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Abstract

We explore statistical power characteristics of various empirical strategies

implemented to estimate the short-term health effect of air pollution. Through

an extensive literature review, we retrieve the estimates and standard errors of

a large number of studies published on this topic. We find that a non-negligible

share of studies may suffer from low power issues and could thereby exaggerate

effect sizes. The analysis of published results highlights potential shortcomings

of the literature but does not enable to precisely identify drivers of theses is-

sues. We therefore run realistic simulations to investigate how statistical power

varies with the treatment effect size, the number of observations, the proportion

of treated units as well as the distribution of the outcome. Usual causal identi-

fication methods implemented in this literature, such as instrumental variable

(IV), regression discontinuity design (RD) or difference-in-differences (DiD),

may yield overestimated effect sizes. This issue is driven by the imprecision of

the IV estimator and the small number of exogenous shocks usually exploited

in DiD and RD designs. When focusing on particular groups such as the elderly

or children, researchers should be aware that statistical power is lowered by the

limited average count of health outcomes.
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1 Introduction
In the last decade, researchers in economics and epidemiology have made consider-

able efforts to credibility estimate the acute health effects of air pollution. Research

designs based on causal inference methods have helped them better address the is-

sue of unmeasured confounding variables (Dominici and Zigler 2017, Bind 2019).

Newly obtained results have direct policy implications as they often strengthen the

case for lowering thresholds of air quality alerts (Schwartz et al. 2015; 2018, Deryug-

ina et al. 2019). While considerations on identification strategies are pivotal to these

papers, statistical inference issues are rarely discussed. Working with observational

data within the null hypothesis significance testing framework does not invite to

pay attention to statistical power. Yet, estimates that are deemed statistically signif-

icant tend to overestimate true effect sizes when the statistical power is low (Ioan-

nidis 2005, Gelman and Carlin 2014, Ioannidis et al. 2017, Altoè et al. 2020, van

Buuren and Greenacre). This issue is not specific to studies on short-term health

effects of air pollution but may be particularly salient in this literature where the

signal-to-noise ratio is often low.

In this paper, we undertake the first empirical evaluation of the inference design
of studies on the short-term health effects of air pollution. By "evaluating an infer-

ence design", we mean to assess whether the statistical power of these observational

studies could lead to overestimated acute effects of air pollution on health outcomes.

First, we carry out a retrospective analysis of studies investigating the short-term

effects of air pollution on mortality or morbidity. With an extensive search strategy,

we retrieve most articles published in the standard epidemiology literature and all

articles that we are aware of based on causal inference methods. We follow the ap-

proach proposed by Gelman and Carlin (2014) to compute, based on hypothetical

true effect sizes, the statistical power and the exaggeration factor of statistically sig-

nificant estimates. We then develop a prospective design analysis to help researchers

evaluate potential inference issues associated with their identification strategies. We

run simulations specific to each causal inference method, based on real data from

the US National Morbidity, Mortality, and Air Pollution Study. We study how infer-

ence issues are affected by the treatment effect size, the number of observations, the

proportion of treated units, and the distribution of the health outcome.

While many studies do not suffer from power issues, we find that a substantial

share does and could greatly overestimates the short term health effects of air pol-

lution. The quality of inference designs does not appear to be a central issue in
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this field as the proportion of studies with low power has remained high over time.

In the causal inference literature, we observe a clear negative linear correlation be-

tween effect sizes and precision of estimates. Less precise studies may discover true

causal association but their estimates are likely to be inflated.

Our simulation results complete our systematic analysis of the literature. First,

we find that instrumental variable estimates are more likely to overestimate true

effect sizes than naive estimates. This issue is even present for very large first stage

F-statistics. Second, many papers in the literature exploit rare events such as public

transport strikes, thermal inversions, or air quality alerts as exogenous shocks on

air pollution. Settings with few treated units have a dramatically low power and

greatly exaggerate true effect sizes. There is therefore a trade-off between the use

of such sporadic events to obtain unbiased estimates and the risk of overestimat-

ing true treatment effects as a result of low power issues. Third, many researchers

have investigated acute effects of air pollution on health outcomes with small daily

average counts. We find that with very few daily cases of an health outcome, sta-

tistical power is extremely low, even for large sample sizes. In such circumstances,

researchers have very high chances to overestimate the effects of air pollution.

Our paper is organized as follows. In Section II, we implement a simple sim-

ulation exercise to help readers understand why a statistically significant estimate

exaggerate the true effect when statistical power is low. In section III, we discuss the

results of our retrospective analysis of the literature. In Section IV, we detail how

we build our simulations. We display the results of these simulations in section V

and we provide specific guidance on study design for researchers in Section VI.

2 Background on Statistical Power, Type M
and S errors

In a seminal paper, Gelman and Carlin (2014) point out that researchers working in

the null hypothesis significance testing framework are often unaware that "statisti-

cally significant" estimates suffer from a winner’s curse in under-powered studies:

these estimates can largely overestimate true effect sizes and can even be of the op-

posite sign. In this section, we implement a simple simulation exercise to illustrate

these two counter-intuitive issues and explain why they could matter in studies on

acute health effects of ambient air pollutants.
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2.1 A Fictional Example
Imagine that a mad scientist is able to implement a randomized experiment to mea-

sure the short-term effects of air pollution on daily non-accidental mortality. The

experiment takes place in a major city over a one year period. The scientist is able to

increase concentration of particulate matter with a diameter below 2.5 µm (PM2.5)

by 10 µg/m3—a large shock equivalent to one standard deviation increase in the

concentration of PM2.5 of a European capital city.

Table 1: Science Table of the Experiment.

Day Index Yi(0) Yi(1) Wi Yobsi
1 123 124 1 124
2 79 80 1 80
3 83 84 0 83
...

...
...

...
...

363 136 137 1 137
364 106 107 0 106
365 95 96 0 95

Notes: This table displays the potential out-
comes, the treatment status and the observed
outcomes for 6 of the 365 daily units in the sci-
entist’s experiment.

To simulate this experiment, we create a Science table where we observe the

pair of potential outcomes of each day, Yi(Wi = 0) and Yi(Wi = 1) (see Table 1). Yi
represents a daily count of non-accidental death and Wi the treatment assignment

which is equal to 1 for treated units and 0 otherwise. We first create the Yi(0), i.e.,

the daily non-accidental mortality counts in the absence of treatment by drawing

365 observations from a Negative Binomial distribution with a mean of 106 and a

variance of 402. We choose the parameters to approximate the distribution of non-

accidental mortality counts in a large European city. We then consider a constant

treatment effect of 1 additional death due to the air pollution increase such that

Y (1)i = Y (0)i + 1. It represents approximately a 1% increase in the mean of the

outcome or a 0.05 increase in its standard deviation. Note that the magnitude of

this hypothetical effect is higher than what has been found in a recent and large-

scale study based on 625 cities. Liu et al. (2019) found that a 10µg/m3 increase

in PM2.5 concentration was associated with a 0.68% (95% CI, 0.59 to 0.77) relative

increase in daily all-causes mortality.
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The scientist implements a complete experiment where they randomly allocate

half of the days to the treatment group and the other half to the control group. Fol-

lowing the fundamental problem of causal inference, the daily count of deaths they

observe is given by the equation: Y obsi =Wi ×Yi(1)+(1−Wi)×Yi(0). Treated units ex-

press their Yi(1) values and control units their Yi(0) values. The scientist computes

the average difference in means between treated and control outcomes and obtains

an estimate for the treatment effect of 4 additional deaths, with a p-value of ' 0.04.

The estimate is "statistically significant" at the 5% level. The "significant" result

fulfills the scientist expectations, who immediately starts writing their paper. Had

they not obtained a statistically significant estimate, they would have not carried on

with the whole publication process.

Unfortunately for the scientist, we are in a position where we have much more

information than him. We observe the two potential outcomes for each day and

know that the treatment effect is equal to +1 daily death. To gauge the inference

properties of an experiment with a sample size of 365 days, we replicate this exper-

iment 10,000 times.

2.2 Defining Statistical Power, Type M and S errors
In Figure 1, we plot the estimates of the 10,000 iterations of the experiments (Panel

A) and their density distribution (Panel B). The average of estimates is equal to 1

additional death, the true effect size. The statistical power is the probability to get

a significant estimate when there is actually an effect. For this experiment, it can be

computed as the proportion of estimates that are statistically significant estimates

at the 5% level. Among the 10,000 iterations, only 700 estimates are statistically

significant (the orange dots in Panel A): the statistical power of the scientist for the

experiment is therefore 7%. The scientist was therefore "lucky" to get a statistically

significant estimate. We then evaluate the extent to which statistically significant

estimates exaggerate the true effect of PM2.5 on mortality. The exaggeration ratio,

also called the type M error by Gelman and Carlin (2014), is computed as the aver-

age of the ratio of the absolute values of the statistically significant estimates over

the true effect size. If the scientist happens to get a statistically significant estimate,

it would, in expectation, overestimate the true effect size by a factor of 5! Strikingly,

a fraction of statistically significant estimates are of the wrong sign in Figure 1. This

leads to the definition of the type S error as the probability that the estimate, when

statistically significant, has a sign opposed to the true effect (Gelman and Tuerlinckx
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Figure 1: Estimates of the 10,000 Simulations.

Notes: In Panel A, blue and orange dots represent the point estimates of the 10,000 iterations of the
randomized experiment ran by the mad scientist. Orange dots are statistically significant at the 5%
level while blue dots are not. The orange solid line represents the true effect. Panel B displays the
density distribution of the 10,000 estimates of the treatment effect. The solid blue line is the average
of the estimates and is equal to the true effect, +1. The orange areas represent the proportion of
statistically significant estimates at the 5% level.

2000). For this experiment, a statistically significant estimate has a 7% probability

of being of the wrong sign. The type M error and the probability to make a type S

error are high for this experiment due to the particularly small sample and true ef-

fect sizes. With a larger sample size, the statistical power would rise and conversely
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type M and S error would shrink.

2.3 Relevance for Studies on Acute Health Effects of Air Pollution
If the scientist could replicate many times his experiment, they would find on aver-

age the correct effect size of a 10 µg/m3 increase in PM2.5 on daily mortality. Septic

readers could rightly wonder why they should worry about type M and S errors.

Researchers are—despite recent changes in scientific practices—not incited enough

to publish replication exercises and non statistically significant estimates. As a con-

sequence, published estimates being mostly selected among statistically significant

ones may overestimate true effect size. Type M and S errors highlight the arguably

counter-intuitive danger of having too much confidence in statistically significant

estimates when studies are under-powered. These concepts are highly relevant for

estimating the acute health effects of air pollution as signal to noise ratios are typi-

cally low in this literature. Effect sizes are often remarkably small and modeling the

variations in health outcome counts to reduce noise is especially challenging (Black

et al. 2019). Large sample sizes are also required to precisely estimate the acute

effect of air pollution.

3 Retrospective Analysis of the Literature
In this section, we assess whether the standard and causal inference literature suf-

fer from statistical power issues. Beforehand, we describe the procedure to run a

retrospective design analysis for a study.

3.1 Computing Statistical Power, Type M and S Errors
Running a retrospective design analysis for a study, i.e., computing its statistical

power, type M and type S errors, only requires three metrics: the estimated effect,

its standard error and a guess about the true effect size of the treatment of interest.

Other parameters of an article’s research design, such as the number of observations,

are assumed to be fixed. The R package retrodesign developed by Timm (2019)

implements the closed-form expressions derived by Lu et al. (2019) making it very

easy to carry out the procedure for a given study. Thinking about the true effect size

one is trying to estimate is the central piece of a retrodesign analysis. As the true

effect is never observed, researchers can have very different priors on its magnitude.
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They could therefore assess differently the extent to which a study risks to suffer

from statistical power issues. We find two different ways to think about true effect

sizes.

First, we take a comprehensive approach to evaluate the quality of the inference

design of studies in the literature. To be informative, a study needs to have enough

statistical power to precisely estimate a range of effect sizes that one would deem

credible. Hence, a well-designed study should be able to detect effects even though

they are smaller than the estimated one. If assuming that the true effect is 3/4

of the measured effect only yields a power of 30%, the study is certainly under-

powered. If this analysis could be replicated, with this design, such an effect would

not be detected in 70% of the replications. For each study, we thus compute power,

type M and S errors assuming that the true effect size is equal to a fraction of the

estimated one. This exercise constitutes a broad sensitivity analysis. Second, we

can try to guess, for each study, what could be the value of the true effect size.

We do such an analysis only for the causal inference literature as we are able to

carefully read each paper. For each causal inference paper, we try to find the most

similar paper that uses non-causal method and record what would be the effect

sizes predicted [still need to be done]. In many cases, we find that causal estimates

were an order of magnitude higher than what the standard literature had previously

found—this could be explained by the fact that causal inference methods better

overcome omitted variables bias and in some cases measurement error issues. Yet, it

would be very interesting to know if causal inference designs have enough statistical

power to precisely estimate the effect sizes found intend the standard literature.

We also run design calculations for instrumental variable strategies assuming that

the true effect size is equal to the estimate of the associated standard multivariate

model. Instrumental variable estimates are well-know to be less precise and could

be higher than standard multivariate estimates just because they run into a type M

error.

Finally, as Type M and S errors are new concepts to most researchers, we provide

a case study to illustrate how a retrospective analysis can be concretely carried out.

Deryugina et al. (2019) instrument PM2.5 concentrations with wind directions to

estimate its effect on mortality, health care use, and medical costs among the US

elderly. They gathered 1,980,549 daily observations at the county-level over the

1999–2013 period; it is one of the biggest sample sizes in the literature. When the

authors instrument PM2.5 with wind direction, “a 1 µg/m3 (about 10 percent of

the mean) increase in PM2.5 exposure for one day causes [0.69 ± 0.061] additional
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deaths per million elderly individuals over the three-day window that spans the

day of the increase and the following two days”. In Figure 2, we plot power, type

M and S errors as a function of hypothetical true effect sizes. The solid orange line

represents the observed two-stage least square estimate reported in the article.

Figure 2: Power, Type M and S Errors Curves for Deryugina et al. (2019)
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Notes: In each panel, a metrics, such as the statistical power, the exaggeration ratio or the probability
to make a type S error, is plotted against a range of hypothetical effect sizes. The solid orange line
represents the observed two-stage least square estimate reported in the article.

The estimate found by Deryugina et al. (2019) represents a relative increase of

0.18% in mortality. Is this estimated effect size large compared to those reported

in other articles? We found two similar articles to draw a comparison. Using a

case-crossover design and conditional logistic regression, Qian Di (citation) find

that a one µg/m3 increase in PM2.5 is associated with a 0.105% relative increase in

all-cause mortality in the Medicare population from 2000 to 2012. Schwartz et al.

(2018) estimate that a one µg/m3 increase in PM2.5 instrumented concentrations

with the planetary boundary layer, wind speed, and air pressure leads to a 0.15%

increase in non-accidental mortality. The effect size found by Deryugina et al. (2019)

is a bit higher but relatively close to these two studies. Given the sample size and the

similarity of the estimated effect compared to other studies, Deryugina et al. (2019)

have likely a high statistical power and are unlikely to make a type M error [add

vertical lines on the graph for these estimates]. Now, suppose that the true effect of

the increase in PM2.5 was 0.095 additional deaths per million elderly individuals—

the estimate the authors found with a "naive" multivariate regression model. The

statistical power would be 34%, the probability to make a type S error is null but

the overestimation factor would be equal to 1.7. Even with a sample size of nearly
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2 million observations, Deryugina et al. (2019) could make a non-negligible type M

error if the true effect size was the "naive" estimate. Yet, the authors could argue

that their instrumental variable strategy leads to a higher effect size as it overcome

unmeasured counfounding bias. Besides, for effect sizes down to 0.182 additional

deaths per million elderly individuals (a 0.05% relative increase), their study has a

very high statistical power and would not run into substantial type M error.

3.2 Causal Inference Literature
Using Google Scholar, PubMed, and journal websites, we search papers using causal

inference methods and investigating the short-term effects of air pollution on mor-

tality or emergency admission outcomes. Specifically, we only consider articles that

exploit short-run exogenous shocks such as air pollution alerts, public transport

strikes, changes in wind direction, thermal inversions, to name but a few. For in-

stance, we did not select articles studying the impact of low emission or congestion

pricing zones as they evaluate health effects over several months or years. In Table 2,

we display the 29 articles that match our search criteria. We read each article and

retrieve the estimates and standard errors for the main results: for simplicity, we

only select one of the main results discussed by the researchers. We also record the

numbers of observations and summary statistics on the outcome and independent

variables to compare studies by standardizing the estimated effect sizes.
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Table 2: Our Corpus of Papers from the Causal Inference Literature.

Article Location Health Outcome Independent Variables Study Design

Arceo et al. (2016) Mexico City, Mexico Infant Mortality PM10, Thermal Inversion (IV) Instrumental Variable
Austin 2020 Counties, USA Rates of Confirmed COVID-19 Deaths PM2.5 (air pollutant), Wind Direction (IV) Instrumental Variable
Baccini 2017 Milan, Italy Non-Accidental Mortality Dummy for PM10 Concentration >To 40 µg/m³ Propensity Score Matching
Barwick 2018 All Cities, China Number of Health Spending Transactions PM2.5, Spatial Spillovers of PM2.5 (IV) Instrumental Variable
Bauernschuster
2017

5 Largest Cities, Ger-
many

Admissions for Abnormalities of Breathing (age below 5) PM10, Public Transport Strikes Dummy Difference in Differences

Beard 2012 Salt Lake County, USA Emergency Visits For Asthma Thermal Inversions Time-stratified case-crossover
design

Chen 2018 Toronto, Canada Asthma-Related Emergency Department Visits Air Quality Eligibility, Air Quality Altert Fuzzy Regression Discontinuity
Deryugina 2019 Counties, USA All Causes of Mortality (Age 65+) PM2.5, Wind Direction (IV) Instrumental Variable
Ebenstein 2015 2 Cities, Israel Hospital Admissions Due To Lung Illnesses PM10 (air pollutant), Sandstorms (IV) Instrumental Variable
Forastiere 2020 Milan, Italy Non-Accidental Mortality Setting PM10 Daily Exposure Levels >To 40 µg/m³ To 40 Generalized Propensity Score
Giaccherini 2019 Municipalities, Italy Respiratory Hospital Admission PM10, Public Transport Strikes Difference in Differences
Godzinski 2019 10 Cities, France Emergency Admissions for Upper Respiratory System

(Age 0-4)
CO, Public Transport Strikes Difference in Differences

Halliday 2018 Hawaii, USA ER Admission for Pulmonary Outcomes PM2.5, SO2 Emissions From Kilauea Volcano and Wind
Direction (IV)

Instrumental Variable

He 2016 34 Urban Districts,
China

Monthly Standardized Mortality Rate PM10, Regulation and Traffic Control Status (IV) Instrumental Variable

He 2020 China Monthly Number of Deaths for All-Causes PM2.5, Straw Burning (IV) Instrumental Variable
Isphording 2021 Counties, Germany Mortality of Covid-19 Positive Male Patients (Age 80+) PM10, Wind direction (IV) Instrumental Variable
Jans 2018 Sweden Children Health Care Visits for Respiratory Illness PM10, Thermal Inversion (IV) Instrumental Variable
Jia 2019 South Korea Mortality Rates for Respiratory and Cardiovascular Dis-

eases
Dusty Days Times China’s AQI Reduced-Form

Kim 2021 South Korea Hospital Admissions for Respiratory Illnesses PM10 (air pollutant), Average PM10 Level By Date (IV) Instrumental Variable
Knittel 2016 California, USA Infant Mortality PM10, Road Traffic Flow and Weather variables (IV) Instrumental Variable
Moretti 2011 South California, USA Hospital Admissions for Respiratory Illnesses O3, Vessel Traffic (IV) Instrumental Variable
Mullins 2014 Santiago Metropole,

Chile
Cumulative Deaths (age >64) PM10, Air quality Alerts Matching + Difference in Differ-

ences
Schlenker 2016 California, USA Acute Respiratory Hospitalization CO, Planes Taxi Time (IV) Instrumental Variable
Schwartz 2015 Boston, USA Non-Accidental Mortality PM2.5, Back Trajectories of PM2.5 (IV) Instrumental Variable
Schwartz 2017 Boston, USA Non-Accidental Mortality PM2.5, Height Of Planetary Boundary Layer and Wind

Speed (IV)
Instrumental Variable

Schwartz 2018 135 Cities, USA Non-Accidental Mortality PM2.5, Planetary Boundary Layer, Wind Speed, and Air
Pressure (IV)

Instrumental Variable

Scheldon 2017 Singapore Acute Upper Respiratory Tract Infections Pollutant Index, Indonesian Fire Radiative Power (IV) Instrumental Variable
Williams 2018 USA Asthma Rescue Event PM2.5 Poisson fixed-effects models
Zhong 2017 Beijing, China Ambulance Call Rate for Coronary Heart Problem NO2, Number 4 Day (IV) Instrumental Variable

Notes: For each study, we report its location, one of the health outcome analyzed, the independent variables (the air pollutant and in the case of an instrumental variable strategy, the instrument) and the
study design.



In Figure 3, we display the estimated standardized effect sizes and their associ-

ated 95% (thick lines) and 99% (thin lines) confidence intervals for articles using an

instrumental variable strategy.

Figure 3: Forest Plot of Standardized Estimates Effect Sizes of Articles Based on
Instrumental Variable Strategy.
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reports the sample size, the context of the article and the air pollutant instrument respectively. In
the fifth column, each blue dot represents the standardized effect size of an article, the thick lines
are the associated 95% confidence intervals and the thine lines are the 99% confidence intervals. In
the sixth column, the health outcomes investigated are displayed. [Add columns names with Adobe
Illustrator]

Standardized estimated effect sizes vary a lot, from 0.02 to 1, and several studies

seem imprecise given their wide confidence intervals. One explanation for this va-

riety of effect sizes is that researchers use different causal methods, rely on different

natural experiments and look at different health outcomes. While we think that this

may be part of the story, Figure 4 points towards another possible explanation.

The more precise studies are the ones with the lowest effect sizes. This pattern

has been observed in other fields, where replication exercises with larger sample

sizes have resulted in deflated effect sizes. We think that this figure could indicate

that studies with large effect sizes run into type M error. Alternatively, since pub-

lic policies are driven by findings from the academic literature, researchers may be

incentivized to elicit smaller and smaller effects, therefore needing more and more

precise estimates. To evaluate potential inference issues in this literature, we com-

pute the statistical power, the exaggeration factor (type M error) and the probability

to get an estimate of the wrong sign (type S error) for all studies based on hypothet-

ical true effect sizes equal to 75%, 50% and 30% of the estimates. Results for the

different scenarios are displayed in Figure 5.
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Figure 4: Standardized Estimates Against Precision.
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Notes: Standardized Estimates are plotted against the inverse of the standard errors, which can been
considered as a measure of precision. Both axes are on a log10 scale.

Figure 5: Statistical Power and Type M Error of Causal Inference Studies.

Power (%) Type M Error (Exaggeration Factor)
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30% of the Observed Effect Size

50% of the Observed Effect Size

75% of the Observed Effect Size

Notes: Each blue dot represents either the statistical power or the exaggeration factor of a study
under three hypotheses about its true effect size.

If the true effect size of each study was equal to 75% of the estimate, the average

statistical power would be equal to 67% and the Type M error would be 1.3. The

causal inference literature could then be relatively confident in the magnitude of its

estimated effects. However, if the true effect size of each study was equal to 50% of

the estimate, the average statistical power would be 43% and the exaggeration factor
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would be equal to 1.7. Finally, in the most extreme scenario where the true effect

size of each study was equal to 30% of the estimate, the average statistical power

would be 22% and the exaggeration factor would be equal to 2.6. In all scenarios,

the probability to make a type S error is nearly null. In Figure 5, we can see that

there is a wide heterogeneity in the robustness of studies to inference issues—some

of them seem relatively well powered while other seem to run quickly into Type

M error. A large share of studies in the literature would not have designs with

enough statistical power to detect effects 2 or 3 times smaller than the ones they

find. To illustrate this heterogeneity, we compute by how much the estimated effect

size should be decreased for a study to result into a type M error of 1.5. Figure 6,

we display the relevant graph for studies based on instrumental variable strategies.

For the first 5 studies at the bottom of the graph, if the true effect sizes were 30%

inferior to the estimated effect sizes, they would make a type M error of at least

1.5. The quality of the inference for these studies is therefore worrisome. There are

however studies that seem to be well-powered as the true effect size would need to

be over 70% below the estimated effect in order for them to run into a large type M

error.

Figure 6: When Would Studies Exaggerate True Effect Sizes by a Factor of 1.5?
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Kim et al. (2021)
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How Much Should We Reduce (%) the Estimated Effect for the Type M Error to be larger than 1.5?

Notes: Orange dots represent the percentage decrease of the estimated effect size needed for a study
to make a 1.5 Type M error.

Overall, our exploration of the causal inference literature reveals that it is likely

that some studies are under-powered and could run into type M error. It may partly
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explain why there is a large heterogeneity in effect sizes in this literature.

3.3 Standard Literature
Contrary to the burgeoning causal inference literature, more than a thousand of

papers have been published on the short term health effects of air pollution in epi-

demiological, medical and public health journals. Most studies rely on generalized

additive models to flexibly adjust for the temporal trend of health outcomes and for

non-linear effects of weather parameters. This literature spans over 20 years and

has replicated analyses in a large number of settings, providing crucial insights on

the acute health effect of air pollution. Advocates of causal methods would surely

argue that these articles could suffer from omitted variable biases. Even if they may

be more biased, they could suffer less from power issues.

We use a search query to retrieve 1834 relevant articles from PubMed and Sco-

pus. We then develop a detection algorithm taking advantage of a standardized

reporting procedure of results. Articles in this literature commonly display esti-

mates and confidence intervals in their abstracts, allowing us to extract them using

REGular EXpressions (regex). We illustrate the procedure using one sentence of a

randomly selected article from this literature review (Vichit-Vadakan et al. 2008):

“The excess risk for non-accidental mortality was 1.3% [95%

confidence interval (CI), 0.8–1.7] per 10 µg/m3 of PM10, with

higher excess risks for cardiovascular and above age 65 mortality

of 1.9% (95% CI, 0.8–3.0) and 1.5% (95% CI, 0.9–2.1), respectively.”

Our algorithm detects phrases such as “95% confidence interval (CI)” or “95%

CI” and looks for numbers directly before this phrase or after and in a confidence

interval-like format. Using this method, we retrieve 2666 valid estimates from 784

articles. The set of articles considered is therefore limited to articles displaying

confidence intervals and point estimates in their abstracts. We also build regex

queries to retrieve other information about the articles such as the air pollutant and

health outcome studied, the length of the study and the number of cities considered.

Contrary to the causal inference literature for which we read each article, we do

not know what is exactly measured in each analysis since there is no standardized

way of reporting the results beyond mentioning confidence intervals. For instance,

studies can express estimated effect sizes either in terms of relative increase in the

average daily count of an health outcome or with relative risk. Besides, studies do
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not express their estimated effect sizes for a same increase in a pollutant concentra-

tion. Running design calculations therefore require us to only compute sensitivity

analyses, expressing true effect sizes as a fraction of estimated coefficients.

Our results for the standard literature are at first sight reassuring. If the true

effect sizes of the studies were equal to 75% of estimated coefficients, the median

statistical power would be equal to 93% and the median exaggeration factor would

be nearly 1. At least 50% of this literature does not seem to suffer from substantial

power issues. Type S error does not appear to be an important issue for most arti-

cles. Yet, even if the measured effect was close to the true effect, a non negligible

proportion of articles would display low statistical power and present a substantial

risk of making a type M error. About 40% of estimates would not reach the con-

ventional 80% statistical power threshold if the true effect was 75% the size of the

measured effect. Concernedly, for these under-powered studies, the average type

M is 1.9 and the median is 1.5. These figures however hide a lot of heterogeneity

across studies, which we try to apprehend.

We find that the health outcome and the air pollutant studied do not seem to

be related to inference issues. Health science journals appear to be more prone to

power issues than other journals, but a shared lack of concern for low power issues

is seen across all fields. Researchers appear to be aware that they should work with

large sample size as they often carry out multi-city studies and sometimes explic-

itly state that they investigate non-accidental mortality causes as the average daily

count is higher to increase statistical power. Yet, the proportion of low power stud-

ies has been stagnating since the 1990s, revealing that practices regarding statistical

power have not evolved. Even more worryingly, we find that in recent years, more

and more articles display very large type M errors. As in the causal inference liter-

ature, the quality of inference designs does not seem to be a central issue for most

researchers in this field. This might be explained by the scarcity of guidance on the

determinants of statistical power.

4 Prospective Analysis of Causal Inference
Methods

The review of the standard and causal literature enables us to get a sense of some

inference issues existing in the literature of short-term health effects of air pollu-

tion. Yet, this analysis does not allow us to clearly identify the design parameters

15



causing these issues. Design parameters, such as the number of observations for

instance, were fixed for each study. We only observed cross-study variations and

could not observe how power would evolve with the value of a parameter, for a

given study. We therefore undertake a prospective design analysis to overcome this

limitation (Altoè et al. 2020). This analysis aims to help us understand how power,

type M and type S errors are affected by the value of different parameters and if

some parameters play a more critical role than others.

Our prospective analysis is based on real-data simulations, only adding a treat-

ment effect into the data. We emulate the main identification methods used in the

literature and vary the treatment effect size, the number of observations, the pro-

portion of treated units and the distribution of the outcome. We then try to ana-

lyze what could be improved in current practices by replicating exact study designs

found in the literature. In all our simulations, the average of the estimates is equal to

the true effect we set: we do not add any type of bias. In the present section, we de-

scribe how we implement these simulations. We first present the quasi-experiments

and identification methods considered before discussing the overall setting for the

simulations. We then briefly describe the data used.

4.1 Quasi-experiments and identification methods
Several methods have been implemented to estimate the short term health effects of

air pollution. Researchers typically either estimate a dose response or run reduced-

form analyses taking advantage of random shocks in air pollution levels or expo-

sure.

In the former case, researchers estimate variations in the health outcome of in-

terest as a function of air pollutant concentration. They estimate linear models,

regressing the health outcome of interest on the level of pollution, controlling for

variables such as weather parameters, calendar and city fixed effects. In the present

analysis, we gather such analyses under the umbrella term "OLS" as they are often

estimated using Ordinary Least Squares (OLS).

Another part of the literature, to avoid potential endogeneity issues, instrument

the level of pollution using thermal inversions (Beard et al. 2012, Arceo et al. 2016,

Jans et al. 2018), wind direction or speed (Schwartz et al. 2018, Deryugina et al.

2019, Isphording and Pestel 2021), variations in transport traffic (Moretti and Nei-

dell 2011, Knittel et al. 2016, Schlenker and Walker 2016) or extreme natural events

such as sandstorms or volcano eruptions (Ebenstein et al. 2015, Halliday et al. 2019).
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In our simulations, we simplify the analysis and only consider binary instruments

such as the presence of a thermal inversion or not, high/low wind speed, presence

of traffic congestion or not. This assumption is not only helpful but also realistic as

several papers exploit binary instruments. We randomly allocate the treatment and

artificially increase the level of pollution accordingly. We then estimate the effect

of air pollution on the health outcome of interest using Two Stage Least Squares

(2SLS). The key assumption is that the instrument only affects the health outcome

via its effect on air pollution. This assumption is verified in our simulations.

The reduced-form literature mainly studies the sparse shocks such as public

transportation strikes or air pollution alerts. Researchers estimate the effect of

the treatment without modeling its impact on air pollution level. We model these

shocks as random events, occurring with a given probability on each day. We es-

timate the effect of the treatment using a simple linear model with fixed effects.

This yields the Average Treatement Effect (ATE).The main identification assump-

tion is the independence assumption, i.e., that potential outcomes are independent

of the treatment. In our simulations, this assumption holds since the treatment is

allocated randomly.

In some cities, when air pollution levels reach a given threshold, air pollution

alerts are released. This treatment can reduce both exposure to air pollution and

levels of pollution. We estimate the effect of this type of intervention without mod-

eling its impact on air pollution. To do so, we consider a Regression Discontinu-

ity Design (RDD). The overall idea of the RDD is to compare days just below the

threshold to days just above it. Just above the threshold, exposure and health im-

pacts should be lower due to avoidance behavior or decreased pollution in response

to the alert. The key identification assumption is that days just below and just above

the threshold are comparable. Thus, no confounders should vary discontinuously at

the threshold (local independence) and the treatment should vary at threshold (rel-

evance). We model this so that both these assumptions are verified. However, for

large bandwidths, observations above and below the threshold may be less compa-

rable. This identification method enables to estimate the Average Treatment Effect

at the cutoff.

4.2 Simulations Set-Up
Our simulations are implemented as follows:

1. Draw a study period,
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2. Draw treated days, if any,

3. Create the health outcome based on the treatment effect,

4. Run the estimation,

5. Store the point estimate of interest and its standard error Repeat the procedure

1000 times,

6. Compute the power, type M, type S errors.

To be more specific, the study period is drawn at random. A given number of

cities and days are drawn from the data set. We consider the same study period for

each city. This seems realistic as studies focusing on several cities typically consider

a unique study period. The drawing procedure for treated days depends on the

quasi-experiment considered and the proportion of treated observations desired.

For a treatment on random days, the treatment status for each day is drawn from

a Bernoulli distribution with parameter equal to the proportion of treated observa-

tions desired. For air pollution alerts, we randomly draw a threshold from a uni-

form distribution and select a bandwidth such that it yields the correct proportion

of treated observations. The generative process for the health outcome depends on

the identification method. For the reduced form approach (and RDD), the treat-

ment effect is drawn from a Poisson distribution with parameter corresponding to

the desired effect size. For the OLS, we build a generative model that creates fake

health data based on the model considered and with an effect corresponding to the

desired effect size. For the IV, we use the same method as for the OLS but modify the

value of pollutant concentration through the instrument: P ollf akect = P ollct+δTct+ect,

where Tct is the treatment dummy for city c at time t, δ the instrument strength and

e ∼ N (0,0.1) noise. The 0.1 standard deviation for the noise is arbitrary but chosen

so that the resulting noise is not too large.

4.3 Data
Our simulation exercises are based on a subset of the US National Morbidity, Mor-

tality, and Air Pollution Study (NMMAPS). The dataset has been exploited in sev-

eral major studies of the early 2000s to measure the short-term effects of ambient

air pollutants on mortality outcomes. It is openly available and allows us to work

with increasing sample sizes for our simulations. Specifically, we extracted daily

data on 68 cities over the 1987-1997 period, which represent 4,018 observations per

city, for a total of 273,224 observations. For each city, the average temperature (C°),

the standardized concentration of carbon monoxide (CO), and mortality counts for
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several causes are recorded. We choose to work with CO as it is the air pollutant

recorded in the most cities over the period and is correlated with the concentration

of other pollutants. Our simulation analysis is not affected by this choice of air pol-

lutant. Less than 5% of carbon monoxide concentrations and average temperature

readings are missing in the initial data set and we impute them using the chained

random forest algorithm provided by the missRanger package (Mayer 2019).

5 Results
5.1 Evolution of Power, Type M and S Errors with Design Param-

eters
First, we analyze how power, type M and S errors are affected by the value of dif-

ferent design parameters. To do so, we set baseline values for these parameters and

vary the value of each of them one by one. This enables us to get a sense of the im-

pact of each parameter ceteris paribus. We choose relatively advantageous baseline

values. We pick a large number of observations: 100,000 observations (2500 days

and 40 cities). We consider a large baseline effect, as compared to the standard lit-

erature: a 1 standard deviation increase in air pollutant concentration or the occur-

rence of treatment leads to a 1% increase in the health outcome. For the treatment

on random days, we consider an optimal proportion of treated units: 50%. For air

pollution alerts, we choose a smaller but realistic proportion of treated units: 10%.

We also use the largest health outcome possible in the baseline: the total number of

deaths. We consider a model with as many control variables as possible: tempera-

ture, temperature squared, city fixed effects and month, year, month×year, weekday

fixed effects. We also repeat this analysis for a smaller number of observations, more

representative of the literature: 10,000 observations (1000 days and 10 cities).

5.1.1 Sample Size

For all identification methods, power increases and type M error decreases with the

number of observations. This can be explained by an increase in the precision of the

estimates. Figure 7 illustrates part of this relationship.

Importantly, even though all parameters are set to be rather advantageous, power

and type M issues arise even for a large number of observations. For 40 cities and

1000 days, statistically significant estimates overestimate the effect by a factor 1.36
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Figure 7: Evolution of type M Error with the number of days, comparison across
identification methods

Notes: Effect size: 1%, outcome: total number of deaths, proportion of treated observations: 0.5 in
the case of the IV and reduced form and 0.1 for the RDD.

(the type M error) in the case of the IV and 1.47 for the RDD. Power is respectively

53.9% and 56.1%. We cannot directly compare the RDD with the other identifi-

cation methods as, for realism concerns, we set the proportion of treated units to

be much smaller. The OLS seems to be much less prone to power issues than the

IV. This is explained by the fact that the variance of the IV estimator is larger than

the variance of the OLS estimator. For 40 cities and 1000 days, power is equal al-

most equal to 100% for the OLS. The reduced form approach does not suffer from

substantial power issues. However, here we set parameters, in particular the pro-

portion of treated units, to correspond to the ideal case of an RCT. In actual studies,

the proportion of treated units is much smaller.

We also note that, for all identification method, Type S error is not a problem for

any sample sizes.

A side analysis also shows that the distribution between the number of days and

the number of cities does not matter for power—only the total number of observa-
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tions does. Changing the ratio between the number of cities and days while holding

the number observations constant does not affect power, type M nor type S error.

5.1.2 Effect Size

For all identification methods, the larger the effect size, the larger the power and

the lower type M and S errors are. Larger effect sizes, ceteris paribus are associated

with larger signal to noise ratio and therefore lower type M and S errors. Even with

advantageous parameters, power issues start to appear for effect sizes below 1%,

both for the IV and the RDD. For instance, for an effect of 0.5%, type M errors for

these identification methods are about 1.7. Such effect sizes are not far off the ones

found in the standard literature. With the smaller but still reasonably large dataset,

power issues arise even for larger effect sizes with type M error respectively equal

to 1.33 and 1.45 for a 2% effect size. With the parameters chosen, the OLS and RCT-

like identification strategies seem to suffer less from power issues, even for small

effect sizes. Type M error starts to increase and power to fall only for very small

effect sizes. Type S error does not seem to be a key issue for any of the identification

methods, even for very small effect sizes.

5.1.3 Proportion of Treated Units

Power decreases sharply with the proportion of treated unit for all identification

methods, as visible in figure Figure 8.

The link between proportion of treated units and power might be slightly less

intuitive than for sample size or effect size. Treatment effect is identified on units

where treatment status changes. The size of this group decreases when the propor-

tion of treated units decreases, leading to less a precise estimation of the treatment

effect and therefore a lower power. As a consequence, type M error increases when

the proportion of treated units decreases, as visible in Figure 9.

In the literature, the proportion of treated units in reduced form analyses, i.e.,
air pollution alerts or transportation strikes, are very small, often less than 5%.

Even with a large data set and rather advantageous parameters values, when the

proportion of treated units is equal to 5%, type M error reaches 1.34 in the case of

the RDD and 1.1 for the reduced-form analyses. With the smaller data set, it reaches

3.6 and 2.7 respectively. This literature might therefore be particularly prone to

type M error due to a very low proportion of treated units, even though sample

sizes are large. IV analyses might also suffer from such an issue as, with the large
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Figure 8: Evolution of power with the proportion of treated units, comparison
across identification methods

Notes: Effect size: 1%, outcome: total number of deaths.

Figure 9: Evolution of type M error with the proportion of treated units, comparison
across identification methods

Notes: Effect size: 1%, outcome: total number of deaths.

data set and 10% of treated units, type M error is equal to 1.4.

5.1.4 Average Count of Cases of the Health Outcome

We analyze whether power issues depend on the average count of cases of the out-

come. For instance, a 1% increase in the number of deaths may be more difficult
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to detect when the average number of deaths is low. A 1% increase in the number

of deaths in a setting where there are only 2 deaths per day corresponds to rare

additional deaths that might therefore be more difficult to identify. To emulate situ-

ations with various number of cases, we consider three different outcome variables,

with different counts of cases: the total number deaths, from of all causes excluding

accidents (mean ' 23 deaths per day and per city), the total number of respiratory

deaths (mean ' 2) and the number of chronic obstructive pulmonary disease cases

for people aged between 65 and 75 (mean ' 0.3).

Less intuitively than sample and effect sizes, the average count of cases critically

affects power. In the large data set, while for baseline parameters and considering

the total number of deaths, power is close to 100% for all identification method,

when considering the total number of respiratory diseases, power falls to 11.2%,

15.8% and 50.4% for the RDD, the IV and the reduced form respectively. The cor-

responding type M errors are 2.80, 2.44 and 1.37 respectively. It increases to 6.19,

5.88 and 2.92 when considering the last outcome variable. Situations with a small

count of cases may therefore lead to extreme type M error and power issues.
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5.1.5 Issues Specific to the Instrumental Variable Design

Figure 10: Evolution of power, type M
and F-stat with the IV strength

Notes: Effect size: 1%, outcome: total number of
deaths, proportion of treated units: 50%

For the instrumental variable identifi-

cation strategy, we also analyze how

power is affected by the strength of the

instrument. The strength of the instru-

ment is defined as the magnitude of ef-

fect of the instrument on CO concen-

tration (refer to section 4.2). We find

that, power collapses and type M er-

ror soars when IV strength decreases, as

visible in Figure 10. Importantly, this

issue arises for rather large IV strengths.

Even in the case of the large data set,

for an IV strength of 0.2, power is only

22.8% and type M equal to 2.0. This is-

sue arises even when F-stats are large.

In the case described above, the F-stat

is huge and equal to 1278. This is way

past the usual threshold below which

we usually consider that the IV is weak,

10. This large F-stat despite the limited

strength of the IV may be explained by

the fact that the F-stat directly depends

on the sample size.

5.2 Simulating Current Prac-
tices in the Causal Inference
Literature
Our simulations enable us to study how

power, type M and type S evolved with

the value of various parameters; They

represent an "ideal" setting, with rela-

tively large sample and effect sizes, pro-

portion of treated units, outcome count
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and IV strength. These parameters may not perfectly represent actual studies. For

each identification method, we therefore consider a given realistic set of parameters

based on examples from the literature. We then vary the value of key parameters

one by one in order to see what could be changed in each study to avoid falling into

power issues.

5.2.1 Transportation strikes

Transportation strikes are rare events. Therefore, even in a large data set, with sev-

eral cities and a long study period, the proportion of treated days might be very

small. For instance, Bauernschuster et al. (2017) study five cities over a period of 6

years, for a total number of 11,000 observations but only observe 45 1-day strikes

over this period. The proportion of treated units is therefore of 0.4%. Based on the

results described in the previous section, this proportion is concernedly low and

might be associated with high risks of type M error. We therefore simulate a similar

design in order to get a sense of potential type M error. In our baseline simulation,

we consider that the true effect is equal to the one they find (11%). We also con-

sider an health outcome with a average count of cases close to theirs. We actually

take a conservative approach and consider one that is 3 times larger than what is

observed in their study (the total number of respiratory deaths, with a mean of 1.98

as compared to 0.692 in their study).

In the baseline scenario, power is only 14.5%. Importantly, this value is obtained

for a very large true effect size. Even with such a true effect size, we find that, on

average, a statistically significant estimate overestimates the true effect by 2.73 (type

M error). Bauernschuster et al. might therefore greatly overestimate the true effect

size. If the true effect size is smaller, type M error would be even larger.

The key limiting factor in this analysis is the extremely small proportion of

treated units. If it was larger, type M would be lower but still problematic [give

numbers]. If the analysis would have been carried out in larger cities with a larger

count of deaths, for instance about 23 deaths per day, everything else equal, the

type M would not be a problem, assuming that the true effect size would be 11%.

However, we have seen that the true effect size is likely smaller than 11%. If the true

effect was only 5%, type M error would be equal to 1.84. Even with a larger count

of deaths Bauernschuster et al. would certainly fall into power issues.

Even though we focused on a particular study, other papers in this literature

display similar characteristics, in particular a small proportion of treated units. This

is inherent to the treatment as transportation strikes are rare events in most setting.
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This may lead to an overestimation of the true effect.

5.2.2 Air pollution Alerts

Air pollution alerts are also rare events. In addition, their effect is generally esti-

mated using RDD, an identification strategy that only consider observation close to

the threshold. As a consequence, effective data sets may end up being particularly

small in this literature as well. For instance, in Chen et al. (2018), while the initial

sample size is of 3652 observations, the effective sample size is only of 143 (100

control observations and 43 treated ones). The proportion of treated observation

is therefore particularly small in this case (1.2%). As for transportation strikes, we

replicate the setting of Chen et al. (2018). In the baseline, we consider one cities,

3652 days, a proportion of treated of 1.2%. We also consider a true effect size of

12%, as found in the study. The average number of case in the study is 26 cases per

day. We therefore use the total number of deaths as our outcome variable (mean of

23.36 deaths per day and per city).

In the baseline scenario, power is only 10.2% and type M error 4.6. This is ex-

tremely preoccupying. The estimate effect is likely to greatly overestimate the true

effect, even if the true effect was as large as 12%. If we consider smaller true effect

sizes, type M error shoots up and power collapses. As a consequence, we cannot

really have any confidence in the reported effect sizes as statistically significant es-

timates overestimate true effect sizes.

5.2.3 Instrumenting Air Pollution

Papers published instrumenting air pollution often present very large data sets. For

instance Schwartz et al. (2018) consider 591,570 observations (135 cities with a

length of study of approximately 4382 days). In this case, air pollution is instru-

mented with a complex mix of variables and we cannot easily observe the propor-

tion of treated units. However, as seen in section 5.1.5, the strength of the IV may

play a crucial role in the potential presence of power issues. We therefore simulate

their analysis, varying the strength of the IV. The effect size is 1.5% and the average

case count 22.8. We thus use the total number of deaths as the outcome variable.

Our data set being smaller than the one used in the study, we only consider 2500

days and 40 cities.

Considering a conservative IV strength of 0.5, we find a power of nearly 100%

and a type M error of 1. Yet, for smaller values of the IV strength parameter, type
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M quickly rises and power decreases. For an IV strength of 0.2 or 0.1, power falls

to 48.3% and 16.4% respectively while type M reaches 1.43 and 2.61. Yet, in these

cases the F-stat remains extremely large, 1287 and 320 respectively, and may hide

these power issues.

6 Discussion
“I think that when we know that we

actually do live in uncertainty, then

we ought to admit it."
— Richard P. Feynman

Our findings should make us worried about statistical power issues when we

are trying to estimate the acute health effects of air pollution. Until now, most re-

searchers ignore inference issues: few power formulas are available and the risk of

type M error is largely unknown. Our retrospective analysis of the literature proves

that under-powered studies with inflated effect sizes are an actual issue. In the

causal inference literature, several papers appear to be dramatically under-powered

and are likely to overestimate their effects by a factor of at least 1.5! One of these

problematic papers even has a sample size of 73 million observations. In the stan-

dard literature, a non negligible share of studies have enough statistical power to

overcome the type M error issue. Yet, a substantial share of papers does not, re-

vealing a broad lack of concern for these issues. Noticeably, the fraction of under-

powered studies has remained constant over time. We thus urge researchers to add

retrospective calculations to their toolbox. They are very easy to implement and

force researchers to reflect on the range of plausible effect sizes they are trying to

estimate.

Unfortunately, a retrospective analysis does not help researchers understand

which parameters of the research design influence the power of their studies. Our

prospective analysis, using simulations based on real-data, fills this gap. Despite

their large sample sizes, researchers exploiting rare exogenous shocks such as trans-

port strikes should be aware that the small proportion of "treated" units observed

in their studies can lead to a dramatically low statistical power. Instrumented dose-

responses can also be problematic if the correlation between the instrument and the

air pollution is limited. Two-stage least square estimates are more prone to type
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M error than the "naive" ordinary least square estimate. This could question the

benefit of using an instrumental variable strategy if one thinks that the amount of

omitted variable is small. The regression-discontinuity design applied to air pol-

lution alerts particularly stands out in terms of inference issues. Given the sample

size its entails, we advice researchers to interpret findings with extra-care as type M

error can be extremely large. Last but not least, the power of all research designs is

influenced by the average count of the health outcome. For instance, in the causal

inference literature, many articles investigate the acute effects of air pollution for

sub-populations such as children. In such settings, there a huge risk to make a type

M error, even with large sample sizes.

On top of these specific guidelines, we insist on three general recommendations

to reform current research practices. First, as it has been advocated as early as the

2000s in economics by Ziliak and McCloskey (2008) and more recently by Gelman

et al., researchers should abandon the null hypothesis testing framework. In the

causal inference literature, 77% of the articles dichotomize evidence using the 5%

threshold. Due to current editorial policies, "statistically insignificant" results are

likely to be kept in the file drawer whereas published "statistically significant" esti-

mates could be inflated (Ioannidis 2005). Second, researchers should display, along

with their results, 95% and 99% confidence intervals. These intervals give the set

of effects sizes supported by the data. The interpretation of the lower and upper

bounds of the confidence intervals should force researchers to evaluate the precision

of their estimate. Our third and last recommendation is also the most difficult to im-

plement: studies should be replicated with identical research designs and in similar

contexts. Replication exercises are still under-valued academically but would be

instrumental to get a sense of the actual distribution of acute health effects of air

pollution.

We hope that our article reminds us that a credible identification strategy does

not necessarily yield a correct estimation of the actual true effect. Published results

are not carved in marble: when researchers qualify estimates as "statistically sig-

nificant", there is often much more uncertainty lying behind, an uncertainty that

should be computed and embraced to better help policy-makers evaluate the ad-

verse effects of air pollution.
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