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Abstract

We consider collective decision making when the society con-

sists of groups endowed with voting weights. Each group chooses an

internal rule that specifies the allocation of its weight to the alterna-

tives as a function of its members’ preferences. Under fairly general

conditions, we show that the winner-take-all rule is a dominant s-

trategy, while the equilibrium is Pareto dominated, highlighting the

dilemma structure between optimality for each group and for the

whole society. We also develop a technique for asymptotic analysis

and show Pareto dominance of the proportional rule. Our numerical

computation for the US Electoral College verifies its sensibility.
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1 Introduction

In many situations of collective decision making, including representative

democracy, the society consists of distinct groups and decisions are made

based on opinions aggregated within the groups. For example, in the United

States presidential election, each state allocates its electoral votes based on

the statewide popular vote. Another example is legislative voting, in which

each party indicates how the legislators should vote based on the opinions

of the party members.

In such situations, the social decision depends on the rules that the

groups use to aggregate their members’ opinions. However, if the groups

choose their rules based on private motives, the resulting social decisions

may not be desirable. The resulting decisions may even make all groups

worse off than they could have been. This paper studies the relationship

between groups’ incentives and their welfare consequences.

Existing institutions use different rules, many of which pertain to how

to allocate the weight assigned to each group. On the one hand, the winner-

take-all rule devotes all the weight to the alternative preferred by the ma-

jority of its members. This rule has been used to allocate electoral votes in

all but two states in the most recent US presidential elections. A council

of national ministers, each with a weighted vote (e.g., the Council of the

European Union), is another example, provided that the ministers repre-

sent their countries’ majority interests. Party discipline which is frequently

observed in legislative voting is also an example of the winner-take-all rule

used by parties.

On the other hand, the proportional rule allocates a group’s weight in

proportion to the number of members who prefer the respective alterna-

tives. In a wide range of parliamentary institutions at the regional, national

and international levels, each group (e.g., constituency, prefecture or state)

elects a set of representatives whose composition proportionally reflects its
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citizens’ preferences. Alternatively, when the representatives are viewed as

standing for parties rather than for states or prefectures, the proportional

rule corresponds to a party’s rule that allows its representatives to vote for

or against proposals based on their own preferences, provided the compo-

sition of the party’s representatives proportionally reflects the opinions of

all party members.

The weight allocation rules are often exogenously given to all groups,

but there are also cases where each group chooses its own rule. For instance,

in national parliaments, how the representatives are elected from the re-

spective constituencies is stipulated by national law. By contrast, parties

often have control over how their representatives vote, by punishing those

who violate the party lines. As another example, the US Constitution stip-

ulates that it is up to each state to decide the way in which the presidential

electoral votes are allocated (Article II, Section 1, Clause 2).

If groups are allowed to choose their own rules, each group may have

an incentive to allocate the weight so as to increase the influence of its

members’ opinions on social decisions, at the cost of the other groups’

influence. It is not clear whether such an incentive at the group level is

compatible with desirable properties of the overall preference aggregation,

such as Pareto efficiency. A society consisting of distinct groups thus faces

a dilemma between each group’s private incentive and the overall social

objectives. To address this issue, we model the choice of rules as a non-

cooperative game.

In this paper, we consider a model of collective decision making where a

society consists of groups endowed with voting weights. Each group chooses

the rule to allocate its weight to the binary alternatives, and the winner is

the one with the most weight. A rule for a group is a function that maps

members’ preferences (e.g., group-wide popular vote) to an allocation of

the weight to the alternatives. Any Borel-measurable function is allowed,

including the examples of the winner-take-all and proportional rules stated

above. A profile is a specification of rules for all groups. We study the game

in which the groups independently choose their rules, so as to maximize

their members’ expected welfare.

The main result of this paper is that the game is an n-player Prisoner’s

Dilemma (Theorem 1). The winner-take-all rule is a dominant strategy,
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i.e., it is an optimal strategy for each group, regardless of the rules chosen

by the other groups. However, if each group has less than half of the total

weight, then the winner-take-all profile is Pareto dominated, i.e., some other

profile makes every group better off. In brief, no group has an incentive to

deviate from the winner-take-all rule, but every group would be better off

if all groups jointly move to another profile. The dilemma structure exists

for any number of groups (>2) and with fairly little restriction on the

joint distribution of preferences (Assumption 1). Members’ preferences are

allowed to be biased and correlated within and across groups. For example,

the model can be applied to parties with distinct but overlapping political

goals, or to states with different levels of support for specific alternatives,

such as blue, red or swing states in the US elections.

The observation that the winner-take-all rule is an optimal strategy

for groups is not new. As we will discuss in detail in Sections 1.1 and 3.1,

earlier studies have already pointed out such incentives for groups in various

voting situations. The theoretical prediction about group behavior is also

consistent with the fact that it has been dominantly employed by the states

in the US Electoral College since the 1830s in order to allocate presidential

electoral votes, and also with the widely observed party discipline behaviors

in assemblies. Despite the various problems or limitations that have been

pointed out concerning the winner-take-all rule,1 it is still used prevalently.2

The main contribution of this paper is to establish that under quite

general circumstances, the winner-take-all profile is Pareto dominated, i.e.,

every group would be better off if all groups simultaneously changed their

rules. This point should be distinguished from the conventional knowledge

that the direct popular vote (i.e., majority voting by all individuals) max-

1There are multiple arguments against the winner-take-all rule. First, the winner
of the election may be inconsistent with that of the popular vote (May (1948), Feix
et al. (2004)). Such a discrepancy has happened five times in the history of the US
presidential elections, including recently in 2000 and 2016. Second, it may cause reduced
dimensionality: (i) the parties have an incentive to concentrate campaign resources only
in the battleground states, and (ii) the voters’ incentive to turn out or to invest in
information may be small and/or uneven across states, since the probability of each
voter being pivotal is so small under the winner-take-all rule, and even smaller in non-
swing states. Although campaign resource allocation and voter turnout are important
issues, they are beyond the scope of this paper.

2One recent attempt of reform took place in 2004 in Colorado, when a ballot initiative
for an amendment to the state constitution was raised, proposing the proportional rule.
The amendment did not pass, garnering only 34.1% approval.
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imizes the utilitarian welfare of the society, as it maintains the possibility

that some groups (e.g., small states) may benefit from the winner-take-

all profile. We provide a counterexample in Example 1: a small group is

strictly better off under the winner-take-all profile compared with both the

direct popular vote and the proportional profile. Indeed, protecting minor-

ity states’ interests is an oft-used argument by advocates of the Electoral

College and its adherence to the winner-take-all rule. The welfare crite-

rion used in Theorem 1 is Pareto dominance, which is obviously stronger

than the utilitarian welfare evaluation: there exists a profile under which

every group is better off than the winner-take-all profile. Example 1 shows

that the dominant profile is not necessarily the proportional one nor the

direct popular vote. If such is the case, what profile Pareto dominates the

winner-take-all profile? A full characterization of the Pareto set is provided

in Lemma 1.

To further study welfare properties, we turn to an asymptotic and nor-

mative analysis of the model. We consider situations where the number

of groups is sufficiently large, and the preferences are independent across

groups and distributed symmetrically with respect to the alternatives. Un-

der these conditions, we show that the proportional profile Pareto domi-

nates every other symmetric profile (i.e., one in which all groups use the

same rule), including the winner-take-all one. The assumptions on the

preference distribution abstract from the fact that some groups may pre-

fer specific alternatives. Such an abstraction would be reasonable on the

grounds that normative judgment about rules should not favor particular

groups because of their characteristic preference biases. To see how many

groups are typically sufficient for the asymptotic result, we provide numer-

ical computations in a model based on the US Electoral College, using the

current apportionment of electoral votes. The numerical comparisons indi-

cate that the proportional profile does Pareto dominate the winner-take-all

profile in the model with fifty states and a federal district.

While the above result suggests that the proportional profile asymp-

totically performs well in terms of efficiency, it is silent about the equality

of individuals’ welfare. We apply our model to study how rules affect

the distribution of welfare, by examining an asymmetric profile called the

congressional district profile. This profile is inspired by the Congression-
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al District Method currently used by Maine and Nebraska, in which two

electoral votes are allocated by the winner-take-all rule, and the remaining

ones are awarded to the winner of each district-wide popular vote.3 We

show that the congressional district profile achieves a more equal distribu-

tion of welfare than any symmetric profile by making individuals in smaller

groups better off.

A technical contribution of this paper is to develop an asymptotic

method for analyzing players’ expected welfare in weighted voting games.

One of the major challenges in analyzing such games is their discreteness.

By the nature of combinatorial problems, obtaining an analytical result

often requires a large number of classifications by cases, which may include

prohibitively tedious and complex tasks in order to obtain general insights.

We overcome this difficulty by considering asymptotic properties of games

in which there are a sufficiently large number of groups. This technique

allows us to obtain an explicit formula that captures the asymptotic be-

havior of the probability of success for each individual, which holds for a

wide class of distributions of weights among groups (the correlation lemma:

Lemma 2).

1.1 Literature Review

The incentives for groups to use the winner-take-all rule have been studied

by several papers. Hummel (2011) and Beisbart and Bovens (2008) an-

alyze models of the US presidential elections. Gelman (2003) and Eguia

(2011a,b) give theoretical explanations as to why voters in an assembly

form parties or voting blocs to coordinate their votes. Their findings are

coherent with our observation that the winner-take-all rule is a dominant

strategy. In particular, Beisbart and Bovens (2008) and Gelman (2003)

compare the winner-take-all and proportional profiles. Under the current

apportionment of electoral votes in the US, Beisbart and Bovens (2008) nu-

3The idea of allocating a part of the votes by the winner-take-all rule and allowing
the rest to be awarded to distinct candidates can be seen as a compromise between the
winner-take-all and the proportional rules. Symbolically, the two votes allocated by the
winner-take-all rule is the same number as the Senators in each state, while the rest is
equal to the number of the House representatives. The idea behind such a mixture is
in line with the logic supporting bicameralism, which is supposed to provide checks and
balances between the states’ autonomy and federal governance.
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merically compares these profiles, in terms of inequality indices on citizens’

voting power and the mean majority deficit, on the basis of a priori and a

posteriori voting power measures. Gelman (2003) compares the case with

coalitions of equal sizes in which voters coordinate their votes to the case

without such coordination. Our analysis is based on Pareto dominance be-

tween profiles, and provides results which hold under general distribution

of groups’ weights or sizes. In that sense, Beisbart and Bovens’s positive

analysis is complementary to our normative analysis of properties of the

proportional profile.

De Mouzon et al. (2019) provides a welfare analysis of popular vote

interstate compacts, and shows that, for a regional compact, the welfare

of member states is single-peaked as a function of the number of the par-

ticipating states, while it is monotonically decreasing for the non-member

states. The second effect dominates in terms of social welfare, unless a

large majority (approximately more than 2/π ' 64%) of the states join

the compact, implying that a small- or middle-sized regional compact is

welfare detrimental. For a national compact, the total welfare is increas-

ing, as it turns out that even non-members would mostly benefit from the

compact, implying that the social optimum is attained when a majority

joins the compact, i.e., the winner is determined by the national popular

vote. Their findings are coherent with ours: if the winner-take-all rule is

applied only to a subset of the groups, then the member states enjoy the

benefit at the expense of the welfare loss of the non-member states, and

the total welfare decreases. The social optimum is attained when the entire

nation uses the popular vote. The possibility of the national popular vote

as a coordination device is discussed also in Cloléry and Koriyama (2020).

The history, objectives, problems, and reforms of the US Electoral Col-

lege are summarized, for example, in Edwards (2004), Bugh (2010) and

Wegman (2020). One of the problems of the Electoral College most often

scrutinized is its reduced dimensionality. The incentive of the candidates to

concentrate their campaign resources in swing and decisive states is mod-

eled in Strömberg (2008), which is coherent with the findings of the seminal

paper in probabilistic voting by Lindbeck and Weibull (1987). Strömberg

(2008) also finds that uneven resource allocation and unfavorable treatment

of minority states would be mitigated by implementing a national popu-
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lar vote, which is coherent with the classical findings by Brams and Davis

(1974). Voters’ incentive to turn out is investigated by Kartal (2015), which

finds that the winner-take-all rule discourages turnout when the voting cost

is heterogeneous.

Constitutional design of weighted voting is studied extensively in the

literature. Seminal contributions are found in the context of power mea-

surement: Penrose (1946), Shapley and Shubik (1954), Banzhaf (1968)

and Rae (1946). Excellent summaries of theory and applications of power

measurement are given by, above all, Felsenthal and Machover (1998) and

Laruelle and Valenciano (2008). The tools and insights obtained in the

power measurement literature are often used in the apportionment prob-

lem: e.g., Barberà and Jackson (2006), Koriyama et al. (2013), and Kurz

et al. (2017).

Our analysis can be interpreted in the context of Bayesian mechanis-

m design, by considering groups in our model as agents whose preference

intensities are private information. Under this interpretation, Theorem 1

translates into an impossibility theorem which states that there is no so-

cial choice function that is Bayesian incentive compatible, Pareto efficient

and non-dictatorial. This is consistent with the results obtained in earlier

papers in Bayesian mechanism design, such as Börgers and Postl (2009),

Azrieli and Kim (2014) and Ehlers et al. (2020). The precise statement of

the impossibility theorem (Proposition 3) and a discussion of the mecha-

nism design literature will appear in Subsection 3.2.

2 The Model

We consider collective decision making when a society consists of groups

endowed with voting weights. We first describe the weighted voting mech-

anism (Section 2.1). We then construct a non-cooperative game in which

each group chooses an internal rule that specifies the allocation of its weight

to the alternatives as a function of its members’ preferences (Section 2.2).

Finally, we introduce social choice functions which include the weighted

voting mechanism as a special case (Section 2.3).
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2.1 Weighted Voting

Let us begin with the description of the social decision process. We consider

a society partitioned into n disjoint groups: i ∈ {1, 2, · · · , n}. Each group

i is endowed with a voting weight wi > 0.

The society makes a decision between two alternatives, denoted −1 and

+1, through the following two voting stages: (i) each individual votes for

his preferred alternative; (ii) each group allocates its weight between the

alternatives, based on the group-wide voting result. The winner is the

alternative that receives the majority of overall weight.

Let θi ∈ [−1, 1] denote the vote margin in group i at the first voting

stage. That is, θi is the fraction of members of i preferring alternative +1

minus the fraction preferring −1.4

At the second stage, each group’s allocation of weight is determined as

a function of the group-wide margin.

Definition 1. A rule for group i is defined as a Borel-measurable5 function:

φi : [−1, 1]→ [−1, 1].

The value φi(θi) is the group-wide weight margin, i.e., the fraction of

the weight wi allocated to alternative +1 minus that allocated to −1, given

that the vote margin is θi. That is, the rule allocates wiφi(θi) more weight

to alternative +1 than alternative −1.6

Let

Φ = {φi|Borel-measurable}

be the set of all admissible rules.

Examples of rules. Among all admissible rules, the following examples

deserve particular attention.

4For example, θi = 0.2 means that 60% of members of i prefer +1 and 40% prefer
−1.

5Borel-measurability is needed to ensure that φi(θi) is a well-defined random variable,
when θi is a random variable.

6For example, if wi = 50 and φi(θi) = 0.2, it means that the rule allocates 30 (resp.
20) units of weight to the alternative +1 (resp. −1) so that the weight margin in favor
of the alternative +1 is 50× 0.2 = 30− 20.
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(i) Winner-take-all rule: φWTA
i (θi) = sgn θi.

(ii) Proportional rule: φPR
i (θi) = θi.

(iii) Mixed rules : φai (θi) = aφWTA
i (θi) + (1− a)φPR

i (θi), 0 ≤ a ≤ 1.

The winner-take-all rule devotes all the weight of a group to the winning

alternative in the group. The proportional rule allocates the weight in

proportion to the vote shares of the respective alternatives in the group.

The mixed rule φa allocates the fixed ratio a of the weight by the winner-

take-all rule and the remaining 1− a part by the proportional rule.

The social decision is the alternative that receives the majority of overall

weight. In the case of a tie, we assume that each alternative is chosen with

probability 1
2
. Thus, given the rules φ = (φi)

n
i=1 and the group-wide vote

margins θ = (θi)
n
i=1, the social decision dφ(θ) is determined as follows:

dφ(θ) =

sgn
∑n

i=1wiφi(θi) if
∑n

i=1wiφi(θi) 6= 0,

±1 equally likely if
∑n

i=1wiφi(θi) = 0.
(1)

2.2 The Game

We now define the non-cooperative game Γ in which the n groups choose

their own rules simultaneously.

The game is played under incomplete information about individuals’

preferences, and hence about the group-wide vote margins. Each group

chooses a rule so as to maximize the expected welfare of its members.

Since rules are fixed prior to realization of the preferences, a pure strategy

of the game is a function from the realization of members’ preferences to

the allocation of the weight.

Let Θi be a random variable that takes values in [−1, 1] and represents

the vote margin in group i.7 We impose little restriction on the joint

distribution of the random vector Θ = (Θi)
n
i=1. The precise assumption on

the distribution will be stated later in this section (Assumption 1).

The ex post payoff for group i is the average payoff for its members

from the social decision. For simplicity, we assume that each individual

7Throughout the paper, we use capital Θi for the representation of a random variable,
and small θi for the realization.
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obtains payoff 1 if he prefers the social decision and payoff −1 otherwise.8

The average payoff of members of group i equals Θi or −Θi depending on

whether the social decision is +1 or −1; more concisely, it is:

Θidφ(Θ).

The ex ante payoff for group i, denoted πi(φ), is the expected value of

the above expression:

πi(φ) = E [Θidφ(Θ)] . (2)

Let πi(xi, φ−i|θi) denote the interim payoff for group i if it chooses the

weight margin xi ∈ [−1, 1] given the realization of the vote margin θi. It

is obtained as the weighted average of the ex post payoffs θi and −θi from

decisions +1 and −1 with the conditional probabilities:9

πi(xi, φ−i|θi)

= θiP
{
wixi +

∑
j 6=iwjφj(Θj) > 0

∣∣∣Θi = θi

}
− θiP

{
wixi +

∑
j 6=iwjφj(Θj) < 0

∣∣∣Θi = θi

}
.

(3)

The ex ante and interim payoffs are thus related as follows:

φi maximizes πi(φi, φ−i)

⇔ xi = φi(θi) maximizes πi(xi, φ−i|θi) for almost every θi ∈ [−1, 1].

To summarize, the game Γ is the one in which: the players are the n

groups; the strategy set for each group i is the set Φ of all rules; the payoff

function for group i is πi defined in (2).

The following is the assumption on the joint distribution of the group-

wide margins.

Assumption 1. The joint distribution of group-wide margins (Θi)
n
i=1 is

8The assumption is without loss of generality, as we show in Remark 2 that the model
can be generalized to heterogeneous preference intensities.

9The term corresponding to the event of a tie (i.e., wixi +
∑
j 6=i wjφj(Θj) = 0) does

not appear in the formula below, since we assume that the tie is broken fairly.
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absolutely continuous and has full support [−1, 1]n.

Assumption 1 permits a wide variety of joint distributions of individu-

als’ preferences, in which intra- and inter-group correlations and biases are

possible. First, the assumption imposes no restriction on preference cor-

relations within each group. Second, individuals’ preferences may also be

correlated across groups, since the group-wide margins (Θi)
n
i=1 can be cor-

related. This allows us to capture situations where, for instance, residents

of different states or members of different parties have common interest on

some issues. Third, preferences may be biased toward a particular alterna-

tive, since Θi can be asymmetrically distributed. For instance, blue (resp.

red) states in the US might be described as groups whose group-wide mar-

gins have a distribution biased to the left (resp. right). In contrast, swing

states might be described as groups whose distributions are concentrated

around zero.

Remark 1. Success probability and voting power. Our definition of group

payoffs has the following interpretation based on the members’ preferences.

Let Mi be the set of individuals in group i, and Xim ∈ {−1,+1} be the

preferred alternative of member m ∈ Mi in group i. Let us here redefine

Θi as a latent variable that parametrizes the distribution of the random

preferences in group i. Specifically, suppose Xim are independently and

identically distributed conditional on the realization (θi)
n
i=1 with the fol-

lowing probabilities for all i = 1, · · · , n and m ∈Mi:{
P {Xim = +1|Θ1 = θ1, · · · ,Θn = θn} = (1 + θi) /2,

P {Xim = −1|Θ1 = θ1, · · · ,Θn = θn} = (1− θi) /2.
(4)

Then, as the group size becomes large (|Mi| → ∞), the Law of Large Num-

bers implies that the group-wide margin 1
Mi

∑
m∈Mi

Xim indeed converges

to Θi almost surely, which is consistent with our original definition of Θi
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as the group-wide margin. Moreover,

P {Xim = dφ(Θ)}

= E [P {Xim = dφ(Θ)|Θ}]

= E [P {Xim = 1, dφ(Θ) = 1|Θ}+ P {Xim = −1, dφ(Θ) = −1|Θ}]

= E
[
P {dφ(Θ) = 1|Θ} 1 + Θi

2
+ P {dφ(Θ) = −1|Θ} 1−Θi

2

]
=

1

2
(1 + E [P {dφ(Θ) = 1|Θ}Θi + P {dφ(Θ) = −1|Θ} (−Θi)])

=
1

2
(1 + E [Θidφ(Θ)]) .

Therefore, πi (φ) = E [Θidφ(Θ)] is an affine transformation of the probabil-

ity that the preferred alternative of a member m in group i coincides with

the social decision (Xim = dφ(Θ)), which is called success in the literature

of voting power measurement (Laruelle and Valenciano (2008)). The objec-

tive of the group, formulated as the maximization of πi, is thus equivalent

to maximization of the probability of success.

Under the winner-take-all profile φWTA, πi is closely related to the clas-

sical voting power indices studied in the literature. If (Θi)
n
i=1 are indepen-

dently, identically and symmetrically distributed (thus each group’s pre-

ferred alternative is independently and equally distributed over {−1,+1},
called Impartial Culture), then πi corresponds to the Banzhaf-Penrose index

(Banzhaf (1965), Penrose (1946)) and P {Xim = dφ(Θ)} to the Rae index

(Rae (1946)), up to a multiplication by the constant E [|Θi|]. If (Θi)
n
i=1

are perfectly correlated and symmetrically distributed (called Impartial

Anonymous Culture; see, for example, Le Breton et al. (2016)), then πi

corresponds to the Shapley-Shubik index (Shapley and Shubik (1954)).

Remark 2. Heterogeneous preference intensities. We have assumed that

all individuals have the same preference intensities (i.e., each individual re-

ceives a unit payoff whenever she prefers the social decision), and that each

group’s objective is to maximize the ex ante average payoff of its member-

s. However, our formal definition (2) can be generalized to heterogeneous

preference intensities. It only suffices for the group-wide payoff from the

social decision to be more generally defined, not necessarily as the average

of members’ payoffs with identical preference intensities.
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To be more precise, suppose each group i receives a random payoff U+
i

or U−i depending on whether the social decision is +1 or −1, where U+
i

and U−i are assumed to take any values in [0, 1]. Redefine the variable Θi

as the payoff difference: Θi := U+
i − U−i . Then the group’s ex ante payoff

from the social decision under profile φ is

ui(φ) = E
[
U+
i

1 + dφ(Θ)

2
+ U−i

1− dφ(Θ)

2

]
=

1

2
E [Θidφ(Θ)] +

1

2
E
[
U+
i + U−i

]
=

1

2
πi(φ) + constant.

Since this is a positive affine transformation of πi(φ), our model captures the

general case where each group maximizes the expected group-wide payoff

ui. In particular, the group-wide payoffs U+
i and U−i can be any functions

of members’ payoffs including heterogeneous preference intensities.

Furthermore, by considering groups in our model as agents whose pref-

erence intensities are private information, we can consider our model in

the context of more general and abstract Bayesian mechanism design prob-

lems. The n-agent setting will be useful in Section 3.2 where we clarify

the underlying logic behind the results we obtain in Section 3.1. For that

purpose, we introduce a formal definition of the social choice function in

the following Subsection 2.3.

2.3 Social Choice Functions

Let4 ({−1,+1}) be the set of all random variables taking values in {−1,+1}.
A social choice function (SCF) is a Borel-measurable function10

d : [−1, 1]n →4 ({−1,+1}) .

The SCF assigns to each profile of realized vote margins θ = (θi)
n
i=1 ∈

[−1, 1]n a social decision d(θ) which may randomize between alternatives

10More precisely, an SCF is a function d(θ, ω) of two variables, θ ∈ [−1, 1]n and ω ∈ Ω
for a sample space Ω, such that: for each θ, d(θ, ·) : Ω→ {−1,+1} is a random variable;
for each ω, d(·, ω) : [−1, 1]n → {−1,+1} is a Borel-measurable function.
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−1 and +1. The decision function dφ in game Γ is an example of an SCF.11

With a slight abuse of notation, we denote by πi(d) the ex ante payoff

for group i under SCF d. By extending formula (2), we have the following

expression:

πi(d) = E [Θid(Θ)] .

Our main analysis in Section 3.1 is based on game Γ, but the results

have implications to mechanism design problems with general SCFs, which

we summarize in Section 3.2.

3 The Dilemma

3.1 The Main Result

In game Γ, a rule (or strategy) φi for group i weakly dominates another rule

ψi if πi(φi, φ−i) ≥ πi(ψi, φ−i) for any φ−i, with strict inequality for at least

one φ−i. A rule φi is a weakly dominant strategy for group i if it weakly

dominates every rule not equivalent to φi where we call two rules φi and ψi

equivalent if φi(θi) = ψi(θi) for almost every θi (with respect to Lebesgue

measure on [−1, 1]).

A profile φ Pareto dominates another profile ψ if πi(φ) ≥ πi(ψ) for all

i, with strict inequality for at least one i. If φ is not Pareto dominated by

any profile, it is called Pareto efficient. Pareto dominance between SCFs

is defined in the same way, based on the payoff functions πi(d) (see Section

2.3).

We first consider the case in which there is no ‘dictator’ group that can

determine the winner by putting all its weight to one alternative (Theorem

1). Later we consider the case with such a group (Proposition 2).

Assumption 2. Each group has less than half the total weight: wi <
1
2

∑n
j=1wj for all i = 1, · · · , n.

Theorem 1. Under Assumptions 1 and 2, game Γ is a Prisoner’s Dilem-

ma:

11Randomness of dφ(θ) occurs when the weighted vote is tied.
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(i) the winner-take-all rule φWTA
i is the weakly dominant strategy12 for

each group i;

(ii) the winner-take-all profile φWTA is Pareto dominated.

We use the following lemma to prove the theorem. An SCF d is called

a weighted majority rule if there exists a vector (λi)
n
i=1 ∈ Rn

+ \ {0} such

that:

d(θ) = sgn
n∑
i=1

λiθi for almost every θ ∈ [−1, 1]n.

In game Γ, a profile φ is called a generalized proportional profile if there

exists a vector (λi)
n
i=1 ∈ [0, 1]n \ {0} such that for each i,

φi(θi) = λiθi for almost every θi ∈ [−1, 1].

Two profiles φ and ψ are called equivalent if dφ(θ) = dψ(θ) for almost every

θ ∈ [−1, 1]n.

Lemma 1. (Characterization of the Pareto set) Under Assumption 1, the

following statements hold:

(i) An SCF d is Pareto efficient in the set of all SCFs if and only if it

is a weighted majority rule.

(ii) In game Γ, a profile φ = (φi)
n
i=1 is Pareto efficient in the set of all

profiles if and only if it is equivalent to a generalized proportional

profile.

The proof of Lemma 1 is relegated to the Appendix.

Proof of Theorem 1. Part (i). We first check that

πi(φ
WTA
i , φ−i) ≥ πi(φi, φ−i) (5)

for any (φi, φ−i). By (3), if θi > 0 (resp. θi < 0), then the interim payoff

πi(xi, φ−i|θi) is non-decreasing (resp. non-increasing) in xi ∈ [−1, 1]. We

12By the definition of weak dominance, φWTA
i is the unique weakly dominant strategy

up to equivalence of rules.
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thus have πi(φ
WTA
i (θi), φ−i|θi) ≥ πi(φi(θi), φ−i|θi) for any (φi, φ−i) and θi 6=

0. Since Θi = 0 occurs with probability 0, This implies (5).

Now we show that for any profile φ−i in which each φj(Θi) (j 6= i) has

full support [−1, 1] (e.g., φPR
j ), the strict inequality

πi(φ
WTA
i , φ−i) > πi(φi, φ−i) (6)

holds for any rule φi that differs from φWTA
i on a set A ⊂ [−1, 1] of positive

measure. To see this, note that for such φ−i and any θi, the conditional

distribution of
∑

j 6=iwjφj(Θj) given Θi = θi has support

I =

[
−
∑
j 6=i

wj,
∑
j 6=i

wj

]
.

Since wi <
∑

j 6=iwj by Assumption 2, as xi moves in [−1, 1], wixi moves

in interval I. Formula (3) thus implies that if θi > 0 (resp. θi < 0), then

πi(xi, φ−i|θi) is strictly increasing (resp. decreasing) in xi ∈ [−1, 1]. Hence

πi(φ
WTA
i (θi), φ−i|θi) > πi(φi(θi), φ−i|θi) at any θi ∈ A. Since Θi has full

support, result (6) follows.

Part (ii). By the characterization of the Pareto set (Lemma 1(ii)), it

suffices to check that φWTA is not equivalent to any generalized proportional

profile. Suppose, on the contrary, that φWTA is equivalent to a generalized

proportional profile with coefficients λ ∈ [0, 1]n \ {0}. Then, since (Θi)
n
i=1

has full support,

dφWTA(θ) = sgn
n∑
i=1

wiλiθi at almost every θ ∈ [−1, 1]n. (7)

Since no group dictates the social decision, the coefficients λi are positive

for at least two groups. Without loss of generality, assume λ1 > 0 and

λ2 > 0. Now, fix θi for i 6= 1, 2 so that they are sufficiently small in

absolute value. Then, according to (7), for (almost any) sufficiently small

ε > 0, dφWTA(θ) = +1 if θ1 = 1 − ε and θ2 = −ε, while dφWTA(θ) = −1 if

θ1 = ε and θ2 = −1 + ε. This contradicts the fact that dφWTA(θ) depends

only on the signs of (θi)
n
i=1.

Theorem 1 shows that, while the dominant strategy for each group is
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the winner-take-all rule, the dominant-strategy equilibrium is Pareto dom-

inated by a generalized proportional profile. This typical Social Dilemma

(or, n-player Prisoner’s Dilemma) situation suggests that a Pareto efficient

outcome is not expected to be achieved under decentralized decision mak-

ing, and a coordination device is necessary in order to attain a Pareto

improvement.

The observation that groups have an incentive to use the winner-take-all

rule is not new. Beisbart and Bovens (2008) consider Colorado’s deviation

from the winner-take-all rule to the proportional rule, following the state’s

attempt in 2004 to amend the state constitution, and show that the citizens

in Colorado are worse off under both a priori and a posteriori measures.

Hummel (2011) shows that a majority of the voters in a state is worse off

by unilaterally switching to the proportional rule from the winner-take-all

profile.

Our results are also consistent with the findings in the literature of

the coalition formation games in which individuals may have incentive to

raise their voices by forming a coalition and aligning their votes. Gelman

(2003) illustrates that individuals are better off by forming a coalition and

assign all their weights to one alternative. Eguia (2011a) considers a game

in which the members in an assembly decide whether to accept the party

discipline to align their votes, and shows that the voting blocs form in

equilibrium if preferences are sufficiently polarized. Eguia (2011b) considers

a dynamic model and shows the conditions under which voters form two

polarized voting blocs in a stationary equilibrium.

A novelty of Theorem 1 lies in its generality. Earlier studies have in-

troduced a specific structure either on the distribution of the preferences

and/or of the weights, or on the set of the rules that groups can use.13 In

contrast, we only impose fairly mild conditions on the preference distribu-

tion (in particular, Assumption 1 imposes no restriction on across-group

correlation), on the weight distribution (Assumption 2 imposes no specific

13Beisbart and Bovens (2008) consider Colorado’s strategic choice between the winner-
take-all and the proportional rules in the US Electoral College. Hummel (2011) either
introduces a correlation structure in the preference distribution or assumes weights to
be constant in other states. Gelman (2003) shows interesting computations, but all
claims are based on observations from examples. Eguia (2011a) introduces a three-group
preference structure, left, right and independent, and Eguia (2011b)’s main results focus
on a nine-voter example, and the internal rules are assumed to be (super) majority rules.
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weight structure such as one big group and several smaller ones, or equally

sized groups), and on the set of the available rules (Definition 1 admits all

Borel-measurable rules, not just the winner-take-all and the proportional

rules).

Most importantly, the generality of our model allows for a welfare analy-

sis which does not require introduction of a specific structure on the weight

and/or the preference distribution, or the set of available rules. Since our

model incorporates all Borel-measurable profiles, the Pareto set obtained

in Lemma 1 leads us to an explicit characterization of the set of first-best

outcomes which can be attained.

The key welfare implication of our result is that the dominant-strategy

equilibrium is Pareto dominated by generalized proportional profiles. This

provides us with two important insights in welfare analysis of groupwise

preference aggregation problems. First, the game is a Prisoner’s dilemma so

that a coordination device is necessary for a Pareto improvement. Second,

once such a device is available, our characterization lemma tells us that, at

the first-best, the society should use rules that are proportional in nature, so

that the cardinal information of the group-wide preferences is transmitted

without distortion.

It is worth emphasizing that the result does not imply merely utilitarian

(i.e., benthamite) inefficiency of the equilibrium profile. The profile is Pare-

to dominated, implying that it is in every group’s interest to move from

the winner-take-all equilibrium to another profile. From the utilitarian per-

spective, it is straightforward to see that the social optimum is obtained

by the popular vote, i.e., direct majority voting by all individuals. How-

ever, this observation is not sufficient to establish that the winner-take-all

profile is Pareto dominated.14 After all, the utilitarian optimum is merely

one point in the Pareto set.

The following example illustrates that the winner-take-all profile is not

always Pareto dominated by either the popular vote or the proportional

profile.

Example 1. Consider a society which consists of two large groups with

an equal weight and one small group. For an illustrative purpose, let us

14Obviously, utilitarian optimality does not imply Pareto dominance.
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consider three American states: Florida, New York and Wyoming. Their

populations and weights are summarized in Table 1.

Table 1: Comparison of the expected payoffs in an example of the society
which consists of three states: Florida, New York and Wyoming. Weights
are the electoral votes assigned in the Electoral College in 2020. Popula-
tion is an estimation of the voting-age population in 2018 (in thousands).
Source: US Census Bureau.

State Weight Population πi
(
φWTA

)
πi
(
φPR

)
πi
(
φPOP

)
πi

(
φ̂
)

Florida 29 15,047 0.250 0.332 0.343 0.271
New York 29 13,684 0.250 0.332 0.323 0.271
Wyoming 3 422 0.250 0.034 0.008 0.271
Per capita average 0.250 0.328 0.329 0.271

As defined above, φWTA and φPR are the winner-take-all and propor-

tional profiles. The vote margins (Θi)i=1,2,3 are drawn from the uniform

distribution on [−1, 1] independently across the states. The payoff of the

popular vote πi
(
φPOP

)
is defined as the ex ante expected payoff of a repre-

sentative voter in each state, which is obtained by letting the social decision

d be the popular vote winner in (2).

Since there is no dictator state (i.e., Assumpion 2 is satisfied) in this

example, any pair of two states is a minimal winning coalition under the

winner-take-all profile, implying that the expected payoffs are exactly the

same across states under φWTA.

The two larger states are better off under the proportional profile φPR,

while the smaller state is worse off. This is because the social decision is

more likely to coincide with the alternative preferred by the majority of the

large states under φPR. As a consequence, the differences in the weights

are reflected more directly on the differences in the expected payoffs.

Even though the small state is better off under φWTA in this particular

example, it is worth underlining that whether the winner-take-all profile

favors small states as compared to the proportional profile depends on the

weight distribution. For example, if one state is a dictator (i.e. violating

Assumption 2), the payoffs of the two other states are zero under φWTA,

while they are (probably small but) strictly positive under φPR.

Under the popular vote φPOP, the expected payoff of the small state is

even smaller than under φPR. This comes from the fact that the weight

20



assigned to the small state is larger than the large states in the per capita

measure. In this example, Wyoming has more weight than it would if

assigned proportionally to the population.15 Under the popular vote, the

citizens in the small state lose such an advantage assigned through the

weights. We can also observe that the utilitarian (benthamite) welfare

is maximized under the popular vote φPOP by comparing the per capita

average of the expected payoffs.

Finally, let φ̂ be the generalized proportional profile with coefficients

λi = 1/wi. We observe that it Pareto dominates φWTA. Remember that our

characterization lemma tells us that a profile is Pareto efficient if and only

if it is equivalent to a generalized proportional profile. We can show that

among the profiles which Pareto dominate the equilibrium profile φWTA, one

is obtained by letting λi = 1/wi, because the expected payoffs are equal

across the states in this example, and we can obtain the particular point

in the Pareto set with the equal Pareto coefficients by setting λi = 1/wi.

This example illustrates that the winner-take-all, proportional profiles,

and the popular vote may be all Pareto imcomparable. Even though The-

orem 1 shows that the winner-take-all profile is Pareto dominated, it may

not be dominated by either the proportional profile or the popular vote.

This may happen when the number of groups is small. For the cases in

which there are sufficiently many groups, we provide clear-cut insights in

Section 4 by using an asymptotic model and numerical simulations.

To summarize, we have the following propositions.

Proposition 1. Under Assumption 1, the proportional profile φPR and the

popular vote φPOP are both Pareto efficient.

Proof. Trivially, the proportional profile is a generalized proportional pro-

file by letting λi = 1 for all i. The outcome of the popular vote coincides

with that of the generalized proportional profile with λi = ni/wi for all i.

By Lemma 1, we obtain the result.

15The digressive proportionality is a consequence of the rule specified in the US Con-
stitution. The number of electoral votes of each state is the sum of the numbers of
Senate members (constant) and of the House (proportional to population in principle).
Under such a rule, per capita weight is decreasing in population.
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Proposition 2. Under Assumption 1, the winner-take-all profile φWTA is

Pareto dominated if and only if Assumption 2 is satisfied.

Proof. The “if” part is already proven in Theorem 1 (ii). To show the

“only if” part, suppose that Assumption 2 is violated. Then, there exists

a dictator state i∗ that can determine the winner by putting all its weight

to the alternative preferred by the majority of the state. Hence, φWTA is

equivalent to the generalized proportional profile with coefficients λi∗ > 0

and λi = 0 for all i 6= i∗. By Lemma 1, we obtain the result.

3.2 An impossibility theorem underlying the WTA

Dilemma

In order to provide an interpretation of the result obtained in Theorem 1

in the context of mechanism design, we state an impossibility theorem that

underlies the winner-take-all dilemma.

We show in Remark 2 above that there is a direct analogy between the

non-cooperative voting game Γ considered in Theorem 1 and the Bayesian

collective decision problem in which each agent’s preferences including the

intensity level are private information. In order to elucidate the logic behind

our theorem, it is thus useful to consider a model of social choice function

of which the cardinal preferences are the input.

Consider a society which consists of n agents (i = 1, · · · , n) and which

makes a collective decision between two alternatives +1 and −1. As we

described in Remark 2, each group is a player in the voting game Γ, while

it can be seen more generally as an agent whose preference intensity is

represented by a von Neumann-Morgenstern utility function. Let U+
i (resp.

U−i ) be agent i’s utility from the alternative +1 (resp. −1). We assume that

the utilities are random variables whose support is included in a bounded

interval, which we suppose as [0, 1] without loss of generality.

Agent i’s type is represented by the utility difference Θi := U+
i − U−i .

Then, Θi is a random variable taking a value in [−1, 1]. The type is private

information: each agent observes only his own type. We only impose ab-

solute continuity and full support of the joint distribution (Assumption 1).

This allows for correlations of types, and ex ante asymmetries with respect

to the agents and the alternatives.
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A social choice function (SCF) d is defined as in Section 2.3. For each

profile of realized types θ = (θi)
n
i=1, d(θ) is a random variable which takes

a value either +1 or −1. An SCF is dictatorial if there exists an agent i

such that d(θ) assigns probability one to the alternative sgn θi for almost

every θ ∈ [−1, 1]n. Note that a weighted majority rule is dictatorial if and

only if λi > 0 for one i and λj = 0 for all j 6= i.

We consider the direct mechanism associated with SCF d. Each of

n agents simultaneously reports a type, based on which an alternative is

chosen according to d. A strategy for agent i is a Borel-measurable function

σi : [−1, 1] → [−1, 1] that assigns to each realization of type θi ∈ [−1, 1] a

reported type σi(θi) ∈ [−1, 1]. A strategy σi is called truthful if σi(θi) = θi

for almost every θi. Given a strategy profile σ = (σi)
n
i=1, the ex ante payoff

for agent i induced by d is:

πi(σ; d) = E [Θid(σ(Θ))]

where σ(Θ) = (σj(Θj))
n
j=1 is the profile of reported types.

The game Γ defined in Section 2.2 is thus exactly the one induced by

the direct mechanism associated with the weighted majority rule d with

coefficients λi = wi (i = 1, · · · , n). Call group i in game Γ as agent i,

and its group-wide vote margin Θi as the agent’s type. The strategy set Φ

for group i in that game is the same as the strategy set for agent i in the

direct mechanism. The definition (1) of the social decision dφ(θ) in game

Γ is exactly the same as the decision d(φ(θ)) in the direct mechanism in

which the strategy profile σ coincides with φ. Therefore, the ex ante payoff

functions in the two models also coincide.

An SCF is Bayesian incentive compatible (BIC) if the profile of truthful

strategies is a Bayesian Nash equilibrium of the direct mechanism. By the

revelation principle, it is without loss of generality to consider only direct

mechanisms.

The following is the impossibility result which underlies the WTA dilem-

ma.

Proposition 3. Under Assumption 1, an SCF is Pareto efficient and

Bayesian incentive compatible if and only if it is dictatorial.

Proof. It is obvious that every dictatorial SCF is Pareto efficient and Bayesian

23



incentive compatible. By Lemma 1(i), it suffices to check that if a weighted

majority rule d is not dictatorial, then it is not Bayesian incentive compat-

ible. In the proof of Theorem 1(i), we have shown that in game Γ, if φ−i

is such that each φj(Θj) (j 6= i) has full support [−1, 1], the unique (up to

equivalence) best response for group i is the winner-take-all rule. Thus, in

the direct mechanism for d, the unique (up to equivalence) best response

for each agent i against the profile in which all other agents play a truthful

strategy is σi(θi) = sgn θi, which is again not a truthful strategy. Thus

the profile of truthful strategies is not a Bayesian Nash equilibrium.

The essence of the impossibility described in Proposition 3 lies in the

fundamental incompatibility between Pareto efficiency and equilibrium be-

havior in the cardinal preference aggregation problem.

In order to understand where the incompatibility comes from, consid-

er the classical Gibbard-Satterthwaite Theorem, which states impossibility

of achieving both strategyproofness and non-dictatorship in the ordinal

preference aggregation problem. Relaxing the strategyproofness condition

to Bayesian incentive compatibility requires the introduction of expected

payoff, as BIC is defined on the solution concept of Bayesian Nash equilibri-

um. This means that we need to consider a cardinal preference aggregation

problem.

An impossibility result analogous to the Gibbard-Satterthwaite theorem

is no longer obtained, when the SCF takes cardinal preferences as its input.

This is shown by a counterexample: the winner-take-all profile is a non-

dictatorial SCF which satisfies Bayesian incentive compatibility. BIC alone

is not sufficient to imply dictatorship.

Essentially, only ordinal information can be aggregated when Bayesian

incentive compatibility is required. To see why, suppose that two prefer-

ences types u and v are in affine transformation, that is, there exists α > 0

and β ∈ R such that u = αv + β1 (call such a transformation as purely

cardinal). If the outcome differs by reporting between u and v, the incen-

tive compatibility of either u or v should be violated. To be more precise,

consider a purely cardinal change in preferences. The agent’s preferences

on the lotteries over the alternatives are unchanged. If the lottery over the

alternatives changes by a purely cardinal change of the agent’s report, it
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means that she can manipulate the outcome even though her preferences

over the lotteries are unchanged, implying a violation of incentive com-

patibility. Therefore, by requiring Bayesian incentive compatibility, the

outcome should be equivalent up to purely cardinal changes, and thus only

ordinal information can be aggregated at most.

Our observation that BIC implies ordinal aggregation is coherent with

the results obtained in the literature. Azrieli and Kim (2014) character-

ize the second-best social choice functions and show that they are ordinal

qualified weighted majority rules. Ehlers et al. (2020) provide a thorough

analysis of the conditions under which BIC implies ordinality.

On the other hand, Pareto efficiency requires aggregation of cardinal

information. To see why, remember that a Pareto efficient allocation should

solve the maximization problem of the social welfare weighted by Pareto

coefficients. By definition, weighted social welfare depends continuously on

the cardinal preferences of each agent.16 Therefore, cardinal information

concerning the agents’ preferences (such as intensity) should be reflected

continuously to the social outcome when Pareto efficiency is required.

In sum, requiring incentive compatibility implies ordinal aggregation,

while requiring Pareto efficiency implies cardinal aggregation. The funda-

mental property behind Proposition 3 is the incompatibility between the

two types of aggregation. The result is coherent with the impossibility the-

orem obtained in Börgers and Postl (2009) in case of three alternatives and

two agents. Ehlers et al. (2020) provides a general result for any number

of alternatives by showing that a weighted utilitarian SCF is dictatorial if

and only if it satisfies BIC under an independence condition (Theorem 8).

When applied to the group-wide voting problem, Proposition 3 provides

an interpretation of our main result stated in Theorem 1. Behind the

dilemma structure stated in Theorem 1 lies the impossibility of reconciling

both Bayesian incentive compatibility and Pareto efficiency, proven in a

more abstract mechanism design context in Proposition 3.

16Moreover, it is due to its linearity that we could provide a full characterization of
the Pareto frontier by the weighted majority rules in Lemma 1.
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4 Asymptotic and Computational Results

4.1 Asymptotic Analysis

We saw above that the game is a Prisoner’s Dilemma. In this section, we

provide further insights on the welfare properties, by focusing on the follow-

ing situations in which: (i) the number of groups is sufficiently large, and

(ii) the preferences of the members are distributed symmetrically. These

properties allow us to provide an asymptotic and normative analysis.

Often the difficulty of analysis arises from the discrete nature of the

problem. Since the social decision Dφ is determined as a function of the

sum of the weights allocated to the alternatives across the groups, comput-

ing the expected payoffs may require the classification of a large number

of success configurations which increases exponentially as the number of

groups increases, rendering the analysis prohibitively costly. We overcome

this difficulty by studying asymptotic properties. In order to check the

sensibility of our analysis, we provide Monte Carlo simulation results later

in the section, using an example of the US Electoral College.

In order to study asymptotic properties, let us consider a sequence of

weights (wi)
∞
i=1, exogenously given as a fixed parameter.

Assumption 3. The sequence of weights (wi)
∞
i=1 satisfies the following

properties.

(i) w1, w2, · · · are in a finite interval [w, w̄] for some 0 ≤ w < w̄.

(ii) As n→∞, the statistical distribution Gn induced by (wi)
n
i=1 weakly

converges to a distribution G with support [w, w̄].17

Assumption 3 guarantees that for large n, the statistical distribution

of weights Gn is sufficiently close to some well-behaved distribution G, on

which our asymptotic analysis is based.

Additionally, we impose an impartiality assumption for our normative

analysis:

17The statistical distribution function Gn induced by (wi)
n
i=1 is defined by Gn(x) =

#{i ≤ n|wi ≤ x}/n for each x. Gn weakly converges to G if Gn(x) → G(x) at every
point x of continuity of G.
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Assumption 4. The variables (Θi)
∞
i=1 are drawn independently from a

common symmetric distribution F .

As in Felsenthal and Machover (1998), a normative analysis requires

impartiality, and a study of fundamental rules in the society, such as a con-

stitution, should be free from specific dependence on the ex post realization

of the group characteristics. Assumption 4 allows our normative analysis

to abstract away the distributional details. Of course, a normative anal-

ysis is best complemented by a positive analysis which takes into account

the actual characteristics of the distributions, as in Beisbart and Bovens

(2008).

Following the symmetry of the preferences, our analysis also focuses on

symmetric profiles, in which all groups use the same rule: φi = φ for all

i. With a slight abuse of notation, we write φ both for a single rule φ and

for the symmetric profile (φ, φ, · · · ), which should not create confusion as

long as we refer to symmetric profiles. As for the alternatives, it is natural

to consider that the label should not matter when the group-wide vote

margin is translated into the weight allocation, given the symmetry of the

preferences.

Assumption 5. We assume that the rule is monotone and neutral, that

is, φ is a non-decreasing, odd function: φ(θi) = −φ(−θi).

Let πi(φ;n) denote the expected payoff for group i(≤ n) under profile

φ when the set of groups is {1, · · · , n} and each group j’s weight is wj, the

jth component of the sequence of weights. The definition of πi(φ;n) is the

same as πi(φ) in the preceding sections; the new notation just clarifies its

dependence on the number of groups n.

The main welfare criterion employed in this section is the asymptotic

Pareto dominance.

Definition 2. For two symmetric profiles φ and ψ, we say that φ asymp-

totically Pareto dominates ψ if there exists N such that for all n > N and

all i = 1, · · · , n,

πi(φ;n) > πi(ψ;n).
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4.2 Pareto Dominance

The following is the main result in our asymptotic analysis.

Theorem 2. Under Assumptions 1-5, the proportional profile asymptoti-

cally Pareto dominates all other symmetric profiles. In particular, it asymp-

totically Pareto dominates the dominant-strategy equilibrium of the game,

i.e., the symmetric winner-take-all profile.

We use the following lemma to prove Theorem 2. The proof of Lemma

2 is relegated to the Appendix. The proof of part (ii) uses a more general

result, Lemma 3, stated in the next subsection, whose proof also appears

in the Appendix.

Lemma 2. Under Assumptions 1-5, the following statements hold.

(i) For any symmetric profile φ,

πi(φ;n)

= 2

∫ 1

0

θiP

{
− wiφ(θi) <

∑
j≤n, j 6=i

wjφ(Θj) ≤ wiφ(θi)

}
dF (θi).

(ii) For any symmetric profile φ, as n→∞,

√
2πnπi(φ;n)→ 2wi

√
E[Θ2]∫ w̄

w
w2dG(w)

Corr [Θ, φ(Θ)], 18

uniformly in wi ∈ [w, w̄], where Θ is a random variable having the

same distribution F as Θi. The limit depends on the profile φ only

through the factor Corr[Θ, φ(Θ)].

Proof of Theorem 2.

The heart of the proof is in the correlation result shown in part (ii) of

Lemma 2. It follows that if correlation of φ(Θ) with Θ is higher than that

of ψ(Θ), then for each group i, there exists Ni such that if the number of

18Since Θ and φ(Θ) are symmetrically distributed, the correlation is given by
Corr [Θ, φ(Θ)] = E[Θφ(Θ)]/

√
E[Θ2]E[φ(Θ)2] unless φ(Θ) is almost surely zero. If φ(Θ)

is almost surely zero, then the correlation is zero.
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groups (n) is greater than Ni, group i (≤ n) will be better off under φ than

ψ.

Note that the convergence in part (ii) of Lemma 2 is uniform in wi ∈
[w, w̄]. This implies that the convergence is uniform in i = 1, 2, · · · .19 Thus

there is N with the above property, without subscript i, which applies to

all groups i = 1, 2, · · · . Therefore, if correlation of φ(Θ) with Θ is higher

than that of ψ(Θ), then φ asymptotically Pareto dominates ψ.

Since the perfect correlation Corr[Θ, φPR(Θ)] = 1 is attained by the

proportional rule, Theorem 2 follows.

The above results show that the winner-take-all rule is characterized

by its strategic dominance, while the proportional rule is characterized by

its asymptotic Pareto dominance. The following proposition provides a

complete Pareto order among all the linear combinations of the two rules.

Remember that we defined the mixed rules in Section 2 above. For

0 ≤ a ≤ 1, a fraction a of the weight is assigned to the winner of the

group-wide vote, while the rest, 1−a, is distributed proportionally to each

alternative:

φa(θi) = aφWTA(θi) + (1− a)φPR(θi).

Proposition 4. Under Assumptions 1-4, mixed profile φa asymptotically

Pareto dominates mixed profile φa
′

for any 0 ≤ a < a′ ≤ 1. In particular,

the proportional profile asymptotically Pareto dominates any mixed profile

φa for 0 < a < 1, which in turn asymptotically Pareto dominates the

winner-take-all profile. In other words, all mixed profiles can be ordered by

asymptotic Pareto dominance, from the proportional profile as the best, to

the winner-take-all profile as the worst.

Proof. In Appendix.

The winner-take-all rule is not only asymptotically Pareto inefficient,

19A more detailed explanation of this step is the following. By Lemma 2 (i),√
2πnπi(φ;n)) asymptotically behaves as 2

√
2πn

∫ 1

0
θP{−wiφ(θ) <

∑
j≤n wjφ(Θj) ≤

wiφ(θ)}dF (θ), where whether the sum
∑
j≤n wjφ(Θj) includes the ith term or not is

immaterial in the limit. The estimate of
√

2πnπi(φ;n) therefore has the form fn(wi),

where fn(x) := 2
√

2πn
∫ 1

0
θP{−xφ(θ) <

∑
j≤n wjφ(Θj) ≤ xφ(θ)}dF (θ). Lemma 2 (ii)

implies that fn(x) converges uniformly in x ∈ [w, w̄], which in turn implies that the
convergence of

√
2πnπi(φ;n) ≈ fn(wi) is uniform in i = 1, 2, · · · .
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but the worst among the symmetric mixed profiles. Is it worse than any

other symmetric profile? We provide an answer in Remark 3 below.

Remark 3. What is the worst profile? Theorem 2 leaves the natural ques-

tion of whether the winner-take-all profile is the worst among all symmetric

profiles, in terms of asymptotic Pareto dominance. The answer is negative.

To see this, note first that, for the winner-take-all profile, the correlation

in Lemma 2 is strictly positive: Corr[Θ, φWTA(Θ)] = E(|Θ|)/
√

E(Θ2) > 0.

On the other hand, for the symmetric profile φ0 in which the rule is de-

fined by φ0(θ) = 0 for almost all θ, the correlation is obviously zero. This

rule assigns exactly half of the weight to each alternative, regardless of the

group-wide vote. Thus the profile φ0 is the worst among all symmetric

profiles, as the social decision is made by a coin toss almost surely, yielding

expected payoff 0 to all groups. In the rest of this section, we exclude such

a trivial profile from our consideration.

4.3 Congressional District Method

The analysis in the preceding subsection suggests that the proportional

profile is optimal in terms of Pareto efficiency. However, our model also

implies that this profile produces an unequal distribution of welfare; in

fact, this unequal nature pertains to all symmetric profiles. The Correlation

Lemma 2 (ii) shows that for these profiles, the expected payoff for a group is

asymptotically proportional to its weight, providing high expected payoffs

to groups with a large weight.

In this subsection, we examine whether such inequality can be alleviat-

ed without impairing efficiency by using an asymmetric profile, based on

the Congressional District Method, currently used in Maine and Nebras-

ka. This profile allocates a fixed amount c of each group’s weight by the

winner-take-all rule and the rest by the proportional rule:

wiφ
CD(θi, wi) = cφWTA(θi) + (wi − c)φPR(θi).

We consider the congressional district profile φCD in which the rule is used

by all groups. Note that the profile is not symmetric in the sense that

we defined at the beginning of this section. Since the weight allocation
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rule depends on wi, which is heterogeneous across groups, φi is not the

same function of θi for all i. Therefore, we cannot apply Theorem 2 in

order to obtain a Pareto dominance relationship. However, we can obtain

a small-group advantage result (Theorem 3) and a Lorenz dominance result

(Theorem 4). To ensure that the profile is well-defined, we impose that the

lower bound of weights w is strictly positive and c ∈ (0, w].

Theorem 3. Under Assumptions 1-5, let us consider the congressional

district profile with parameter c ≤ w. For any symmetric profile φ, there

exists w∗ ∈ [w, w̄] with the following property: for any ε > 0, there is N

such that for all n > N and i = 1, · · · , n,

wi < w∗ − ε⇒ πi(φ
CD;n) > πi(φ;n),

wi > w∗ + ε⇒ πi(φ
CD;n) < πi(φ;n).

The proof of Theorem 3 uses the following lemma, which shows that the

correlation lemma holds for a class of profiles such that the weight allocation

rules have the following specific form of separability. Its proof and the Local

Limit Theorem used in the proof are relegated to the Appendix.

Assumption 6. Let φ = (φi)
∞
i=1 be a profile. There exist functions

h1, h2, h3 such that

wiφi(θi, wi) = h1(wi)h2(θi) + h3(wi) sgn θi, for all i

where (i) h1 is bounded, (ii) h2 is an odd function such that the support

of the distribution of h2(Θi) contains 0, and (iii) h3 is continuous but not

constant.20

It is straightforward to show that Assumption 6 is satisfied for any sym-

metric profile as well as the congressional district profile. For a symmetric

profile φ, let h1(wi) = wi, h2(θi) = φ(θi) − r sgn θi, and h3(wi) = wir

where r > 0 is any positive number in the support of the distribution of

20Under this form, φi(·, ·) is the same for all i so that we can omit subscript i whenever
there is no confusion.
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φ(Θ).21 For the congressional district profile φCD, let h1(wi) = wi − c,

h2(θi) = θi − sgn θi, and h3(wi) = wi.

Lemma 3. Under Assumptions 1-5, let φ be a profile which satisfies As-

sumption 6. Then, as n→∞,

√
2πnπi(φ;n)→ 2wiE[Θφ(Θ, wi)]√∫ w̄

w
w2E[φ(Θ, w)2]dG(w)

,

uniformly in wi ∈ [w, w̄], where Θ is a random variable having the same

distribution F as Θi.

Proof of Theorem 3. By Lemma 3, the expected payoff for group i under

a symmetric profile φ tends to a linear function of wi. Let Aφ be the

coefficient:

lim
n→∞

√
2πnπi(φ;n) =

2wiE[Θφ(Θ)]√
E[φ(Θ)2]

∫ w̄
w
w2dG(w)

=: Aφwi.

(8)

For the congressional district profile, remember the definition:

wjφ
CD (θj, wj) = cφWTA (θj) + (wj − c)φPR (θj)

= c sgn (θj) + (wj − c) θj.

We claim that the limit function is affine in wi:

lim
n→∞

√
2πnπi(φ

CD;n) = Bwi + C. (9)

To see that, let us apply Lemma 3 again:

lim
n→∞

√
2πnπi(φ

CD;n) = 2 ·
wiE

[
ΘφCD (Θ, wi)

]√∫ w̄
w
w2E

[
φCD (Θ, w)2] dG(w)

= 2 · cE [|Θ|] + (wi − c)E [Θ2]√∫ w̄
w
w2E

[
φCD (Θ, w)2] dG(w)

.

21This is possible since φ(Θ) is symmetrically distributed, and since we exclude the
trivial case in which φ(Θ) = 0 almost surely.
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Since |θ| ≥ θ2 with a strict inequality for 0 < |θ| < 1, the full support

condition for Θ implies E [|Θ|] > E [Θ2], and thus the intercept C is positive.

The coefficient of wi is:

B =
2E [Θ2]√∫ w̄

w
w2E

[
φCD (Θ, w)2] dG(w)

.

If Aφ < B, combined with C > 0, the right-hand side of (9) is above that

of (8). Then, set w∗ = w̄. If Aφ > B, again combined with C > 0, the two

limit functions (8) and (9) intersect only once at a positive value ŵ. Let

w∗ = max {w,min{ŵ, w̄}}.
Since the convergences (8) and (9) are uniform in wi, for any ε > 0

there is N with the property stated in Theorem 3.

Theorem 3 implies that the congressional district profile makes the

members of groups with small weights better off, compared with any sym-

metric profile. If the weight is an increasing function of the group size, it

means that the congressional district profile is favorable for the members

of small groups.

The intuitive reason why the congressional district profile is advanta-

geous for small groups is as follows. Under this profile, the ratio of weights

cast by the winner-take-all rule (i.e., c/wi) is higher for small groups than

for large groups. Therefore, the rules used by the smaller groups are rela-

tively close to the dominant strategy, inducing a relative advantage for the

small groups. We provide a numerical result in the following subsection

using an example of the US Electoral College.

In addition to Theorem 3, we can also show that the congressional dis-

trict profile distributes payoffs more equally than any symmetric profile

does, in the sense of Lorenz dominance. A profile of per capita payoffs for

the groups, π = (π1, · · · , πn), is said to Lorenz dominate another profile

π′ = (π′1, · · · , π′n) if the share of payoffs acquired by any bottom fraction

of groups is larger in the former profile than in the latter.22 Lorenz dom-

22Formally, for each x ∈ [−1, 1], let Hπ(x) be the total population share of those
groups whose per capita welfare is not greater than x under the payoff profile π. Then
Hπ is a distribution function. The Lorenz curve of Hπ is the graph of the function∫H−1

π (p)

0
xdHπ(x)/

∫ 1

0
xdHπ(x), 0 ≤ p ≤ 1, where we defineH−1π (p) = sup{x|Hπ(x) ≤ p}.
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inance, whenever it occurs, agrees with equality comparisons by various

inequality indices including the coefficient of variation, the Gini coefficient,

the Atkinson index, and the Theil index (see Fields and Fei (1978) and

Atkinson (1970)). To see why the congressional district profile is more e-

qual than any symmetric profile, recall equations (8) and (9) in the proof of

Theorem 3, which assert that when the number of groups is large, the per

capita payoff for group i is approximately Aφwi for the symmetric profile,

and it is approximately Bwi +C for the congressional district profile. The

constant term C > 0 for the congressional district profile assures equal

additions to all groups’ payoffs, which results in a more equal distribution

than when there is no such term. More precisely, we can prove the following

statement. The proof is relegated to the Appendix.

Theorem 4. Under Assumptions 1-5, let us consider the payoff profile

under the congressional district profile: π
(
φCD;n

)
=
(
πi
(
φCD;n

))n
i=1

. Let

φ be any symmetric profile and π (φ;n) = (πi (φ;n))ni=1 the payoff profile

under φ. For sufficiently large n, π
(
φCD;n

)
Lorenz dominates π (φ;n).

4.4 Computational Results

The results in the previous subsection concern cases with a large number of

groups. The question remains as to whether the conclusions obtained there

are also valid for a finite number of groups. In this section, we provide

a numerical computation result using an example of the US presidential

election.

There are 50 states and one federal district. The weights (wi)
51
i=1 are

the numbers of electoral votes assigned in the 2020 election. The first and

second columns of Table 2 show the distribution of weights among the

states.

We assume IAC* (Impartial Anonymous Culture*): the statewide pop-

ular vote margins Θi are independent and uniformly distributed on [−1, 1],

first introduced by May (1948) and studied thoroughly by, for example,

De Mouzon et al. (2019). For any profile φ, we can compute the per capita

A payoff profile π Lorenz dominates another profile π′ if the Lorenz curve of Hπ lies
above that of Hπ′ .
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payoff for state i via the formula:

πi(φ) = 2
(
0.551

) ∫ 1

−1

· · ·
∫ 1

−1

θi1A(θ1, · · · , θ51)dθ1 · · · dθ51 (10)

where A =
{

(θ1, · · · , θ51)
∣∣∣∑51

j=1wjφj(θj) > 0
}

.23

We consider four distinct profiles: φWTA, φPR, φa with a = 102/538,

and φCD with coefficient c = 2, which are the winner-take-all profile, the

proportional profile, a mixed profile, and a congressional district profile,

respectively. The parameter c = 2 of the congressional district profile is

the number used in Maine and Nebraska, corresponding to the two seats

assigned to each state in the Senate. The parameter a = 102/538 of the

mixed profile is chosen so that the proportion of electoral votes allocated

on the winner-take-all basis is the same for all states, and the total number

of electoral votes allocated in this way is the same as in the congressional

district profile.

We compute (10) under these four profiles by a Monte Carlo simula-

tion with 1010 iterations. The results are summarized in Tables 2 and 3.

Table 2 shows the per capita payoff (πi(φ)) under the respective profiles.

Table 3 shows the ratios of per capita payoff between different profiles

(πi(φ)/πi(ψ)). If the ratio is below 1, state i prefers ψ to φ.

It follows from Lemma 2 (ii) that as the number n of states increases, the

ratios πi
(
φWTA

)
/πi
(
φPR

)
and πi (φ

a) /πi
(
φPR

)
converge to the respective

correlations Corr[Θ, φWTA(Θ)] ≈ 0.866 and Corr[Θ, φa(Θ)] ≈ 0.989, where

the values are computed for Θ uniformly distributed on [−1, 1]. Table

3 indicates that for the present example with 50 states plus DC, these

ratios are indeed close to the respective correlations, which suggests that

convergence of the π-ratios is fairly quick. In particular, as expected by

Theorem 2, the proportional profile Pareto dominates the winner-take-all

profile in the present case. As suggested by Proposition 4, all states prefer

the mixed profile φa to the winner-take-all profile, and the proportional

profile to φa.

The ratios πi(φ
CD)/πi(φ

PR) in Table 3 are consistent with the result

in Theorem 3. Small states prefer the congressional district profile to the

23It is easy to check that under the uniform distribution assumption, (10) is equivalent
to the expression in Lemma 2 (i).
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proportional one.

In addition, the values of πi(φ
CD)/πi(φ

WTA) in the table show that the

winner-take-all profile is Pareto dominated by the congressional district

profile, and the welfare improvement by switching to the congressional

district profile is greater for small states than for large states in terms of

the ratio.

All of our numerical observations suggest the sensibility of the asymp-

totic results obtained in Section 4 in the example of the US Electoral Col-

lege.
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Table 2: Estimated payoffs in the US presidential election, based on the
apportionment in 2016, via Monte Carlo simulation with 1010 iterations.
The estimated standard errors are in the range between 3.9 and 4.1×10−6.

electoral number π(φWTA) π(φPR) π(φa) π(φCD)
votes of states
3 8 0.0113 0.0133 0.0130 0.0167
4 5 0.0151 0.0177 0.0174 0.0209
5 3 0.0189 0.0221 0.0217 0.0251
6 6 0.0226 0.0266 0.0261 0.0293
7 3 0.0264 0.0310 0.0305 0.0335
8 2 0.0302 0.0354 0.0348 0.0377
9 3 0.0340 0.0399 0.0392 0.0419
10 4 0.0378 0.0443 0.0436 0.0461
11 4 0.0416 0.0488 0.0479 0.0503
12 1 0.0454 0.0532 0.0523 0.0545
13 1 0.0492 0.0577 0.0567 0.0587
14 1 0.0531 0.0622 0.0611 0.0630
15 1 0.0569 0.0666 0.0655 0.0672
16 2 0.0607 0.0711 0.0699 0.0715
18 1 0.0684 0.0801 0.0788 0.0800
20 2 0.0762 0.0891 0.0877 0.0885
29 2 0.1120 0.1303 0.1284 0.1275
38 1 0.1494 0.1729 0.1706 0.1677
55 1 0.2356 0.2614 0.2615 0.2507
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Table 3: Ratios between payoffs.

electoral number π(φWTA)
π(φPR)

π(φa)
π(φPR)

π(φCD)
π(φPR)

π(φCD)
π(φWTA)

votes of states
3 8 0.852 0.982 1.260 1.479
4 5 0.852 0.982 1.182 1.387
5 3 0.852 0.982 1.134 1.331
6 6 0.852 0.982 1.103 1.294
7 3 0.852 0.982 1.080 1.268
8 2 0.852 0.982 1.064 1.248
9 3 0.852 0.982 1.050 1.232
10 4 0.853 0.983 1.040 1.220
11 4 0.853 0.983 1.031 1.210
12 1 0.853 0.983 1.024 1.201
13 1 0.853 0.983 1.018 1.194
14 1 0.853 0.983 1.013 1.187
15 1 0.854 0.983 1.009 1.181
16 2 0.854 0.983 1.005 1.177
18 1 0.854 0.983 0.998 1.168
20 2 0.855 0.983 0.993 1.161
29 2 0.859 0.985 0.978 1.138
38 1 0.864 0.987 0.970 1.122
55 1 0.901 1.000 0.959 1.064

5 Concluding Remarks

This paper shows that the decentralized choice of the weight allocation

rule in representative democracy constitutes a Prisoner’s Dilemma: the

winner-take-all rule is a dominant strategy for each group, whereas the

Nash equilibrium is Pareto dominated. Each group has an incentive to put

its entire weight on the alternative supported by the majority of its mem-

bers in order to reflect their preferences in the social decision, although such

a distortion by each group prevents efficient aggregation of the preferences

of the society as a whole.

We also develop an asymptotic technique and show that the proportion-

al rule Pareto dominates every other symmetric profile when the number

of the groups is sufficiently large.

Our model may provide explanations for the phenomena that we ob-
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serve in existing institutions of collective decision making. In the United

States Electoral College, the rule used by the states varied in early elections

until it converged by 1832 to the winner-take-all rule, which has remained

dominantly employed by nearly all states since then. In many parliamen-

tary voting situations, we often observe parties and/or factions forcing their

members to align their votes in order to maximally reflect their preferences

in the legislative decision, although some members may disagree with the

party’s alignment. The voting outcome obtained by the winner-take-all

rule may fail to efficiently aggregate preferences, as observed in the dis-

crepancy between the electoral result and the national popular vote winner

in the US presidential elections in 2000 and 2016. Party discipline or fac-

tional voting may also cause welfare loss when each group pushes their

votes maximally toward their ideological goals, failing to reflect all of their

members’ preferences in the legislative decision.

The Winner-Take-All Dilemma tells us that the society should call for

some device other than each group’s unilateral effort, in order to obtain a

socially preferable outcome. As we see in the failure of various attempts

to modify or abolish the winner-take-all rule, such as the ballot initiative

for an amendment to the State Constitution in Colorado in 2004, each

state has no incentive to unilaterally deviate from the equilibrium. The

National Popular Vote Interstate Compact is a well-suited example of a

coordination device (Koza et al. (2013)). As it comes into effect only when

the number of electoral votes attains the majority, each state does not

suffer from the payoff loss by a unilateral (or coalitional) deviation until

a sufficient level of coordination is attained. The emergence of such an

attempt is coherent with the insights obtained in this paper that the game

is a Prisoner’s Dilemma, and a coordination device is necessary for a Pareto

improvement.

We have assumed that social decisions are binary. There are situations

where this assumption may not fit. In the US presidential elections, third-

party or independent candidates can, and do, have a non-negligible impact

on the election outcome. It is not clear how the presence of such candidates

alters the comparison of rules to allocate electoral votes. When the model

is applied to legislative voting, the assumption of a binary decision might

be justified on the grounds that choices are made between the status quo
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and a proposal. However, such an argument abstracts away the political

process that gives rise to the particular choice of the proposal. Further

analysis is necessary for the cases with more than two alternatives and is

beyond the scope of this paper.

Appendix

(For Online Publication)

A1 Proof of Lemma 1

(i) Let D be the set of all SCFs, and π(d) = {(πi(d))ni=1|d ∈ D} the set of

(ex ante) payoff vectors generated by SCFs. Then π(d) is convex.24 Let

Pa (π(D)) be the Pareto frontier of π(D), i.e., the set of payoff profiles

u ∈ π(D) for which there is no d′ ∈ π(D) such that u′i ≥ ui for all i and

u′i > ui for some i.

We divide the proof of (i) into two steps.

Step 1. Let λ ∈ Rn
+ \ {0}. Then the unique solution to the following

maximization problem (11) is the payoff vector uλ :=
(
πi(d

λ)
)n
i=1

under a

cardinal λ-weighted majority rule dλ.25

max
u∈π(D)

n∑
i=1

λiui. (11)

Moreover, an SCF d satisfies (πi(d))ni=1 = uλ if and only if d is a λ-weighted

majority rule.

Let d ∈ D be any SCF. Then

n∑
i=1

λiπi(d) =
n∑
i=1

λiE [Θid(Θ)] = E

[
d(Θ)

n∑
i=1

λiΘi

]
. (12)

Since Θ is absolutely continuous, and so
∑n

i=1 λiΘi 6= 0 almost surely, d

24This is because for any two SCFs d and d′, any convex combination of the payoff
vectors corresponding to d and d′ can be realized as a compound SCF that randomizes
between d and d′.

25Recall that a weighted majority rule with a given weight vector is unique only up
to differences on a set of measure zero, inducing the same payoffs.
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maximizes (12) if and only if d(Θ) = sgn
∑n

i=1 λiΘi almost surely. That

is,

d maximizes (12) ⇔ d is a λ-weighted majority rule. (13)

This implies the first sentence of Step 1. Result (13) also implies that if

d is not a λ-weighted majority rule, then πi(d) 6= πi(d
λ) for some i, which

proves the “only if” part of the second sentence of Step 1. The “if” part is

trivial.

Step 2. A payoff vector u ∈ π(D) is in the Pareto frontier Pa (π(D)) if

and only if there exists λ ∈ Rn
+ \{0} such that u = (πi(d

λ))ni=1 =: uλ, where

dλ is a λ-weighted majority rule.

Since π(D) is convex, we can apply Mas-Colell et al. (1995, Proposition

16.E.2) to show the “only if” part of Step 2.

To show the “if” part, suppose on the contrary that uλ /∈ Pa (π(D))

for some λ ∈ Rn
+ \ {0}. Then there exists u ∈ π(D) such that u 6= uλ and

ui ≥ uλi for all i. Then
∑n

i=1 λiui ≥
∑n

i=1 λiu
λ
i . This contradicts the fact

that uλ is the unique solution to problem (11).

(ii) This follows from the trivial fact that the set of SCFs dφ induced by

profiles φ that are equivalent to a generalized proportional profile coincides

with the set of all weighted majority rules.26

A2 Proof of Part (i) of Lemma 2

We prove the statement for group 1. Let π1(φ;n|θ1) be the conditional

expected payoff for group 1 given that the group-wide margin is Θ1 = θ1,

which by (3) is:

π1(φ;n|θ1) = θ1(P{w1φ(θ1) + Sφ−1 > 0} − P{w1φ(θ1) + Sφ−1 < 0}).

Since Sφ−1 is symmetrically distributed, the second probability can be writ-

ten as P{−w1φ(θ1) + Sφ−1 > 0}. Thus, for θ1 ∈ [0, 1], the above expression

26Indeed, if φ is equivalent to a generalized proportional profile with the vector of
coefficients λ ∈ [0, 1]n \ {0}, the induced SCF dφ is a µ-weighted majority rule, where
the weights are defined by µi := wiλi; conversely, if d is a µ-weighted majority rule,
then d = dφ for some profile φ that is equivalent to the generalized proportional profile
with coefficients λi := µi

wi
.
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equals

π1(φ;n|θ1) = θ1P{−w1φ(θ1) < Sφ−1 ≤ w1φ(θ1)}.

By symmetry, twice the integral of this expression over θ1 ∈ [0, 1] (instead

of [−1, 1]) equals the unconditional expected payoff π1(φ;n), which proves

part (i) of Lemma 2.

A3 Local Limit Theorem

We quote a version of the Local Limit Theorem shown in Mineka and

Silverman (1970). We will use it in the proof of part (ii) of Lemma 2.

LLT. (Mineka and Silverman (1970, Theorem 1)) Let (Xi) be a sequence

of independent random variables with mean 0 and variances 0 < σ2
i < ∞.

Write Fi for the distribution of Xi. Write also Sn =
∑n

i=1 Xi and s2
n =∑n

i=1 σ
2
i . Suppose the sequence (Xi) satisfies the following conditions:

(α) There exists x̄ > 0 and c > 0 such that for all i,

1

σ2
i

∫
|x|<x̄

x2dFi(x) > c.

(β) Define the set

A(t, ε) = {x| |x| < x̄ and |xt−πm| > ε for all integers m with |m| < x̄}.

Then, for some bounded sequence (ai) such that infi P{|Xi − ai| <
δ} > 0 for all δ > 0, and for any t 6= 0, there exists ε > 0 such that

1

log sn

n∑
i=1

P{Xi − ai ∈ A(t, ε)} → ∞.

(γ) (Lindeberg’s condition.) For any ε > 0,

1

s2
n

n∑
i=1

∫
|x|/sn>ε

x2dFi(x)→ 0.
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Under conditions (α)-(γ), if s2
n →∞, we have√

2πs2
nP{Sn ∈ (a, b]} → b− a.27 (14)

A4 Proof of Lemma 3

Preliminaries. We prove the lemma for group 1. In the proof, we use the

notation of LLT. Let

Xi := wiφ(Θi, wi), i = 1, 2, · · · ,

and Sn :=
∑n

i=1Xi. ThenXi has mean 0 and variance σ2
i := w2

iE[φ(Θ, wi)
2],

and so the partial sum of variances is s2
n :=

∑n
i=1w

2
iE[φ(Θ, wi)

2], where Θ

represents a random variable that has the same distribution F as Θi.

Define the event

Ωn(θ1, w1) =

{
−w1φ(θ1, w1) <

n∑
i=2

Xi ≤ w1φ(θ1, w1)

}
.

We divide the proof into several claims. Claims 5.1-5.3 show that the

sequence (Xi) defined above satisfies the conditions of the Local Limit

Theorem (LLT) in Section A4. Claim 5.4 applies the LLT to complete the

proof of Lemma 3.

Claim 5.1. s2n
n
→
∫ w̄
w
w2E[φ(Θ, w)2]dG(w).

Proof of Claim 5.1. This holds since sequence (σ2
i ) is bounded and the s-

tatistical distribution Gn induced by (wi)
n
i=1 converges weakly to G.

Claim 5.2. Conditions (α) and (γ) in the LLT hold.

Proof of Claim 5.2. This immediately follows from the fact that sequence

(Xi) is bounded and s2
n →∞. In particular, it is enough to define x̄ to be

any finite number greater than w̄.
27The original conclusion of Theorem 1 in Mineka and Silverman (1970) is stated in

terms of the open interval (a, b). Applying the theorem to (a, b + c) and (b, b + c) and
then taking the difference gives the result for (a, b]. In addition, the original statement
allows for cases where s2n does not go to infinity, and also mentions uniform convergence.
These considerations are not necessary for our purpose, so we omit them.
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Claim 5.3. Condition (β) in LLT holds.

Proof of Claim 5.3. Recall that φ has the form

wiφ(θi, wi) = h1(wi)h2(θi) + h3(wi) sgn θi.

Let ai = h3(wi). We first check that the sequence (ai) satisfies the

requirements in condition (β). First, (ai) is bounded since h3 is bounded.

Now, for any i and any δ > 0,

P{|Xi − ai| < δ} ≥ P{|Xi − ai| < δ and Θi > 0}

≥ P {|wiφ(Θi, wi)− h3(wi) sgn Θi| < δ and Θi > 0}

= P{|h1(wi)h2(Θi)| < δ and Θi > 0}.

Letting h̄1 > 0 be an upper bound of |h1| and Θ a random variable distribut-

ed as Θi, the last expression has the following lower bound independent of

i:

P{|h2(Θ)| < δ/h̄1 and Θ > 0} > 0,

which is positive by the assumptions on h2 and on the distribution of Θ.

Next we check the limit condition in (β). Recall that A(t, ε) is the union

of intervals (
πm+ ε

|t|
,
π(m+ 1)− ε

|t|

)
, m = 0,±1,±2, · · · ,

restricted to (−x̄, x̄), where we can choose x̄ to be any number greater than

w̄. To prove the limit condition in (β), it therefore suffices to verify that

one such interval contains Xi−ai with probability bounded away from zero,

for all groups i in some sufficiently large subset of groups. To do this, note

that if Θi < 0, then Xi−ai = h1(wi)h2(Θi)−2h3(wi). The assumptions on

h2 and on the distribution of Θ imply that for any η > 0, there exists a set

Oη ⊂ [−1, 0] with P{Θ ∈ Oη} > 0 such that if Θ ∈ Oη then |h2(Θ)| ≤ η.

Therefore,

Θi ∈ Oη ⇒ Xi − ai ∈ Twi,η,

where

Twi,η := [−2h3(wi)− ηh1(wi), −2h3(wi) + ηh1(wi)].
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Since h1 is bounded, we can make Twi,η an arbitrarily small interval around

−2h3(wi) by letting η > 0 be sufficiently small. Moreover, since h3 is

continuous and not a constant, we can find a sufficiently small interval

[v, v̄] ⊂ [w, w̄] with v < v̄ such that if wi ∈ [v, v̄], then −2h3(wi) is between,

and bounded away from, πm
|t| and π(m+1)

|t| for some integer m. Fix such an

interval [v, v̄] and define

I := {i|wi ∈ [v, v̄]}.

Then, for sufficiently small η > 0 and ε > 0, we have Twi,η ⊂ A(t, ε) for all

i ∈ I. Fixing such η > 0 and ε > 0, it follows that

Θi ∈ Oη and i ∈ I ⇒ Xi − ai ∈ A(t, ε).

This implies that

P{Xi − ai ∈ A(t, ε)} ≥ P{Θ ∈ Oη} =: p > 0 for all i ∈ I,

and hence

1

log sn

n∑
i=1

P{Xi − ai ∈ A(t, ε)} ≥ n

log sn
· ]{i ∈ I|i ≤ n}

n
· p.

As n→∞, the first factor on the right-hand side tends to ∞ since sn has

an asymptotic order of
√
n. The second factor tends to G(v̄) − G(v) > 0,

which is positive since G has full support on [w, w̄]. Therefore the left-hand

side tends to ∞.

Claim 5.4. As n→∞, uniformly in w1 ∈ [w, w̄],

2

∫ 1

0

θ1

√
2πnP{Ωn(θ1, w1)}dF (θ1)→ 2w1E[Θφ(Θ, w1)]√∫ w̄

w
w2E[φ(Θ, w)2]dG(w)

. (15)

By part (i) of Lemma 2,28 the left-hand side of (15) is
√

2πnπi(φ;n), and

therefore Lemma 3 holds.

Proof of Claim 5.4. By Claims 5.2 and 5.3, we may apply the LLT to ob-

28It is easy to check that part (i) of Lemma 2 holds for rules φ(·, wi) that depend on
weight wi as well.
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tain √
2πs2

nP{Ωn(θ1, w1)} → 2w1φ(θ1, w1).

By Claim 5.1, this means that

√
2πnθ1P{Ωn(θ1, w1)} → 2w1θ1φ(θ1, w1)√∫ w̄

w
w2E[φ(Θ, w)2]dG(w)

. (16)

Letting θ1 = 1 maximizes the left-hand side of (16) with the maximum

value
√

2πnP{Ωn(1, w1)}. This maximum value itself converges to a finite

limit. Hence the expression
√

2πnθ1P{Ωn(θ1, w1)} is uniformly bounded

for all n and θ1 ∈ [0, 1]. By the Bounded Convergence Theorem,

2

∫ 1

0

θ1

√
2πnP{Ωn(θ1, w1)}dF (θ1)→ 2 ·

2w1

∫ 1

0
θ1φ(θ1, w1)dF (θ1)√∫ w̄

w
w2E[φ(Θ, w)2]dG(w)

.

Since F is symmetric and φ is odd, this limit is exactly the one in (15).

To check the uniform convergence, note that for each n, the inte-

gral on the left-hand side of (15) is non-decreasing in w1, since event

Ωn(θ1, w1) weakly expands as w1 increases.29 We have shown that this

integral converges pointwise to a limit that is proportional to the factor

w1E[Θφ(Θ, w1)], which is continuous in w1.30 Therefore, the convergence

in (15) is uniform in w1 ∈ [w, w̄].31

A5 Proof of Part (ii) of Lemma 2

This follows immediately from Lemma 3, by noting that if φ is a symmetric

profile, each group’s rule can be written as φ(θj, wj) = φ(θj).

29Let θ1 ∈ [0, 1]. If φ is a symmetric profile, i.e., if φ(θ1, w1) = φ(θ1), then w1φ(θ1) is
non-decreasing in w1. If φ = φCD, then w1φ

CD(θ1, w1) = c sgn(θ1) + (w1 − c)θ1, which
is non-decreasing in w1 again. Thus event Ωn(θ1, w1) weakly expands as w1 increases.

30If φ is a symmetric profile, this factor is linear in wi. If φ = φCD, the factor equals
cE(|Θ|) + (wi − c)E(Θ2), which is affine in wi.

31It is known that if (fn) is a sequence of non-decreasing functions on a fixed finite
interval and fn converges pointwise to a continuous function, then the convergence is
uniform. See Buchanan and Hildebrandt (1908).
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A6 Proof of Proposition 2

By part (ii) of Lemma 2, we must show that Corr [Θ, φa(Θ)] is decreas-

ing in a ∈ [0, 1]. By simple calculation,

E(Θ2) · Corr [Θ, φa(Θ)]2 =
aE(|Θ|) + (1− a)E(Θ2)

a2 + 2a(1− a)E(|Θ|) + (1− a)2E(Θ2)
.

The derivative of this expression with respect to a has the same sign as{
d
da

(aE(|Θ|) + (1− a)E(Θ2))2
}(
a2 + 2a(1− a)E(|Θ|) + (1− a)2E(Θ2)

)
−
(
aE(|Θ|) + (1− a)E(Θ2)

)2{
d
da

(a2 + 2a(1− a)E(|Θ|) + (1− a)2E(Θ2))
}

= a(aE(|Θ|) + (1− a)E(Θ2))(E(|Θ|)2 − E(Θ2)).

This is negative for any a ∈ (0, 1], since E(|Θ|)2 ≤ E(Θ2) in general, and the

full-support assumption implies that this holds with strict inequality.

A7 Proof of Theorem 4

Clearly, Lorenz dominance is invariant to linear transformations of pay-

offs. Thus, it suffices to prove that for large enough n, the payoff profile√
2πnπ(φCD;n) Lorenz dominates the payoff profile

√
2πnπ(φ;n). By e-

quations (8) and (9) in the proof of Theorem 3, as n→∞ these amounts

converge to Bwi + C and Aφwi, respectively. A result by Moyes (1994,

Proposition 2.3) implies that if f and g are continuous, nondecreasing,

and positive-valued functions such that f(wi)/g(wi) is decreasing in wi,

then the distribution of f(wi) Lorenz dominates that of g(wi). The ratio

(Bwi+C)/(Aφwi) is decreasing in wi, and so the claimed Lorenz dominance

holds in the limit as n→∞. Recalling that the convergences are uniform,

the dominance holds for sufficiently large n.
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