to some recalibration. The
oligopoly model yields a unique link between markups and monetary policy trans-
mission, in the aggregate and in the cross-section, that cannot arise under monop-
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olistic competition, even with non-CES demand. Under monopolistic competition,
predictions of the model depend on calibrating two independent parameters of de-
mand functions: the markup only depends on the elasticity, and the price response
to monetary policy only depends on the superelasticity. Oligopolistic competition,
on the other hand, highlights a tight connection: the superelasticity of residual de-
mand has a positive effect on both markups and the pass-through of monetary pol-
icy. Therefore, controlling for concentration and demand elasticity, our model pre-
dicts that monetary policy is transmitted relatively more through sectors or regions
with higher markups, because they are the ones featuring the slowest price adjust-
ment following monetary shocks.

Moreover, the quantitative near-equivalence between the oligopoly model and
the recalibrated non-strategic economy depends on the specific processes for real
and monetary shocks. In order to go beyond the permanent money supply shocks
most commonly studied in the literature, we derive a three equations New Keyne-
sian model with an oligopolistic Phillips curve that allows for more general shocks
and non-stationary dynamics. We find that strategic effects are quantitatively im-
portant once we allow for richer dynamics. In particular, the oligopolistic Phillips
curve features a form of endogenous inflation persistence (or equivalently, endoge-
nous cost-push shocks) that can dampen fluctuations in inflation and output relative
to the non-strategic model.

Related Literature

An important early exception to the complete domination of monopolistic compe-
tition in the macroeconomics literature on firm pricing is Rotemberg and Saloner
(1986), who propose a model of oligopolistic competition to explain the cyclical be-
havior of markups. Rotemberg and Woodford (1992) later embed their model into
a general equilibrium framework with aggregate demand shocks driven by govern-
ment spending. These two papers assume flexible prices and abstract from mone-
tary policy.3 Another important difference is that we focus on Markov equilibria,
in line with the more recent industrial organization literature, rather than trigger-
strategy price-war equilibria.

The first paper to combine non-monopolistic competition and nominal rigidities

3Rotemberg and Saloner (1987) study a static partial-equilibrium menu-cost model, comparing
the incentive to change prices under monopoly and duopoly.
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in general equilibrium is Mongey (2018). This paper uses a rich quantitative model
with two firms, menu costs, and idiosyncratic shocks to show that duopoly can gen-
erate significant non-neutrality relative to the Golosov and Lucas (2007) benchmark.
It also finds that duopoly is closer to monopolistic competition under Calvo price-
setting than with menu costs. Our paper takes a complementary approach, more
analytical but assuming Calvo pricing and abstracting from idiosyncratic shocks.4

This allows us to go beyond two firms and explore different questions, in partic-
ular by changing industry concentration and separating strategic complementari-
ties from residual demand effects.5 Modeling more than two firms also lets us in-
corporate recent evidence on cost pass-through and market shares from Amiti, It-
skhoki and Konings (2019) to infer the relation between concentration and monetary
non-neutrality. As we show, this evidence implies that even under Calvo pricing,
oligopoly leads to significant amplification.

The literature on variable markups in international trade (e.g., Atkeson and Burstein
2008) highlights the importance of market structure and for cost (e.g., exchange rate)
pass-through in static settings. We study a dynamic version of these models, as is
needed to analyze monetary policy, and show which properties of residual demand
functions matter in this context (see also Neiman (2011) for a partial equilibrium
dynamic duopoly model of exchange rate pass-through with menu costs). In partic-
ular, we use the evidence from Amiti, Itskhoki and Konings (2019) on heterogeneous
pass-through behavior across small and large firms to calibrate our oligopolistic
model.

Kimball (1995) introduced non-CES aggregators that generate variable markups
even under monopolistic competition. As we show in section 6, there is a close
connection between this class of models (e.g., Klenow and Willis 2016, Gopinath
and Itskhoki 2010) and our oligopolistic model. By making the market structure
explicit, our paper provides foundations for the dynamic pricing complementarities
embedded in the monopolistic Kimball aggregator, in a way consistent with the data

4Calvo pricing remains an important benchmark in the literature on price stickiness, due to its
tractability, but additionally, recent work on menu costs, such as Gertler and Leahy (2008), Midrigan
(2011), Alvarez, Le Bihan and Lippi (2016b) and Alvarez, Lippi and Passadore (2016a), show that
certain menu-cost models may actually behave close to Calvo pricing.

5Several papers, including Benigno and Faia (2016) and Corhay, Kung and Schmid (2020) with
Rotemberg pricing and Etro and Rossi (2015) and Andrés and Burriel (2018) with Calvo pricing,
consider models of monopolistic competition that depart from the standard CES setting because
the demand curve faced by a firm depends on the number of competitors; but firms still behave
atomistically, taking rivals’ current and future prices as given.
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on firm size and long-run pass-through. Relative to this strand of the literature, the
oligopolistic model also generates unique predictions on the cross-sectional relation
between markups, concentration, and monetary policy transmission.

In addition to the dynamic pricing with staggered price stickiness we focus on,
market structure can affect the degree of monetary non-neutrality through other
margins. Nakamura and Steinsson (2013) organize sources of complementarities
in pricing into “micro” (e.g., variable markups or decreasing returns to scale) and
“macro” complementarities (e.g., intermediate inputs). Afrouzi (2020) studies the
incentives to acquire information in a flexible prices rational-inattention oligopolis-
tic model, while a large literature studies the feedback between the cyclicality of
markups and entry and exit dynamics (e.g. Bilbiie, Ghironi and Melitz, 2007).

2 A Macro Model with Oligopolies

In this section we first describe the economic environment, preferences, technology,
and the market structure. We then define an equilibrium.

The household side of our model is standard. On the production side, we depart
from the atomistic monopolistic competitive framework in favor of oligopolies, with
a finite number of firms, producing differentiated varieties in each sector. These
firms compete with each other by setting prices at random intervals of time, result-
ing in a staggered set of price changes.

Basics. Time is continuous with an infinite horizon t ∈ [0, ∞).6 We abstract from
aggregate uncertainty. This suffices to study the impact and transitional dynamics
induced by an unanticipated shock. Following much of the menu-cost literature,
we focus on such a monetary shock, and our goal is to understand the degree of
monetary non-neutrality it induces.

There are three types of economic agents: households, firms and the govern-
ment. Households are described by a continuum of infinitely lived agents that con-
sumes nondurable goods and supplies labor to a competitive labor market.

Firms produce across a continuum of sectors s ∈ S. Each sector is oligopolistic,
with a finite number ns of firms i ∈ Is, each producing a differentiated variety. Firms

6Our analysis translates easily to a discrete-time setup, but continuous time has a few advantages
and permits comparisons with the menu-cost literature (e.g. Alvarez and Lippi, 2014).
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can only reset prices at randomly spaced times, so the price vector within a sector
is a state variable. By setting ns → ∞ or ns = 1 we obtain a standard monopolistic
setup, where each firm has a negligible effect on competitors. Otherwise, there are
strategic interaction across firms within a sector, but not across sectors (due to the
continuum assumption). We study the dynamic game within a sector and focus on
Markov equilibria.

The government controls the money supply, provides transfers and issues bonds,
to satisfy its budget constraint.

Household Preferences. Utility is given by∫ ∞

0
e−ρtU(C(t), `(t), m(t))dt,

with real money balances m(t) = M(t)
P(t) and aggregate consumption

C(t) = G ({Cs(t)}s∈S) ,

Cs(t) = Hs ({ci,s(t)}i∈Is) ,

where {Cs} and {ci,s(t)} describe sectoral consumption across sectors s ∈ S and
good varieties across firms i ∈ Is within each sector, respectively. G and Hs are
aggregator functions homogeneous of degree one.

Following Golosov and Lucas (2007), in most of the paper we adopt the specifi-
cation

U(C, `, m) =
C1−σ

1− σ
+ α log m− `.

As is well known, these preferences help simplify the aggregate equilibrium dynam-
ics; we consider more general preferences in section 7.1. In addition, we assume CES
aggregation across sectors:7

G
(
{Cs}s∈S

)
=

(∫
S

Cs
1− 1

ω ds
) 1

1− 1
ω

but crucially, Hs can be more general than CES. We make no assumption on Hs

beyond homotheticity until section 5.

7When ω = 1 we set G ({Cs}s) = exp
∫

S log Csds.
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Firms. Each firm i ∈ Is in sector s ∈ S produces linearly from labor according to
the production function,

ys,i(t) = `s,i(t).

We assume a linear production function and no sectoral or idiosyncratic differences
in productivity for simplicity.

Firms receive opportunities to change their price pi,s at random intervals of time,
determined by a Poisson arrival rate λs > 0, the realizations of which are indepen-
dent across firms and sectors. Between price changes, firms meet demand at their
posted prices.

Individual firm nominal profits are

Πi,s(t) = pi,s(t)yi,s(t)−W(t)`i,s(t)

and aggregate firm nominal profits Π(t) =
∫

∑i∈Is Πi,s(t) ds. Firms seek to maxi-
mize the present value of profits,

E0

∫ ∞

0
Q(t)Πi,s(t)dt

where Q(t) = e−
∫ t

0 R(s)ds denotes the nominal price deflator between period t and 0.
Although there is no aggregate uncertainty, the expectation averages over the

idiosyncratic uncertainty about the dates at which changes are allowed for each firm
and its immediate competitors within a sector. (This firm objective can be justified
in a number of ways, such as by introducing an asset market for the stock price of
firms.)

Household Budget Constraints. The flow budget constraint can be summarized
by

P(t)C(t) + Ḃ(t) + Ṁ(t) = W(t)`(t) + Π(t) + T(t) + R(t)B(t)

for all t ≥ 0, where B(t) are bonds paying nominal interest rate R(t), M(t) nominal
money holdings, W(t) the nominal wage, T(t) nominal lump-sum transfers, and
P(t) the (ideal) price index given by

P(t) = P({pi,s(t)}),
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where P({pi,s}) ≡ min{ci,s}
∫

∑i∈Is pi,sci,sds s.t. G
({

Hs

(
{ci,s}i∈Is

)}
s∈S

)
= 1. For

ω 6= 1, we can write P({pi,s}) ≡
(∫

P1−ω
s ds

) 1
1−ω with Ps = Ps(p1,s, p2,s, . . . , pns,s).8

Let A(t) = B(t) + M(t) denote total nominal wealth. Households are also sub-
ject to the No Ponzi condition limt→∞ Q(t)A(t) ≥ 0. This leads to the present value
condition∫ ∞

0
Q(t)(P(t)C(t) + T(t) + R(t)M(t)−W(t)`(t)−Π(t))dt = A(0) = M(0) + B(0).

Demand. Define the vector of prices within a sector s as

ps(t) = (p1,s(t), p2,s(t), . . . , pns,s(t))

and let p−i,s(t) = (p1,s (t) , . . . , pi−1,s (t) , pi+1,s (t) , . . . , pn,s (t)) denote the vector
that excludes pi,s(t). The demand for firm i ∈ Is can be written as

ci,s(t) = Di,s(pi,s(t), p−i,s(t); C(t), P(t)).

Given symmetry, constant returns and the CES structure across sectors, we obtain

Di,s(pi, p−i; C, P) = di(pi, p−i)CPω.

The demand faced by firm i is a stable function of the price vector di(pi, p−i). This
demand captures within-sector substitution as well as across-sector substitution.
Firms understand that they can switch expenditure in both ways by changing their
price.

Discounted nominal profits are then∫ ∞

0
e−
∫ t

0 R(s)dsC(t)P(t)ω di(pi,s(t), p−i,s(t)) (pi,s(t)−W(t)) dt

Markov Equilibria. A strategy for firm i specifies its desired reset price at any time
t should it have an opportunity to change its price. A Markov equilibrium involves
a strategy that is a function only of the price of its rivals and calendar time t,

gi,s(p−i; t).

8We have P({pi,s}) ≡ log
∫

exp Psds when ω = 1.
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Given that sectors are symmetric and firms are symmetric within sectors, we con-
sider strategies g(p−, t) that are symmetric, except in section 4.2.

Equilibrium Definition. Given initial prices {pi,s(0)}, an equilibrium is sequence
for the aggregate price P(t), wage W(t), interest rate R(t), consumption C(t), labor
`(t) and money supply M(t), as well as demand functions for consumers d(pi, p−i; t)
and strategy functions for firms g(p−i; t) such that: (a) consumers optimize quanti-
ties taking as given the sequence of prices and interest rates; (b) the firm reset price
strategy g is optimal, given the path for P(t), C(t) and its rivals’ strategies g and
demand function of consumers d; (c) consistency: the aggregate price level evolves
in accordance with the reset strategy g employed by firms; (d) markets clear: firms
meet demand for goods, the supply of labor equals aggregate demand for labor

`(t) =
∫

∑
i∈Is

`i,s(t)ds

and the demand for money equals supply M(t).

3 Stationary Oligopoly Game within a Sector

We first focus on the dynamics within a sector, assuming all conditions external
to the sector are fixed and given: the wage, the nominal discount rate, aggregate
consumption and price are assumed constant. These assumptions imply that the
oligopoly game within an industry is stationary. This partial equilibrium analysis
also characterizes a steady state in general equilibrium.

We shall later explore conditions under which we can use the sectoral dynamics
we characterize here to study the aggregate macroeconomic adjustment to a mone-
tary shock.

3.1 Prices, Demands and Profits

We now focus within a sector, suppressing the notation conditioning on s ∈ S we
collect prices within the sector in a vector

p = (p1, . . . , pn)
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and let p−i = (p1, . . . , pi−1, pi+1, . . . , pn) denote competitor prices for firm i. The
profit function for firm i is then

Πi(p) = di(pi, p−i)(pi −W).

Since R(t) = ρ we have Q(t) = e−ρt and firms maximize

E0

∫ ∞

0
e−ρtdi(pi, p−i)(pi −W)dt.

3.2 Markov Equilibria

In a Markov equilibrium firms i follow a strategy specifying the reset price

p∗i = gi(p−i)

they will chose in the event that they receive a price change opportunity. Together
with an initial price vector and the Poisson arrival rate this fully describes the stochas-
tic dynamics within the sector. We focus on differentiable symmetric Markov equi-
libria, where

gi = g.

Let Vi(p) denote the value function obtained by firm i, where the argument p is a
vector of n prices. The Bellman equation is then

ρVi(p) = Πi(p) + λ ∑
j

[
Vi (gj

(
p−j
)

, p−j
)
−Vi (p)

]
(1)

where Πi is the profit function of firm i and for each j

gj(p−j) = arg max
p′j

V j(p′j, p−j).

satisfying the optimality condition

V j
pj(gj(p−j), p−j) = 0. (2)

The right-hand side of (1) states that with Poisson rate λ, one of the firms indexed by
j = 1, . . . , n (including firm i) will adjust its price to gj

(
p−j
)
, which will make firm i’s

value jump to Vi (gj
(

p−j
)

, p−j
)
, shorthand notation for Vi (p1, . . . , pj−1, gj

(
p−j
)

, pj+1, . . . , pn
)
.

Remark 1. There could be multiple equilibria even within the Markov class, but our
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main results apply for any differentiable selection. The differentiability assump-
tion rules out “kinked demand curve” and “Edgeworth cycles” Markov equilibria
studied by Maskin and Tirole (1988) in a Bertrand duopoly model with perfectly sub-
stitutable goods as firms become infinitely patient, which in our setting is equivalent
to the flexible prices limit λ → ∞ as the model only depends on the ratio ρ/λ.
Maskin and Tirole (1988) show that firms can “collude” around the joint monopoly
price in this limit. Firms can achieve high profits in steady state, because if not, a
firm could deviate to the monopoly price knowing that its rival would follow suit
and undercut by a small amount once it gets to reset its price, which eventually
ensures some large profit to the deviator once it gets to reset its price again. Fig-
ure 16 in Appendix I shows that away from the joint limit of perfect substitution
and flexible prices, value function iteration converges to a standard “smooth” (and
monotone) MPE that corresponds to the one we study locally. We trace out the locus
of existence of equilibria in the (ε, λ)-space (where ε is the within-sector elasticity of
substitution), and find that our smooth equilibrium disappears as ε exceeds 9 for λ

around 1. While the curse of dimensionality prevents us from solving numerically
for the full non-linear MPE with general n, we conjecture that the existence bounds
are tightest for n = 2, as increases in the number of firms lead to a smaller potential
monopoly profit (the case of monopolistic competition n → ∞ being an extreme
example). Similarly, a higher outer elasticity ω lowers the joint monopoly profit,
which enlarges the region of existence of the smooth equilibrium.

3.3 A Steady State Condition

We now provide a key expression for the slope of the reset price strategy at a steady
state. Differentiating the Bellman equation (1) and making use of symmetry, we
obtain at the steady state p̄ of a symmetric equilibrium:

0 = Πi
pi
( p̄) + λ ∑

j 6=i

[
Vi

pj
( p̄)

∂gj

∂pi
( p̄)
]

Vi
pk
( p̄) =

Πi
pk
( p̄)

ρ + λ
+

λ

ρ + λ ∑
j 6=i,k

[
Vi

pj
( p̄)

∂gj

∂pk
( p̄)
]
∀k 6= i

Denote
∂gj
∂pk

( p̄) = β for all k 6= j . Using ∑k ∑j 6=i,k Vi
pj
( p̄) = (n− 2)∑k 6=i Vi

pk
( p̄), and

the symmetry of Πpk across k 6= i, we obtain
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0 = Πi
pi
( p̄) +

λ (n− 1) β

ρ + λ [1− (n− 2)β]
Πi

pk
( p̄) (3)

With flexible prices, firms would continuously play the static Nash equilibrium
price pNE that solves 0 = Πpi(pNE). From (3) we see that the steady state price
p̄ of the dynamic oligopoly game is above the static Nash price pNE if and only if
β > 0. Therefore, unlike under monopolistic competition, the steady state price is
affected by the presence of nominal rigidities. Moreover, as the influence of any
single rival Πi

pk
vanishes when n increases, the steady state price converges to the

Nash price (i.e., monopolistic competition) as n grows to infinity.

Sufficient Statistics: Markups and Elasticities. The main object of our analysis is
the slope (n− 1) β of the reaction function, where the term n− 1 scales the aggre-
gate effect of the rivals. We can further simplify (3) to write (n− 1) β in terms of
observable sufficient statistics. Use

Πi
pj

−Πi
pi

=
εi

j

(
pi−W

pj

)
−εi

i

(
pi−W

pi

)
− 1

where

εi
i =

∂ log di

∂ log pi
, εi

j =
∂ log di

∂ log pj

to rewrite in terms of demand own- and cross-elasticities

(n− 1) β =
ρ + λ

λ

1

n−2
n−1 +

εi
j

−εi
i−

p̄
p̄−W

Constant returns to scale imply that the cross-elasticity is related to the own-elasticity
through (n− 1)εi

j = −(1 + εi
i). For any n, we obtain the slope in terms of only two

steady state objects, the own-elasticity and the markup:

Proposition 1. In a sector with n firms, the slope of the reaction function around the steady
state β =

∂gj
∂pk

( p̄) satisfies

(n− 1)β =
λ + ρ

λ

1
1 + 1

(n−1)[(|εi|−1)(µ̄−1)−1]

(4)

where εi =
∂ log di

∂ log pi
and µ̄ = p̄

W .
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Proposition 1 is our first main result, showing how to locally infer unobserved
steady state strategies from a small number of potentially observed sufficient statis-
tics. Taking as given market concentration n and the demand elasticity εi, a higher
steady state markup µ̄ is associated with a higher slope β. Conversely, for a given
observed markup µ̄, a higher elasticity (in absolute value) also reflects a higher
slope.

The intuition behind this result is based on reverse causality. Suppose that β

is high. Then, if firm i decreases its price below the steady state, its rivals will set
low prices as well, which undermines firm i’s incentives to cut prices. This threat
of undercutting allows to sustain a high equilibrium markup. On the other hand,
when rivals do not react, for instance in the limit where firm i is an infinitesimal
player as in monopolistic competition, then the equilibrium markup is low, equal to
the static Nash level.

Turning the argument on its head, for a given elasticity εi, a high equilibrium
markup must then be a consequence of steep reaction functions; we will later an-
alyze the factors that govern these reactions. And conversely, for a given markup,
a higher demand elasticity would decrease the Nash markup that arises under mo-
nopolistic competition, hence oligopolistic competition would imply a higher “ab-
normal markup” relative to monopolistic competition, that can again only be sus-
tained through a steep reaction function. In the next section, we will show that
strong reaction functions imply a low pass-through of aggregate cost shocks and
thus persistent real effects of monetary policy.

Remark 2 (Markups and Reaction Functions: Dynamic vs. Static Oligopoly.). When
sectors or regions are heterogeneous in terms of concentration (holding demand
elasticities εi fixed to simplify this discussion), equation (4) implies a cross-sectional
empirical relation between markup and response to aggregate and idiosyncratic
shocks, conditional on concentration, as captured by n. As we show in the next section,
monetary non-neutrality increases with (n− 1) β. Hence our model predicts that
regressing a measure of sectoral or regional non-neutrality (such as the cumulative
output effect of a monetary shock) on average markups, controlling for concentra-
tion, should yield a positive coefficient.

This conditional correlation is specific to our dynamic model, in which the markup
does not depend solely on demand elasticities, but is also affected by other proper-
ties of demand such as superelasticities (see section 5.2), or the frequency of price
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changes (section 5.4). This prediction provides a stark contrast with the case of dy-
namic monopolistic competition, in which the steady state markup only depends
on the demand elasticity and is entirely disconnected from the slope of the reaction
function, but also with static oligopoly models such as Atkeson and Burstein (2008)
and Amiti et al. (2019). While those models may display an unconditional correlation
between markup and slope of reaction function (or, as we explain later on, markup
elasticity), they predict that the correlation disappears once controlling for elastici-
ties and concentration.

4 Aggregate Effects of Permanent Monetary Shocks: Suf-

ficient Statistics

We now study an unanticipated permanent shock to money. In particular, suppose
initial prices are all equal, ps,i = P−, and aggregates are at a steady state with con-
stant M−, C−, `−, W− and R− = ρ. Consider a permanent monetary shock arriving
at t = 0 so that M(t) = M+ = (1 + δ)M− for all t ≥ 0.

In general, firms would have to forecast the path of macroeconomic variables
P (t) and C (t) when choosing their reset price strategies gi,s. These strategies would
in turn affect the evolution of P (t) and C (t). It is possible to accomodate this fixed-
point problem numerically or under additional assumptions, as we do in section
(7.1), but for now we want to focus on clear analytical results. In the spirit of Golosov
and Lucas (2007), our assumptions on preferences lead to the following simplifica-
tion:

Proposition 2. Equilibrium aggregates satisfy

W(t) = (1 + δ)W−

P (t)C(t)σ = ρM(t) = ρM+ (5)

R(t) = ρ

If in addition
ωσ = 1 (6)

then the game in each sector s along the transition is equivalent to the stationary oligopoly
game studied earlier.
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Proposition 2 is very useful, as it shows when firms can ignore the transitional
dynamics of macroeconomic variables following the monetary shock, and therefore
allows us to extend results based on the partial equilibrium game in section 3 to gen-
eral equilibrium. This is an exact result, not an approximation for small monetary
shocks as in Alvarez and Lippi (2014). Unless otherwise noted, we set

ω = σ = 1

which implies condition (6).

Remark 3. The classic paper by Rotemberg and Saloner (1986) analyzes (non-Markov)
trigger strategies that sustain high “collusive” prices in bad times but lead to price
wars during booms, because the latter are periods with higher temporary profits to
compete over. However, we just showed conditions under which, in general equi-
librium, treating the dynamic game as a repeated game can be misleading, as the
effect of real interest rates cancels out exactly the effect of higher aggregate demand
C (t). Away from this benchmark, the incentives to cut prices could be higher or
lower in booms, depending on the elasticity of intertemporal substitution 1/σ.

4.1 Aggregation and Transitional Dynamics

We are interested in the speed of convergence of the aggregate price level to its
new steady state P̄ = (1 + δ) P−. From (5), this speed also tells us the effect of the
monetary shock on aggregate consumption.

After the shock, each sector follows stochastic dynamics displayed in Figure 1.
When firm i has an opportunity to adjust its price, it does so only when it wasn’t
the last firm to adjust. The sectoral price level Ps follows a stochastic process, and
unlike with monopolistic competition, there is no law of large numbers at the sector
level with a finite number of firms. However, aggregating across the continuum
of (potentially heterogeneous) sectors yields a deterministic law of motion for the
first-order dynamics of the aggregate price level:

Proposition 3. To first-order in the size of the monetary shock δ, the aggregate price level
follows for t ≥ 0

log P(t)− log P̄ = −δ
∫

s
e−λ(1−(ns−1)βs)tds, (7)

where βs is the slope ∂gi
∂pj,s

in sector s . Therefore the cumulative output effect of the shock is
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Figure 1: Price dynamics within a sector following an aggregate monetary shock.

p̄

p(0)

g (p−i)

pi

p−i

Note: Illustration with n = 2. Both prices start from p(0) and converge stochastically to p̄ on a
discrete grid {p(0), g(p(0)), g(g(p(0))), . . . }. If a firm was the last one to adjust its price, nothing
happens until its rival can adjust. A steeper policy g implies slower convergence in expectation.

(for arbitrary σ) ∫ ∞

0
log
(

C (t)
C̄

)
dt =

δ

σλ
×
∫

s

ds
1− (ns − 1) βs

. (8)

In the standard New Keynesian model with monopolistic competition and CES
demand, the half-life of the price level following a monetary shock (up to a factor
ln 2) is simply 1/λ (as in Woodford 2003).9 Suppose that sectors only differ in the
number of firms, that is, all sectors with n firms feature the same demand function.
Then if νn is the mass of sectors with n firms, the half-life of the aggregate price level
in the oligopolistic model is

hl =
1
λ
×∑

n

νn

1− (n− 1) βn
.

A higher average slope across sectors implies a slower convergence of the price level
P (t) to its new steady state, and larger real effects of monetary policy. If (n− 1) βn

is low on average, then firms in each sector will reset prices close to the new steady
state when given a chance, speeding up the convergence.

9With more general demand structures, for instance Kimball demand, the half-life can depart
from 1/λ even under monopolistic competition, see Proposition 7 below.
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Combining the results from Propositions 1 and 3, we know the response of the
aggregate price level and thus of output to a permanent monetary shock as a func-
tion of the distribution of three steady state statistics: markups, demand elasticities
and industry concentration. If we can observe or estimate these sufficient statistics
and how they evolve over time, for instance following trends in market power, then
it is not necessary to solve the full MPE to analyze how the real effects of monetary
policy evolve.

For instance, our formula tells us that all else equal, higher observed markups
imply higher (unobserved) slopes (n− 1) βn. However, this is only true when fix-
ing the demand elasticity, and if instead higher markups reflect a decline in the
elasticity of substitution between competing varieties, then higher markups may
be associated with lower slopes instead, as we illustrate in section 5.2. Similarly,
an increase in market concentration, captured by a fall in the number of firms n,
would also increase monetary non-neutrality holding markups and demand elastic-
ities unchanged. But equilibrium markups and elasticities are likely to be affected
by concentration, so our analysis highlights that it is crucial to understand where
observed markups come from to understand monetary policy transmission.

4.2 Within-Sector Heterogeneity

We now allow for permanent heterogeneity within sectors. Much of the menu-cost
literature (e.g., Midrigan 2011, Alvarez and Lippi (2014)) assumes for tractability
that there are within-sector demand shocks offsetting perfectly the productivity dif-
ferences between firms, so as to keep market shares the same. Under this assump-
tion, the model is isomorphic to one with homogeneous firms once we replace prices
with markups.

Without these perfectly correlated demand and cost shocks, more productive or
demanded firms have a larger market share, and this creates differences in residual
demand elasticities as in Atkeson and Burstein (2008), to which we come back in
detail in section 5.3.

In general, computing the slopes ∂gi
∂pj

once we allow for heterogeneity requires a
more structural approach like the one in section (5). However, in the special case of
n = 2 firms, our sufficient statistic formula can be adapted to arbitrary heterogeneity
stemming from cost or demand differences:
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Proposition 4. Consider a sector with two firms i = a, b, that can have different demand
functions di and different marginal costs MCi. Then the slopes of the reaction functions
βa = ∂ga

∂pb
and βb = ∂gb

∂pa
around the steady state ( p̄a, p̄b) are functions of steady state

sufficient statistics:

βi =
λ + ρ

λ

−ε
j
j −

p̄i
p̄j−MCj

ε
j
i

where εi
k =

∂ log di

∂ log pk
.

All else equal, firm j’s high price can now be justified by either its rival i’s high
slope βi as before, or by its rival’s high price. The case of two firms allows us to cap-
ture any Herfindahl-Hirschman Index (HHI) between 1/2 and 1; with more sym-
metric firms we can also obtain HHIs of 1/3, 1/4, and so on. In the case of n ≥ 3
heterogeneous firms, we cannot back out the slopes from the steady state prices.
Intuitively, the system is underdetermined because there are multiple ways to gen-
erate the same steady state prices.

Given the slopes βi (whether they are given by Proposition 4 or computed in
the full model solution), we can aggregate the stochastic dynamics in each sector
to obtain deterministic aggregate dynamics of the price level as before. While the
general case presents no particular difficulty, most of the insights can be gleaned by
assuming again that there are two firms a and b:

Proposition 5. Suppose there are two heterogeneous firms a and b in each sector. The
aggregate price index evolves to first order in δ as

log P(t)− log P̄ = −δ

 1− Sa√
pb
pa

βa
− Sa√

pa
pb

βb


√

pb
pa

βa −
√

pa
pb

βb

2

 eµ+t

− δ

 1− Sa√
pb
pa

βa
+

Sa√
pa
pb

βb


√

pb
pa

βa +
√

pa
pb

βb

2

 eµ−t.

where
µ+ = −λ

(
1 +

√
βaβb

)
, µ− = −λ

(
1−

√
βaβb

)
and Sa is the steady state market share of firm a.
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Figure 2: βa and βb as a function of firm a’s market share Sa. The half-life of the
heterogeneous economy is 1

λ(1−β̄)
, where the dashed black line shows β̄.

Figure 2 shows how βa, βb respond to permanent multiplicative demand shocks,
once we solve the model as in section 5 below. Heterogeneity does not make a
substantial difference at the aggregate level, as shown by the relatively flat black
dashed line β̄ that gives the equivalent half-life with symmetric firms. The reason is
that there are two offsetting forces. As heterogeneity increases, firm a with a larger
market share responds more strongly to firm b’s price while firm b becomes less
responsive, consistent with the patterns documented by Amiti et al. (2019). This

spread in β decreases the dominant eigenvalue µ− due to the concavity of
√

βaβb.
However, the aggregate (sales-weighted) price index also puts more weight on firm
a’s price, which is “more sticky”, as firm a will not adjust by much if it gets to change
its price first.

5 The Effects of Rising Concentration and other Com-

parative Statics

The sufficient static approach from the previous question answers the question:
given the observed markups, concentration and demand elasticities, how is price
stickiness affected?

In this section we seek to answer how stickiness would change when market
concentration and other observables change. To do so, we take a more structural
approach: instead of using the observed equilibrium markup as a sufficient statis-
tic, we seek to solve for these variables given target elasticities. This allows us to
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perform counterfactual analyses, and investigate in depth which factors cause the
oligopolistic model to depart from the standard monopolistic model. We are partic-
ularly interested in the effect of a change in market concentration, captured by the
number of firms n, as it is likely to affect both the markup and the residual demand
elasticity that enter formula (4).

From now on, we assume that within-sector aggregation Hs follows Kimball
preferences: sectoral consumption Cs is the unique solution to

1
ns

∑
i∈Is

φs

(
ci,s

Cs

)
= 1 (9)

for some increasing, concave, function φs such that φs (1) = 1. An important bench-
mark is the case where φs is a power function, in which case we obtain the standard

CES aggregator across firms, i.e. Cs =
(

1
ns

∑i∈Is c
1− 1

η

i,s

) 1
1− 1

η .

5.1 Methodology

In general, solving for the steady state markup requires solving the full MPE. Since
we want a solution for any number of firms, the state space can become very large.
Indeed, the IO literature also acknowledges this challenge and employs approx-
imate solution concepts such as “oblivious equilibria” (Weintraub, Benkard and
Van Roy, 2008) Here we avoid the computational burden by approximating con-
sumer’s utility in a way that generates an equilibrium that we can solve analyti-
cally. Crucially, our approximation leaves enough degrees of freedom to flexibly
parametrize the elasticities of the demand system that can be estimated in practice.

Our construction is detailed in Appendix F, and the main idea is as follows. Our
earlier sufficient statistic result stems from manipulating the envelope condition ap-
plied to the Bellman equation (40) to get rid of derivatives of the value function.
The outcome is equation (3) that relates the steady state markup, the elasticity εi

i,
and the first derivative g′ of the equilibrium strategy. Differentiating (40) further
with respect to all its arguments will generate more such equations, that now relate
the derivatives g′, g′′, and so on, to the steady state markup, demand elasticity εi

i,
superelasticity εi

ii, and so on. If we keep iterating, we obtain an infinite system of
equations, and the standard interpretation treats the sequence of derivatives of g as
unknowns, and the sequence of higher-order elasticities (all evaluated at the steady
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state) as parameters. Instead, we take the view that it is empirically impossible to
know such fine properties of demand functions, since we can only estimate a finite
number of elasticities. Acknowledging this limitation, we take a dual view of the
infinite system of envelope equations: we treat higher order elasticities as flexible
unknowns that can be perturbed to achieve some desired properties of the deriva-
tives of g. In particular, we seek to simplify the characterization of equilibrium by
making g locally polynomial, meaning that all its derivatives higher than an arbi-
trary order vanish when evaluated at the steady state.

Formally, denote ε(k) is the kth-own-superelasticity evaluated at a symmetric p̄,
i.e.,

ε(1) =
∂ log di (p)

∂ log pi
, ε(k) =

∂ε(k−1) (p)
∂ log pi

∀k ≥ 2.

Proposition 6. For any order of approximation m ≥ 1 and target elasticities
(

ε(1), . . . , ε(m)

)
,

there exist Kimball within-sector preferences φ̃ such that

(i) the resulting elasticities up to order m match the target elasticities, and

(ii) any MPE of the game with within-sector preferences φ̃, strategy g̃ and steady state p̃
satisfies g̃(k) ( p̃) = 0 for k ≥ m.

Remark 4. Our approximation relates to the algorithm used in Krusell, Kuruscu
and Smith (2002) and later called “Taylor projection” by Levintal (2018). Krusell et
al. (2002)’s idea is to fix the parameters and approximate the unknown policy and
value functions by polynomials of order m. Instead, we take the view that we lack
reliable estimates of higher order elasticities that are taken as inputs to parametrize
the game, and show that we can take them as unknowns instead of parameters in the
infinite system of equations, while still matching the target elasticities up to order
m.

In the remainder of the paper we will apply Proposition 6 in the case m = 2,
which makes the game linear-quadratic.10 For given elasticity εi

i and superelasticity
εi

ii, we solve for the steady state price p̄ and slope β = ∂gi
∂pj

given a locally linear
equilibrium.

10In a microeconomic context, Jun and Vives (2004) studied a linear-quadratic dynamic duopoly
with Bertrand and Cournot competition and quadratic adjustment costs in prices and quantities,
focusing on how dynamics can amplify or reverse static strategic complementarities.
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Corollary 1. In a locally linear equilibrium (m = 2), p̄ and β solve the system of two
equations:

β =
(λ + ρ)Πi

i ( p̄)
λ(n− 2)Πi

i ( p̄)− λ(n− 1)Πi
j ( p̄)

0 = Aii (β)Πi
ii ( p̄) + Aij (β)Πi

ij ( p̄) + Ajj (β)Πi
jj ( p̄) + Ajk (β)Πi

jk ( p̄)

where Aii, Aij, Ajj, Ajk are given by system (39) in Appendix G.

Parametrizing the Two Dimensions of Demand. In what follows, we use Klenow
and Willis (2016)’s functional form for the Kimball aggregator φs, which is simpler
to define through its derivative

φ′s(x) =
η − 1

η
exp

(
1− xθ/η

θ

)
. (10)

η and θ control the elasticity and the superelasticity of demand, respectively: in the
limit of monopolistic competition n → ∞, the demand own-elasticity εi

i converges

to−η and the ratio εi
ii

εi
i
, named the “superelasticity” of demand by Klenow and Willis

(2016), converges to θ. The limit θ → 0 corresponds to a standard CES demand with

φs (x) = x
η−1

η .
With finite n, the perceived elasticities also depend on n because firms face a

residual demand that depends on the number of rivals they have, as is well known
in the CES case studied by Atkeson and Burstein (2008). We generalize the CES
expressions for perceived elasticities as a function of n to any Kimball aggregator in
Appendix E, and also derive new expressions for the perceived superelasticities. In
particular, with the functional form (10) we have:11

εi
i =

∂ log di

∂ log pi
= −η +

η − 1
n

(11)

εi
ii =

∂2 log di

∂ log p2
i
= −n− 1

n2

[
(η − 1)2 + (n− 2)θη

]
. (12)

These expressions imply a precise dependence on n for the elasticities εi
i, εi

ii, but

11Recall that we set ω = 1; otherwise residual elasticities would be weighted averages of inner and
outer elasticities, for instance εi

i = −
[

n−1
n η + 1

n ω
]

which specializes to (11) with ω = 1.
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they stem from parametric assumptions made for tractability that have no partic-
ular empirical grounding. In section 5.3 we turn to a more general non-parametric
model that controls the superelasticity εi

ii (n) directly (which is isomorphic to letting
θ depend on n in (12)) to match the heterogeneity in idiosyncratic cost pass-through
observed in the data.

5.2 Preferences

We first consider changes in steady state markups driven by preferences, holding
market concentration (i.e., the number of firms n) fixed.

Changes in the Elasticity of Substitution η. We first highlight the importance of
allowing for more than two firms in each sector. The duopoly model is a knife-edge
case, because in sectors with only two firms, the steady state markup and the de-
mand elasticity are related one-to-one, making it sufficient to know a single statistic,
the markup, to infer the half-life of monetary shocks. In other words, CES demand
systems are without loss of generality within the class of Kimball aggregators in the
case n = 2, as can be seen from expression (12) (or equation (32) in Appendix E for
a non-parametric formulation). When n is above 2, however, CES demand is not
without loss, and knowing the markup is not enough to infer the slope: we also
need information on demand elasticities.

To illustrate this point, consider Figure 10, which shows the half-life as a function
of the steady state markup. Variation in markups is produced through variation in
the parameter η that captures the within-sector elasticity of substitution; higher η

implies lower markups. When n = 2, the value of the superelasticity parameter θ

does not matter, and we have a negative relation between the markup and the half-
life. This pattern is also present in the duopoly model with menu costs of Mongey
(2018). However, as soon as there are at least n = 3 firms, there is a crucial inter-
action between θ and η. When θ = 0 (CES), we have the same negative relation as
in the duopoly case, but with a high enough value of θ, the half-life becomes nega-
tively related to the steady state markup. We will provide an intuition behind this
fact in section 6.

Changes in the Superelasticity Parameter θ. A crucial difference between our
framework and a monopolistically competitive economy is that the superelasticity
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parameter θ can generate variations in the steady state markup µ̄ while keeping η

and hence the demand elasticity (11) constant. Note that such an experiment that
varies the markup while fixing the demand elasticity is impossible with a duopoly,
as θ becomes irrelevant in (12) when n = 2.

Figure 11 shows an example with the minimal number of firms n = 3 that al-
lows θ to affect the steady state markup. The left panel shows that as θ increases,
the markup under dynamic oligopoly rises. Multiple factors determine equilibrium
markups, so variation in θ is the most transparent way to apply our formula (4),
as in that case a higher markup unambiguously implies a larger half-life, as on
the right panel. In a model with monopolistic competition and Kimball (1995) de-
mand, θ would also increase non-neutrality through complementarities in pricing,
but would have no effect on the markup, hence markups would be uninformative
about the strength of monetary policy. The link between markups and pass-through
is a crucial difference between monopolistic models with variable markups and our
oligopoly model. In the next sections, we will build on this distinction to calibrate
the model to cost pass-through data and then define a precise notion of dynamic
strategic complementarities under oligopoly.

5.3 Market Concentration

We now turn to our main counterfactual exercise, in which we study how changes
in market concentration (the number of firms n in a sector) affect the transmission of
monetary policy. If we knew how our sufficient statistics changed with n, we could
just plug them into (4) and it would not be necessary to solve the model further. Ab-
sent this information, we need to make assumptions on how these statistics depend
on n, for instance by taking a stand on what parameters to keep fixed when chang-
ing n. We start by holding “preferences” fixed, and exogenously shifting the number
of firms and varieties. We then explore an alternative, using available evidence on
pass-through from costs to prices, calibrating these preferences to the number of
firms to match the available evidence.

Exogenous Changes in Number of Firms. We first interpret η and θ in the Klenow
and Willis (2016) functional form (10) as structural parameters that are robust to
changes in the number of firms and varieties. The remaining parameters are de-
scribed in Table 1.
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Table 1: Parameter values.

Parameter Description Value

ρ Annual discount rate 0.05
λ Price changes per year 1
ω Cross-sector elasticity 1
η Within-sector elasticity 10

Higher market concentration in the sense of lower n increases monetary non-
neutrality in the CES case θ = 0. In the duopoly n = 2 case that maximizes the
impact of oligopolistic competition, the half-life under oligopoly is 40% higher than
under monopolistic competition. The amplification decreases rapidly with n, how-
ever: with n = 10 firms it is around 10%. But as the blue line in Figure 3 shows,
for high values of θ that generate strong demand complementarities and thus large
effects of monetary policy under monopolistic competition n → ∞, decreasing the
number of firms in each sector can dampen monetary policy. In theory, this damp-
ening effect can be arbitrarily large: the half-life under monopolistic competition is
unbounded above when θ increases, but the half-life under duopoly is invariant to
θ, and thus always the same as with CES demand. This example shows that there
is no guarantee that oligopolistic competition generates more non-neutrality than
monopolistic competition: the direction of the effect depends on finer properties of
demand systems, in particular how concentration affects the superelasticity of de-
mand. We show below how to infer these properties from available pass-through
estimates.

A Calibration Based on Pass-Through. Previously, we fixed preference parame-
ters and changed the number of firms. We now provide an alternative that recali-
brates other parameters as we change the number of firms. In particular, the shape
of demand is crucial to understand how market structure impacts the transmission
of monetary shocks, which affect all firms at the same time. As Atkeson and Burstein
(2008) emphasized in a static setting, changes in residual demand also link market
structure and the pass-through of own cost shocks, hereafter simply “pass-through”.
We now argue that the most recent and detailed pass-through estimates imply that
market concentration significantly amplifies monetary non-neutrality.12

12Computing counterfactuals necessarily requires assumptions, and this recalibration strategy can
be justified in two ways. First, we can assume that if a sector becomes more concentrated due to its
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Figure 3: Half-life as a function of n for different values θ =
0 (bottom red line), 5, 10, 15 (top blue line), with η = 10.

Amiti et al. (2019) find considerable heterogeneity in pass-through.13 Small firms
behave as under a CES monopolistic competition benchmark, passing through own
marginal cost shocks fully (and thus maintaining a constant markup) while not re-
acting to competitors’ price changes orthogonal to their own cost. Large firms ex-
hibit substantial strategic complementarities: they only pass through around half
of their own cost shocks, thus letting their markup decline to absorb the other
half. Amiti et al. (2019) show that this pattern is consistent with a static model of
oligopolistic competition a la Atkeson and Burstein (2008). Importantly, they argue
that with nested CES demand, Cournot competition can match the degree of hetero-
geneity in pass-through but Bertrand competition cannot. As already remarked by
Krugman (1986) in his seminal paper on pricing-to-market, under the nested CES as-
sumption, Bertrand and Cournot competition both imply qualitatively that the elas-
ticity of residual demand declines with market share, but quantitatively, Bertrand
competition implies only a mild decline relative to Cournot.

We argued above that an increase in concentration (lower n) can dampen or
amplify monetary policy transmission once we depart from nested CES systems.
For the same reasons, in a static oligopolistic model with more general demand,
an increase in market share holding industry concentration fixed could dampen or

firms growing larger, then these firms’ idiosyncratic cost pass-through becomes similar to the pass-
through of large firms currently observed in other sectors. Second, we can assume that aggregate
concentration increases due to concentrated sectors becoming larger in a way that preserves within-
sector demand (and thus pass-through).

13See also Berman, Martin and Mayer (2012), who show that the pass-through of exchange rates to
export prices is lower for larger firms.
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amplify pass-through. Reinterpreting Amiti et al. (2019)’s estimates within our dy-
namic model, we show that the empirical pattern of heterogeneity is consistent with
a large superelasticity for large firms, and a small superelasticity for small firms.
Our results also highlight that the distinction between Cournot and Bertrand is only
meaningful under the CES restriction. With more general preferences, Bertrand
models, which are more common to model price-setting in macroeconomics, can
also match the sharp decline in pass-through.

Rewrite (1) as allowing for permanent cost shocks:

(ρ + nλ)Vi (p, mc) = Πi (p, mci) + λ ∑
j

Vi (gj
(

p−j, mc
)

, p−j, mc
)

(13)

where as usual mc = (mci, mc−i) is the vector of marginal costs. Pass-through,
defined in logs as in the empirical literature, is

α =
ci

pi

∂gi

∂ci

and can be computed following the same envelope arguments as before. It is ac-
tually possible to express α in non-parametric closed form as a function of n, the
markup and the elasticity, just like in our sufficient statistic formula (4) for β; how-
ever the expression is more complex and does not bring particular insight, so we
directly describe the results.

When studying the relation between market share and pass-through, we vary
n and maintain the symmetry assumption, so that the number of firms is the only
source of variation in market share. The results would be very similar with variation
in market share stemming from within-sector heterogeneity instead. Indeed, under
static Bertrand or Cournot competition, market share is a sufficient statistic for pass-
through: a large firm with a given market share passes through its costs to its prices
in the same way whether it faces many small competitors or a few large ones. The
same insight applies quantitatively in the dynamic model: Figure 12 shows that
pass-through as a function of market share is essentially the same, whether varia-
tion in market share comes from varying the number n of symmetric firms, or from
heterogeneity among a fixed number of firms.

Remark 5. Amiti et al. (2019) also provide direct estimates of strategic complemen-
tarities, defined as the coefficient γ of a firm’s price change on its competitors’ price
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change, controlling for own cost change:

∆pit = α∆mcit + γ∆p−it + εit

In a static oligopoly model, the regression coefficient γ corresponds exactly to the
slope of the firm’s best response function. In a dynamic model, however, estimates
γ do not directly reveal the slopes β that enter the transitional dynamics (7), even
when looking at long-run price changes. The discrepancy between γ and β stems
from the fact that competitors’ (current) prices p−i are not a sufficient statistic for
firm i’s reaction gi in the presence of cost shocks: as can be seen in the Bellman
equation (13), competitors’ costs mc−i matter independently for the value Vi, even
though they do not affect the flow profit Πi. Intuitively, competitors’ costs affect
how they will change their own prices p−i in the future, hence enter firm i’s deci-
sion when it gets to reset pi. Viewed through the lens of our model, estimates of
strategic complementarities γ could be used as alternative targets in the calibration.
We use estimates of own cost pass-through α because they are a more widely studied
empirical object.

Results. Figure 4 displays pass-through, computed in the dynamic model, un-
der three specifications for within-sector demand. “AIK” is our baseline calibra-
tion: the superelasticity varies as a function of n through a variable parameter θ (n)
(defined as in (12)) so as to match the relationship between market share and pass-
through in a static Cournot model with η = 10 which, Amiti et al. (2019) argue,
provides a good fit to their Belgian data. In “KW”, θ is fixed at 10 as in Klenow and
Willis (2016) and in standard DSGE calibration such as Smets and Wouters (2007). In
“CES” θ is fixed at 0. In all cases, η equals 10, a common benchmark in the literature
since Atkeson and Burstein (2008).

We hold η fixed to focus the discussion on how pass-through and hence the resid-
ual superelasticity of demand changes with concentration, but there is no reason for
the residual elasticity itself to vary exactly as in (11). Ideally, one would obtain
non-parametric estimates of εi

i (n) and εi
ii (n) from matching jointly the relation of

markups and pass-through with market shares. However, there is no direct coun-
terpart to Amiti et al. (2019), in part because markups are notably harder to estimate
than pass-through. In the model with constant η = 10, going from n = 4 to 5
firms decreases prices by around 2%, which is broadly consistent with the evidence
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Figure 4: Pass-through as a function of market share 1/n. AIK: variable superelas-
ticity to match heterogeneity in pass-through from Amiti et al. (2019). KW: Fixed
θ = 10. CES: Fixed θ = 0. In all cases, η = 10.
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Figure 5: Half-life as a function of number of firms n. AIK: variable superelasticity
to match heterogeneity in pass-through from Amiti et al. (2019). KW: Fixed θ = 10.
CES: Fixed θ = 0. In all cases, η = 10.
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Figure 6: Half-life as a function of average Herfindahl index 1/n under the “AIK”
calibration.

in Atkin, Faber and Gonzalez-Navarro (2018) and Busso and Galiani (2019). Recent
work by Burstein, Carvalho and Grassi (2020) examines the relation between market
shares and markups at the firm and sectoral levels. They find that a linear regres-
sion of the inverse markup against the sectoral HHI yields a coefficient of −0.44. In
our dynamic model, the corresponding coefficient is −0.27 and gets closer to their
estimate than a CES model, which would yield −0.15. Allowing η to increase with
n instead of fixing η = 10 would improve the fit further.

Figure 6 shows that under the calibration consistent with the micro evidence on
pass-through, a rise in national concentration corresponding to an increase in the
average Herfindahl index 1/n from 0.05 to 0.1, reflecting the observed trends since
1990 in e.g. Gutiérrez and Philippon (2017), amplifies the real effects of monetary
policy by around 15%. Rossi-Hansberg et al. (2020), however, argue that rising na-
tional concentration goes hand in hand with an even stronger decline in local con-
centration, as the entry of large firms in local markets increases local competition but
also these firms’ national market share. An interesting open question is then which
level of geographic or economic aggregation (what we call “sectors” s) is most rel-
evant for the competition that determines consumer price inflation. If, for instance,
competition at the county level matters the most and the local HHI has fallen from
0.15 to 0.05, in line with the evidence from Rossi-Hansberg et al. (2020), then our
results would suggest that the half-life of monetary shocks has fallen substantially,
by around 25%.
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5.4 Frequency of Price Changes

Steady State Markups. Another important feature captured by the dynamic oligopoly
model is that the frequency of price changes λ can affect steady state markups and
pass-throughs. Figure 13 shows that markups increase with λ, and more so for low
n. Together with the effect of the superelasticity in section 5.2, this finding con-
firms that equilibrium markups are complex objects that depend on many features
of the environment beyond residual demand elasticities, something that dynamic
monopolistic competition models (n = ∞, 0 < λ ≤ ∞) and static oligopolistic mod-
els (n < ∞, λ = 0) fail to capture. Yet recall that when observed, markups can be
used as sufficient statistic in Proposition 1 exactly because we do not need to know
exactly where they come from.

In the limit λ → 0, the dynamic oligopoly game converges to the static game,
both in terms of steady state markup and reaction function: as prices become in-
finitely sticky, firms play the one-shot best-response, and so the equilibrium is the
static Bertrand-Nash equilibrium. When prices are fully flexible (which could be
viewed as the case λ = ∞), firms play the same static Bertrand-Nash equilibrium
repeatedly at each instant. But surprisingly, the limit of infinitely frequent price
changes λ → ∞ does not equal the frictionless (flexible price) model. This type of
discontinuity in the limit of infinitely flexible prices has been noted in other contexts,
such as quadratic Rotemberg adjustment costs in Jun and Vives (2004).

Heterogeneous Frequency of Price Changes and Monetary Policy Transmission.
The effect of the frequency of price changes on markups and therefore reaction func-
tions is magnified in the presence of sector heterogeneity in λ. Several papers have
documented correlations between frequency of price changes and market structure.
Most recently, Mongey (2018) shows that price changes are less frequent in more
concentrated wholesale markets. Given that market shares and pass-through are
negatively correlated, this fact is also consistent with Gopinath and Itskhoki (2010),
who show price changes are less frequent for goods with a lower long-run exchange
rate pass-through. Models with menu costs such as those proposed in these papers
provide a microfoundation for the effect of concentration on price flexibility. Al-
though our Calvo framework does not endogenize these correlations, interesting
insights still arise from taking these correlations as given, by letting λs in sector s
vary with the number of firms ns and deriving implications for the aggregate effects
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of monetary policy.
We have shown that in our baseline calibration “AIK” defined in section 5.3,

higher concentration increases the half-life for a given frequency of price changes.
For instance, the half-life of the price level in sectors with an effective number of
firms n = 3 is more than twice the average time between price changes. Moreover,
concentration matters a lot if prices do not change frequently (low λ, long price
duration) but it makes little difference if prices are very flexible. Generalizing (8),
the cumulative output effect for a monetary shock of size δ is:

δ

σ
×
{

E
[

1
λs

]
E
[

1
1− (ns − 1) βs

]
+ Cov

(
1
λs

,
1

1− (ns − 1) βs

)}
. (14)

More concentrated sectors feature a higher slope (ns − 1) βs hence if they are also
characterized by a higher price duration 1

λs
, then the term Cov

(
1
λs

, 1
1−(ns−1)βs

)
is

positive, and thus contributes to increases non-neutrality further relative to a case
with homogeneous frequency of price changes across sectors. This amplification
effect is specific to the oligopoly model, and differs from the role of heterogeneity
under monopolistic competition, e.g., in Carvalho (2006) under Calvo pricing or
Nakamura and Steinsson (2010) under menu costs. Even under monopolistic com-
petition and CES demand, the cumulative output effect δ

σ E
[

1
λs

]
is convex in the sec-

toral frequencies {λs}, hence non-neutrality is amplified relative to a homogeneous
economy that matches the average frequency E [λs]. We point out an additional ef-
fect stemming from the empirical positive correlation between concentration and
price duration.

6 Inspecting the Mechanism: Strategic Behavior vs. Atom-

istic Feedback a la Kimball

The presence of a finite number of firms has two distinct effects on competition and
pricing incentives: “feedback effects” capture the fact that each firm cares about its
rivals’ current and future prices when setting its price; “strategic effects” capture
instead the fact that each firm realizes its current pricing decision can affect how its
rivals will set their prices in the future. Feedback effects are what the literature with
monopolistic competition calls strategic complementarities in pricing, that could
arise from variable markups as in our setting, or other channels such as interme-
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diate inputs or decreasing returns in production. The decomposition we propose
is only meaningful under oligopoly, because under monopolistic competition, no
single firm can affect the sectoral price index hence strategic effects are nil.

We disentangle the two effects through the lens of a “non-strategic” model. For
each n, the associated non-strategic model is an economy with monopolistic com-
petition (n = ∞) and modified Kimball preferences that match the residual demand
elasticity and superelasticity of the oligopolistic model with Kimball preferences φ

and n firms.14 The non-strategic model captures all the feedback (which in our con-
text only arises from properties of the demand system), while suppressing strategic
effects thanks to the monopolistic competition assumption.

We compute the half-life h̃l(n) of this non-strategic model, and then define strate-
gic effects in the MPE as the increase in the half-life (relative to 1/λ, the half-life in
the standard New Keynesian model with monopolistic competition and CES de-
mand) not explained by the non-strategic model:

hl (n)
1/λ

=
h̃l (n)
1/λ︸ ︷︷ ︸

feedback effect

× hl (n)
h̃l (n)︸ ︷︷ ︸

strategic effect

.

As n goes to infinity, hl/h̃l goes to 1 and the strategic effect disappears; what is left
is the standard feedback effect that can stem from a Kimball (1995) demand with
positive superelasticity.

6.1 The Non-Strategic Model

The steady state price of the non-strategic model is the static Bertrand-Nash price
pNE, that solves Πi

i
(

pNE) = 0. We look for a symmetric equilibrium where, to first
order, each resetting firm i sets p∗i (t) = β̃ ∑j 6=i pj (t). When it resets, given other
firms’ strategies β̃, firm i chooses p∗i (t) to maximize

Et

[∫ ∞

t
e−(λ+ρ)(s−t)Πi(p∗i (t), p−i(t + s))ds

]
.

14This non-strategic model also has a behavioral interpretation. Suppose that all firms are non-
strategic in the following sense: when resetting their price, they form correct expectations about the
stochastic process governing their competitors’ future prices, but incorrectly assume that their own
price-setting will have no effect on those competitors’ future prices.
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The key difference with the MPE defined by the Bellman equation (1) is that here,
firm i treats the evolution of rivals’ prices as exogenous to its choice p∗i . Define

Γn =
(n− 1)Πij

−Πii

Γn is a measure of static feedback effects: it is the slope of the best response of
a firm to a simultaneous price change by all its competitors in a static Bertrand-
Nash equilibrium. Under static monopolistic competition, Γ∞/ (1− Γ∞) is known
as the markup elasticity (Gopinath and Itskhoki, 2010) (as it measures the elasticity
of a firm’s desired markup to its own relative price) or responsiveness (Berger and
Vavra, 2019). In Appendix D we show the following:

Proposition 7. The half-life of the aggregate price level in the non-strategic equilibrium is

h̃l (n) =
1

λ

(
1−

(
ρ+2λ

2λ

) [
1−

√
1− 4λ(ρ+λ)

(ρ+2λ)2 Γn

]) . (15)

We can reexpress Γn around the Nash markup in terms of the demand elasticities
εi

i =
∂ log di

d log pi
and εi

ii =
∂2 log di

∂ log p2
i

as:

Γn =

εi
ii(n)

εi
i(n)

εi
ii(n)

εi
i(n)
− εi

i (n)− 1
. (16)

In the standard CES case, as n goes to infinity and the model converges to monop-

olistic competition, εi
ii(n)

εi
i(n)

goes to 0 hence h̃l converges to 1/λ. Away from CES, Γ
can converge to a positive limit. With a finite number of firms, even CES demand

implies εi
ii(n)

εi
i(n)

> 0 and thus h̃l > 1/λ.

Comparative Statics. The effect of oligopoly on monetary policy transmission is
transparent in the non-strategic model, as it is entirely captured by Γn that we can
compute in closed form. When Γn > 0, a higher own price leads to more elastic
demand and thus a lower desired markup; this force, known as “Marshall’s second
law of demand”, increases with Γn. In turn, (15) shows that higher Γn increases the
feedback effect.

We can now see that the behavior of Γn plays a large part our earlier findings
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Figure 7: Strategic effect hl(n)/h̃l(n) as a function of n. AIK: variable superelasticity
to match heterogeneity in pass-through from Amiti et al. (2019). KW: Fixed θ = 10.
CES: Fixed θ = 0. In all cases, η = 10.

in section 5.2. Recall that in the Klenow and Willis (2016) specification, εi
i and εi

ii
are given by (11) and (12), respectively. Thus Γn decreases with the elasticity of
substitution η (and thus the observed markup) if and only if

θ <
n

n− 2
× (η − 1)2

1 + (n− 1) η2 ,

which explains why, in Figure 10, the half-life is decreasing in the markup µ̄ under
CES but not when θ is high enough.

Similarly, we can use the non-strategic model to understand how concentration
affects the half-life. As shown numerically in Figure 3, this depends again on the
value of θ. Indeed, feedback Γn is decreasing in n (increasing in concentration) if
and only if

θ <
(η − 1)2

η + 1
.

In theory, insights based on the non-strategic model could fail to be valid in the full
MPE, due to sufficiently strong strategic effects that work in the opposite direction.
But as we show next, we find that strategic effects hl/h̃l are quantitatively modest.
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6.2 Measuring Strategic Effects

While strategic effects are important determinants of steady state markups, as we
saw in Figure 11, we find that quantitatively, they do not explain much of the aggre-
gate response to monetary shocks under oligopoly. Figure 7 displays the strategic ef-
fect, defined as hl(n)/h̃l(n), as n varies. We contrast our baseline calibration “AIK”
with variable superelasticity (defined in section 5.3) with the CES case and a Kimball
demand with fixed θ = 10 “KW” (as in Klenow and Willis 2016). There is an interac-
tion between strategic effects and feedback effects: strategic effects are considerably
stronger in the “AIK” calibration, which features stronger feedback effects as well.
This interaction is intuitive: the only reason a firm acts strategically is that its price
will have a feedback effect on competitors when they get to reset their prices. Yet
in all specifications, strategic effects are negligible as the half-life is always less than
5% higher than the non-strategic half-life. Consistent with their definition, strategic
effects vanish as n grows and the economy approaches monopolistic competition:
they fall below 1% when n exceeds 6.

Overall, our results suggest that oligopolistic competition can significantly am-
plify or dampen the real effects of monetary shocks, but primarily through “feed-
back effects”, that is changes in residual demand elasticities as measured by Γn.
While this implies that a simpler model of oligopolistic that abstracts away from
strategic interactions goes a long way in explaining the economy’s response to mon-
etary shocks, this quantitative conclusion can only be reached after formulating and
solving the fully strategic model. Moreover, in the next section we show that strate-
gic effects can play a much more important role once we generalize the model to
more complex monetary policy experiments.

7 A Three-Equation Oligopolistic New Keynesian Model

We focused so far on the dynamics following a permanent monetary shock, under
the Golosov and Lucas (2007) assumptions (6). In this section we take a step closer to
the New Keynesian framework. We leverage our perturbation argument from sec-
tion 5.1 further, to allow for general preferences as well as non-stationary dynamics.
The main payoff is an oligopolistic Phillips curve that maps any path of future real
marginal cost shocks to current inflation, and can be embedded in a standard DSGE
model once combined with an Euler equation and a monetary policy rule.
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7.1 The Oligopolistic Phillips Curve

Denote k (t) = log MC (t)− log P (t) the log real marginal cost. In Appendix H we
show the following. In this section we denote i (t) the nominal interest rate.

Proposition 8. There exists a q × q matrix A with q ≤ 7 that depends on the steady
state demand elasticities, markup and slope β (described in Appendix H) such that inflation
follows

π (t) =
∫ ∞

0
γk (s) k (t + s) ds +

∫ ∞

0
γc (s) c (t + s) ds +

∫ ∞

0
γi (s) (i (t + s)− ρ) ds

(17)
where for each variable x ∈ {k, c, i}, γx (s) is a linear combination of

{
e−νjs

}q
j=1 with{

νj
}q

j=1 the eigenvalues of A, e.g.,

γk (s) =
q

∑
j=1

γk
j e−νjs

for some constants
{

γk
j

}q

j=1
.

In general q = 7 but under condition (45) in Appendix H, which we assume in
what follows, q can be reduced to 3. Under monopolistic competition, even with
Kimball preferences parametrized by Γ (as in section 6), there is a single eigenvalue
ν1 = ρ instead of three, and γc = γi = 0, and the Phillips curve in integral form is
simply

π (t) =
∫ ∞

0
e−ρs (1− Γ) λ (λ + ρ)︸ ︷︷ ︸

=γk(s)

k (t + s) ds. (18)

The slope of the Phillips curve is usually defined as the coefficient γk (0) that cap-
tures how inflation reacts to current marginal cost. It is equal to λ (λ + ρ) (1− Γ)
under monopolistic competition: higher feedback effects Γ flatten the Phillips curve,
but are isomorphic to a higher degree of stickiness λ.

In the case of oligopolistic competition, inflation is also determined by a weighted
average of future marginal costs, with two important differences. First, there are
multiple eigenvalues. Second, inflation depends on more than future marginal
costs, as the second sum in (17) relates current inflation to future consumption
and nominal interest rates. In the standard New Keynesian model, real marginal
costs capture all the forces that influence price setting. Here, consumption and in-
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Figure 8: γk (s) for n = 3 under the AIK calibration (red, solid), compared to the as-
sociated non-strategic model (red, dashed) and the standard New Keynesian model
with CES monopolistic competition (black).

terest rates have an independent first-order effect because they alter the strategic
complementarities between firms, as in Rotemberg and Saloner (1986). These two
differences imply that oligopoly is not equivalent to a higher stickiness parameter
λ. As with our earlier permanent money supply shocks, we can compare (17) to a
“non-strategic” Phillips curve that corresponds to a monopolistic competitive econ-
omy with Kimball preferences that match the elasticity and superelasticity of the
oligopolistic economy, characterized by (18) with Γ = Γn given in (16).

We can also get an equivalent scalar ordinary high-order differential equation
for inflation:

Corollary 2. Inflation π solves a third-order ODE

3

∑
j=0

γπ
j

djπ (t)
dtj =

2

∑
j=0

(
γk

j
djk (t)

dtj + γc
j
djc (t)

dtj + γi
j
dji (t)

dtj

)
(19)

with weights
{

γπ
j , γk

j , γc
j , γi

j

}
defined in (46) in Appendix H, and boundary conditions

djπ(t)
dtj → 0 as t→ ∞ for all j = 0, 1, 2.

Numerically, it turns out that the oligopolistic Phillips curve (19) is essentially
a second-order ODE. For instance, for n = 3, under the AIK calibration and other
parameters as in Table 1, we have

π̇ = 0.08π − 0.2k + 0.37k̇ + 1.53π̈ + 0.03 (i− ρ) . (20)
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The corresponding non-strategic Phillips curve and the standard CES Phillips curve
under the same parameters are respectively

π̇ = 0.05π − 0.17k, (21)

π̇ = 0.05π − 1.05k. (22)

Relative to (21), the oligopolistic Phillips curve (20) features (i) more discounting, (ii)
inflation persistence in the term 1.53π̈, and (iii) a term that resembles an endogenous
“cost-push” shock

u = −
[
0.37k̇ + 0.03 (i− ρ)

]
. (23)

We study next how these differences can generate significant differences between
the oligopoly model and Kimball monopolistic competition, that is, significant strate-
gic effects.

7.2 Three Equations Model

We can now analyze a three-equation New Keynesian model that combines the
oligopolistic Phillips curve (19) with an Euler equation

ċ = σ−1 (i− π − rn) ,

and a monetary policy rule

i = κρ + (1− κ) rn + φππ + εm,

where rn (t) = ρ + εr (t) is the natural real interest rate and εm (t) is a monetary
shock. For simplicity, agents have perfect foresight over the shocks εr, εm.

Calibration. Wages are flexible, technology is linear in labor Y = ` and house-
holds have preferences C1−σ

1−σ −
`1+ψ

1+ψ , hence k = (ψ + σ) c. We set standard values of
σ−1 = 1 for the elasticity of intertemporal substitution (as in our monetary shock
experiments), ψ−1 = 0.5 for the Frisch elasticity of labor supply, and φπ = 1.5 for
the Taylor rule coefficient on inflation. 1− κ measures how well the central bank is
able to track the natural rate; κ can be thought of as monetary policy inertia. We set
κ = 0.8.
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Figure 9: Impact effect of a εm
0 = −1% monetary shock on consumption c (0) (log-

deviation from steady state) as a function of number of firms n. AIK: variable su-
perelasticity to match heterogeneity in pass-through from Amiti et al. (2019). KW:
Fixed θ = 10. CES: Fixed θ = 0. In all cases, η = 10.

One-time Shocks. Consider first geometrically decaying unanticipated shocks

εm (t) = εm
0 e−ξt, εr (t) = εr

0e−ξt

with the same decay ξ (a particular case being only one type of shock). It is a
standard result in the literature (Woodford, 2003) that under monopolistic compe-
tition, all the equilibrium variables are proportional to e−ξt. The same applies to
the oligopolistic model, hence all the differences between economies are summa-
rized by the impact effect, e.g. c (t) = c (0) e−ξt and the cumulative output effect is
c (0) /ξ. This contrasts with the case of permanent money supply shocks, for which
impact effects were common to all economies and differences were summarized by
the half-life.

Figure 9 displays the impact effect on consumption c (0) for a 100 bps mone-
tary shock εm

0 = −0.01 with ξ = 1. The message is consistent with what we found
for permanent shocks to the money supply: concentration amplifies monetary non-
neutrality by a significant amount. As Figure 14 shows, a large part of the amplifica-
tion can again be explained by feedback effects. Denoting c̃ (0) the initial consump-
tion jump in the monopolistic Kimball economy calibrated to match the parameter
Γn for each n, we find that c (0) is actually lower than c̃ (0) (so that “strategic effects”
are not amplifying) and can deviate from c̃ (0) by around 5% when n = 3.
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More General Shocks. The one-time shocks are not without loss of generality. For
instance, the common exponential decay leaves no room for the endogenous cost-
push shocks (23) to generate different inflation persistence across models.

Once we allow for a more general process for shocks, there are also meaningful
differences between the oligopolistic economy and the non-strategic economy. Con-
sider for instance paths for real and monetary shocks generated from an Ornstein-
Uhlenbeck process (a continuous-time version of AR(1) processes)

dε = −aε + σdZ

where Z in a standard Brownian motion, and a, σr > 0 parametrize the speed of
mean-reversion and variance of the shocks, respectively.15 We set a = 0.3, σr = 0.01.
Note that we are still assuming perfect foresight about the path, as in the case of
exponentially decaying shocks. Here we see that the standard deviations of infla-
tion and consumption are smaller in the oligopolistic model than in the correspond-
ing non-strategic model. The higher-order terms in the oligopolistic Phillips curve
smooth out the path for inflation, which in turn makes the real rate and consump-
tion less volatile. This example demonstrates that the strong equivalence between
oligopoly and Kimball economies that we observe in the case of the literature’s
benchmark shocks (permanent money supply shocks and exponentially decaying
interest rate shocks) does not necessarily transpose to more general processes.

8 Conclusion

In this paper, we studied how oligopolistic competition affects monetary policy
transmission. We derived a closed-form formula for the response of aggregate out-
put to monetary shocks as a function of three measurable sufficient statistics: de-
mand elasticities, market concentration, and markups. Under our calibration, oligopolis-
tic competition amplifies monetary non-neutrality, but, in the case of the standard
shocks to money supply or interest rates studied in the literature, the response ap-
proximates a monopolistic competition model with Kimball demand that matches
the residual demand elasticity and superelasticity of the oligopolistic model.

This does not imply, however, that oligopoly is isomorphic to monopolistic com-

15Technically we also multiply εr by a very slow exponential decay to ensure that the economy
converges towards the deterministic steady state as t→ ∞.
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Table 2: Standard deviations of inflation and consumption.

Number
of firms

n

Model Std. dev. of π (%) Std. dev. of c (%)

εr εm εr εm

∞ Standard NK (CES) 2.2 2.7 0.8 1.0

∞ Klenow-Willis θ = 10 2.0 2.4 1.0 1.3

3 MPE 1.3 1.6 0.8 1.0
Non-strategic 1.8 2.2 1.4 1.8

10 MPE 2.2 2.8 1.1 1.4
Non-strategic 2.6 3.2 1.3 1.7

25 MPE 2.7 3.3 1.1 1.4
Non-strategic 2.8 3.5 1.2 1.5

petition. First, a unique prediction of our model is the link between markups and
subtle properties of demand functions such as superelasticities. Under monopolistic
competition, superelasticities affect cost pass-through and thus monetary policy, but
are irrelevant for markups. Under oligopolistic competition, higher superelasticities
raise both markups and cost pass-through. Other factors, such as the frequency of
price changes, also affect markups and pass-through: we discuss new implications
for the role of sectoral heterogeneity in the transmission of monetary policy. Second,
in the context of our three-equations oligopolistic New Keynesian model that allows
for more general shocks and non-stationary dynamics, we find that the oligopolistic
model can depart significantly from the recalibrated monopolistic model. In par-
ticular, the oligopolistic Phillips curve features a form of endogenous inflation per-
sistence (or equivalently, endogenous cost-push shocks) that does not matter with
standard shocks, but plays a role once we allow for richer dynamics.

Our calibration relies on estimates of exchange rate pass-through, as we believe
they are the most relevant sources of information when studying strategic interac-
tions. In the menu costs literature, it is more common to target moments of the
distribution of price changes. The open economy literature on pass-through and
the closed economy monetary literature have thus evolved mostly in parallel, with
different conclusions regarding the strength of strategic complementarities in pric-
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ing. Our framework provides a natural way to reconcile these two strands: larger
firms have more market power, only pass through a fraction of their idiosyncratic
shocks, but drive most of the aggregate price stickiness. An interesting avenue for
future empirical work would be to analyze how the distribution of price changes
itself depends on firm size and market share.
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A Additional Figures
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Figure 10: Half-life as a function of resulting steady state markup when η varies.
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Figure 11: Markup and half-life when θ varies in a model with n = 3 and η = 10.
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Figure 12: Pass-through as a function of market share under CES. Black line: market
share varies through the number n = 2, 3, . . . of symmetric firms (black). Gray
dashed line: market share varies through heterogeneity in productivity among a
fixed number n = 4 of firms.
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Figure 13: Steady state markup as a function of frequency of price changes λ.
Dashed lines: static Bertrand-Nash equilibrium markups.
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Figure 14: Impact effect of a εm
0 = −1% monetary shock on consumption relative

to non-strategic model c (0) /c̃ (0) as a function of number of firms n under AIK
calibration.
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B Stationary Dynamics after a Permanent M shock

If the consumer maximizes∫
e−ρt

[
C(t)1−σ

1− σ
− N(t)1+ψ

1 + ψ
+

m(t)1−χ

1− χ

]
dt

we have

˙C(t)
C(t)

=
1
σ
(i(t)− π(t)− ρ)

N(t)ψC(t)σ =
W(t)
P(t)

⇒ ψ
˙N(t)

N(t)
=

˙W(t)
W(t)

− i(t) + ρ

M(t)−χP(t)χC(t)σ = i(t)

We look for an equilibrium with constant nominal interest rate i(t) = i and nominal
wage W (t) = W following a permanent shock to M. Suppose ψ = 0 then we get

˙W(t)
W(t)

= i− ρ

To get constant wage W(t) = W we need i = ρ (this is necessary, otherwise we
would get permanent wage inflation). The constant wage implies

P(t)C(t)σ = W

Then the third equation gives

ρMχ = P(t)χC(t)σ

So we need χ = 1 for our guess to be indeed an equilibrium.
The representative consumer’s expenditure in sector s at time t is

Es(t) = Ps(t)1−ω [C(t)P(t)ω]

where P(t) is the aggregate price level
(∫

s Ps(t)1−ωds
) 1

1−ω hence the real demand
vector in sector s is (given our within-sector CRS assumption as in Kimball)

D
({

pj,s(t)
}

, Es(t)
)
= D

({
pj,s(t)

}
, 1
)

Ps(t)1−ωC(t)P(t)ω

53



where Ps is the sectoral price index.Denote the function of prices in sector s only

d
({

pj,s
})

= D
({

pj,s
}

, 1
)

Ps
1−ω

The nominal profit of firm i in sector s given all the other prices in the economy is

di (pi,s, p−i,s)C(t)P(t)ω
[

pi,s −MCi(t)
]

where p−i,s =
{

pj,s
}

j 6=i. Thus the real profit is

di (pi,s, p−i,s)C(t)P(t)ω−1
[

pi,s −MCi(t)
]

Firm i maximizes the present discounted value of real profits using Arrow-Debreu
SDF, that is ∫

e−ρtC(t)−σdi (pi,s, p−i,s)C(t)P(t)ω−1
[

pi,s −MCi(t)
]

=
∫

e−ρtdi (pi,s, p−i,s)C(t)1−σP(t)ω−1
[

pi,s −MCi(t)
]

so with σ = 1 and ω = 1, firms can ignore the behavior of aggregate variables P(t)
and C(t).

With general σ (but linear disutility of labor and log-utility of real balances, that
are needed to obtain constant nominal interest rate and wage) we have that

P(t)C(t)σ = W = constant

Therefore the demand shifter becomes

C(t)1−σP(t)ω−1 =
C(t)P(t)ω

W
= W

1
σ−1P(t)ω− 1

σ

so we need
ωσ = 1

for firms to ignore the behavior of aggregate variables during the transition to the
new steady state.
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C Aggregation

C.1 Homogeneous Firms

Fix n and a sector s ∈ [0, 1]. Define the state vs(t) as

vs = (z1, . . . , zn)
′

where zi = pi− p̄ (prices are in log). Denote first-order expansions of best responses
by p′i = α + β

(
∑j 6=i pj

)
or equivalently z′i = β

(
∑j 6=i zj

)
. When firm i adjusts its

price, the state of sector s changes to v′s(t) = Mivs(t) where Mi is the identity matrix
except for row i which is equal to (β, . . . , β, 0

↑
i

, β, . . . , β).

Define the aggregate state variable

V(t) =
∫

s∈[0,1]
vs(t)ds ∈ Rn

Between t and t + ∆t, a mass nλ∆t of firms adjusts prices so V evolves as

V(t + ∆t) = (1− nλ∆t)V(t) +
∫

a firm in s adjusts
vs(t + ∆t)ds

= (1− nλ∆t)V(t) + (λn∆t)∑i Mi

n
V(t)

therefore in the limit ∆t→ 0

V̇t = nλ

(
∑i Mi

n
− In

)
Vt

where

∑i Mi

n
− In =


−1
n

β
n · · · β

n
β
n

−1
n · · · β

n
...

... . . . ...
β
n

β
n · · · −1

n


The aggregate price level is then, to first order, log P(t) = LVt + p̄ where L =
1
n (1, . . . , 1). The eigenvalues of nλ

(
∑i Mi

n − In

)
are:

• µ1(n) = −λ(1 + β(n)) with multiplicity n− 1,

• µ2(n) = −λ[1− (n− 1)β(n)] with multiplicity 1.
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The vector (1, . . . , 1)′ is an eigenvector of µ2(n), so if we start from symmetric initial
conditions

V(0) = (p0 − p̄, . . . , p0 − p̄)

we have
V(t) = V(0)eµ2(n)t

hence, to first order,

log P(t) = log P̄ + (log P (0)− log P̄) eµ2(n)t.

With heterogeneous sectors s differing in the number of firms ns (and potentially the
frequency of price adjustment captured by λs) we can just use the previous steps for
each positive mass ωn of sectors with n firms and aggregate to

log P(t) = log P̄ + (log P (0)− log P̄)∑
n

ωneµ2(n)t.

C.2 Heterogeneous Firms

Suppose there are two types of firms a and b with na + nb = n. In general, we need
to solve for four steady state objects:

gi,a
ja , gi,a

jb
, gi,b

ja , gi,b
jb

Firms of type a’s Bellman equation is

(ρ + nλ)Vi,a (p) = Πi,a (p) + λVi,a
(

gi,a (p−i) , p−i

)
+ λ

{
∑
j∈A

Vi,a
(

gj,a (p−j
)

, p−j

)
+ ∑

j∈B
Vi,a

(
gj,b (p−j

)
, p−j

)}

and similarly for firms of type b. The envelope conditions evaluated at a symmetric
steady state pa, pb for firms of type a are

(ρ + nλ)Vi,a
i

= Πi,a
i
+ λ ∑

j 6=i

[
Vi

i
(gj(p−j), p−j) + Vi

j
(gj(p−j), p−j)gj

i(p−j)
]

0 = Πi,a
i
+ λ (na − 1)

[
Vi,a

i + Vi,a
ja gj,a

ia

]
+ λnb

[
Vi,a

i + Vi,a
jb

gj,b
ia

]
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(ρ + nλ)Vi,a
ka

= Πi,a
ka
+ λ ∑

j 6=ka

[
Vi,a

pj
(gj(p−j), p−j)

∂gj

∂pk
+ Vi,a

pk
(gj(p−j), p−j)

]
∀k 6= i

= Πi,a
ka
+ λ (na − 2)

[
Vi,a

ja gj,a
ka

+ Vi,a
ka

]
+ λ

[
Vi,a

ia
gi,a

ka
+ Vi,a

ka

]
+ λnb

[
Vi,a

jb
gj,b

ka
+ Vi,a

ka

]
(ρ + nλ)Vi,a

kb
= Πi,a

kb
+ λ ∑

j 6=kb

[
Vi,a

pj
(gj(p−j), p−j)

∂gj

∂pk
+ Vi,a

pk
(gj(p−j), p−j)

]
∀k 6= i

= Πi,a
kb
+ λ (na − 1)

[
Vi,a

ja gj,a
kb

+ Vi,a
kb

]
+ λ

[
Vi,a

ia
gi,a

kb
+ Vi,a

kb

]
+ λ (nb − 1)

[
Vi,a

jb
gj,b

kb
+ Vi,a

kb

]
hence by symmetry and using the FOC Vi

i = 0 we have:

(ρ + λ)Vi,a
ja = Πi,a

ja + λ (na − 2)Vi,a
ja gi,a

ja + λnbVi,a
jb

gi,b
ja

(ρ + λ)Vi,a
jb

= Πi,a
jb
+ λ (na − 1)Vi,a

ja gi,a
jb
+ λ (nb − 1)Vi,a

jb
gi,b

jb

and the equivalent equations for b:

(ρ + λ)Vi,b
jb

= Πi,b
jb
+ λ (nb − 2)Vi,b

jb
gi,b

jb
+ λnaVi,b

ja gi,a
jb

(ρ + λ)Vi,b
ja = Πi,b

ja + λ (nb − 1)Vi,b
jb

gi,b
ja + λ (na − 1)Vi,b

ja gi,a
ja

This is a linear system of 4 equations in 4 unknowns
{

Vi,a
ja , Vi,a

jb
, Vi,b

ja , Vi,b
jb

}
; we can

then inject the solutions into

0 = Πi,a
i
+ λ (na − 1)Vi,a

ja gi,a
ja + λnbVi,a

jb
gj,b

ia

0 = Πi,b
i
+ λ (nb − 1)Vi,b

jb
gi,b

jb
+ λnaVi,b

ja gj,a
ib

In general, we cannot solve for the slopes as functions of steady state elasticities.
However, when na = nb = 1, we obtain the formulas in Proposition 4. Then

0 = Πi,a
i
+ λ

Πi,a
jb

ρ + λ
gj,b

ia

which leads to Proposition 4 after simplifying

−Πi,a
i

Πi,a
jb

= −
di,a

i (pa −MCa) + di,a

di,a
b (pa −MCa)

=
1
εa

b

[
−εa

a −
pb

pa −MCa

]
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As before, V (t) =
∫

s∈[0,1] vs(t)ds follows

V̇ (t) = λ

(
−1 pb

pa
βa

pa
pb

βb −1

)
V (t) .

The two eigenvalues are µ+ = −λ

(
1 +

√
βaβb

)
and µ− = −λ

(
1−

√
βaβb

)
.

Hence the solution is

V (t) =

√
pb
pa

βa
(

pb (0)− p∗b
)
−
√

pa
pb

βb (pa (0)− p∗a)

2

 −1√
βb

1√
pb
pa βa

 eµ+t

+

√
pa
pb

βb (pa (0)− p∗a) +
√

pb
pa

βa
(

pb (0)− p∗b
)

2


1√
pa
pb

βb

1√
pb
pa βa

 eµ−t

hence (supposing the economy only features such sectors)

log P(t)− log P̄
log P (0)− log P̄

=

 1− Sa√
pb
pa

βa
− Sa√

pa
pb

βb


√

pb
pa

βa −
√

pa
pb

βb

2

 eµ+t

+

 1− Sa√
pb
pa

βa
+

Sa√
pa
pb

βb


√

pb
pa

βa +
√

pa
pb

βb

2

 eµ−t.

where Sa is the steady state market share of type a firms.

D Non-Strategic Model

The quadratic approximation of profit Πi of firm i around the non-strategic steady
state which is the static Nash pNE writes (in log deviations)

πi(pi, Qi, Ri) = BQi + CQ2
i + DpiQi + Ep2

i + FRi

where
Qi = ∑

j 6=i
pj

Ri = ∑
j 6=i

p2
j
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There is no term Api because we are approximate around the Nash price pNE(n)
where Πi

i = 0 for all i. The most important coefficients D and E are

D = Πij

(
pNE(n)

)
E =

Πii

2

(
pNE(n)

)
We look for a symmetric equilibrium where each resetting firm j sets

p∗j (t) = βQj(t)

Then between s and s + ∆s we have

EtQi(s + ∆s) = (1− (n− 1)λ∆) EtQi(s) + λ∆Et ∑
j 6=i

[
Qi(s)− pj(s) + βQj(s)

]
hence taking the limit ∆s→ 0

d
ds

EtQi(s) = λ

{
β ∑

j 6=i
EtQj(s)− EtQi(s)

}

thus the variable Z(s) = ∑i EtQi(s) follows

d
ds

Z(s) = −λ [1− β(n− 1)] Z(s)

Therefore, by symmetry

EtQi(s) = Qi(t)e−λ[1−β(n−1)](s−t)

When it resets, firm i chooses p∗i (t) such that

max
p∗i (t)

Et

[∫ ∞

t
e−(λ+ρ)(s−t)πi(p∗i (t), Qi(t + s), Ri(t + s))ds

]
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The FOC is

p∗i (t) = −
∫ ∞

t e−(λ+ρ)(s−t)DEt [Qi(s)] ds∫ ∞
t e−(λ+ρ)s2Eds

= −

∫ ∞
t e−(λ+ρ)(s−t)

(
DQi(t)e−λ(1−(n−1)β)(s−t)

)
ds∫ ∞

t e−(λ+ρ)(s−t)2Eds

= − D(λ + ρ)

2E [λ + ρ + λ(1− (n− 1)β)]
Qi(t)

So we need

(n− 1)β =

(
(n− 1)D
−2E

)
1

1 + λ
ρ+λ [1− (n− 1)β]

=

(
(n− 1)Πij

−Πii

)
1

1 + λ
ρ+λ [1− (n− 1)β]

Note that in a static model, the ratio
(n−1)Πij
−Πii

would be the slope of the static best
response to a simultaneous price change by all firms j 6= i and we need it to be
strictly lower than 1 for a static symmetric Nash equilibrium to exist. The slope of
the dynamic non-strategic best response at a stable steady state, if one exists, is al-
ways smaller than the slope of the static best response. Thus we already see a form
of dynamic complementarity. n affects demand functions and hence the level of the
non-strategic steady state, just like it affects the level of the static Nash equilibrium
(they are the same). n also affects profit complementarities (potentially in an inde-
pendent way, away from CES) and thereby the slope of the reaction functions in the
static and dynamic (non-strategic) models. But there is a stable relation between the
two across n, described by the solution below.

The second-order polynomial

X2 −
(

ρ + 2λ

λ

)
X +

(
ρ + λ

λ

)(
(n− 1)D
−2E

)
has a real root if

(n− 1)D
−2E

<
(ρ + 2λ)2

4λ(ρ + λ)
= 1 +

ρ2

4λ(ρ + λ)
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The stable root in (0, 1) can only be

(n− 1)β =

(
ρ + 2λ

2λ

)[
1−

√
1− 4

(
(n− 1)D
−2E

)
λ(ρ + λ)

(ρ + 2λ)2

]

E Demand Elasticities

In what follows recall that we assume an outer elasticity ω = 1. From budget ex-
haustion, for any i and p

ci + ∑
j

pj
∂cj

∂pi
= 0 (24)

Then Slutsky symmetry and constant returns to scale imply

εi
i + ∑

j 6=i
εi

j = −1 (25)

where εi
j =

∂ log ci

∂ log pJ
. At a symmetric price, this becomes

εi
j = −

1 + εi
i

n− 1

so the convergence to Nash holds as long as the own elasticity εi
i is bounded. Call

for any pair j, k

εi
jk =

∂2 log di

∂ log pk∂ log pj

We can differentiate (25) with respect to log pi to get

εi
ii + ∑

j 6=i
εi

ij = 0

hence at a symmetric price,
εi

ii + (n− 1)εi
ij = 0

Differentiating once more the budget constraint with respect to pi

2
∂ci

∂pi
+ ∑

j

∂2cj

∂p2
i
= 0 (26)
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Elasticities and second-derivatives are related by

∂2ci

∂pk∂pj
=

ci

pk pj

[
εi

jk + εi
jε

i
k

]
for any j 6= k

∂2ci

∂p2
j
=

ci

p2
j

[
εi

jj − εi
j +
(

εi
j

)2
]

for any j

At a symmetric price (using ε
j
ii = εi

jj), we have from (26)

εi
jj = εi

j

(
1− εi

j

)
− 1

n− 1

[
εi

ii + εi
i

(
1 + εi

i

)]
(27)

Finally, differentiating (24) with respect to pk for some k 6= i gives

∂ci

∂pk
+

∂ck

∂pi
+ ∑

j 6=i,k
pj

∂2cj

∂pk∂pi
+ pi

∂2ci

∂pk∂pi
+ pk

∂2ck

∂pk∂pi
= 0

and at a symmetric price p

2
p

∂ci

∂pk
+ (n− 2)

∂2ci

∂pk∂pj
+ 2

∂2ci

∂pk∂pi
= 0

Therefore, in elasticities at a symmetric price,

2εi
j + (n− 2)

[
εi

jk +
(

εi
j

)2
]
+ 2

[
εi

ij + εi
jε

i
i

]
= 0 (28)

for k 6= j, i, j 6= i. The own-superelasticity is defined as the elasticity of (minus the)
elasticity:

Σi =
∂ log(−εi

i)

∂ log pi
=

εi
ii

εi
i

So in the end we have two degrees of freedom:
{

εi
i, εi

ii
}

to parametrize a symmetric
steady state.

Special case: n = 2. If n = 2 there is only 1 degree of freedom, so CES is without
loss of generality (locally). From (28), the cross-superelasticity εi

ij, hence the own-
superelasticity εi

ii = −(n− 1)εi
ij is determined by elasticities.
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E.1 Special case: CES

With CES utility

h(x) =

(
1
n

n

∑
j=1

x
ε−1

ε
j

) ε
ε−1

we have only one degree of freedom ε > 1 and at any symmetric price

εi
i = −ε +

ε− 1
n

εi
ii = −(ε− 1)2 n− 1

n2

εi
jj = εi

ii

which implies from the equalities above

εi
j =

ε− 1
n

εi
jk =

(ε− 1)2

n2

E.2 Special case: Kimball Demand

Start with a general Kimball (1995) aggregator that defines C as

1
n ∑

i
Ψ
( ci

C

)
= 1 (29)

where Ψ is increasing, concave, and Ψ(1) = 1 which ensures the convention that at
a symmetric basket ci = c, we have C = c. The consumer’s problem is

min
{ci}

∑
i

pici s.t.
1
n ∑

i
Ψ
( ci

C

)
= 1

There exists a Lagrange multiplier λ > 0 such that for all i

pi = λΨ′
( ci

C

) 1
C

(30)

If we define the sectoral price index P by

1
n ∑

i
ϕ
(

Ψ′(1)
pi

P

)
= 1
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where
ϕ = Ψ ◦ (Ψ′)−1

then at a symmetric price pi = p we have P = p, and λΨ′(1) = PC so we can rewrite
(30) as

pi

P
Ψ′(1) = Ψ′

( ci

C

)
Taking logs and differentating (30) with respect to log pi yields

1 =
∂ log P
∂ log pi

+
Ψ′′
( ci

C
)

Ψ′
( ci

C
) ci

C

[
εi

i −
∂ log C
∂ log pi

]
Differentiating (29) yields

∑
j

Ψ′
(

cj

C

)
cj

C

[
∂ log cj

∂ log pi
− ∂ log C

∂ log pi

]
= 0

hence

∂ log C
∂ log pi

=
∑j Ψ′

(
cj
C

)
cj
C ε

j
i

∑j Ψ′
(

cj
C

)
cj
C

Using Slutsky symmetry pjε
j
i = piε

i
j to express this using demand elasticities for

good i only, we can reexpress as

∂ log C
∂ log pi

=
∑j Ψ′

(
cj
C

)
cj
C

pi
pj

εi
j

∑j Ψ′
(

cj
C

)
cj
C

At a symmetric price, budget exhaustion with constant returns implies

∂ log C
∂ log pi

=
1
n ∑

j
εi

j =
−1
n

For any k 6= i we can differentiate

log Ψ′
(

ci

C

)
− log Ψ′

(
ck

C

)
= log pi − log pk
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with respect to log pi to get

Ψ′′
(

ci

C

)
Ψ′
(

ci

C

) ( ci

C

)
∂

∂ log pi

[
log ci − log C

]
−

Ψ′′
(

ck

C

)
Ψ′
(

ck

C

) ( ck

C

)
∂

∂ log pi

[
log ck − log C

]
= 1

or, defining

R(x) =
xΨ′′ (x)
Ψ′ (x)

R
(

ci

C

) [
εi

i −
∂ log C
∂ log pi

]
− R

(
ck

C

)[
εk

i −
∂ log C
∂ log pi

]
= 1 (31)

Hence at a symmetric steady state, using εk
i = εk

i = −
1+εi

i
n−1 we have

εi
i =

n− 1
n

1
R(1)

− 1
n

Differentiating once more with respect to log pi,

R′
(

ci

C

) [
εi

i −
∂ log C
∂ log pi

]2

− R′
(

ck

C

)[
εk

i −
∂ log C
∂ log pi

]2

+ R
(

ci

C

) [
εi

ii −
∂2 log C
∂2 log pi

]
− R

(
ck

C

)[
εk

ii −
∂2 log C
∂2 log pi

]
= 0

At a symmetric steady state,

R′ (1)
[

εi
i +

1
n

]2

− R′ (1)
[

εk
i +

1
n

]2

+ R (1)
[
εi

ii − εk
ii

]
= 0

R′ (1)
[

εi
i +

1
n

]2

− R′ (1)
[

εk
i +

1
n

]2

+ R (1)
[
εi

ii − εi
jj

]
= 0

Using (27) we get

R′ (1)
[

n− 1
n

1
R(1)

+
1
n

]2

− R′ (1)

[
−

1 + εi
i

n− 1
+

1
n

]2

+ R (1)
[

εi
ii

n
n− 1

− εi
j

(
1− εi

j

)
+

1
n− 1

[
εi

i

(
1 + εi

i

)]]
= 0

Now differentiating (31) with respect to log pj for some j 6= i, k

R′
(

ci

C

)[
εi

j −
∂ log C
∂ log pj

] [
εi

i −
∂ log C
∂ log pi

]
+ R

(
ci

C

)[
εi

ij −
∂2 log C

∂ log pi∂ log pj

]

−R′
(

ck

C

)[
εk

i −
∂ log C
∂ log pi

] [
εk

j −
∂ log C
∂ log pj

]
− R

(
ck

C

)[
εk

ij −
∂2 log C

∂ log pi∂ log pj

]
= 0
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At a symmetric price,

R′ (1)
[

εi
j +

1
n

] [
εi

i +
1
n

]
+ R (1) εi

ij = R′ (1)
[

εi
j +

1
n

]2

+ R (1) εi
jk

Therefore, using (28) we have

εi
ii = −

n− 1
n2

[
R(1)(1 + R(1))2 + R′(1)(n− 2)

R(1)3

]
(32)

εi
jj =

(n− 2)R′(1)− (n− 1)R(1) [1 + R(1)]2

n2R(1)3 (j 6= i)

εi
ij =

R(1) [1 + R(1)]2 + (n− 2)R′(1)
n2R(1)3 (j 6= i)

εi
jk =

R(1) [1 + R(1)]2 − 2R′(1)
n2R(1)3 (j 6= k, n ≥ 3)

Klenow and Willis (2016) use the functional form

Ψ′(x) =
ε− 1

ε
exp

(
1− xθ/ε

θ

)

Ψ′′(x) = −x
θ
ε−1

ε
Ψ′(x)

Ψ′′′(x) =

(x
θ
ε−1

ε

)2

−
(

θ − ε

ε2

)
x

θ
ε−2

Ψ′(x)

Therefore

R(1) = −1
ε

R′(1) = − θ

ε2
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so that this nests CES with θ = 0. We thus have

εi
i = −ε +

ε− 1
n

εi
j =

ε− 1
n

εi
ii = −

n− 1
n2

[
(ε− 1)2 + (n− 2)θε

]
εi

ij =
(ε− 1)2 + θε(n− 2)

n2

εi
jj =
−(n− 1)(ε− 1)2 + θε(n− 2)

n2

εi
jk =

(ε− 1)2 − 2θε

n2

The superelasticity, defined as εi
ii

εi
i
, satisfies

εi
ii

εi
i
=

1
S

1−S + η

[
θη +

(
(η − 1)2 − 2θη

)
S
]

≈ θ +

[
(η − 1)2

η
− 2θ

]
S

with S = 1/n denoting the market share. The approximation in the second line
holds if S is small relative to η/ (1 + η), as is the case in a calibration with η = 10.
With constant θ and η, the superelasticity is approximately linear in the Herfindahl

index, as in Figure 15. If θ is lower than (η−1)2

2η which equals 4.05 when η = 10 (as

in the CES case θ = 0) then εi
ii

εi
i

increases with S. With high enough θ, it can actually
decrease with S, but a high fixed θ is at odds with pass-through being larger for
smaller firms.

F Perturbation of utility

Proof of Proposition 6. We start from the system that defines an MPE:

(ρ + nλ)V (p) = Π (p) + λ ∑
j

V
(

g
(

p−j
)

, p−j
)

(33)

Vp (g (p−i) , p−i) = 0 (34)
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Figure 15: Superelasticities εi
ii/εi

i as a function of market share 1/n. AIK: variable
superelasticity to match heterogeneity in pass-through from Amiti et al. (2019). KW:
Fixed θ = 10. CES: Fixed θ = 0. In all cases, η = 10.

Differentiating k times the Bellman equation (33) gives us for each k ≥ 1 a linear
system in the kth-derivatives V(k) = (V11...11, V11...12, V11...22, . . . ) of the value func-
tion V (evaluated at the symmetric steady state p̄), which we can invert to obtain
these derivatives as a function of the profit derivatives Π(k) = (Π11...11, . . . ) and
derivatives of the policy function (there are k + 1 such equations in the case of n = 2
firms).

We can then compute Π(k) as a function of p̄ and own- and cross-superelasticities
of the demand function d of order up to k.

Combining the solution V(k) with the k− 1th-derivative of the FOC (34) gives us
a sequence of equations that must be satisfied at a steady state

Fk
(

p̄, g′ ( p̄) , g′′ ( p̄) , . . . , g(k) ( p̄) ; ε(0), ε(1), ε(2), . . . , ε(k)

)
= 0

where Fk is linear in ε̃(k). Thus we can construct recursively a unique sequence ε̃(k)
starting from k = m + 1, using

Fm+1
(

p̄, g′, . . . g(m−1), 0, 0; ε(1), ε(2), . . . , ε̃(m+1)

)
= 0

Fm+2
(

p̄, g′, . . . g(m−1), 0, 0, 0; ε(1), ε(2), . . . , ε̃(m+1), ε̃(m+2)

)
= 0

and so on. Section F.1 below shows that there are indeed enough degrees of freedom
to make the equations Fm, Fm+1, . . . independent.
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Define ϕ̃ as

ϕ̃ (x) =
∞

∑
k=0

ϕ̃(k) (1)
k!

(x− 1)k

where ϕ̃(k+1)(1) is characterized by
(

ε(1), . . . , ε(m), ε̃(m+1), . . . , ε̃(k)

)
through the same

computations as in Appendix E.
Given this construction, p̄, g′, . . . , g(m−1) are pinned down by

(
ε(1), . . . , ε(m)

)
as

the solution to the system of equations Fk for k = 1, . . . , m.

F.1 Counting the degrees of freedom

The main potential impediment to the proof above is that demand integrability (e.g.,
demand functions being generated by actual utility functions) imposes restrictions
on higher-order elasticities that would prevent us from constructing the sequence
ε̃. Indeed, in Appendix E we saw that with n = 2 firms, general Kimball demand
functions cannot generate superelasticities beyond those arising from CES demand.
We now show that as long as n ≥ 3, this is not the case, by proving that the number
of elasticities exceeds the number of restrictions.

Formally, we want to compute #n (m), the number of cross-elasticities of order
m, that is derivatives

∂m log d1 (p)
∂i1 log p1∂i2 log p2 . . . ∂in log pn

where

0 ≤ i1, . . . , in ≤ m

i1 + · · ·+ in = m

as functions of the own-mth-elasticity ε1
11 . . . 1︸ ︷︷ ︸

m times

, and compare #n (m) to the number

of restrictions imposed by demand integrability and symmetry arguments.

Step 1: Computing #n (m). By Schwarz symmetry, in a smooth MPE, we can al-
ways invert 2 indices in the derivatives. Moreover, from the viewpoint of firm 1
(whose demand d1 we’re differentiating), firms 2 and 3 are interchangeable. For
instance, in the case of n = 3 firms and order of differentiation m = 3, these symme-
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tries reduce the number of potential elasticities nm = 27 to only 6 elasticities

ε1
111, ε1

112, ε1
122, ε1

123, ε1
222, ε1

223.

Denote
qn (M)

the number of partitions of an integer M into n non-negative integers. For M ≥ n
we have

qn (M) = pn (M + n)

where pn (M) is the number of partitions of an integer M into n positive integers. We
can see this by writing, starting from a partition of M into n non-negative integers
i1, . . . , in:

M + n = (i1 + 1) + · · ·+ (in + 1)

We can then compute pj (M) using the recurrence formula

pj (M) = pj (M− j)︸ ︷︷ ︸
partitions for which ik ≥ 2 for all k

+ pj−1 (M− 1)︸ ︷︷ ︸
partitions for which ik = 1 for some k

Lemma 1. For any n ≥ 1 and m ≥ 1 the number of elasticities of order m is

#n (m) =
m

∑
k=0

qn−1 (m− k) (35)

hence #n (m + 1) = #n (m) + qn−1 (m + 1).

Proof. Firm 1 is special, so we need to count the number of times we differentiate
with respect to log p1, which generates the sum over k. Then we get each term in the
sum by counting partitions of m− k into n− 1 non-negative integers.

Step 2: Computing the number of restrictions arising from demand integrabil-
ity. Next, we want to use economic restrictions to reduce the number of degrees of
freedom, ideally to 1, by having #n (m)− 1 independent equations. Our restrictions
are

Φ (p) = ∑
j

pjdj (p) = 0 ∀p (36)

di
j (p) = dj

i (p) ∀p, ∀i, j (37)
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The first equation is the budget constraint. The second equation is the Slutsky sym-
metry condition (constant returns to scale allow to go from Hicksian to Marshallian
elasticities). Note that Φ defined in (36) is symmetric, unlike the demand function
d1 we are using to compute elasticities. Therefore Φ’s derivatives give us fewer re-
strictions than what we need in (35), leaving room for restrictions to come from the
Slutsky equation.

We need to differentiate these two equations to obtain independent equations
that relate the mth-cross-elasticities to the mth-own-elasticity. The number of restric-
tions coming from derivatives of Φ at order m is simply the number of partitions of
m into n non-negative integers

qn (m)

How many restrictions [n (m) do we have from derivatives of the Slutsky equation?
The initial equation

d1
2 = d2

1

is irrelevant at a symmetric steady state; it only starts mattering once we differenti-
ate it. The first terms are (see in next subsection)

[n (1) = 0

[n (2) = 1

[n (3) =

2 if n ≥ 3

1 if n = 2

[n (4) =


5 if n ≥ 4

4 if n = 3

3 if n = 2

Step 3: Comparing the two. We actually do not need to compute [n (m) exactly.
The following lemma shows that there are always enough degrees of freedom #n (m)

to construct the Kimball aggregator in 6:

Lemma 2. For n ≥ 3 and any m we have

qn (m) + [n (m) + 1 ≤ #n (m) (38)
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Proof. We know by hand that (38) holds for m = 1, 2 so take m ≥ 3. Then all the
Slutsky conditions can be written as starting with

d1
12... = . . .

hence we have

[n (m) ≤ #n (m− 2) = #n (m)− pn−1 (n + m− 1)− pn (n + m− 2)

hence the number of equations is bounded by

qn (m) + [n (m) ≤ pn (n + m) + #n (m)− pn−1 (n + m− 1)− pn (n + m− 2)

Then we have (38) if

pn (n + m) < pn−1 (n + m− 1) + pn (n + m− 2)

⇔pn−1 (n + m− 1) + pn (m) < pn−1 (n + m− 1) + pn (n + m− 2)

⇔pn (m) < pn (n + m− 2)

which holds for n ≥ 3.

Note that so far we have considered general CRS demand functions. Restricting
attention to the Kimball class makes the inequality (38) bind, meaning that we can
parametrize all the cross-elasticities of order m using the own-elasticity of order m.

What fails in the knife-edge case n = 2? Slutsky symmetry imposes too many
restrictions: at m = 2 we only have 3 elasticities ε1

11, ε1
12, ε1

22 and also 3 restrictions, so
we can solve out all the superelasticities as functions of ε1

1, which prevents us from
constructing the Kimball aggregator in Proposition 6.
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G Locally Linear Equilibrium

G.1 Homogeneous Firms

We first solve the linear system in
{

Vi
j , Vi

ii, Vi
ij, Vi

jj, Vi
jk

}
obtained from envelope con-

ditions

(ρ + λ)Vi
j = Πi

j + λ (n− 2)Vi
j β

(ρ + λ)Vi
ii = Πi

ii + λ (n− 1)
(

Vi
jjβ

2 + 2Vi
ijβ
)

(ρ + 2λ)Vi
ij = Πi

ij + λ (n− 2)
(

Vi
jjβ

2 + Vi
ijβ + Vi

jkβ
)

(ρ + λ)Vi
jj = Πi

jj + λ (n− 2)
(

Vi
jjβ

2 + 2Vi
jkβ
)
+ λ

(
Vi

iiβ
2 + 2Vi

ijβ
)

(ρ + 2λ)Vi
jk = Πi

jk + λ (n− 3)
(

Vi
jjβ

2 + 2Vi
jkβ
)
+ λ

(
Vi

iiβ
2 + 2Vi

ijβ
)

Injecting the solution into the derivative of the first-order condition sub

Vi
iiβ + Vi

ij = 0

yields
0 = AiiΠi

ii ( p̄) + AijΠi
ij ( p̄) + AjjΠi

jj ( p̄) + AjkΠi
jk ( p̄)

with coefficients

Aii = β
(
(β + 1)λ3

(
β2
(
−2n2 + 9n− 10

)
+ β3(n− 2) + 6β(n− 2)− 4

)
− λ2ρ

(
β3
(

n2 − 5n + 6
)
+ β2

(
2n2 − 15n + 22

)
+ β(24− 9n) + 8

)
+ λρ2

(
β2(n− 2) + β(3n− 8)− 5

)
− ρ3

)
(39a)

Aij = −
(

2(β + 1)λ3
(
−2β3

(
n2 − 3n + 2

)
+ β4(n− 1) + 2β2(n− 1)− β(n− 2) + 1

)
+ λ2ρ

(
β4
(
−2n2 + 7n− 5

)
− 4β3

(
n2 − 4n + 3

)
+ 3β2n− 4β(n− 3) + 5

)
+ λρ2

(
β2n− 2β(n− 3) + 4

)
+ ρ3

)
(39b)

Ajj = β2λ
(
(β + 1)λ2

(
2
(

β2 + 3β + 2
)
+ β(β + 1)n2 −

(
3β2 + 7β + 2

)
n
)
+ λρ

(
4β2 + 10β + β(β + 1)n2 −

(
5β2 + 9β + 3

)
n + 6

)
+ ρ2(β− (β + 1)n + 2)

)
(39c)

Ajk = −βλ(n− 2)
(
(β + 1)λ2

(
−β + β3(n− 1) + 3β2(n− 1) + 1

)
+ λρ

(
2β3(n− 1) + β2(3n− 4) + 2

)
+ ρ2

)
(39d)

G.2 Heterogeneous Firms

Suppose as in section C.2 that there are two types of firms, a and b, with n = na + nb.
a and b firms can differ permanently in their marginal costs, their demand, or both.

We know need to solve for six unknowns
{

βa
a, βa

b, βb
a, βb

b, pa, pb
}

where βi
j is the

reaction of a firm of type i to the price change of a firm of type j. The envelope
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conditions for firms of type a are

(ρ + λ)Vi,a
i = Πi,a

i + λ (na − 1)Vi,a
ja βa

a + λnbVi,a
jb

βb
a

(ρ + λ)Vi,a
ja = Πi,a

ja + λ (na − 2)Vi,a
ja βa

a + λnbVi,a
jb

βb
a

(ρ + λ)Vi,a
jb

= Πi,a
jb
+ λ (na − 1)Vi,a

ja βa
b + λ (nb − 1)Vi,a

jb
βb

b

and

(ρ + λ)Vi,a
ii = Πi,a

ii + λ (na − 1)
[
Vi,a

ja ja (βa
a)

2 + 2Vi,a
ija βa

a

]
+ λnb

[
Vi,a

jb jb

(
βb

a

)2
+ 2Vi,a

ijb
βb

a

]
(ρ + 2λ)Vi,a

ija = Πi,a
ija + λ (na − 2)

[
Vi,a

ja ja (βa
a)

2 + Vi,a
jaka

βa
a + Vi,a

ija βa
a

]
+ λnb

[
Vi,a

jb jb

(
βb

a

)2
+ Vi,a

jakb
βb

a + Vi,a
ijb

βb
a

]
(ρ + 2λ)Vi,a

ijb
= Πi,a

ijb
+ λ (na − 1)

[
Vi,a

ja ja βa
aβa

b + Vi,a
jakb

βa
a + Vi,a

ija βa
b

]
+ λ (nb − 1)

[
Vi,a

jb jb
βb

aβb
b + Vi,a

jbkb
βb

a + Vi,a
ijb

βb
b

]
(ρ + λ)Vi,a

ja ja = Πi,a
ja ja + λ

[
Vi,a

ii (βa
a)

2 + 2Vi,a
ija βa

a

]
+ λ (na − 2)

[
Vi,a

ja ja (βa
a)

2 + 2Vi,a
jaka

βa
a

]
+ λnb

[
Vi,a

jb jb

(
βb

a

)2
+ 2Vi,a

jakb
βb

a

]
(ρ + 2λ)Vi,a

jakb
= Πi,a

jakb
+ λ

[
Vi,a

ii βa
aβa

b + Vi,a
ijb

βa
a + Vi,a

ija βa
b

]
+ λ (na − 2)

[
Vi,a

ja ja βa
aβa

b + Vi,a
jakb

βa
a + Vi,a

jaka
βa

b

]
+ λ (nb − 1)

[
Vi,a

jb jb
βb

aβb
b + Vi,a

jbkb
βb

a + Vi,a
jakb

βb
b

]
(ρ + λ)Vi,a

jaka
= Πi,a

jaka
+ λ

[
Vi,a

ii (βa
a)

2 + 2Vi,a
ija βa

a

]
+ λ (na − 2)

[
Vi,a

ja ja (βa
a)

2 + 2Vi,a
jaka

βa
a

]
+ λnb

[
Vi,a

jb jb

(
βb

a

)2
+ 2Vi,a

jakb
βb

a

]
(ρ + λ)Vi,a

jb jb
= Πi,a

jb jb
+ λ

[
Vi,a

ii (βa
b)

2 + 2Vi,a
ijb

βa
b

]
+ λ (na − 1)

[
Vi,a

ja ja (βa
b)

2 + 2Vi,a
jakb

βa
b

]
+ λ (nb − 1)

[
Vi,a

jb jb

(
βb

b

)2
+ 2Vi,a

jbkb
βb

b

]
(ρ + 2λ)Vi,a

jbkb
= Πi,a

jbkb
+ λ

[
Vi,a

ii (βa
b)

2 + 2Vi,a
ijb

βa
b

]
+ λ (na − 1)

[
Vi,a

ja ja (βa
b)

2 + 2Vi,a
jakb

βa
b

]
+ λ (nb − 2)

[
Vi,a

jb jb

(
βb

b

)2
+ 2Vi,a

jbkb
βb

b

]

We can use these 11 envelope conditions to solve linearly for
{

Vi,a
i , Vi,a

ja , Vi,a
jb

, Vi,a
ii , . . .

}
,

and then inject the solution into the first-order conditions

Vi,a
i = 0

Vi,a
ii βa

a + Vi,a
ija = 0

Vi,a
ii βa

b + Vi,a
ijb

= 0

The same steps for firms of type b give us 3 more equations.
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H Oligopolistic Phillips Curve

Consider the general non-stationary versions of the Bellman equation (1) and the
first-order condition (2):

(it + nλ)Vi (p, t) = Vi
t (p, t) + Πi (p, MCt, Zt) + λ ∑

j
Vi
(

gj (p−j, t
)

, p−j, t
)
(40)

Vi
i

(
gi (p−i, t) , p−i, t

)
= 0 (41)

Nominal profits are given by

Πi (p, MC, Z) = ZDi (p) [pi −MC]

where Z is an aggregate demand shifter that can depend arbitrarily on Ct and Pt.16

Define α (t) as

gi (α (t) , α (t) , . . . , α (t) , t) = α (t)

This is the price that each firm would set if all the firms were resetting at the same
time. α is the counterpart of the reset price in the standard New Keynesian model.

To obtain the dynamics of α from (40), we start by deriving time-varying enve-
lope conditions evaluated at the symmetric price p1 = p2 = · · · = pn = α (t). After
applying symmetry and using Proposition 6 to make the strategies approximately
linear in the neighborhood of the steady state, the non-linear first-order and second-
order envelope conditions of the non-stationary game imply the following partial
differential equations (PDEs)

0 = Vi
it + Πi

i + λ (n− 1)Vi
j β (42a)

(it + λ)Vi
j = Vi

jt + Πi
j + λ (n− 2)Vi

j β (42b)

(it + λ)Vi
ii = Vi

iit + Πi
ii + λ (n− 1)

(
Vi

jjβ
2 + 2Vi

ijβ
)

(42c)

(it + 2λ)Vi
ij = Vi

ijt + Πi
ij + λ (n− 2)

(
Vi

jjβ
2 + Vi

jkβ + βVi
ij

)
(42d)

(it + λ)Vi
jj = Vi

jjt + Πi
jj + λ (n− 2)

(
Vi

jjβ
2 + 2βVi

jk

)
+ λ

(
Vi

iiβ
2 + 2βVi

ij

)
(42e)

(it + 2λ)Vi
jk = Vi

jkt + Πi
jk + λ (n− 3)

(
Vi

jjβ
2 + 2βVi

jk

)
+ λ

(
Vi

iiβ
2 + 2βVi

ij

)
(42f)

16In section 4, conditions (6) ensured a constant Zt.
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Denote the functions

W i
i (t) = Vi

i (α (t) , . . . , α (t) , t) , W i
ii (t) = Vi

ii (α (t) , . . . , α (t) , t)

and so on for all derivatives of the value function Vi. We can transform the system
(42) into a system of ordinary differential equations in the functions W i

i (t) , W i
j (t),

and so on. The partial derivatives with respect to time such as

Vi
it =

∂Vi
i

∂t
(α (t) , . . . , α (t) , t)

in equations (42) can be mapped to corresponding total derivatives of W functions

Ẇ i
it =

dWi
it

dt using

Vi
it = Ẇ i

i −
[

Vi
ii + ∑

j 6=i
Vi

ij

]
α̇

Vi
jt = Ẇ i

j −
[

Vi
ij + Vi

jj + ∑
k 6=i,j

Vi
jk

]
α̇

Vi
iit = Ẇ i

ii −
[

Vi
iii + ∑

j 6=i
Vi

iij

]
α̇

Vi
ijt = Ẇ i

ij −
[

Vi
iij + Vi

ijj + ∑
k 6=i,j

Vi
ijk

]
α̇

Vi
jjt = Ẇ i

jj −
[

Vi
ijj + Vi

jjj + ∑
k 6=i,j

Vi
jjk

]
α̇

Vi
jkt = Ẇ i

jk −
[

Vi
ijk + Vi

jjk + Vi
jkk + ∑

l 6=i,j,k
Vi

jkl

]
α̇

where the third derivatives of V at the steady state come from the third-order enve-
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lope conditions of the stationary game, solving the linear system:

(ρ + λ)Vi
iii = Πi

iii + λ (n− 1)
{

Vi
jjjβ

3 + 3Vi
ijjβ

2 + 3Vi
iijβ
}

(ρ + 2λ)Vi
iij = Πi

iij + λ (n− 2)
{

Vi
jjjβ

3 + 2Vi
ijjβ

2 + Vi
jjkβ2 + 2Vi

ijkβ + Vi
iijβ
}

(ρ + 2λ)Vi
ijj = Πi

ijj + λ (n− 2)
{

Vi
jjjβ

3 + 2β2Vi
jjk + β2Vi

ijj + 2βVi
ijk + βVi

jjk

}
(ρ + 3λ)Vi

ijk = Πi
ijk + λ (n− 3)

{
Vi

jjjβ
3 + 2β2Vi

jjk + β2Vi
ijj + 2βVi

ijk + βVi
jkl

}
(ρ + λ)Vi

jjj = Πi
jjj + λ (n− 2)

{
β3Vi

jjj + 3β2Vi
jjk + 3βVi

jjk

}
+ λ

{
β3Vi

iii + 3β2Vi
iij + 3βVi

ijj

}
(ρ + 2λ)Vi

jjk = Πi
jjk + λ (n− 3)

{
β3Vi

jjj + 3β2Vi
jjk + βVi

jjk + 2βVi
jkl

}
+ λ

{
β3Vi

iii + 3β2Vi
iij + βVi

ijj + 2βVi
ijk

}
(ρ + 3λ)Vi

jkl = Πi
jkl + λ (n− 4)

{
β3Vi

jjj + 3β2Vi
jjk + 3βVi

jkl

}
+ λ

{
β3Vi

iii + 3β2Vi
iij + 3βVi

ijk

}
Importantly, to approximate the second derivatives of Vi, we need to solve for the
third derivatives of Vi around the steady state by applying the envelope theorem
one more time.

Imposing symmetry again, the following non-linear system of ODEs in the 8
functions

(
α, β, W i

j , W i
j , W i

ii, W i
ij, W i

jj, W i
jk

)
holds exactly (omitting the time argument):

0 = −
[
W i

ii + (n− 1)W i
ij

]
α̇ + Πi

i + λ (n− 1)W i
j β (44a)

(it + λ)Wi
j = Ẇ i

j −
[
W i

ij + W i
jj + (n− 2)W i

jk

]
α̇ + Πi

j + λ (n− 2)W i
j β (44b)

0 = W i
ii β + W i

ij (44c)

(it + λ)W i
ii = Ẇ i

ii −
[
Vi

iii + (n− 1)Vi
iij

]
α̇ + Πi

ii + λ (n− 1)
(

Wi
jj β

2 + 2W i
ijβ
)

(44d)

(it + 2λ)W i
ij = Ẇ i

ij −
[
Vi

iij + Vi
ijj + (n− 2)Vi

ijk

]
α̇ + Πi

ij + λ (n− 2)
(

W i
jj β

2 + Wi
jk β + W i

ijβ
)

(44e)

(it + λ)W i
jj = Ẇ i

jj −
[
Vi

ijj + Vi
jjj + (n− 2)Vi

jjk

]
α̇ + Πi

jj + λ (n− 2)
(

W i
jj β

2 + 2βW i
jk

)
+ λ

(
W i

ii β
2 + 2βW i

ij

)
(44f)

(it + 2λ)W i
jk = Ẇi

jk −
[
Vi

ijk + Vi
jjk + Vi

jkk + (n− 3)Vi
jkl

]
α̇ + Πi

jk + λ (n− 3)
(

W i
jj β

2 + 2βW i
jk

)
+ λ

(
W i

ii β
2 + 2βW i

ij

)
(44g)

Next, we linearize system (44) around a symmetric steady state ᾱ = α (∞) with
zero inflation (and steady state values of aggregate variables C̄, P̄). Let lower case
variables denote log-deviations, e.g., a (t) = log α (t) − log ᾱ, and write marginal
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cost as
mc (t) = p (t) + k (t)

where k (t) is the log-deviation of the real marginal cost. Profit derivatives such as
Πi

i (t) in (44) are evaluated at the moving price α (t), hence become once linearized17

πi
i (t) = ᾱ

[
Πi

ii + (n− 1)Πi
ij

]
a (t) + M̄CΠi

i,MC (p (t) + k (t)) + Πi
i
(
zcc (t) + zp p (t)

)
πi

j (t) = ᾱ
[
Πi

ij + Πi
jj + (n− 2)Πi

jk

]
a (t) + M̄CΠi

j,MC (p (t) + k (t)) + Πi
j
(
zcc (t) + zp p (t)

)
πi

ii (t) = ᾱ
[
Πi

iii + (n− 1)Πi
iij

]
a (t) + M̄CΠi

ii,MC (p (t) + k (t)) + Πi
ii
(
zcc (t) + zp p (t)

)
πi

ij (t) = ᾱ
[
Πi

iij + Πi
ijj + (n− 2)Πi

ijk

]
a (t) + M̄CΠi

ij,MC (p (t) + k (t)) + Πi
ij
(
zcc (t) + zp p (t)

)
πi

jj (t) = ᾱ
[
Πi

ijj + Πi
jjj + (n− 2)Πi

jjk

]
a (t) + M̄CΠi

jj,MC (p (t) + k (t)) + Πi
jj
(
zcc (t) + zp p (t)

)
πi

jk (t) = ᾱ
[
Πi

ijk + 2Πi
jjk + (n− 3)Πi

jkl

]
a (t) + M̄CΠi

jk,MC (p (t) + k (t)) + Πi
jk
(
zcc (t) + zp p (t)

)
where Π̄i

i, Π̄i
ii etc. denote steady state values.

This yields the system of 6 linear ODEs in
(

a (t) , wi
j (t) , wi

ii (t) , wi
ij (t) , wi

jj (t) , wi
jk (t)

)
17It is more convenient to linearize and not log-linearize profit derivatives, but we use the notation

πi
i (t) = Πi

i (t)− Π̄i
i.
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[
Vi

ii + (n− 1)Vi
ij

]
ȧ (t) =

1
ᾱ

πi
i (t) + λ (n− 1)

Vi
j β

ᾱ

[
wi

j (t) + b (t)
]

(ρ + λ)wi
j (t) + it − ρ = ẇi

j (t)− ᾱ

[
Vi

ij + Vi
jj + (n− 2)Vi

jk

Vi
j

]
ȧ (t) +

1
Vi

j
πi

j (t) + λ (n− 2) β
[
wi

j (t) + b (t)
]

(ρ + λ)wi
ii (t) + it − ρ = ẇi

ii (t)−
ᾱ

Vi
ii

[
Vi

iii + (n− 1)Vi
iij

]
ȧ (t) +

1
Vi

ii
πi

ii (t)

+ λ (n− 1)

{
Vi

jjβ
2

Vi
ii

[
wi

jj (t) + 2b (t)
]
+

2Vi
ijβ

Vi
ii

[
wi

ij (t) + b (t)
]}

(ρ + 2λ)wi
ij (t) + it − ρ = ẇi

ij (t)−
ᾱ

Vi
ij

[
Vi

iij + Vi
ijj + (n− 2)Vi

ijk

]
ȧ (t) +

1
Vi

ij
πi

ij (t)

+ λ (n− 2)

{
Vi

jjβ
2

Vi
ij

[
wi

jj (t) + 2b (t)
]
+

Vi
jkβ

Vi
ij

[
wi

jk (t) + b (t)
]
+ β

[
wi

ij (t) + b (t)
]}

(ρ + λ)wi
jj (t) + it − ρ = ẇi

jj −
ᾱ

Vi
jj

[
Vi

ijj + Vi
jjj + (n− 2)Vi

jjk

]
ȧ (t) +

1
Vi

jj
πi

jj (t)

+ λ (n− 2)

{
Vi

jjβ
2

Vi
jj

[
wi

jj (t) + 2b (t)
]
+

2Vi
jkβ

Vi
jj

[
wi

jk (t) + b (t)
]}

+ λ

{
Vi

iiβ
2

Vi
jj

[
wi

ii (t) + 2b (t)
]
+

2Vi
ijβ

Vi
jj

[
wi

ij (t) + b (t)
]}

(ρ + 2λ)wi
jk (t) + it − ρ = ẇi

jk −
ᾱ

Vi
jk

[
Vi

ijk + Vi
jjk + Vi

jkk + (n− 3)Vi
jkl

]
ȧ (t) +

1
Vi

jk
πi

jk (t)

+ λ (n− 3)

{
Vi

jjβ
2

Vi
jk

[
wi

jj (t) + 2b (t)
]
+

2Vi
jkβ

Vi
jk

[
wi

jk (t) + b (t)
]}

+ λ

{
Vi

iiβ
2

Vi
jk

[
wi

ii (t) + 2b (t)
]
+

2Vi
ijβ

Vi
jk

[
wi

ij (t) + b (t)
]}

In general there are thus 6 ODEs because β may be time-dependent hence b (t) 6= 0.
But note that if b (t) = 0 then the system becomes block-recursive and we can solve
separately the first two equations in a and wi

j. From the optimality conditions we
have

β̇ = −α̇
[
W i

iij [1− (n− 1) β] + (n− 1)W i
ijj − βWiii

]
Using our perturbation argument we can show that there exists a third-order cross-
elasticity εi

iij such that at the steady state

Vi
iij [1− (n− 1) β] + (n− 1)Vi

ijj − βViii = 0 (45)

where Viij, Vijj, Viii are solutions to the system (43). Thus in what follows we consider
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β as constant for the first-order dynamics to simplify expressions, although we could
solve the larger system without this assumption.

The last step is to replace the single “reset price” variable a (t) with two variables,
the aggregate price level p (t) and inflation π (t) = ṗ (t) using our aggregation result
that inflation follows

π (t) = λ [1− (n− 1) β (t)] [log α (t)− log P (t)] .

After log-linearization we have

a (t) =
π (t)

λ [1− (n− 1) β]
+ p (t) .

Therefore, we obtain in matrix form that the vector

Y (t) =
(

π (t) , p (t) , wi
j (t)

)′
solves the linear differential equation

Ẏ (t) = AY (t) + Zkk (t) + Zcc (t) + Zi [i (t)− ρ]

where A ∈ R3×3, Zk, Zc, Zi ∈ R3 collect the terms above (evaluated at the steady
state), with boundary conditions limt→∞ Y (t) = 0. The solution is given by

Y (t) = −
∫ ∞

0
esA {Zkk (t + s) + Zcc (t + s) + Zi [i (t + s)− ρ]} ds

where esA = ∑∞
k=0

skAk

k! denotes the matrix exponential of sA. Proposition 8 then
follows by taking the first component of Y.

Proof of Corollary 2. Let [M]i and [M]xy denote the ith line and the (x, y) element
of a generic matrix M respectively. Let B (t) = Zkk (t) + Zcc (t) + Zr [r (t)− ρ]. Iter-
ating Ẏ (t) = AY (t) + B (t), we have for all k ≥ 1

Y(k) (t) = AkY (t) +
k−1

∑
j=0

AjB(k−1−j) (t) .
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Taking the first line for each k = 1, . . . , n = 3, we have n equations

dkπ (t)
dtk −

[
k−1

∑
j=0

AjB(k−1−j) (t)

]
1

=
[
Ak
]

1
Y (t)

which we can each rewrite as

dkπ (t)
dtk −

[
k−1

∑
j=0

AjB(k−1−j) (t)

]
1

−
[
Ak
]

11
π (t) =

n

∑
i=2

[
Ak
]

1i
yi (t)

Let

M =


A12 . . . A1n[
A2]

12

[
A2]

1n
...

...
[An]12 . . . [An]1n

 ∈ Rn×(n−1)

Take any vector γπ =
(

γπ
j

)n

j=1
in ker M′ (whose dimension is at least 1), i.e., such

that M′γπ = 0 ∈ Rn−1. Then

n

∑
k=1

γπ
k

dkπ (t)
dtk −

[
k−1

∑
j=0

AjB(k−1−j) (t)

]
1

−
[
Ak
]

11
π (t)

 = 0.

and we can define γπ
0 = −∑n

k=1 γπ
k
[
Ak]

11. This simplifies to

...
π = (Aππ + Aww) π̈ (46)

+
(
Aπp + AπwAwπ −AππAww

)
π̇

+
(
AπwAwp −AπpAww

)
π

+ AπwḂw + B̈π −AwwḂπ
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H.1 One-time shocks

Given (17) we can guess and verify that x = ψxe−ξt for all variables x ∈ {π, k, c, r− ρ, i− ρ}
and solve for the coefficients ψx using the system

ψπ

(
γπ

0 − γπ
1 ξ + γπ

2 ξ2 − γπ
3 ξ3
)
= ψk

(
γk

0 − γk
1ξ + γk

2ξ2
)

+ ψc

(
γc

0 − γc
1ξ + γc

2ξ2
)

+ (ψi − ψπ)
(

γr
0 − γr

1ξ + γr
2ξ2
)

−ξψc = σ−1 (ψi − ψπ − εr
0)

ψi = φπψπ + εm
0 + (1− κ) εr

0

Thus

ψc =
1

σξ
(ψπ (1− φπ) + κεr

0 − εm
0 )

ψk = ψc (χ + σ)

and

ψπ

(
γπ

0 − γπ
1 ξ + γπ

2 ξ2 − γπ
3 ξ3
)
=

1
σξ

(κεr
0 − εm

0 − ψπ (φπ − 1))
[
(χ + σ)

(
γk

0 − γk
1ξ + γk

2ξ2
)
+
(

γc
0 − γc

1ξ + γc
2ξ2
)]

+ (εm
0 + (1− κ) εr

0 + ψπ (φπ − 1))
(

γr
0 − γr

1ξ + γr
2ξ2
)

which yields

ψπ =

κεr
0−εm

0
σξ

[
(χ + σ)

(
γk

0 − γk
1ξ + γk

2ξ2
)
+
(
γc

0 − γc
1ξ + γc

2ξ2)]+ (εm
0 + (1− κ) εr

0
) (

γr
0 − γr

1ξ + γr
2ξ2)

γπ
0 − γπ

1 ξ + γπ
2 ξ2 − γπ

3 ξ3 + (φπ − 1)
[
(χ+σ)(γk

0−γk
1ξ+γk

2ξ2)+(γc
0−γc

1ξ+γc
2ξ2)

σξ −
(
γr

0 − γr
1ξ + γr

2ξ2
)]

82



I Non-linear Duopoly

Figure 16: In white: convergence of value function iteration algorithm towards a
monotone MPE in (λ, ε) space.
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