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Abstract

We investigate the macroeconomic effects of partially irreversible investment arising from

a wedge between the buying and selling price of capital. We derive sufficient statistics that

characterize the implications of irreversibility for three long-run macroeconomic outcomes—

capital allocation, capital valuation, and capital fluctuations. Measuring these statistics with

investment microdata, we find that irreversibility distorts the allocation of capital, lowers

capital valuation, and increases the persistence of capital fluctuations. Corporate income tax

cuts, by lowering the deductibility of capital losses due to the price wedge, effectively increase

irreversibility and structurally change long-run capital behavior.
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Jim Hines, John Leahy, Pablo Ottonello, Edouard Schaal, Matthew Shapiro, Jaume Ventura, and seminar partic-
ipants at Boston University, Carnegie Mellon, CREI, ECB, EUI, Goethe University, ITAM, the Kansas Fed, the
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1 Introduction

Investing in physical capital is far from frictionless. Building capital stock and setting it up for

productive purposes entails adjustment costs that reflect a variety of frictions involved in the

investment process (Caballero and Engel, 1999), such as searching for suppliers, disrupting pro-

duction, restructuring plants, and retraining workers. Disinvesting is also costly, as resources are

needed to uninstall the capital goods, search for buyers of the used capital, and conduct all nec-

essary transactions. Besides the adjustment costs, the market for physical capital is characterized

by a significant wedge between the buying and selling prices, which renders investment partially

irreversible (Bertola and Caballero, 1994; Abel and Eberly, 1996; Lanteri, 2018).1

Exposed to a price wedge, firms operate with caution. In times of high productivity, firms do

not scale up their capital stock as quickly because they fear an adverse shock that would force

them to sell their capital at a lower price; in times of low productivity, firms prefer to hold onto

their capital or only sell modestly to avoid the price penalty. Due to the potential capital losses,

investment becomes less responsive to productivity shocks, and capital reallocation slows. What

is the role of price wedges in shaping the allocation of capital? What are their implications for

firms’ market value and the transmission of aggregate shocks? And finally, are the macroeconomic

implications of price wedges different from those of other adjustment frictions?

To answer these questions, we develop a parsimonious investment model with idiosyncratic

productivity shocks and two frictions: a fixed adjustment cost and a price wedge. In this setting,

we (i) analytically characterize the long-run properties of aggregate capital, including its allocation,

valuation, and fluctuations; (ii) measure the aggregate effects of irreversibility and disentangle

them from the effects of fixed adjustment costs using investment microdata; and (iii) study the

effects of corporate tax reforms with the new notion of “after-tax” frictions, which reduces the

complex interactions of corporate taxes and investment frictions to the simple rescaling of the

frictions.

Our contribution is to demonstrate—theoretically and quantitatively—that partial irreversibil-

ity is crucial in understanding firm-level investment, aggregate capital behavior, and the effects of

corporate tax changes. Concretely, we show that ignoring price wedges and wrongly attributing all

lumpy behavior to fixed adjustment costs results in overestimating the value of capital and under-

estimating the persistence of aggregate fluctuations. Additionally, to the extent that the tax code

allows for deductions of capital losses, price wedges change the elasticity of aggregate outcomes to

corporate income taxes. These results highlight the importance of measuring and modeling partial

irreversibility in capital markets—and its macroeconomic implications—in designing growth and

stabilization policies.

1Ramey and Shapiro (2001) measure a price wedge above 70% for aerospace manufacturing equipment, and
new evidence by Kermani and Ma (2020) shows that price wedges are quite sizeable across sectors and types of
capital, with an industry-wide price wedge of 65% for plant, property, and equipment. We calculate price wedges
as 1 minus the recovery rate, defined as the liquidation value over replacement cost net of depreciation.
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Let us explain the key features of an environment with irreversibility and its challenges. To

guide the discussion, consider a firm’s capital to productivity ratio. In a frictionless world, capital

tracks productivity and their ratio is constant across time and firms. With only fixed adjustment

costs, this ratio moves with idiosyncratic productivity during periods of inaction, which generates

heterogeneity across firms. However, upon adjustment, all firms reset to the same ratio, fully

cleansing the history of shocks. The unique reset point significantly simplifies aggregation as firms

become identical conditional on adjustment. With a price wedge, there are two reset points, each

corresponding to the decision to upsize the capital stock at the buying price or to downsize it at the

selling price. The investment policy now depends not only on the history of idiosyncratic shocks

but also on the past reset point. This micro-history dependence—a Markovian structure for the

sign of consecutive adjustments—adds a new layer of heterogeneity across firms and significantly

complicates aggregation. We solve this challenge by providing unique steady-state cross-sectional

statistics, easily computed in the microdata, that fully encode the history dependence generated

by irreversibility for each macroeconomic outcome.

The first outcome is capital valuation, as measured by the weighted average of firm-level

marginal q’s—the value of an additional unit of capital relative to its replacement cost (Tobin,

1969; Abel, 1979; Hayashi, 1982; Abel and Eberly, 1996). Aggregate q summarizes an economy’s

benefits and costs of accumulating capital: the stream of future production, the user cost of capital

and, naturally, the capital losses accrued due to the price wedge. We characterize the effect of

irreversibility on q with two insights: First, the capital losses of adjusters can be “amortized”

across the periods in which they were inactive and transitioning from being buyers to sellers and

vice versa; and second, the time spent in a particular state during the transition is proportional

to the mass of firms occupying that state. Taken together, these results imply that the economy-

wide capital losses are equal to the average local drift of capital losses in the cross-section. Using

Chilean microdata, we find that irreversibility reduces q by approximately 3% (from 1.09 to 1.06);

but since q is close to unity, investment frictions have a moderate effect on capital valuation and

primarily operate by reducing the stock of capital.

The second outcome is capital fluctuations around the steady state, as measured by the cu-

mulative impulse response (CIR) of average capital to an unanticipated small shock to aggregate

productivity. Along the transition path, we assume that firms follow their steady-state decision

rules and thus focus on the partial equilibrium response. The CIR summarizes both the impact

and the persistence of the capital response to the aggregate productivity shock. With one reset

point, Álvarez, Le Bihan and Lippi (2016) characterized the CIR by keeping track of firms only

until their first adjustment, and in Baley and Blanco (2021), we derived two sufficient statistics

for the CIR of aggregate capital: the dispersion of capital-productivity ratios and their covari-

ance with the time elapsed since their last adjustment. With two reset points, to our surprise,

these sufficient statistics remain valid but with higher values due to irreversibility. Additionally,
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irreversibility introduces a new term that reflects how aggregate productivity shocks change the

mass of adjusters across the two reset points relative to the steady state. We obtain a CIR of

3.1, which means that a 1% reduction in aggregate productivity generates a total deviation in

capital-to-productivity ratios of 3.1% above steady state along the transition path. Our estimates

show that irreversibility accounts for at least 25% of the CIR, which suggests that price wedges

are an important source of persistence behind aggregate fluctuations.

Our characterization of aggregate outcomes highlights the importance of price wedges. A

natural question arises: Can we precisely identify the aggregate effects of price wedges vis-à-vis

other investment frictions? In particular, both price wedges and fixed adjustment costs may

appear observationally equivalent under the lens of a particular set of data moments, for example,

the rate of inaction and the dispersion of the investment rates. Nevertheless, these two frictions

have very different implications for aggregate outcomes. Addressing the identification challenge is

fundamental to correctly measure and assess the implications of investment frictions.

We proceed in two steps, which require investment microdata and a price wedge as inputs. In

the first stage, we recover the two reset points from the firms’ Euler equations constructed with the

first-order conditions and the envelope theorem for arbitrary choice sets (Milgrom and Segal, 2002).

In the second stage, with the reset points in hand, we derive mappings from the joint distribution

of investment and duration of inaction conditional on the sign of the last adjustment to the cross-

sectional steady-state moments that characterize capital allocation, valuation, and fluctuations,

including the new sufficient statistics that capture the role of irreversibility. The premise behind

these mappings is that, conditional on the sign of the last adjustment, the only remaining source

of heterogeneity is the history of productivity shocks received during periods of inaction, which

can be summarized by the size and timing of investment. Our estimates suggest that half of the

difference between reset points comes from the endogenous response to the exogenous price wedge,

which confirms irreversibility’s large effects for firm-level investment.

As a concrete application of our framework, we examine the macroeconomic effects of corporate

income tax cuts. The novelty of our analysis is a parsimonious modeling of the intricacies of the

tax code regarding the deductions of capital losses and the capitalization of adjustment costs.

Specifically, because capital losses are deducted, the corporate income tax effectively reduces the

price wedge. To our knowledge, this is the first analysis of the macroeconomic consequences of

capital loss deductions.

We introduce a corporate tax schedule (Summers, 1981; Abel, 1982) and show analytically

that after-tax investment frictions—the fixed adjustment cost relative to the after-tax frictionless

profits and the price wedge relative to the after-tax frictionless profit-capital ratio—are the key

objects that affect dynamic investment decisions. We then examine a regime shift from a high to

a low corporate income tax rate, comparing the macroeconomic outcomes across steady states.

There are two opposing effects. On the one hand, a lower tax rate decreases the after-tax fixed
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adjustment costs. On the other hand, a lower tax rate raises the after-tax price wedge because

capital loss deductions fall. The calibrated model suggests that, other things equal, a corporate

income tax cut from 42% to 25%—corresponding to the median decrease in OECD countries

between 1980 and 2020—improves the allocation of capital, decreases capital valuation (q falls),

and causes fluctuations to be more persistent (CIR rises) at the new steady state.

Contributions to the literature. First, we contribute to the irreversibility literature (Bertola

and Caballero, 1994; Dixit and Pindyck, 1994; Abel and Eberly, 1996; Ramey and Shapiro, 2001;

Veracierto, 2002; Lanteri, 2018) by deriving sufficient statistics that capture the role of irreversibil-

ity for aggregate capital’s allocation, valuation, and fluctuations. To do this, we extend the suffi-

cient statistics approach of Álvarez, Le Bihan and Lippi (2016) and Baley and Blanco (2021) to

environments with multiple reset points. This extension proved to be not trivial, as it required

deriving new theoretical results to deal with micro-history dependence and to back out from the

microdata the reset points, and their distance, in order to compute moments conditional on the

last adjustment that determine the sufficient statistics.

Second, our work directly speaks to the quantitative investment literature. Following Cooper

and Haltiwanger (2006), the literature has targeted a certain set of moments of the distribution

of investment computed at plant level, including investment spikes and the autocorrelation of

investment rates, to assess the nature of investment frictions and derive conclusions about their

role for capital allocation (Asker, Collard-Wexler and De Loecker, 2014) and capital fluctuations

(Khan and Thomas, 2008, 2013; Bachmann, Caballero and Engel, 2013; Bachmann and Bayer,

2014; Winberry, 2021). Our analysis shows that, while partially informative, widely used targets do

not fully reflect the effects of irreversibility because they do not consider the Markovian structure

that arises. We provide researchers with the key moments of the joint distribution of investment

and duration of inaction that fully encode the role of irreversibility by conditioning on the sign

of the last adjustment. Our approach complements other direct methods designed to assess the

magnitude of frictions, such as examining the stationary distribution of marginal products of

capital (Hsieh and Klenow, 2009; Restuccia and Rogerson, 2013) or conditional transitions of

marginal products (Caballero, Engel and Haltiwanger, 1997; Lanteri, Medina and Tan, 2020).

Lastly, we contribute to the literature by studying the interaction of corporate taxes with

investment frictions. Early work focused on the user-cost channel of taxation in frictionless envi-

ronments. Subsequent work incorporated firm heterogeneity and non-convex adjustment costs to

investigate the frictional channel of taxation (Miao, 2019; Gourio and Miao, 2010; Miao and Wang,

2014). We show how to reduce the complex interactions between corporate taxes and investment

frictions to a rescaling of the appropriate friction. This idea considerably simplifies the analysis

and highlights the channels through which corporate tax reforms affect private investment.
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2 Investment with a Fixed Cost and a Price Wedge

In this section, we develop a parsimonious investment model with the following features: idiosyn-

cratic productivity shocks, fixed capital adjustment costs, a positive wedge between the purchase

and resale prices of capital, and a constant interest rate.

2.1 A firm’s problem

Time is continuous, extends forever, and is denoted by s. The future is discounted at rate ρ > 0.

For any stochastic process xs, we use the notation xs− ≡ limr↑s xr to denote the limit from the

left. We first present the problem of an individual firm and then consider a continuum of ex ante

identical firms to characterize the aggregate behavior of the economy.

Technology and shocks. The firm produces output ys using capital ks according to a produc-

tion function with decreasing returns to scale

(1) ys = u1−α
s kαs , α < 1.

Flow profits are equal to πs ≡ Ays, where A > 0 is a profitability parameter. Idiosyncratic

productivity us follows a geometric Brownian motion with drift µ > 0 and volatility σ > 0,

(2) log us = log u0 + µs+ σWs, Ws ∼ Wiener.

The capital stock, if uncontrolled, depreciates at a constant rate ξk > 0.

Investment frictions. The firm can control its capital stock through buying and selling invest-

ment goods. For every active adjustment, is ≡ ∆ks = ks − ks− , the firm must pay a fixed cost

proportional to its productivity

(3) θs = θus,

where θ > 0 is measured in output units. Capital is bought at price pbuy = p and sold at price

psell = p(1− ω), where ω is the price wedge. Alternatively, 1− ω is the recovery rate. To simplify

notation, we define the price function as

(4) p (is) ≡ pbuy
1{is>0} + psell

1{is<0}.

Investment problem. Let V (k, u) denote the value of a firm with capital stock k and produc-

tivity u. Given initial conditions (k0, u0), the firm chooses a sequence of adjustment dates {Th}∞h=1
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and investments {iTh}∞h=1, where h counts the number of adjustments, to maximize its expected

discounted stream of profits. The sequential problem is

(5) V (k0, u0) = max
{Th,iTh}∞h=1

E

[∫ ∞

0

e−ρsπs ds−
∞∑

h=1

e−ρTh (θTh + p (iTh) iTh)

]
,

subject to the production technology (1), the idiosyncratic productivity shocks (2), the fixed cost

(3), the investment price function (4), and the law of motion for the capital stock

log ks = log k0 − ξks+
∑

h:Th≤s

(
1 + iTh/kT−h

)
,(6)

which describes a period’s capital as a function of its initial value k0, the physical depreciation

rate ξk, and the sum of all adjustments made at prior adjustment dates.

2.2 Capital-productivity ratios k̂

To characterize the investment decision, it is convenient to reduce the state space and recast the

firm’s problem using a new state variable, the log capital-productivity ratio:

(7) k̂s ≡ log (ks/us) .

The problem admits this reformulation because the production function is homothetic, the adjust-

ment costs are proportional to productivity, and idiosyncratic shocks follow a Brownian motion

with drift.2 Note that in the absence of investment frictions, k̂s is a constant. With investment

frictions, between any two consecutive adjustment dates [Th−1, Th], the capital-productivity ratio

k̂ follows a Brownian motion

(8) dk̂s = −ν ds+ σ dWs,

where the drift ν ≡ ξk + µ reflects the depreciation rate and productivity growth rate. At any

adjustment date Th, the log capital-productivity ratio changes by the amount

∆k̂Th = log
(

1 + iTh/kT−h

)
.(9)

Using the principle of optimality, Lemma 1 rewrites the sequential problem in (5) as a recursive

stopping-time problem. It also shows that the value of the firm equals a function of the log capital-

productivity ratio k̂ that scales with productivity; that is, V (k, u) = uv(k̂). Since ∆k̂s and is have

2We can also reformulate the problem in terms of capital-productivity ratios assuming that adjustment costs
scale with output or with the capital stock.
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the same sign, we write the investment price as p(∆k̂). All proofs appear in Appendix A.

Lemma 1. Let r ≡ ρ−µ−σ2/2 be the adjusted discount factor and let v(k̂) : R→ R be a function

of the log capital-productivity ratio equal to

(10) v(k̂) = max
τ,∆k̂

E
[ ∫ τ

0

Ae−rs+αk̂s ds+e−rτ
(
−θ − p(∆k̂)(ek̂τ+∆k̂ − ek̂τ ) + v(k̂τ + ∆k̂)

) ∣∣∣k̂0 = k̂
]
.

Then the firm value equals V (k, u) = uv(k̂).

2.3 Optimal investment policy

The optimal investment policy is characterized by four numbers, K ≡ {k̂− ≤ k̂∗− ≤ k̂∗+ ≤ k+},
which correspond to the lower and upper borders of the inaction region

(11) R =
{
k̂ : k̂− < k̂ < k̂+

}
,

and two reset points k̂∗− < k̂∗+. A firm adjusts if and only if its log capital-productivity ratio falls

outside the inaction region, that is, k̂s /∈ R. Conditional on adjusting, the firm purchases capital

to bring its state up to k̂∗− if it hits the lower border k̂−, and sells capital to bring its state down

to k̂∗+ if it hits the upper border k̂+. Given R, the optimal adjustment dates are

(12) Th = inf
{
s ≥ Th−1 : k̂s /∈ R

}
with T0 = 0.

The duration of a complete inaction spell τh and the time elapsed since the last adjustment as (or

the age of the capital-productivity ratio) are

τh = Th − Th−1,(13)

as = s−max {Th : Th ≤ s} .(14)

To save on notation, we write the reset points and the stopped capitals (an instant before adjust-

ment) as functions of the sign of adjustment:

k̂∗(∆k̂) =




k̂∗− if ∆k̂ > 0

k̂∗+ if ∆k̂ < 0,
(15)

k̂τ (∆k̂) = k̂∗(∆k̂)−∆k̂.(16)

Lemma 2 characterizes the value function and the optimal investment policy through the standard

sufficient optimality conditions. The firm value and the policy must satisfy (i) the Hamilton-
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Jacobi-Bellman equation in (17), which describes the evolution of the firm’s value during periods

of inaction, (ii) two value-matching conditions in (18) and (19), which set the value of adjusting

equal to the value of not adjusting at the borders of the inaction region, and (iii) two smooth-

pasting and optimality conditions in (20) and (21), which ensure the differentiability of the value

function at the borders of inaction and the two reset points.

Lemma 2. The value function v(k̂) and the optimal policy K ≡ {k̂−, k̂∗−, k̂∗+, k̂+} satisfy:

(i) In the inaction region R, v(k̂) solves the HJB equation:

rv(k̂) = Aeαk̂ − νv′(k̂) +
σ2

2
v′′(k̂).(17)

(ii) At the borders of the inaction region, v(k̂) satisfies the value-matching conditions:

v(k̂−) = v(k̂∗−) − θ − pbuy(ek̂
∗− − ek̂−),(18)

v(k̂+) = v(k̂∗+) − θ + psell(ek̂
+ − ek̂∗+).(19)

(iii) At the borders of the inaction region and the two reset states, v(k̂) satisfies the smooth-pasting

and the optimality conditions:

v′(k̂) = pbuyek̂, k̂ ∈
{
k̂−, k̂∗−

}
,(20)

v′(k̂) = psellek̂, k̂ ∈
{
k̂∗+, k̂+

}
.(21)

The optimal policy in terms of capital is recovered as {k−, k∗−, k∗+, k+} = u × exp{k̂−, k̂∗−, k∗+, k+}.

2.4 Tobin’s marginal q

Next, we express the optimal investment decision using Tobin’s marginal q—the shadow value of

installed capital. We identify a firm’s marginal q as the marginal valuation of an extra unit of

installed capital relative to the replacement cost of capital (the purchase price p):3

(22) q(k̂) ≡ 1

p

∂V (k, u)

∂k
=

v′(k̂)e−k̂

p
.

Figure I describes the optimal investment policy using q(k̂). We use this diagram to describe

how each investment friction affects the firm’s optimal policy. Let’s consider first an environment

3Note that we define q relative to the purchase price pbuy = p. Alternatively, we could define q using the average
investment price in the economy. These two formulations are proportional to each other.
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with partial irreversibility and no fixed costs. Without the fixed adjustment cost (θ = 0), a firm

purchases capital if q(k̂) ≥ 1 (or k̂ ≤ k̂∗−) and sells capital if q(k̂) ≤ 1 − ω (or k̂ ≥ k̂∗+) without

any delay. When q(k̂) lies between the two prices (or the state between the two reset points), it is

optimal to remain inactive. At that productivity level, it is too expensive to purchase capital and

too cheap to sell it. This gives rise to an “inner” inaction region [k̂∗−, k̂∗+] due exclusively to partial

irreversibility. Next, let’s consider an environment with fixed costs and no partial irreversibility.

Without a price wedge (ω = 0), the “inner” inaction region collapses to a unique reset point k∗.

However, the fixed adjustment cost generates an “outer” inaction region [k̂−, k̂+] that prevents

firms from adjusting, even if q(k̂) lies above or below the investment price. When both frictions

are active, the policy features both “outer” and “inner” inaction regions and two reset points.

Figure I – Optimal Investment Policy

q(k̂)

k̂− k̂∗− k̂∗+ k̂+

1

1− ω

outer
inaction

outer
inaction

inner
inaction

buy sell

1

Notes: This figures illustrates a firm’s marginal q(k̂) = v′(k̂)/pek̂ and its investment policy K = {k̂−, k̂∗−, k̂∗+, k̂+}.

The interaction of the investment frictions generates two interesting features in the optimal

investment behavior. First, as argued by Caballero and Leahy (1996), individual q(k̂) is not

monotonic in k̂. Without fixed costs, q(k̂) monotonically decreases with k̂ due to decreasing

returns to scale α < 1. With fixed costs, firms anticipate large adjustments when approaching the

inaction thresholds. As k̂ approaches the lower threshold k̂−, firms anticipate that a future tiny

change in the state dk̂ < 0 will trigger a large positive adjustment ∆k̂ > 0. The future positive

investment lowers future q(k̂) and feeds back into lower current q(k̂), bending the function down.

A reverse argument explains why q(k̂) bends up as k̂ approaches the upper threshold k̂+. As

a result, individual q(k̂) is not a sufficient statistic for individual investment, in contrast to the

postulate in Tobin (1969).

Second, optimal investment features an endogenous positive serial correlation in the sign of

adjustments. A firm is more likely to buy capital if it bought capital recently, and it is more
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likely to sell capital if it sold capital recently. This correlation arises because the inner inaction

region generated by the price wedge widens the distance between the two borders of inaction but

shortens the distance between each border of inaction and its corresponding reset point. Thus, it

is more likely to reach k̂− from the nearby k̂∗− than from the further k̂∗+. The serial correlation

in adjustment sign—which we label micro-history dependence—brings technical challenges for

characterizing aggregate outcomes and for identifying the role of irreversibility with data. Later

in the paper, we explain how to handle micro-history dependence conditioning behavior on the

last reset point.

2.5 Frictionless and frictional investment

Next, Proposition 1 shows that the investment policy can be separated into a static frictionless

component and a dynamic frictional component, where we characterize the latter introducing the

notion of effective investment frictions. From a firm’s perspective, what matters for investment

decisions is the fixed adjustment cost relative to frictionless profits and the price wedge relative

to the frictionless profits-capital ratio, respectively. To simplify notation, we recall the definition

of the discount r and define the user cost of capital U :

r ≡ ρ− µ− σ2

2
,(23)

U ≡ ρ+ ξk − σ2.(24)

For the problem to be well defined, we assume r > 0 and U > 0.

Proposition 1. Let K ≡ {k̂−, k̂∗−, k̂∗+, k̂+} denote the firms’ optimal investment policy charac-

terized in Lemma 2. The optimal policy can be decomposed as the sum of a static and a dynamic

component K = k̂ss + X , where k̂ss is the static log capital-productivity ratio k̂ss that firms

would set in the absence of frictions and equal to

(25) k̂ss =
1

1− α log

(
αA

pU

)
,

and X ≡ {x−, x∗−, x∗+, x+} solves the following stopping problem for the normalized capital-

productivity ratio x ≡ k̂ − k̂ss:

V(x) = max
τ,∆x

E
[∫ τ

0

e−rs (eαxs − αexs) ds(26)

+ erτ
(
−θ̃ − ω̃1{∆x<0}(e

xτ − exτ+∆x) + V(xτ + ∆x)
) ∣∣∣x0 = x

]
,

dxt = −ν dt+ σ dWt.(27)
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The effective fixed cost θ̃ and the effective wedge ω̃ are defined as

θ̃ ≡ θ

Aeαk̂ss
=

(
1

A

) 1
1−α
(
pU
α

) α
1−α

θ(28)

ω̃ ≡ pω

Ae(α−1)k̂ss
=

α

U ω.(29)

Proposition 1 provides several insights. The static optimal policy k̂ss in (25) sets the capital-

productivity ratio to a constant, and its value reflects profitability αA, the average user cost of

capital U , and the investment price p. By definition, investment frictions do not affect the static

choice k̂ss. In contrast, the dynamic policy X characterized by (26) and (27) takes into account

the fixed cost and the price wedge, but these frictions enter scaled by static profits or by the

profit-capital ratio. Moreover, the flow payoff in the dynamic problem eαxs − αexs only depends

on the curvature of the profit function α, and thus is invariant to frictions. Finally, any price can

be used to construct kss, because X moves accordingly so that K is invariant to the price.

The dynamic policy X that solves the stopping-time problem above closely resembles the price-

setting and investment problems with fixed costs, analyzed first by Barro (1972); Sheshinski and

Weiss (1977); and Dixit (1991), but with the addition of a price wedge. We will leverage on

this literature and our Proposition 1 to characterize analytically the effect of frictions (and their

interaction with corporate taxes) on aggregate outcomes in the next sections, extending previous

results to include partial irreversibility.

A remark on the fixed adjustment cost. For simplicity, we specify the fixed cost parameter θ

as deterministic, symmetric for positive and negative investments, and equal across firms. However,

we prove all results for the generalized hazard model proposed by Caballero and Engel (1999,

2007) and examined in contemporaneous work by Álvarez, Lippi and Oskolkov (2020). This

generalized hazard model accommodates asymmetric fixed costs, and random fixed costs, as well

as time-dependent adjustments that can be motivated by information frictions (Verona, 2014) or

search frictions (Kurmann and Petrosky-Nadeau, 2007; Ottonello, 2018). Appendix B presents the

generalized hazard model. Also see Baley and Blanco (2021) for ex ante heterogeneity in firms’

production and adjustment technologies.

A remark on the price wedge. Our preferred interpretation of the wedge ω is a gap between

the buying and selling prices, which may reflect asymmetric information about the capital’s quality

(Akerlof, 1970; Kurlat, 2013; Bigio, 2015); imperfect substitutability (Lanteri, 2018); obsolescence

(Caunedo and Keller, 2020); intermediary fees (Nosal and Rocheteau, 2011); tax credits (Altug,

Demers and Demers, 2009); or VAT taxes (Chen et al., 2019). However, to the extent that ω is

a linear and asymmetric adjustment cost, it allows for alternative interpretations besides a price

gap, such as installation or transaction costs that scale with investment (Cooper and Haltiwanger,
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2006; Fang, 2021). Moreover, setting ω = 1 delivers the extreme irreversibility case that eliminates

the possibility of disinvesting (Sargent, 1980; Veracierto, 2002).

3 Three macroeconomic outcomes

This section investigates how investment frictions shape aggregate capital’s allocation, valuation,

and fluctuations. We consider an economy populated by a continuum of ex ante identical firms

that face the investment problem described above. Idiosyncratic shocks Ws are independent across

firms, and as a result the economy features a stationary cross-sectional joint distribution of capital-

productivity ratios g(k̂). It solves a KFE that describes the evolution of capital-productivity

ratios inside the inaction region, excluding the two reset points (where it has kinks), together with

continuity, border, and resetting conditions. It is plotted in Panel A of Figure II. Next, we define

and characterize the macroeconomic outcomes using steady-state moments of g(k̂).4

3.1 Capital allocation

We measure capital allocation by the cross-sectional variance of the log marginal revenue product

of capital. In our model, all firms produce the same good and the output price is normalized

to one. Therefore, we measure instead the variance of marginal products. From the production

function (1), the log of the marginal product of capital is collinear to the capital-productivity ratio

k̂, that is, logmpks = logα− (1− α)k̂s, which implies that

(30) Var[logmpk] = (1− α)2Var[k̂].

In a frictionless environment, k̂s is constant and Var[logmpk] = 0. With investment frictions,

however, dispersion in the marginal product of capital arises. Given the collinear relationship in

(30), we use both Var[k̂] and Var[logmpk] to refer to the allocation of capital. In what follows, we

show that the allocation of capital is a common driver of capital valuation and capital fluctuations.

3.2 Capital valuation

We measure capital’s valuation by the weighted average of individual marginal q(k̂) in (22), with

weights equal to φ(k̂) ≡ ek̂/K̂:

(31) q ≡
∫ k̂+

k̂−
q(k̂)φ(k̂)g(k̂) dk̂ =

E[v′(k̂)]

pK̂
.

Our definition of q—the weighted average of marginal q’s across firms—is an adequate measure

of aggregate capital valuation as it reflects the average of the true shadow value of capital in the

4According to Proposition 1, we can alternatively define aggregate outcomes in terms of normalized ratios x.
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economy, in contrast to the average of average q’s that is used in empirical analysis and is proxied

by the ratio of firms’ market value to the book value of their capital.

Without frictions, there is a unique investment price, and optimality implies that q = 1 at

all times. Any changes in the costs or benefits of investing are immediately passed through to

the capital stock, eliminating any possibility of q deviating from unity. With investment frictions,

there is an incomplete passthrough from changes in the costs or the benefits of investing to the

capital stock. Deviations of q from unity reflect the shadow value of eliminating the frictions.

Proposition 2 characterizes aggregate q in terms of steady-state moments of k̂. The proof com-

bines the HJB equation for v′(k̂), which specifies firms’ optimal behavior, with the KFE satisfied

by g(k̂), which describes the evolution of firms through the cross-sectional distribution, into a

single “master equation.” Then we integrate to eliminate idiosyncratic noise and recover q.

Proposition 2. Consider the weights φ(k̂) ≡ ek̂/K̂. Then aggregate q equals

(32) q =
1

r

(
αAŶ

pK̂
+

σ2

2
− ν

︸ ︷︷ ︸
productivity

+ E
[

1

ds
Es
[
d(P(k̂s)φ(k̂s))

]]

︸ ︷︷ ︸
irreversibility < 0

)
,

where Ŷ /K̂ is equal, up to second order, to

(33)
Ŷ

K̂
=

E[eαk̂]

E[ek̂]
= exp

{
−(1− α)

(
E[k̂] +

α

2
Var[k̂]

)}
+ o(k̂3),

and P(k̂) ∈ C2 is any twice continuously differentiable function in the entire domain [k̂+, k̂−] that

takes the following two values in the outer inaction regions:

P(k̂) ≡
{

0 if k̂ ∈ [k̂−, k̂∗−],

−ω if k̂ ∈ [k̂∗+, k̂+].
(34)

Aggregate q in (32) depends on three terms: the average output-productivity ratio divided

by the average capital-productivity ratio Ŷ /K̂; the expected change in the average capital-

productivity ratio (σ2/2− ν); and an irreversibility term.

The term Ŷ /K̂ is further characterized in (33) in terms of the average and variance of k̂.5

Because of decreasing returns to scale (α < 1), this term in decreasing in both the average

E[k̂] and the dispersion Var[k̂] of capital-productivity ratios. Consequently, aggregate q is also

decreasing in these two cross-sectional moments, capturing the indirect effect of fixed costs and

the price wedge on q through this channel.

The term (σ2/2−ν) reflects the expected change in the average capital-productivity ratio. Since

5Aggregate productivity differs from the average output-capital ratio E[y/k] = E[e(α−1)k̂] due to heterogeneity.
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firms can upsize to exploit good outcomes and downsize to insure against bad outcomes, they are

effectively risk loving (Oi, 1961; Hartman, 1972; Abel, 1983). Thus, an increase in idiosyncratic

risk σ2 directly increases q. At the same time, an increase in idiosyncratic risk indirectly affects q

by increasing Var[k̂] and lowering the aggregate output-capital ratio in (33). The overall effect of

risk on q depends on the relative strength of these two opposing forces.

The average “amortized” capital loss due to inaction represents irreversibility’s direct negative

effect on q. While irreversibility also indirectly affects q through decreasing productivity, this direct

effect contains distinct information on distribution of capital losses. This effect, characterized by

the function P(k̂s)φ(k̂s), equals the average local drift of non-adjusters. By the optimal sampling

theorem and the renewal principle, this term also equals the capital losses of adjusting firms.

Individual vs. aggregate q. In Section 2.4 we showed that individual q(k̂) is a non mono-

tonic function of k̂. This observation has led some economists to argue that the individual non

monotonicity translates into aggregate non-monotonicity, discarding q as a sufficient statistic for

aggregate investment. Expression (32) shows that this argument is flawed. Fixed adjustment costs

and partial irreversibility do not break the decreasing relation between aggregate q and aggregate

K̂. Although this result is counterintuitive, it is a natural consequence of aggregating the behavior

of individual firms. The anticipatory effects that bend individual q(k̂) in the vicinity of the borders

of the inaction region disappear when aggregating over the cross-section, because the positive and

negative stances of expected changes in q(k̂) cancel each other out in the aggregate. As a result,

aggregate q is a sufficient statistic for aggregate investment.

3.3 Capital fluctuations

We measure capital fluctuations by the transitional dynamics of aggregate capital following an

aggregate productivity shock. Starting from the steady state at date s = 0, we introduce a small,

permanent, and unanticipated decrease in the (log) level of productivity of size δ > 0 to all firms.

All firms’ productivity and capital-productivity ratios change to

(35) log(u0) = log(u0−) − δ; log(k̂0) = log(k̂0−) + δ.

Panel A of Figure II plots the initial density following the δ productivity shock (blue line) next to

the steady-state density g(k̂) (black line). The new distribution displaces horizontally to the right

relative to the steady-state distribution. Our exercise consists of tracking the mean Es[k̂] as it

makes its way back to its steady-state value E[k̂]. By assuming a constant interest rate, investment

policies do not respond to changes in the distribution and remain fixed along the transition path.
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Figure II – Distribution Dynamics and Cumulative Impulse Response

(A) Cross-Sectional Density g(k̂)

steady state after δ-shock

k̂− k̂∗− k̂∗+ k̂+

CIR(δ) =
∫∞
0 IRFs(δ)ds

Time

(B) Cumulative Impulse Response

IRFs(δ) = Es[k̂]− E[k̂]

1

Notes: This figure illustrates the effects of an aggregate shock. Panel A shows the steady-state distribution g(k̂)

(blue line) and the initial distribution following a productivity shock (blue line). Panel B shows the IRF(δ, s) (solid

blue line) and the CIR (area).

Thus, our analysis measures the strength of the partial equilibrium response to aggregate shock.6

We define the impulse-response function, denoted by IRF(δ, s), measured s periods after an

aggregate productivity shock of size δ, as follows:

(36) IRF(δ, s) ≡ Es[k̂]− E[k̂],

where Es[·] denotes expectations with the time-s distribution. We define the cumulative impulse

response CIR(δ) as the area under the IRFs(δ) function across all dates s ∈ (0,∞):

(37) CIR(δ) ≡
∫ ∞

0

IRFs(δ) ds.

Panel B in Figure II plots these two objects. The solid line is the impulse-response function

IRF(δ, s), and the area underneath it is the cumulative impulse response function CIR(δ). The

CIR is a useful metric. It summarizes both the impact and persistence of the response in one

scalar and eases comparison across different models.7 Without frictions, firms respond instantly

to the aggregate shock and the CIR is zero. With frictions, the larger the CIR, and the longer it

takes firms to respond to the aggregate shock and the slower the transitional dynamics.

Proposition 3 characterizes the CIR as a function of cross-sectional moments of k̂. To char-

6While assuming a constant interest rate (and investment policies) along the transition is an extreme assumption,
Winberry (2021) shows that the interest-rate response to aggregate productivity shocks is small and even coun-
tercyclical. Appendix C relaxes this assumption and presents a general equilibrium model that delivers constant
prices as an equilibrium outcome.

7Álvarez, Le Bihan and Lippi (2016), Baley and Blanco (2019); Álvarez, Lippi and Oskolkov (2020); and
Alexandrov (2021) use the CIR in the context of price-setting models to assess the effects of monetary shocks.
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acterize the role of irreversibility, we use a strategy analogous to the one we employed above to

characterize aggregate q through an average local drift.

Proposition 3. The CIR of the average log capital-productivity ratio E[k̂] following a marginal

aggregate productivity shock of size δ > 0 is equal, up to first order, to

(38)
CIR(δ)

δ
=

Var[k̂]

σ2
+

νCov[k̂, a]

σ2︸ ︷︷ ︸
responsiveness

+ E
[

1

ds
Es[d(M(k̂s)k̂s)]

]

︸ ︷︷ ︸
irreversibility

+ o(δ),

where M(k̂) ∈ C2 is any twice continuously differentiable function in the domain [k̂+, k̂−] that

takes the following two values in the outer inaction regions:

(39) M(k̂) ≡




Mbuy if k̂ ∈ [k̂−, k̂∗−]

Msell if k̂ ∈ [k̂∗+, k̂+],

and Mbuy < 0 < Msell are two numbers that measure the expected cumulative deviation of the

capital-productivity ratio relative to the mean E[k̂], conditional on the sign of the last adjustment.

According to (38), the CIR equals a linear combination of two steady-state moments and an

irreversibility term. The moments are the cross-sectional variance of capital-productivity ratios

Var[k̂] and the covariance of capital-productivity ratios k̂ with the time elapsed since the last

adjustment Cov[k̂, a]. These steady-state moments are informative about transitional dynamics

because aggregate shocks δ and idiosyncratic shocks u enter symmetrically into k̂ and, as a conse-

quence, how firms respond to idiosyncratic shocks inform how they respond to aggregate shocks.

Specifically, the variance Var[k̂] reflects insensitivity to idiosyncratic shocks, while the covariance

Cov[k̂, a] reflects the asymmetric costs of downsizing vs. upsizing. Baley and Blanco (2021) estab-

lished the relationship between the CIR and these two steady-state moments in environments with

drift, asymmetric fixed costs, and random opportunities of free adjustment, but without partial

irreversibility. In all of those environments, the irreversibility term equals zero.

Irreversibility down the propagation of aggregate shocks through two channels. First, it has

an indirect effect on the CIR by increasing the two cross-sectional moments Var[k̂] and Cov[k̂, a].

Second, it has a direct effect that reflects how the aggregate shock δ changes the mass of adjusters

across the two reset points relative to the steady state. In principle, because of the correlated

adjustments that arise with irreversibility, one should keep track of firms for a long time. Never-

theless, because the first adjustment after the aggregate shock eliminates all heterogeneity except

for the sign of the adjustment, we only need to keep track of firms until their first adjustment.

In other words, steady-state behavior is restored and two numbers are enough to characterize

the CIR: Mbuy, which measures the expected cumulative deviations below to the steady-state
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mean conditional on a positive investment, and Msell, which measures the expected cumulative

deviations above to the steady-state mean conditional on a negative investment. Given these two

numbers, we characterize this irreversibility term with a similar strategy used in q, by “amor-

tizing” the change in masses during periods of inaction (formally, the average local drift of the

cumulative deviations from steady state in the cross-section). Later, we provide expressions for

these two numbers and show how to measure them in the microdata.

Identifying and characterizing the irreversibility term in the CIR is one of the key contributions

of our analysis, as it opens the door to studying transitional dynamics in environments with

history dependence—that is, in which the first stopping time does not fully absorb the effects of

an aggregate shock. These types of problems are labeled “problems with reinjection” by Álvarez

and Lippi (2021).

4 On the Aggregate Consequences of Investment Frictions

In this section, we explore in depth how the nature of adjustment frictions matters for the macroe-

conomy. Specifically, we show that the size of the price wedge relative to the fixed cost matters

and that the role of the price wedge hinges on the size of the drift (which consists of productivity

growth and capital depreciation) relative to the volatility of the idiosyncratic shocks. We consider

three cases that showcase how investment frictions map onto aggregate outcomes and isolate the

mechanisms at play.

In what follows, we exploit the decomposition between frictionless and frictional policies in

Proposition 1, work in the space of normalized capital-productivity ratios x ≡ k̂ − k̂ss, and

consider second-order approximations to the profit function.

4.1 Zero drift

First, we consider an environment with zero drift (ν = 0). This case is relevant for economies

or sectors with low productivity growth and/or a low depreciation rate, in which idiosyncratic

shocks are the main drivers of investment. In this driftless and symmetric environment, the price

wedge constitutes an important friction because firms expect to purchase and sell capital with

equal probability. Proposition 4 characterizes two subcases: only fixed cost and only price wedge.8

Proposition 4. Assume ν → 0. Construct k̂ss using the price (pbuy + psell)/2 = p(1− ω/2) such

that the value function is symmetric. The effective price wedge equals ω̃ = ωα/U and the effective

fixed cost equals θ̃ =
[
p(1− ω/2)U/(αA1/α)

] α
1−α θ; the user cost of capital is U = ρ− σ2; and the

discount factor is r = ρ− σ2/2. In all symmetric cases E[k̂] = k̂ss, E[x] = 0, and Cov[x, a] = 0.

8The driftless symmetric case with both frictions active is studied in Appendix A.9. The main result is that a
marginal increase in one friction, when the other is large, has tiny effects on the macro outcomes.
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(i) Only fixed cost: If ω = 0, then the inaction thresholds are x̄ = ±
(

6θ̃σ2

α(1−α)

)1/4

, the reset

point is x∗ = 0, and the macro outcomes are

Var[x] =
x2

6
; q = 1− U

r

α(1− α)

2
Var[x];

CIR(δ)

δ
=

Var[x]

σ2
.(40)

(ii) Only price wedge: If θ = 0, then the inaction thresholds and the reset points coincide at

x∗ = ±
(

3ω̃σ2

4α(1−α)

)1/3

, and the macro outcomes are

Var[x] =
x∗2

3
; q = 1−

(
1 +

2

α

) U
r

α(1− α)

2
Var[x];

CIR(δ)

δ
=

(
1 +

1

σ2

)
Var[x].(41)

In the two cases above, there is a positive relationship between the corresponding effective

investment friction (θ̃ or ω̃) and the cross-sectional dispersion Var[x]. In turn, larger dispersion

lowers aggregate productivity Ŷ /K̂ because of decreasing returns, which reduces q; larger disper-

sion reduces responsiveness and slows the propagation of aggregate productivity shocks, which

increases the CIR. Thus we learn that with a small drift, the cross-sectional dispersion is the main

driver behind capital valuation and fluctuations. We also learn that if effective frictions were of

the same size, that is, θ̃ = ω̃, a price wedge generates a higher Var[x], a lower q, and a larger CIR

compared with the case with only fixed costs.

4.2 Large drift

Second, we consider a very large drift (ν → ∞). This case is relevant for economies or sectors

in which forces to upsize the capital stock dominate (productivity growth and depreciation) and

idiosyncratic shocks play only a minor role for investment. The price wedge is irrelevant here,

because firms prefer to downsize by allowing the drift to erode their capital instead of facing the

penalty. Proposition 5 establishes this result. Note that instead of taking the drift to infinity, we

take an equivalent limit toward zero volatility of idiosyncratic shocks.

Proposition 5. Let ν > 0 and σ2 → 0 such that ν/σ2 → ∞. Construct k̂ss using the purchase

price p. The effective fixed cost equals θ̃ =
[
pU/(αA1/α)

] α
1−α θ and the effective price wedge is

irrelevant. In this case, the user cost is U = ρ + ξk and the discount is r = ρ − µ. The policy is

a one-sided inaction region with lower threshold x− and one reset point x∗. The cross-sectional

distribution is uniform over [x−, x∗] with moments

E[x] =
(x∗ + x)

12
; Var[x] =

(x∗ − x)2

12
.(42)
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The policy solves the non linear system

E[x]
√

Var[x] = − rθ̃√
12α(1− α)

;
E[x]

Var[x] + E[x]2
= −

(
r

ν
+
α + 1

2

)
,(43)

and the macro outcomes are

q = 1 − U

r
(1− α)

(
E[x] +

α

2
Var[x]

)
;

CIR(δ)

δ
= 0.(44)

The case with a large drift reveals new mechanisms that are absent in symmetric environments.

As we have already stated, the price wedge has no effect. Comparing the expression for aggregate

q and the CIR with large drift against the driftless cases in Proposition 4, we see that now

the average E[x] matters. Moreover, the frictional average E[x] and not the frictionless average

E[k̂] is the relevant statistic for the marginal value of capital. The non linear system in (43)

that pins down the investment policy implies that larger effective fixed costs θ̃ increase both the

average E[x] (in absolute value) and the variance Var[x] of the normalized capital-productivity

ratios x. In fact, the first equation in (43) is an indifference curve that mediates the trade-off

between these two moments. The system also implies that the average E[x] is negative, and thus

E[k̂] = k̂ss + E[x] < k̂ss. As the mean becomes more negative with higher fixed costs, q goes up;

but as the variance increases, q goes down. The overall effect depends on the relative elasticities

of these moments with respect to θ̃. Lastly, the CIR equals zero: With an extreme drift, aggregate

shocks are immediately absorbed and there are no deviations from steady state (see Corollary 2

in Baley and Blanco, 2021).

4.3 Intermediate drift

Finally, we consider the empirically relevant case with an intermediate drift (about 11% in our

calibration), in which the two investment frictions are relevant.9 Clearly, varying the relative

size of frictions changes many endogenous objects; thus, to deliver a consistent comparison across

model configurations we must fix some target. In the spirit of Hsieh and Klenow (2009), we fix

the cross-sectional dispersion of marginal products of capital, Var[k̂], since it summarizes the

pervasiveness of investment frictions. Fixing Var[k̂] implicitly fixes the frequency of adjustment

and the dispersion of investment rates. Next, we use a calibrated version of the model (to be

discussed in the following section) to illustrate the relevance of the price wedge in the aggregate.

For each price wedge ω ∈ [0.1, 0.5], we find the fixed cost θ that delivers a constant level of

Var[k̂]. Panel A in Figure III plots one of these isoquants (θ, ω), which happens to be convex.

Panels B and C plot q and the CIR against the price wedge ω, computed along the isoquant. In all

figures, going from left to right increases the relative importance of the price wedge vis-à-vis the

9We refer to Miao (2019) for a characterization of the case with full irreversibility (ω = 1) for any drift ν ∈ R.
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Figure III – Macroeconomic outcomes for fixed allocation
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Notes: Panel A shows the (θ, ω) isoquant that matches the empirical value of Var[k̂] = 0.098 (see Section 5.3).

Panel B plots q and its components, normalizing them as (q−1)×100. Panel C plots the CIR and its components.

Other parameters are from Table I.

fixed cost while delivering the same level of cross-sectional dispersion Var[k̂]. We observe that as

price wedges become dominant, capital valuation decreases (q goes down) and capital fluctuations

become more persistent (CIR goes up) relative to environments in which fixed costs dominate.

We further decompose q into its productivity and irreversibility components in (32). The

irreversibility term (dashed line) is non monotonic: It goes to zero for low ω (when there is no

wedge) and for high ω (when no firm disinvests and the wedge becomes irrelevant). We find that

irreversibility has the largest negative impact on q for a wedge of around 10%. To examine the

productivity term, note that since Var[k̂] remains fixed, this is exclusively determined by capital

accumulation reflected in (minus) the average capital-productivity ratio E[k̂]. The productivity

term (dotted line) is also non monotonic: At low ω, an increase in the wedge decreases both prices

(q) and quantities (E[k̂]) because firms are more cautious about investing; whereas at high ω an

increase in the wedge decreases the price (q) but increases quantities (E[k̂]) because firms stop

disinvesting.

We also decompose the CIR into its responsiveness and irreversibility components in (38).

Because Var[k̂] remains fixed, the responsiveness term (dotted) is exclusively determined by the

covariance of capital-productivity ratios with their age, Cov[k̂, a]. As shown in Baley and Blanco

(2021), this covariance reflects asymmetry in the costs of downsizing vs. upsizing the capital stock.

It is zero in driftless and symmetric environments. It is negative when there is drift and fixed costs

and counteracts the effect of the variance for the CIR. With price wedges, the covariance turns

21



positive because of the strong downsizing friction. Besides the covariance effect, price wedges have

an additional (non monotonic and quantitatively smaller) direct effect on the CIR (dashed line).

Summing up. The previous analysis teach us three lessons. First, the importance of the price

wedge for macro outcomes crucially depends on the size of the drift. Second, the effect of frictions

on q is ambiguous, as it depends on the mean E[x] and the variance Var[x] of normalized capital-

productivity ratios that may move in opposite directions as frictions increase. And third, keeping

the capital allocation fixed, an economy or sector in which the price wedge is the dominant friction

features lower capital valuation and more persistent capital fluctuations compared with an economy

or sector in which fixed costs dominate.

In Section 6, we show that corporate income tax cuts correspond to movements along the (θ, ω)

isoquant from left to right, which increases the relative importance of price wedges and changes

long-run capital behavior.

5 Measuring macro outcomes with microdata

This section derives mappings from the microdata to parameters, policies, and cross-sectional

moments of the invariant distribution g(k̂). Together with the relationship established between

cross-sectional moments and macro outcomes in Section 3, these mappings connect macro outcomes

with microdata.

Given an exogenously determined price wedge ω and panel of observations Ω = {∆k̂, τ},
which includes the adjustment size and the duration of inaction, we infer the behavior of non-

adjusters in the cross-section and reverse-engineer the reset points {k̂∗−, k̂∗+}, the parameters of

the productivity process {ν, σ2}, and the key cross-sectional moments that enter q and the CIR:

(45)

{
E[k̂], Var[k̂], Cov[k̂, a], E

[
1

ds
Es
[
d(P(k̂s)φ(k̂s))

]]
, E
[

1

ds
Es[d(M(k̂s)k̂s)]

]}
.

To obtain these mappings, we condition adjusters’ behavior on the sign of the last adjustment so

that their actions remain Markovian. Then, we exploit properties of Markov processes and the

fact that the two reset points are constant. Next, we define the conditional densities required to

handle the history dependence from irreversibility.

5.1 Conditional distributions

Let g−(k̂) and g+(k̂) denote the stationary density of k̂ conditional on the last reset point being

k̂∗− or k̂∗+, respectively. They satisfy the same KFE as g(k̂), except that they only have one

kink at the corresponding reset point. Panel A in Figure IV plots the three densities g, g−, and
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Figure IV – Unconditional and Conditional Distributions of k̂ and ∆k̂

(A) Distribution of k̂
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0

(B) Distribution of ∆k̂

H(∆k̂) H+(∆k̂) H−(∆k̂)

k̂∗− − k̂−k̂∗+ − k̂+

1

Notes: These figures illustrate conditional and unconditional distributions. Panel A plots the unconditional density

g(k̂) and the densities conditional on the last reset g±(k̂). Panel B plots the unconditional distribution H(∆k̂) and

the distributions conditional on the last reset H±(∆k̂).

g+ (these are proper densities and integrate to 1). We denote expectations computed with these

distributions as E, E−, and E+.

Next, we consider the distribution over actions, denoted by H(∆k̂, τ), and the distributions

of actions conditional on the last reset point : H−(∆k̂, τ) and H+(∆k̂, τ). Panel B of Figure IV

plots the marginal distributions of adjustment size, H(∆k̂), H−(∆k̂), H+(∆k̂), where we have

integrated out the duration τ ; these distributions correspond to probability masses at two points

∆k̂ = k̂∗+ − k̂+ < 0 and ∆k̂ = k̂∗− − k̂− > 0.

Note that the mass of upward adjustments H(k̂∗− − k̂−) is larger than the mass of downward

adjustments H(k̂∗+ − k̂+). This is because the drift shrinks capital-productivity ratios over time

and prompt upward adjustments and because partial irreversibility penalizes downward adjust-

ments. This asymmetry is also observed in the firms’ distribution, since g is closer to g−. Second,

the conditional masses reflect the autocorrelation in the investment sign; for instance, H− > H+

at ∆k̂ > 0 means that the probability of reseting to k̂∗− is larger whenever the last reset point

was also k̂∗−. In other words, positive investments beget future positive investments. We denote

with bars the expectations computed with the distributions of adjusters: E, E−, and E+
.

From conditional to unconditional distributions. Define the shares of upward N−/N and

downward N+/N adjustments within the population of adjusters. By Bayes’ law, the uncondi-

tional and conditional distribution of adjusters satisfy

(46) H(∆k̂, τ) =
N−
N H−(∆k̂, τ) +

N+

N H+(∆k̂, τ).
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This relationship is useful for computing moments of adjusters. For example, the average duration

of inaction equals the weighted sum of the average conditional durations:

(47) E[τ ] = E
[
E[τ |∆k]

]
=
N−
N E−[τ ] +

N+

N E+
[τ ].

However, we need to leverage another approach to recover the unconditional distribution of firms.

In that case, the shares must be rescaled by the relative durations of inaction:

g(k̂) =
N−
N

E−[τ ]

E[τ ]
g−(k̂) +

N+

N
E+

[τ ]

E[τ ]
g+(k̂) = N− E−[τ ] g−(k̂) + N+ E+

[τ ] g+(k̂),(48)

where we simplify the expression using E[τ ] = N−1; that is, the average duration of inaction equals

the inverse of the total frequency of adjusters. This implies that the duration-adjusted frequencies

also sum up to one, i.e., N− E−[τ ] +N+ E+
[τ ] = 1. Why do we need to rescale by duration? The

answer is the fundamental renewal property: The average behavior in the economy is attributable

to firms with longer periods of inaction (which are observed less frequently). Adjusting the shares

with their relative duration corrects this observational bias. In environments with irreversibility,

the slowly adjusting firms are coincidentally those that make downward adjustments.10

To illustrate the power of our “conditional” approach, we use the law of total variance to de-

compose capital allocation Var[k̂] into two terms that condition on the sign of the last adjustment:

(49) Var[k̂]︸ ︷︷ ︸
total

= E
[
Var[k̂|∆k̂]

]

︸ ︷︷ ︸
within

+ Var
[
E[k̂|∆k̂]

]

︸ ︷︷ ︸
between

.

The decomposition in (49) is useful for assessing the relative importance of each investment friction

in generating capital misallocation. The first term is the average of the variance within each

conditional distribution g+ and g−—that is, the average of Var−[k̂] and Var+[k̂] computed using

(57) below conditioning on the sign of ∆k̂ and using the conditional renewal measure as in (47).

Both investment frictions add to this dispersion. The second term reflects the distance between

the conditional means E−[k̂] and E+[k̂] (computed using (56) below conditioning on the sign of ∆k̂

and using the conditional renewal measure). This term arises exclusively from the price wedge that

generates two different means. The larger the price wedge, the further apart are the conditional

means and the larger the between variance. Note that this term is zero when only fixed costs are

present since there is a unique reset point.

5.2 Data mappings

Next, we use the conditional distributions of adjusters to back out parameters, reset points, and

10Appendix A.11 presents an illustrative example of how to use relative frequencies, Bayes’ law, and renewal
theory to back out unconditional distributions from conditional distributions.
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cross-sectional moments. To facilitate exposition, we present the mappings for these objects sep-

arately, but in fact they are all recovered simultaneously through a system of equations that can

be solved iteratively and substitutes the population moments with their sample counterparts (see

Appendix D.4).

Parameters. We begin by recovering the parameters (ν, σ2) of the stochastic process of capital-

productivity ratios in Proposition 6.

Proposition 6. The parameters of the stochastic process for productivity (ν, σ2) are recovered

from the microdata Ω ≡ (∆k̂, τ) as follows:

ν =
E[∆k̂]

E[τ ]
,(50)

σ2 =
E[(k̂τ + ντ)2]− E[(k̂∗)2]

E[τ ]
.(51)

Expression (50) recovers the drift (which includes depreciation ξk and productivity growth µ)

from the average adjustment size times the frequency of adjustment (the inverse of the expected

duration of inaction N = E[τ ]−1), while expression (51) recovers the volatility of idiosyncratic

shocks from the second moments of the adjustment size, also scaled by frequency.11

Reset points. We continue with the reset points. As a preliminary step, we note that the

optimal stopping policy τ ∗ and the optimal reset points {k̂∗−, k̂∗+} satisfy

pbuyek̂
∗−

= E
[∫ τ∗

0

αe−rs+αk̂s ds + p(∆k̂) e−rτ
∗+k̂τ∗

∣∣∣k̂0 = k̂∗−
]
,(52)

psellek̂
∗+

= E

[∫ τ∗

0

αe−rs+αk̂s ds + p(∆k̂) e−rτ
∗+k̂τ∗

∣∣∣k̂0 = k̂∗+
]
.(53)

We obtain this result by applying the envelope theorem for arbitrary choice sets (Milgrom and

Segal, 2002) to expression (10) and then using the optimality condition at the reset points. The ex-

pressions say that when a firm resets its capital-productivity ratio to either k̂∗− or k̂∗+, it equalizes

marginal costs to the marginal benefits. When purchasing capital, the marginal cost is the invest-

ment price pbuyek̂
∗−

and the marginal benefit includes the cumulative marginal profits obtained

during the expected duration of its inaction period plus the expected value of its undepreciated

capital at the next adjustment date. Since we work on log scale, benefits and costs are expressed

in percentage points (and thus multiplied by ek̂). Proposition 7 presents a mapping from the

11We obtained similar mappings from the data to the parameters in Baley and Blanco (2021) for the case without
irreversibility. Irreversibility does not change the mapping to the drift, but it changes the mapping to the volatility,
because it affects the transition speed across the two reset points.
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microdata to the two reset points.

Proposition 7. Let Φ(ν, σ2) ≡ log (αA/(r + αν − α2σ2/2)) be a function of structural parameters.

For each ∆k̂, construct the stopped capital k̂τ (∆k̂) using (16). Then the reset points are recovered

from the microdata Ω ≡ (∆k̂, τ) as follows:

k̂∗− =
1

1− α


Φ(ν, σ2) − log(pbuy) + log




1− E−
[
e−r̂τ+α(k̂τ−k̂∗+)

]

1− E−
[
p(∆k̂)
pbuy

e−r̂τ+k̂τ−k̂∗+
]




 ,(54)

k̂∗+ =
1

1− α


Φ(ν, σ2) − log(psell) + log




1− E+
[
e−r̂τ+α(k̂τ−k̂∗−)

]

1− E+
[
p(∆k̂)
psell

e−r̂τ+k̂τ−k̂∗−
]




 .(55)

The first term Φ(ν, σ2) in expressions (54) and (55) reflects the ratio of profitability to the user

cost of capital. Through this ratio, both reset states increase with profitability A and idiosyncratic

risk σ2 and decrease with the discount r and the drift ν. The second term shows that reset points

decrease with the corresponding investment price: Firms invest more the lower the purchasing

price pbuy and disinvest less the lower the selling price psell. Lastly, the third term shows how

investment frictions shape the reset points through the marginal profits accrued during periods of

inaction (in the numerator) and the resale value (in the denominator).

As a direct measure of irreversibility, consider the difference between the two reset points

(k̂∗+ − k̂∗−). The term Φ(ν, σ2) cancels out in the difference. The second term equals −(log(1 −
ω))/(1−α) > 0 and reflects the exogenous price wedge, which is further amplified by the elasticity

of output to capital α. The third term reflects history dependence. As long as the optimal policy

(∆k̂, τ) depends on the last reset point, endogenous irreversibility arises beyond the exogenous

price wedge.

Cross-sectional moments. With the parameters and reset points in hand, Proposition 8

recovers steady-state moments of capital-productivity ratios k̂.

Proposition 8. For each inaction spell, find the departing point k̂∗ and the ending point k̂τ using

(15) and (16). Then the unconditional mean and variance of k̂ and the covariance between k̂ and

age a are recovered from the microdata Ω ≡ (∆k̂, τ) as follows:

E[k̂] = E

[
E

[(
k̂∗ + k̂τ

2

)(
k̂∗ − k̂τ
E[∆k̂]

)∣∣∣∣∣∆k̂
]]

+
σ2

2ν
,(56)

Var[k̂] = E

[
E

[(
(k̂∗ − E[k̂])(k̂τ − E[k̂]) +

(k̂∗ − k̂τ )2

3

)(
k̂∗ − k̂τ
E[∆k̂]

)∣∣∣∣∣∆k̂
]]

,(57)

Cov[k̂, a] =
1

2ν

(
Var[k̂] − E[(k̂τ − E[k̂])2τ ]

E[τ ]
+

σ2

2

E[τ ]

2
(1 + CV2

[τ ])

)
.(58)
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The mapping in (56) recovers the population mean E[k̂] from the average midpoint between

the departing and the ending points of an inaction spell (k̂∗ + k̂τ )/2, where the average is com-

puted under a change of measure induced by the renewal weights (k̂∗− k̂τ )/E[∆k̂]. To recover the

population mean, the renewal measure overweighs the midpoints of adjusters with longer periods

of inaction, which are more representative in the population.12 The term σ2/2ν corrects for the

accumulated drift between adjustments. Similarly, the mapping in (57) recovers the population

variance Var[k̂] from the average distance between the departing point and the mean (k̂∗−E[k̂]),

the ending point and the mean (k̂τ −E[k̂]), and the departing and ending points (k̂∗− k̂τ )2, again

computed using the renewal distribution. In these expressions, we compute the inner expectation

with H− or H+ depending on the sign of the last adjustment and compute the outer expectation

with shares of upward N−/N and downward N+/N adjustment in the population. Lastly, ex-

pression (58) recovers the covariance Cov[k̂, a] from the difference in the second moments of the

distribution of adjusters relative to non-adjusters.

Irreversibility component of q. Finally, we derive data mappings to back out the irreversibil-

ity terms. Proposition 9 recovers the irreversibility term for q in (32), which reflects the way in

which expected capital losses affect capital valuation.

Proposition 9. The irreversibility term of q is negative and we recover it from the microdata as

(59) E
[

1

ds
Es
[
d(P(k̂s)φ(k̂s))

]]
= −

Cov
[
∆k̂,P(k̂∗(∆k̂))

]

E[τ ]
< 0.

According to (59), the irreversibility term of q maps to minus the covariance of investment

∆k̂ and capital losses P(∆k̂), scaled by average duration. This covariance is positive, since firms

purchase capital at the high price and sell capital at the low price. Since the covariance is positive,

irreversibility reduces q. Intuitively, firms seek to avoid histories in which, after upsizing, negative

productivity shocks will force them to downsize and face the penalty of selling their capital at

a discount. Firms also seek to avoid histories in which, after downsizing, positive productivity

shocks will force them to upsize and face the penalty of purchasing back capital at a higher price.

To minimize the likelihood of these “switching” situations, firms underinvest and underdisinvest,

which effectively reduces capital valuation. The strength of this mechanism is measured in the

data through this covariance.

Irreversibility component for CIR. Proposition 10 below recovers the irreversibility term

for the CIR in (38), which reflects the expected cumulative deviations from the steady-state mean

of capital-productivity ratios that arise following the aggregate productivity shock that changes

12Without the price wedge, the renewal weights are equal to the relative size of adjustment ∆k/E[∆k̂].
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the masses of adjusters across reset points. Before we proceed to the Proposition, we provide the

expressions forMbuy andMsell we used to define the functionM(k̂) in (39). These two numbers

equal to the cumulative deviations below and above the steady-state mean E[k̂] conditional on the

sign of the last reset. Formally, they are equal to

Mbuy ≡ (E−[k̂]− E[k̂])E−[τ ]
E[P+]

P−+
< 0,(60)

Msell ≡ (E+[k̂]− E[k̂])E+
[τ ]

E[P−]

P+− > 0.(61)

The number Mbuy reflects firms’ upsizing behavior in steady state (analogously, Msell reflects

firms’ downsizing behavior in steady state, mutatis mutandis). Upsizing firms reset their capital-

productivity ratio below the unconditional mean and, on average, remain below the mean for the

duration of their inaction spell. The average deviation accumulated during one inaction spell is

then (E−[k̂] − E[k̂])E−[τ ]. Since the investment sign is serially correlated, upsizing firms remain

in an upsizing phase and contribute to negative deviations for several periods; they would only

leave this phase after a series of negative shocks causes them to downsize. The ratio E[P+]/P−+

exactly reflects the average time spent in the transient upsizing phase, where E[P+] ≡ Pr[∆k̂′ < 0]

is the unconditional probability of downsizing and P−+ ≡ Pr[∆k̂′ < 0|∆k̂ > 0] is the probability

of downsizing conditional on currently being in an upsizing phase.

Proposition 10. Then irreversibility term in the CIR is positive and is recovered from the mi-

crodata as

(62) E
[

1

ds
Es
[
d(k̂sM(k̂s))

]]
= −Cov[∆k̂,M(k̂∗(∆k̂))]

E[τ ]
> 0.

To compute Mbuy and Msell, we recover means conditional on the sign of past adjustment as

E−[k̂] =
(k̂∗−)2 − E−[k̂2

τ ]

2E−[∆k̂]
+

σ2

2

E−[τ ]

E−[∆k̂]
; E+[k̂] =

(k̂∗+)2 − E+
[k̂2
τ ]

2E+
[∆k̂]

+
σ2

2

E+
[τ ]

E+
[∆k̂]

;(63)

we recover unconditional probabilities as

E[P+] =
E[τI(∆k̂ < 0)]

E[τ ]
, E[P−] =

E[τI(∆k̂ > 0)]

E[τ ]
;(64)

and we recover transition probabilities between reset points as:

P+− = Pr[∆k̂′ > 0|∆k̂ < 0], P−+ = Pr[∆k̂′ < 0|∆k̂ > 0].(65)

According to (62), the irreversibility term in the CIR equals minus the covariance of invest-

ment ∆k̂ with the capital deviations M(∆k̂). The covariance is negative: Due to micro-history
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dependence, firms that make negative investments are expected to remain above the steady-state

mean and contribute with positive deviations (similarly, firms that make negative investment are

expected to contribute with positive deviations). Because a negative aggregate shock increases the

mass of selling firms relative to steady state, and these firms contribute with positive deviations,

the CIR goes up.

In summary, expressions (50) to (62) provide inverse mappings from the microdata Ω = {∆k̂, τ}
to parameters, reset points, capital allocation Var[k̂], capital valuation q, and capital fluctuations

CIR. In the next section, we apply these mappings to estimate the aggregate outcomes from the

microdata and assess the role of investment frictions in shaping their empirical values.

5.3 Putting the theory to work

We apply the mappings using yearly investment data on manufacturing plants in Chile from the

Annual National Manufacturing Survey (Encuesta Nacional Industrial Anual) for the period 1980

to 2011. To construct the capital series, we use information on depreciation rates and price defla-

tors from national accounts and Penn World Tables. The sample considers plants that appear in

the sample for at least 10 years (more than 60% of the sample) and have more than 10 workers.

Appendix D presents all details of the data.

Capital stock and investment rates. We construct the capital stock series using the perpetual

inventory method. We include structures, machinery, equipment, and vehicles. Following the

theory, a plant’s capital stock in year s, ks, evolves as

(66) ks = (1− ξk)ks−1 + Is/(p(Is)Ds),

where ξk is the physical depreciation rate; Is is the nominal value of investment; p(Is) is the

investment pricing function, which considers different prices for capital purchases and sales; Ds is

the gross fixed capital formation deflator; and k0 is a plant’s self-reported nominal capital stock

at current prices for the first year in which it is nonnegative. Note that the ratio Is/(p(Is)Ds) is

the real investment in capital units (the data counterpart to is = ∆ks in the model).

Calibration of the irreversibility wedge. With irreversibility, we need information on the

price wedge in order to compute real investment using the perpetual inventory method with two

prices.13 We pick a price wedge of 15% and set ω = 0.15. This is a conservative number, relative

to the estimates in Ramey and Shapiro (2001) and Kermani and Ma (2020). We pick a smaller

number to reflect heterogeneity across sectors and types of capital and the possibility of internal

13Note that only the price wedge matters for computing investment, not the price level.
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transfers of capital through mergers and acquisitions, as well as the fact that empirical estimates

are obtained using information from liquidating firms and thus are likely to suffer from selection.

Below, we conduct comparative statistics for the irreversibility parameter and discuss how, through

the lens of the model, the probabilities of adjustment conditional on the last reset point serve as

overidentifying restrictions for the parameter choice.

We construct gross nominal investment is with information on purchases, reforms, improve-

ments, and sales of fixed assets, and define the investment rate ιs as the ratio of real gross invest-

ment to the capital stock:14

(67) ιs ≡
Is/(p(Is)Ds)

ks−1

.

For each plant and each inaction spell h, we record the change in the capital-productivity ratio

upon action ∆k̂h and the spell’s duration τh. We construct ∆k̂h with investment rates from (67):

(68) ∆k̂h =





log (1 + ιh) if |ιh| > ι,

0 if |ιh| < ι.

The threshold ι > 0 reflects the idea that small maintenance investments should be excluded.

Following Cooper and Haltiwanger (2006), we set ι = 0.01, such that all investment rates below

1% in absolute value are considered to be part of an inaction spell. Then we define an adjustment

date Th from ∆k̂Th 6= 0 and compute a spell’s duration as the difference between two adjacent

adjustment dates: τh = Th−Th−1. Finally, we truncate the investment distribution at the 2nd and

98th percentiles to eliminate outliers.15

Figure V plots the resulting cross-sectional distribution of non-zero changes in the capital-

productivity ratios ∆k̂ and completed inaction spells τ , conditional on a past positive or negative

investment. The data show investment patterns consistent with partial irreversibility. In partic-

ular, the distribution of investment conditional on a last negative investment H+(∆k) is skewed

toward the left of the distribution conditional on a last positive investment H−, which means that

the probability of a negative investment is larger after a negative investment, and vice versa.

Externally calibrated parameters. We externally calibrate several parameters to match av-

erage statistics from the Chilean economy between 1980 and 2011. One period equals a year. We

set the real interest rate to 6.6% (ρ = 0.066) to match the average real interest rate computed by

14Note that the investment rate equals ιTh ≡ iTh/kT−h
= (kTh − kT−h )/kT−h

, where kT−h
= lims↑Th ks. In contrast

to the continuous-time model, in which investment is computed as the difference in the capital stock between two
consecutive instants, in the data we compute it as the difference between two consecutive years. Potentially, there
could be a bias arising from time aggregation as we take a continuous time model to annual data. We leave for
further research the assessment of this bias.

15Table I in Appendix D presents descriptive statistics on investment rates. In particular, the inaction rate
(|ι| < 0.01) equals 40.1%.
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Figure V – Empirical Distribution of Observable Actions
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Notes: Own calculations using establishment data from Chile. Panel A plots the distribution of nonzero changes in

capital-productivity ratios and Panel B plots the duration of inaction spells. Solid bars = conditional on departing

from k̂∗+ (last negative investment); white bars = conditional on departing from k̂∗− (last positive investment).

Sample: Firms with at least 10 years of data, truncation at the 2nd and 98th percentiles of investment rate

distribution, and inaction threshold of ι = 0.01.

Table I – Parameterization

Technology Productivity Normalization

µ α ρ ω ν σ2 A p
0.033 0.500 0.066 0.150 0.115 0.055 1.000 6.000

Notes: Baseline parameterization.

the IMF. The productivity growth rate is 3.3% (µ = 0.033) to match the average GDP growth

rate. The elasticity of output to capital is set to α = 0.5 and conduct comparative statics below.

We set the price level p = 6 to match an aggregate output-capital ratio of Ŷ /pK̂ = 0.23. Finally,

we set A = 1 as a normalization.

Estimated parameters. Using the mappings from the microdata to the parameters of the

productivity process in (50) and (51), we recover a drift of ν = 0.115 and a volatility of σ2 = 0.055.

Together with the productivity growth rate, the value for the drift ν implies a physical depreciation

rate of ξk = ν − µ = 0.082. Given these values, the adjusted discount is r = ρ− µ− σ2/2 = 0.006

and the user cost is U = ρ+ ξk − σ2 = 0.093. The parameterization is summarized in Table I.

5.4 Aggregate capital behavior: 1980-2011

Given the parameters and data, we apply all data mappings. Table II reports the investment

policy and average macro outcomes in Chile for the period between 1980 and 2011.

31



We begin by examining the investment policy. From (54) and (55), we recover a positive gap

between the two reset points, k̂∗+ − k̂∗− = 0.568, which is a tell-tale sign of partial irreversibility.

This gap is almost equally explained by the exogenous price wedge, log(pbuy/psell) = 0.325, and

the endogenous response (computed as a residual) equals 0.243. Using (56) and (57), we estimate

a dispersion in marginal products of Var[k̂] = 0.098.

Table II – Aggregate Capital Behavior

Investment Policy Capital Allocation

Difference in reset capitals (k̂∗+ − k̂∗−) 0.568 Variance 0.098
Exogenous price wedge 0.325
Endogenous response 0.243

Capital Valuation Capital Fluctuations

Tobin’s q 1.06 CIR 3.07
Productivity 1.09 Responsiveness 2.29
Irreversibility -0.03 Irreversibility 0.78

Notes: Objects recovered from theory mappings applied to establishment-level data
from Chile. Parameters described in Table I.

We use (32) to recover an average capital valuation of q = 1.06. While q is not far from its

frictionless value (unity), it would be erroneous to conclude that dynamic frictions are not present;

in fact, they are important but affect mainly the stock of capital. The productivity component

in (33) is 1.09 and the irreversibility component in (59) is −0.03. As predicted by the theory,

irreversibility decreases q.

Lastly, using (38), we recover an average CIR of 3.07, which means that a 1% decrease in

aggregate productivity generates a total deviation of aggregate capital above its steady-state

value of 3.07%. We further decompose the CIR into its components: responsiveness 2.29 from

(57) and irreversibility 0.78 from (62). As predicted by the theory, the CIR’s irreversibility term

is positive. Indirectly, irreversibility reduces sensitivity to idiosyncratic shocks (increasing Var[k̂])

and increases the relative cost of downsizing the capital stock (increasing Cov[k̂, a]).

Comparative statics for ω and α. To assess how sensitive are the measured aggregate out-

comes to the choice of irreversibility ω and returns to scale α, we conduct two robustness checks.

For the first check, as an overidentifying restriction, we compute conditional probabilities

of upsizing and downsizing the capital stock in the data and in the calibrated model for our

baseline choice of (ω, α) = (0.15, 0.5). In the data, the conditional probability of upsizing given

a last upward adjustment equals P−− = 0.96, whereas the conditional probability of downsizing

given a last downward adjustment equals P++ = 0.13. In the calibrated model, these untargeted

probabilities are close to their empirical counterparts, with values P−− = 0.98 and P++ = 0.22,

respectively.
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For the second check, we conduct comparative statics for these two parameters, one at a time,

in the ranges ω ∈ {0.05, 0.15, 0.25} and α ∈ {0.4, 0.5, 0.6}. The results, which are analogous to

Table II, are reported in Appendix D.6. We note that the estimated productivity process (ν, σ)

and the cross-sectional variance of capital to productivity ratios Var[k̂] do not vary significantly

across parameterizations. Regarding other outcomes, we observe that q and the CIR decrease

with both ω and α in the ranges considered. Also, there are interesting interactions between the

two parameters, for instance, lower returns to scale α amplify the irreversibility component of the

CIR. While variations in these parameters affect the estimates of the macro outcomes, the value

of q remains consistently above 1.05 and the CIR consistently above 2.5. Therefore, the general

messages about the role of investment frictions on macro outcomes remain valid.

6 The Macroeconomic Effects of Corporate Taxes

This section applies our methodology to study the effects of corporate tax reforms. We introduce

a comprehensive tax schedule and characterize the role of corporate taxation in shaping macroe-

conomic outcomes. We do this in three steps. First, we show that corporate taxes change four

parameters: profitability A, the discount factor ρ, the fixed cost θ, and the investment prices p(∆k̂).

Once we redefine these parameters, the investment problem is identical to the one described in

Section 2. Second, we analyze the effect of taxation using the notion of after-tax effective frictions,

which summarize the complex interaction of taxes with investment frictions with an appropriate

rescaling of each friction. Third, we assess the effects of corporate income tax cuts using the

mappings between macroeconomic outcomes, cross-sectional moments, and microdata.

6.1 A comprehensive tax schedule

Following Summers (1981) and Abel (1982), we introduce a corporate tax system to the firm

problem. It includes a corporate income tax, deduction allowances, a personal income tax, and

capital gains tax.16 The firm pays the corporate income tax rate tc on its cash flow Ays net of

deductions, where ξd denotes the deduction rate. Since the physical and legal depreciation rates

differ, we distinguish deductions from the capital stock and denote these with ds. The state space

now includes deductions V (k, u, d).

The after–tax profits per unit of time πs is given by

(69) πs = (1− tc)Ays + tcξdds︸ ︷︷ ︸
deductions

− tcpωis1{is<0}︸ ︷︷ ︸
capital losses

,

16This taxation schedule is also used in the investment models of Poterba and Summers (1983); King and Fullerton
(1984); Auerbach (1986); Auerbach and Hines (1986); and Hassett and Hubbard (2002).
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where deductions evolve as

log ds = log d0 − ξds+
∑

h:Th≤s

(
1 +

θTh + piTh
dT−h

)
.(70)

Let us explain how we model the interaction of taxes with investment frictions. First, we assume

that the payments of fixed adjustment costs are capitalized and enter the law of motion of capital

deductions in (70). This assumption is sensible to the extent that the fixed costs associated with

investment or disinvestment are not fully deducted when they are paid. In contrast, when a firm

sells its capital, it loses the future deductions valued at the buying price. For example, if ω = 1

and the firm buys and sells capital immediately, then the capital depreciation allowance does not

change. Second, we assume that capital losses are fully deducted from ordinary income in (69) on

the date on which they are accrued.17

The personal income tax tp and the capital gains tax tg alter the firms’ discount factor. We

assume that equity is purchased by a representative investor with access to a riskless bond with

return ρ per unit of time. Let Ds be the dividend per share, Ps the equity price per share, and

Es = 1 the number of shares, which we normalize to unity without loss of generality. From the

investor’s perspective, dividends and bond returns are taxed at the rate tp, while capital gains that

arise from changes in equity prices are taxed at the rate tg. For any dividend process, no-arbitrage

implies equal after-tax returns:

(71) (1− tp)ρ ds = (1− tg)E[dPs]

Ps
+ (1− tp)Ds

Ps
ds.

Condition (71) pins down the time-0 value of the firm, which equals the equity price:

(72) V (k0, u0, d0) = P0 =
1− tp
1− tg E0

[∫ ∞

0

e−ρ
1−tp
1−tg sDs ds

]
.

This expression says that the firm maximizes the cum-dividends market value of equity P0 using

the investor’s after-tax discount factor ρ(1 − tp)/(1 − tg), as in Auerbach (1979). We follow the

“tax capitalization” view of the dividend decision and consider dividends as residuals, equal to

17In the U.S., the capital gains tax in the corporate sector is computed on observed transactions, as for households.
Different from household taxation of capital gains however, firms do not receive a preferential tax rate; that is, firms
are not allowed to use capital losses to offset ordinary income taxation. Instead, as with the corporate income tax,
losses are carried backward or forward to compensate for gains. We abstract from these dimensions and assume
that the corporate income tax is linear and applies to the sum of ordinary and capital income. See Desai and
Gentry (2004) for a detailed discussion of capital gains taxes for the corporate sector. We thank Jim Hines for
helpful advice on these assumptions.
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the cash flow πs net of investment and capital adjustment costs18

(73) Ds ds = πs ds− (θs + (p(is)− tcpω1{is<0})is)D(s = Th), D(·) ∼ Dirac.

Given the tax schedule, Lemma 3 characterizes the firm’s problem with corporate taxation. The

strategy consists of defining the discounted value of deductions per unit of investment z and using

it to rewrite the 3-state problem (k, u, d) as the 1-state problem in terms of the capital-productivity

ratio k̂ = log(k/u) already examined in Section 2.3, with four parametric changes and an additive

term that reflects deductions d.

Lemma 3. Define the discounted value of deductions:

(74) z ≡ ξd

ρ1−tp
1−tg + ξd

< 1.

The firm’s value with taxes can be decomposed as:

(75) V (k, u, d) =
1− tp
1− tg

[
uv(k̂) + tczd

]
,

where v(k̂) solves the investment problem in Lemma 2 with the following four parametric changes:

A → (1− tc)A,(76)

ρ → (1− tp)
(1− tg)ρ,(77)

θ → (1− tcz)θ,(78)

p(∆k̂) →
(

1− tcz − ω(1− tc)1{∆k̂<0}
)
p.(79)

The parametric changes established in Lemma 3 highlight the different channels through which

taxes affect the firm value and optimal policy. The corporate income tax tc directly affects after-

tax profitability A in (76). The personal income tax tp and the capital gains tax tg scale the

discount factor ρ in (77).19 The discounted value of deductions z affects the firm value through an

income effect, as deductions increase additively the firm value in (75), and a substitution effect,

as deductions promote investment by reducing the after-tax adjustment costs and after-tax prices

in (78) and (79). Additionally, tp and tg operate indirectly through z and tc affects directly the

18In the model without corporate taxes, the Modigliani-Miller theorem holds, that is, the firm’s value and
investment policy—and the implicit dividend policy—are independent of the capital structure. Introducing taxes,
in principle, could break this independence (for example, under the trade-off theory of the capital structure; see
Hines and Park, 2017). Nevertheless, following the arguments in Miller (1977) and more recently in Abel (2018),
we continue to work under the Modigliani-Miller paradigm.

19The factor (1− tp)/(1− tg) also scales A, θ, and p(k̂). However, these parameters divide each other in all the
expressions that follow, so we can safely ignore this factor.

35



effective level of partial irreversibility.

Next, we formalize the channels through which taxes affect investment through their interaction

with frictions. To simplify the notation, we define the after-tax discount r̃ and the after-tax user

cost of capital Ũ :

r̃ ≡ 1− tp
1− tg ρ− µ−

σ2

2
,(80)

Ũ ≡ 1− tp
1− tg ρ+ ξk − σ2.(81)

In particular, the after-tax user cost Ũ decreases with the personal income tax and increases with

the capital gains tax. For the problem to be well defined, we assume r̃ > 0 and Ũ > 0.

6.2 After-tax investment frictions

Proposition 11 introduces the notion of after-tax investment frictions, which are analogous to the

effective frictions defined in (28) and (29) with the addition of taxes. Then, it signs the relation-

ships with investment frictions.

Proposition 11. Let z ≡ ξd/(ρ1−tp
1−tg + ξd) < 1. With corporate taxes, the effective fixed cost θ̃

and effective price wedge ω̃ are given by

θ̃ =

(
1− tcz
1− tc

1

A

) 1
1−α
(
pŨ
α

) α
1−α

θ,(82)

ω̃ =
(1− tc)α
Ũ

ω.(83)

Corporate taxes have the following effects on the after-tax investment frictions:

1. The effective fixed adjustment cost θ̃ increases with tc and the after-tax user cost Ũ , and

decreases with the PDV of deductions z.

2. The effective price wedge ω̃ decreases with the corporate income tax tc and after-tax user cost

Ũ , and does not change with the PDV of deductions z.

Let us focus on the effects of the corporate income tax, which has opposing effects on after-

tax investment frictions. On the one hand, a lower corporate income tax tc increases profits and

therefore reduces the after-tax fixed cost. This effect is mediated by the depreciation allowance

rate, being lowest when z = 1 (in this case tc is a pure profit tax) and highest when ξd = z = 0.

On the other hand, a lower corporate income tax tc increases the after-tax price wedge because it

provides a smaller subsidy to capital losses. As anticipated, a corporate income tax cut generates
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an inward displacement together with a movement along the isoquant of after-tax frictions (θ̃, ω̃)

(recall Figure III). Next, we apply these insights to study the aggregate effects of corporate taxes.

6.3 A regime shift from high to low taxes

This section explores the macroeconomic effects of a regime change from high to low taxes, focusing

on a reduction in the corporate income tax rate and comparing outcomes across steady states.20

We motivate this exercise with the observation that the top marginal corporate income tax rate

experienced a median drop of 17 percentage points across OECD countries, from 42% in 1980

to 25% in 2020.21 According to the theory, a decline in the corporate income tax rate tc is

equivalent to a reduction in the effective fixed cost θ̃ and an increase in the effective price wedge

ω̃. Given our calibration, this reform unambiguously reduced misallocation, other things equal,

but the consequences for capital valuation and capital fluctuations depend on the magnitude of

the various forces we characterized before.

To discipline these forces, we use the parameterization that matches the average Chilean ex-

perience summarized in Table I. Additionally, we must take a stand on the size of the fixed cost θ

in order to map the changes in the corporate tax onto changes in the after-tax fixed cost θ̃. Note

that taking a stand on the size of the fixed cost was not necessary in order to apply the mappings

from microdata to macro outcomes in the previous section. Here, we search for a fixed-cost pa-

rameter using the method of moments to minimize the relative distance between two moments in

the model and the data: the variance of capital-productivity ratios Var[k̂] and the covariance of

capital-productivity ratios with the time elapsed since their last adjustment Cov[k̂, a] (below, we

discuss these choices and the implied model fit). We obtain a fixed cost of θ = 0.03.

Figure VI illustrates the macroeconomic consequences of a drop in the corporate tax rate. In

each panel, we consider three versions of the model. The first is the benchmark model (solid black)

that considers a price wedge of ω = 0.15 and allows for capital loss deductions. The second version

eliminates the price wedge by setting ω = 0 (by construction, there are no capital losses). The

third version maintains the price wedge at the benchmark value but does not allow for capital loss

deductions.

Panel A shows the capital allocation Var[k̂]. We observe that a decline in the tax rate improves

the allocation of capital. As predicted by equation (82) and Propositions 4 and 5, lower tc reduces

the effective fixed cost θ̃ and shrinks the inaction regions, which lowers firms’ tolerance for mis-

match between their capital and productivity and decreases the dispersion of capital-productivity

20We study the transitional dynamics that follow a corporate tax reform in Baley, Blanco and Markiewitz (2022).
21In Chile, the evolution of the corporate tax rate is U-shaped. It was 40% in 1980, dropped to 10% in 1984, and

then consistently (but infrequently) moved upward until reaching 20% in 2020 (see Appendix D). In this exercise,
we identify the high-tax regime with 1980 and the low-tax regime with 2020.
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Figure VI – Macro Outcomes and Corporate Income TaxFigure 1: Macro Outcomes and Corporate Income Tax
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Notes: Panels A, B, and C plot capital allocation, capital valuation, and capital fluctuations for various levels of

the corporate income tax rate tc and three specifications: Benchmark = baseline model calibrated as in Table I ;

No price wedge = baseline model with ω = 0; No loss deduction = Stars correspond to the median values for tc in

the OECD: 1980 = 42%, 2020 = 25%.

ratios. At the same time, it raises the price wedge, which in principle can increase dispersion. In

the calibration, the first effect dominates and cross-sectional dispersion falls with the lower tax.

Panel B shows capital valuation q (in black). We discover that q moves in the same direction

as the tax rate. When tc decreases, firms invest more and the average capital-productivity ratio

E[k̂] goes up. Abundant capital is less valuable and q goes down. At the same time, the allocation

of capital improves, Var[k̂] falls (see Panel A), and q goes up. However, the price wedge becomes

more important and the implied subsidy for capital losses falls. This force also pushes q down.

Finally, Panel C shows capital fluctuations measured by the CIR (in black). We find that

the CIR increases with the tax cut, which means that aggregate productivity shocks propagate

more slowly when taxes are low. While there is lower dispersion, the larger after-tax price wedge

generates more history dependence and persistent deviations from steady state.

Comparing the results across the various model configurations—with and without price wedge

and with and without capital loss deductions—highlights the importance of price wedges and their

tax treatment for the macroeconomy. We observe important differences in the size and sign of the

elasticities of aggregate outcomes with respect to corporate taxes. For instance, ignoring the price

wedge reverts the sign of the relationship between the CIR and the corporate tax rate.

In summary, a drop in the corporate income tax rate reduces capital misallocation, reduces cap-

ital valuation, and slows the propagation of aggregate productivity shocks. While we focus here on
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the aggregate outcomes, our results can be also applied when considering cross-sectional responses

to corporate tax changes. In particular, cross-sectional differences in the relative importance of

fixed costs θ and price wedges ω—across firms, industries, sectors, or types of capital—may cause

heterogeneous responses to an identical change in tc across the board. Alternatively, cross-sectional

differences in depreciation allowances z, as documented by House and Shapiro (2008) and Zwick

and Mahon (2017), should bring heterogeneous responses to tc, controlling for fixed costs and price

wedges. These observations offer a complementary identification strategy that exploits ex ante

heterogeneity instead of heterogeneity in the treatment. We leave testing this prediction using

cross-sectoral data for future work.

A remark on the calibration of fixed costs. Let us compare the values for the macro

outcomes reported in Table II—recovered directly from the microdata mappings—with the corre-

sponding values in Figure VI—, which are obtained by simulating the calibrated model. We see

that all values in the data are consistently larger than those produced by the model. The reason

for this discrepancy is that our model with a symmetric fixed cost is extremely parsimonious and

cannot reproduce the large variance of capital-productivity ratios Var[k̂] and the large covariance

of capital-productivity ratios and their age Cov[k̂, a] recovered from the data. The simulated

method of moments strikes a balance between these two moments in the data, but falls below

their empirical values.

In previous work (Baley and Blanco, 2021), we demonstrated that the symmetric fixed cost

model is unable to replicate the empirical values of these two moments and showed how it should

be augmented in order to match them. Introducing a time-dependent component in adjustment,

such as random opportunities for free adjustment, increases the variance Var[k̂]. Introducing

asymmetric fixed costs that depend on the adjustment sign increases the covariance Cov[k̂, a] (the

price wedge already pushes the covariance up, but it is not quantitatively enough). Augmenting

the model in these two directions is straightforward and necessary to conduct a fully fledged

quantitative analysis. Nevertheless, we have opted to keep the model as simple as possible to

facilitate exposition and highlight the key mechanisms at work in the cleanest way.

7 Final thoughts

We propose a new laboratory to study the macroeconomic implications of partial irreversibility,

its interaction with fixed adjustment costs, and corporate taxes. Our results—and particularly

the tax application—highlight the need to disentangle the role of price wedges vis-à-vis fixed

adjustment to correctly assess the aggregate effects of tax policy. Moreover, the analysis puts

forward a new channel for policy intervention: Corporate tax policy can change the effective size

of fixed costs and price wedges—technological constraints or market prices typically outside the

39



control of a policymaker—and structurally change the long-run behavior of aggregate capital and

the macroeconomy more broadly.

A key innovation in our analysis is to characterize sufficient statistics for models with lumpy

adjustment with more than one reset point. In this paper, the price wedge generates two reset

points for the capital to productivity ratio. Two reset points also arise in other environments in

which the marginal benefit (or cost) of taking an action is different from the marginal benefit (or

cost) of reversing that action, such as durables, housing, inventories, and labor adjustment. More

generally, our methodology is flexible enough to accommodate a finite number of reset points, and

the mappings from microdata to macro outcomes can be applied as long as there is enough data

to discipline the transitions across reset points. For example, a potential application of sufficient

statistics with multiple reset points are models with fixed costs and financial frictions, in which

firm would adjust its capital to a point that depends on their availability of funds; in this case,

data on leverage could in principle be useful to discipline the transition probabilities. We leave

for future research these explorations.

We conclude by discussing two limitations in our analysis of transitional dynamics following

aggregate shocks. The first limitation is that we consider small shocks to the distribution of firms

and focus on first-order perturbations, and thus we ignore potential nonlinearities and the response

to large shocks. The second limitation is that we consider transitional dynamics in small open

economies in which prices are fixed and do not respond to aggregate shocks. Contemporaneous

work makes progress in these directions within the context of price-setting models. Alexandrov

(2021) characterizes the CIR for non-marginal shocks, and Álvarez, Lippi and Souganidis (2022)

use mean-field games to characterize the role of strategic complementarities. We leave for future

research developing these areas in the context of investment.
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A Proofs

A.1 Auxiliary Theorems

Auxiliary Theorem 1. Let X be a (sub)martingale on the filtered space (Ω,P,F) and let τ be a stopping time.
If ({Xt}t, τ) is a well-defined stopping process, then

(A.1) E[Xτ ](≥) = E[X0].

This is the Optional Sampling Theorem (OST), see Theorem 4.4 in Stokey (2009) for the proof.

Auxiliary Theorem 2. Let g be a real valued function of a Brownian motion xt, F the ergodic distribution of x,

and τ a stopping time. Assume that
∫
g(x) dF (x) = limT→∞ T−1

∫ T
0
g(xt) dt for all initial x0 and a constant reset

state xτ = x∗. The following relationship holds:

(A.2) E
[∫ τ

0

g(xt) dt
∣∣∣x0 = x∗

]

︸ ︷︷ ︸
occupancy measure

=

∫
g(x) dF (x)

︸ ︷︷ ︸
steady-state mass

E
[
τ
∣∣∣x0 = x∗

]
.

︸ ︷︷ ︸
proportionality constant

Proof. This result establishes the equivalence between the steady-state distribution and the occupancy measure.
The occupancy measure (LHS) is the average time an agent’s state spends at a given value. It is proportional to the
stationary mass of agents at that particular state (RHS), with a proportionality constant equal to the expected time
between adjustments. For example, if g(x) = xm, then E

[∫ τ
0
xmt dt|x0 = x∗

]
= E[xm]E[τ |x0 = x∗]. For notation

clarity, we use E[·] = E[·|x0 = x∗]. See Appendix B.2 for the proof and Stokey (2009) for more details.

A.2 Proof of Lemmas 1, 2, and 3

The proof has 3 steps. First, we derive the sufficient conditions that characterize the optimal value function
V (k, u, d) and the policy (k−, k∗−, k∗+, k+). Second, to reduce the dimensionality of the state space, we guess

that V (k, u, d) can be separated as V (k, u, d) = 1−tp
1−tc

[
uv(k̂) + tczd

]
, where v(k̂) is a function of the log capital-

to-productivity ratio k̂ ≡ log(k/u) and z is the discounted value of deductions. The corresponding policy is

(k̂−, k̂∗−, k̂∗+, k̂+). Third, we verify the guess by showing that the sufficient conditions for V are equivalent to
those satisfied by v. Lastly, we express the optimal policy as a system of equations in fundamental parameters.

To simplify the notation, we denote the state evaluated at the lower border of inaction as S− ≡ (k−, u, d) and
evaluated after a positive adjustment as S∗− ≡

(
k∗−, u, d+ θu+ pbuy∆k

)
, where ∆k = k∗− − k−. Analogously,

we denote the state evaluated at the upper border of inaction as S− ≡ (k−, u, d) and evaluated after a negative
adjustment as S∗+ ≡

(
k∗+, u, d+ θu+ psell∆k

)
, where ∆k = k∗+ − k+.

Step 1: Characterize the value function V (k, u, d). Recall the recursive problem in (5). Substituting output
(1), after-tax dividends (69), and adjustment costs θs = θus we obtain

V (k0, u0, d0) = max
{Th, iTh}

∞
h=1

(
1− tp
1− tg

)
E
[∫ ∞

0

e−ρ
1−tp
1−tg s[(1− tc)Au1−α

s kαs + tcξdds] ds(A.3)

−
∞∑

h=1

e−ρ
1−tp
1−tg Th

(
θuTh +

(
p (iTh)− tcω1{iTh<0}

)
iTh

)]
.

Since
(

1−tp
1−tg

)
is multiplicative, we can ignore this term from the optimal investment policy hereon. Using the princi-

ple of optimality, we write the problem recursively as a stopping-time problem with initial conditions (k0, u0, d0) =
(k, u, d):

V (k, u, d) = max
τ, ∆kτ

E
[∫ τ

0

e−ρ
1−tp
1−tg s[(1− tc)Au1−α

s kαs + tcξdds] ds

(A.4)

+ e−ρ
1−tp
1−tg τ

(
−θuτ −

(
p(∆kτ )− tcω1{∆kτ<0}

)
∆kτ + V (kτ + ∆kτ , uτ , dτ + uτθ + p̃(∆kτ )∆kτ )

)]
.
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The optimal policy (k−, k∗−, k∗+, k+) satisfies the system of sufficient conditions (A.5) to (A.15).

1. In the interior of the inaction region, i.e., k ∈ (k−, k+), V (S) solves the HJB equation:

ρ
1− tp
1− tg V (S) = u(1− tc)A

(
k

u

)α
+ tcξdd− ξkk∂V (S)

∂k
− ξdd∂V (S)

∂d
(A.5)

+

(
µ+

σ2

2

)
u
∂V (S)

∂u
+

(σu)2

2

∂2V (S)

∂u2
.

2. The value matching conditions for all (u, d), that equalize the value of adjusting to the value of inaction at
the borders of the inaction region {k−, k+}:

V (S∗−) − p∆k − θu = V (S−),(A.6)

V (S∗+) − p(1− ω(1− tc))∆k − θu = V (S+).(A.7)

3. The two optimality conditions for the reset capitals {k∗−, k∗+}:

∂V (S∗−)

∂k
=

[
1− ∂V (S∗−)

∂d

]
p,(A.8)

∂V (S∗+)

∂k
=

[
1− ∂V (S∗+)

∂d

]
p(1− ω(1− tc)).(A.9)

4. The six smooth pasting conditions:

∂V (S−)

∂k
=

[
1− ∂V (S−)

∂d

]
p,(A.10)

∂V (S+)

∂k
=

[
1− ∂V (S+)

∂d

]
p(1− ω(1− tc)),(A.11)

∂V (S∗−)

∂u
= θ +

∂V (S−)

∂u
,(A.12)

∂V (S∗−)

∂u
= θ +

∂V (S−)

∂u
,(A.13)

∂V (S∗+)

∂d
=

∂V (S+)

∂d
.(A.14)

∂V (S∗+)

∂d
=

∂V (S+)

∂d
.(A.15)

For additional details about the sufficiency of HJB equations, value matching, optimality and smooth pasting con-
ditions, see Oksendal (2007), Baley and Blanco (2019), and Baley and Blanco (2021).

Step 2: Guess of separable value function. Define the new parameters

(A.16) z ≡ ξd

ρ 1−tp
1−tg + ξd

; r̃ ≡ ρ1− tp
1− tg − µ− σ

2/2; ν ≡ µ+ ξk,

and the fixed cost and price of investment

Ã = (1− tc)A,(A.17)

θ̃ = (1− tcz)θ,(A.18)

p̃buy = (1− tcz) p,(A.19)

p̃sell = (1− tcz − ω(1− tc)) p,(A.20)

p̃ (is) ≡ p̃buy
1{is>0} + p̃sell

1{is<0}.(A.21)

5



We guess a separable value function:

(A.22) V (S) =
1− tp
1− tg

[
uv(k̂) + tczd

]
,

where the function v(k̂) is defined as

(A.23) v(k̂) ≡ max
τ,∆k̂

E
[∫ τ

0

Ãe−r̃s+αk̂s ds+ e−r̃τ
(
−θ̃ − p̃(∆k̂)(ek̂τ+∆k̂ − ek̂τ ) + v(k̂τ + ∆k̂)

)]
.

The value function v(k̂) and the optimal policy {k̂−, k̂∗−, k̂∗+, k̂+} satisfy the following three conditions:

(i) In the interior of the inaction region, v(k̂) solves the HJB equation:

r̃v(k̂) = Ãeαk̂ − νv′(k̂) +
σ2

2
v′′(k̂).(A.24)

(ii) At the borders of the inaction region, v(k̂) satisfies the value-matching conditions:

v(k̂−) = v(k̂∗−) − θ̃ + p̃buy(ek̂
− − ek̂∗−),(A.25)

v(k̂+) = v(k̂∗+) − θ̃ + p̃sell(ek̂
+ − ek̂∗+).(A.26)

(iii) At the borders of the inaction region and the two reset states, v(k̂) satisfies the smooth-pasting and the
optimality conditions:

v′(k̂) = p̃buyek̂, k̂ ∈
{
k̂−, k̂∗−

}
,(A.27)

v′(k̂) = p̃sellek̂, k̂ ∈
{
k̂∗+, k̂+

}
.(A.28)

Step 3: Verify the guess. We verify that the guess in (A.22) and (A.23) is correct by showing the equivalence
between the sufficient conditions of V , (A.5) to (A.15), and the sufficient conditions of v, (A.24) to (A.28). Given
our guess, the following relationships between the derivatives of V and the derivatives of v hold:

∂V (S)

∂u
= v(k̂)− v′(k̂),(A.29)

∂2V (S)

∂u2
= −v

′(k̂)

u
+
v′′(k̂)

u
,(A.30)

∂V (S)

∂k
=

u

k
v′(k̂),(A.31)

∂V (S)

∂d
= tcz.(A.32)

Verify HJB. We start with the HJB by substituting the guess into (A.5)

ρ
1− tp
1− tg

[
uv(k̂) + tczd

]
= u(1− tc)Aeαk̂ + tcξdd− ξkku

k
v′(k̂)− tczξdd

+

(
µ+

σ2

2

)
u(v(k̂)− v′(k̂)) +

σ2u2

2

(
v′′(k̂)

u
− v′(k̂)

u

)
.

Using the definition of z to cancel the term tcξdd on both sides, and rearranging we obtain:

(
ρ

1− tp
1− tg − µ−

σ2

2

)
uv(k̂) = uÃeαk̂ − (µ+ ξk)uv′(k̂) +

σ2

2
uv′′(k̂).
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Using the new parameters ν ≡ µ+ ξk and r̃ ≡ ρ 1−tp
1−tg − µ− σ2/2, and cancelling u, we obtain the HJB in (A.24):

r̃v(k̂) = Ãeαk̂ − νv′(k̂) +
σ2

2
v′′(k̂).

Verify value matching. We verify the value matching conditions by substituting the guess into (A.6) and (A.7).

uv(k̂∗−) + tcz(d+ θu+ p∆k) − p∆k − θu = uv(k̂−) + tzzd,

uv(k̂∗+) + tcz(d+ θu+ p∆k) − p(1− ω(1− tc))∆k − θu = uv(k̂−) + tzzd.

Writing positive investment as ∆k = u(e∆k̂−k̂− − ek̂−), negative investment as ∆k = u(e∆k̂−k̂+ − ek̂+), cancelling
tdd, dividing both sides by u, we obtain (A.25) and (A.26):22

v(k̂∗−)− (1− tcz)p(e∆k̂−k̂− − ek̂−)− θ(1− tcz)︸ ︷︷ ︸
=θ̃

= v(k̂−),

v(k̂∗+)− (1− tcz − ω(1− tc))p(e∆k̂−k̂+ − ek̂+)− θ(1− tcz)︸ ︷︷ ︸
=θ̃

= v(k̂−).

Verify optimality and smooth pasting. We verify the optimality conditions and the smooth pasting conditions
for capital by substituting the guess into (A.8), (A.9), (A.10) and (A.11)

u

k
v′(k̂∗−) = (1− tcz)p ⇐⇒ v′(k̂∗−) = ek̂

∗−
(1− tcz)p,

u

k
v′(k̂∗−) = (1− tcz − ω(1− tc))p ⇐⇒ v′(k̂∗−) = ek̂

∗+
(1− tcz − ω(1− tc))p,

u

k
v′(k̂−) = (1− tcz)p ⇐⇒ v′(k̂−) = ek̂

−
(1− tcz)p,

u

k
v′(k̂+) = (1− tcz − ω(1− tc))p ⇐⇒ v′(k̂−) = ek̂

+

(1− tcz − ω(1− tc))p.

which are equal to the expressions in (A.27) and (A.28). To verify the smooth-pasting for idiosyncratic productivity,
we substitute the guess into (A.12) and (A.13) and then substitute (A.27) and (A.28) to rewrite v′(·) in terms of
prices, which yields the conditions in (A.25) and (A.26):

v(k̂∗−) = θ̃ + v(k̂−) + (1− tcz)p(ek̂∗−−k̂−)

v(k̂∗+) = θ̃ + v(k̂+) + (1− tcz − ω(1− tc))p(ek̂∗+−k̂+)

Finally, the smooth pasting conditions for deductions (A.14) and (A.15) are trivially satisfied given the linearity of
the guess. We conclude that the guess is correct.

A.3 Generalized hazard model

See Appendix B for further details.

A.4 Cross-sectional distributions with non-stochastic fixed cost of ad-
justments

Let G(k̂) be the distribution of firms over their log capital-productivity ratio and let g(k̂) be its continuous marginal
density. Also, let N−, N+, and N = N− +N+ be the frequencies of positive, negative, and non-zero adjustments

22To express investment in terms of k̂, we start from the expression ∆k̂ = log (1 + ∆k/kτ ), which yields

∆k = e∆k̂kτ − kτ ; multiply and divide by uτ and substitute the definition of k̂ to get: ∆k = uτe
∆k̂+k̂τ − ek̂τ . Then

we use k̂τ = k̂+ or k̂τ = k̂− accordingly.
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in the total population, which are equal to the mass of firms that adjust to k̂∗−, to k̂∗+, or to either point.23 The
density and frequencies solve the following system, which includes: a Kolmogorov forward equation that describes
the evolution of capital-productivity ratios inside the inaction region (excluding the two reset points)

(A.33) νg′(k̂) +
σ2

2
g′′(k̂) = 0, for all k̂ ∈ (k̂−, k̂+) \ {k̂∗−, k̂∗+};

three border conditions

g(k̂) = 0, for k̂ ∈ {k̂∗−, k̂∗+},(A.34)
∫ k̂+

k̂−
g(k̂) dk̂ = 1;(A.35)

two resetting conditions

σ2

2
lim
k̂↓k̂−

g′(k̂)

︸ ︷︷ ︸
N−

=
σ2

2

[
lim
k̂↑k̂∗−

g′(k̂)− lim
k̂↓k̂∗−

g′(k̂)

]
,(A.36)

−σ
2

2
lim
k̂↑k̂+

g′(k̂)

︸ ︷︷ ︸
N+

=
σ2

2

[
lim
k̂↑k̂∗+

g′(k̂)− lim
k̂↓k̂∗+

g′(k̂)

]
,(A.37)

(A.38)

and two continuity conditions at the reset points (not reported). Condition (A.34) sets the mass of firms at the
inaction thresholds equal to zero. Condition (A.35) ensures that g is a density. Conditions (A.36) and (A.37) relate
the masses of upward and downward adjustments to the discontinuities in the derivative of g at the reset points.
In a small period of time ds, the mass N− that “exits” the inaction region by hitting the lower threshold—equal

to σ2

2 limk̂↓k̂− g
′(k̂)—must coincide with the mass of firms that “enters” at the reset point k̂∗−—equal to the jump

in g′. This argument is analogous for N+; in fact, it is straightforward to verify that conditions (A.33) to (A.36)
jointly imply condition (A.37), and thus it is redundant.

A.5 Cross-sectional distributions with random fixed cost of adjust-
ments

Let g(k̂) be the cross-sectional distribution of k̂. It satisfies a Kolmogorov forward equation with its boundary
conditions.

Without partial irreversibility.

Λ(k̂)g(k̂) = νg′(k̂) +
σ2

2
g′′(k̂), ∀k̂ ∈ (k̂−, k̂+)/{k̂∗}(A.39)

g(k̂±) = 0(A.40)
∫ k̂+

k̂−
g(k̂) dk̂ = 1,(A.41)

g(k̂) ∈ C,C1({k̂∗}),C2({k̂∗})(A.42)

23To avoid any confusion with our notation, we emphasize that the sign in the exponent of an object refers to
the last reset point, not to the sign of the adjustment.
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With partial irreversibility.

Λ(k̂)g(k̂) = νg′(k̂) +
σ2

2
g′′(k̂), ∀k̂ ∈ (k̂−, k̂+)/{k̂∗−, k̂∗+}(A.43)

g(k̂±) = 0(A.44)
∫ k̂+

k̂−
g(k̂) dk̂ = 1,(A.45)

g(k̂) ∈ C,C1({k̂∗−, k̂∗+}),C2({k̂∗−, k̂∗+})(A.46)

A.6 Proof of Proposition 2

Proposition 3 characterizes the aggregate Tobin’s q as a function of the aggregate output-to-capital ratio Ŷ /K̂ and
the expected capital gains. Let us depart from the definition of aggregate Tobin’s q in (31)

(A.47) q ≡ 1

p

∫ k̂+

k̂−
φ(k̂)

v′(k̂)

ek̂
dG(k̂) =

E[v′(k̂)]

pK̂
.

We characterize the numerator,

(A.48) E[v′(k̂)] =

∫ k̂+

k̂−
v′(k̂)g(k̂) dk̂,

by combining the HJB equation for v′(k̂) and the KFE for g(k̂) into a single “master equation”.

A.6.1 Without partial irreversibility

The value v′(k) satisfies the following conditions:

rv′(k̂) = αAeαk̂ − νv′′(k̂) +
σ2

2
v′′′(k̂) + Λ(k̂)

[
pek̂ − v′(k̂)

]
,∀k̂ ∈ (k̂−, k̂+)(A.49)

v′(k̂) = pek̂, for k̂ ∈ {k̂−, k̂∗, k̂+},(A.50)

v′(k̂) ∈ C,C1(A.51)

and g(k̂) satisfies a KFE and boundary conditions in (A.39) to (A.42). From equation (A.39), we solve for the

adjustment hazard Λ(k̂) = (νg′(k̂) + (σ2/2)g′′(k̂)/g(k̂); then substitute the hazard into (A.49), multiply both sides

by g(k̂), and join common terms, to obtain the Master equation that is valid for all k̂ ∈ (k̂−, k̂+)/{k̂∗}:

rv′(k̂)g(k̂) = αAeαk̂g(k̂)− νv′′(k̂)g(k̂) +
σ2

2
v′′′(k̂)g(k̂) +

[
νg′(k̂) +

σ2

2
g′′(k̂)

] [
pek̂ − v′(k̂)

]
(A.52)

= αAeαk̂g(k̂)− ν
(
v′(k̂)g(k̂)

)′
+
σ2

2

(
v′′(k̂)g(k̂)− v′(k̂)g′(k̂)

)′
+ pek̂

[
νg′(k̂) +

σ2

2
g′′(k̂)

]
.

Next, we integrate both sides in the interval [k̂−, k̂+].

r

∫ k̂+

k̂−
v′(k̂)g(k̂) dk̂

︸ ︷︷ ︸
qpK̂

= αA

∫ k̂+

k̂−
eαk̂g(k̂) dk̂

︸ ︷︷ ︸
Ŷ

− ν

∫ k̂+

k̂−

(
v′(k̂)g(k̂)

)′
dk̂

︸ ︷︷ ︸
T1

(A.53)

+
σ2

2

∫ k̂+

k̂−

(
v′′(k̂)g(k̂)− v′(k̂)g′(k̂)

)′
dk̂

︸ ︷︷ ︸
T2

+ p

[
ν

∫ k̂+

k̂−
ek̂g′(k̂) dk̂

︸ ︷︷ ︸
T3

+
σ2

2

∫ k̂+

k̂−
ek̂g′′(k̂) dk̂

︸ ︷︷ ︸
T4

]
.

In the LHS, we recognize aggregate q. In the first term of the RHS, we recognize the average output-to-productivity
ratio in (33). The remaining terms, labelled T1, T2, T3 and T4, are computed following a common strategy: split
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the domain into two regions, [k̂−, k̂+] = [k̂−, k̂∗] ∪ [k̂∗, k̂∗+]; integrate by parts if needed; use the border conditions

g(k̂±) = 0 in (A.40); and use continuity conditions for g in (A.42) and for v′ in (A.51).

T1 =

∫ k̂+

k̂−

(
v′(k̂)g(k̂)

)′
dk̂ = v′(k̂)g(k̂)

∣∣∣
k̂∗

k̂−︸ ︷︷ ︸
v′(k̂∗)g(k̂∗)

+ v′(k̂)g(k̂)
∣∣∣
k̂+

k̂∗︸ ︷︷ ︸
−v′(k̂∗)g(k̂∗)

= 0.(A.54)

T3 =

∫ k̂+

k̂−
ek̂g′(k̂) dk̂ = ek̂g(k̂)

∣∣∣
k̂∗

k̂−︸ ︷︷ ︸
ek̂∗g(k̂∗)

+ ek̂g(k̂)
∣∣∣
k̂+

k̂∗︸ ︷︷ ︸
−ek̂∗g(k̂∗)

−
∫ k̂+

k̂−
ek̂g(k̂) dk̂ = −K̂.(A.55)

T4 =

∫ k̂+

k̂−
ek̂g′′(k̂) dk̂ = ek̂g′(k̂)

∣∣∣
k̂∗

k̂−
+ ek̂g′(k̂)

∣∣∣
k̂+

k̂∗
− T3.(A.56)

T2 =

∫ k̂+

k̂−

(
v′′(k̂)g(k̂)− v′(k̂)g′(k̂)

)′
dk̂ = v′′(k̂)g(k̂)

∣∣∣
k̂∗

k̂−︸ ︷︷ ︸
v′′(k̂∗)g(k̂∗)

+ v′′(k̂)g(k̂)
∣∣∣
k̂+

k̂∗︸ ︷︷ ︸
−v′′(k̂∗)g(k̂∗)

(A.57)

−
[
v′(k̂)g′(k̂)

∣∣∣
k̂∗

k̂−
+ v′(k̂)g′(k̂)

∣∣∣
k̂+

k̂∗

]

= −p
[
ek̂
∗
g′(k̂∗) − ek̂−g′(k̂−) + ek̂

+

g′(k̂+) − ek̂∗g′(k̂∗)
]

= −p(T3 + T4).

Substituting equations (A.54) to (A.56) into (A.53):

rqpK̂ = αAŶ − σ2

2
p(T3 + T4) + p

[
νT3 +

σ2

2
T4

]
= αAŶ + pK̂

(
σ2

2
− ν
)
.

Dividing both sides by pK̂ we obtain the result:

(A.58) q =
1

r

[
αAŶ

pK̂
+

σ2

2
− ν
]
.

A.6.2 With partial irreversibility

The proof follows the same steps as without partial irreversibility, but using the auxiliary pricing function P(k̂).

Auxiliary pricing function P(k̂). We propose the following auxiliary price-deviation function P(k̂) ∈ C2 that
satisfies all the requirements and is a member of the polynomial family:

P(k̂) ≡





0 if k̂ ∈ [k̂−, k̂∗−]

−ω∑5
i=0 Pi

(
k̂−k̂∗−
k̂∗+−k̂∗−

)i
if k̂ ∈ (k̂∗−, k̂∗+)

−ω if k̂ ∈ [k̂∗+, k̂+]

(A.59)

with coefficients P0 = pbuy−p
psell−pbuy ,P1 = P2 = 0,P3 = 10,P4 = −15, and P5 = 6 or equivalently:

(A.60) P(k̂) = −ω


10

(
k̂ − k̂∗−
k̂∗+ − k̂∗−

)3

− 15

(
k̂ − k̂∗−
k̂∗+ − k̂∗−

)4

+ 6

(
k̂ − k̂∗−
k̂∗+ − k̂∗−

)5

 for k̂ ∈ (k̂∗−, k̂∗+)

Characterization of q with irreversibility. Inside the inaction region, k̂ ∈ (k̂−, k̂+), the value v′(k) satisfies
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the following conditions:

rv′(k̂) = αAeαk̂ − νv′′(k̂) +
σ2

2
v′′′(k̂) +





Λ(k̂)
[
pbuyek̂ − v′(k̂)

]
if k̂ ∈ [k̂−, k̂∗−)

0 if k̂ ∈ [k̂∗−, k̂∗+]

Λ(k̂)
[
psellek̂ − v′(k̂)

]
if k̂ ∈ (k̂∗+, k̂+]

(A.61)

v′(k̂) = pbuyek̂, for k̂ ∈ {k̂−, k̂∗−},(A.62)

v′(k̂) = psellek̂, for k̂ ∈ {k̂∗+, k̂+},(A.63)

v′(k̂) ∈ C,C1.(A.64)

Since Λ(k̂) = 0 between the two reset points, [k̂∗−, k̂∗+], the HBJ can be written compactly as

rv′(k̂) = αAeαk̂ − νv′′(k̂) +
σ2

2
v′′′(k̂) + Λ(k̂)

[
p(P(k̂) + 1)ek̂ − v′(k̂)

]
, ∀k̂ ∈ (k̂−, k̂+)(A.65)

v′(k̂) = p(P(k̂) + 1)ek̂, for k̂ ∈ {k̂−, k̂∗−, k̂∗+, k̂+}.(A.66)

where P(k̂) is defined above. In turn, the g(k̂) satisfies the KFE and boundary conditions in (A.43) to (A.46).

From equation (A.43), we solve for the adjustment hazard Λ(k̂), substitute it into (A.65), and obtain the Master

Equation that is valid for all k̂ ∈ (k̂−, k̂+)/{k̂∗−, k̂∗+}. Integrating:

rqpK̂ = αAŶ − ν

∫ k̂+

k̂−

(
v′(k̂)g(k̂)

)′
dk̂

︸ ︷︷ ︸
T1

+
σ2

2

∫ k̂+

k̂−

(
v′′(k̂)g(k̂)− v′(k̂)g′(k̂)

)′
dk̂

︸ ︷︷ ︸
T2

(A.67)

+ ν

∫ k̂+

k̂−
p(P(k̂) + 1)ek̂g′(k̂) dk̂

︸ ︷︷ ︸
T3

+
σ2

2

∫ k̂+

k̂−
p(P(k̂) + 1)ek̂g′′(k̂) dk̂

︸ ︷︷ ︸
T4

In this case, to compute the terms T1, T2, T3, T4, we must split the domain into three regions, [k̂−, k̂+] = [k̂−, k̂∗−)∪
[k̂∗−, k̂∗+] ∪ (k̂∗, k̂∗+]; integrate by parts when needed; use the border conditions g(k̂±) = 0 in (A.44); and use
continuity conditions for g in (A.46) and for v′ in (A.64).

T1 =

∫ k̂+

k̂−

(
v′(k̂)g(k̂)

)′
dk̂ = v′(k̂)g(k̂)

∣∣∣
k̂∗−

k̂−︸ ︷︷ ︸
v′(k̂∗−)g(k̂∗−)

+ v′(k̂)g(k̂)
∣∣∣
k̂∗+

k̂∗−︸ ︷︷ ︸
v′(k̂∗+)g(k̂∗+)−v′(k̂∗−)g(k̂∗−)

+ v′(k̂)g(k̂)
∣∣∣
k̂+

k̂∗+︸ ︷︷ ︸
−v′(k̂∗+)g(k̂∗+)

= 0.

(A.68)

T2 =

∫ k̂+

k̂−

(
v′′(k̂)g(k̂)− v′(k̂)g′(k̂)

)′
dk̂

(A.69)

=

[
v′′(k̂)g(k̂)

∣∣∣
k̂∗−

k̂−
+ v′′(k̂)g(k̂)

∣∣∣
k̂∗+

k̂∗−
+ v′′(k̂)g(k̂)

∣∣∣
k̂+

k̂∗+

]

︸ ︷︷ ︸
= 0

−
[
v′(k̂)g′(k̂)

∣∣∣
k̂∗−

k̂−
+ v′(k̂)g′(k̂)

∣∣∣
k̂∗+

k̂∗−
+ v′(k̂)g′(k̂)

∣∣∣
k̂+

k̂∗+

]

= −
[
p(P(k̂) + 1)ek̂g′(k̂)

∣∣∣
k̂∗−

k̂−
+ p(P(k̂) + 1)ek̂g′(k̂)

∣∣∣
k̂∗+

k̂∗−
+ p(P(k̂) + 1)ek̂g′(k̂)

∣∣∣
k̂+

k̂∗+

]
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T3 =

∫ k̂+

k̂−
p(P(k̂) + 1)ek̂g′(k̂) dk̂ = p(P(k̂) + 1)ek̂g(k̂)

∣∣∣
k̂∗−

k̂−
+ p(P(k̂) + 1)ek̂g(k̂)

∣∣∣
k̂∗+

k̂∗−
+ p(P(k̂) + 1)ek̂g(k̂)

∣∣∣
k̂+

k̂∗+︸ ︷︷ ︸
= 0

(A.70)

−
∫ k̂∗−

k̂−
ek̂
[
p(P(k̂) + 1) + pP ′(k̂)

]
g(k̂) dk̂ = −E

[
ek̂
(
p(P(k̂) + 1) + pP ′(k̂)

)]
.

T4 =

∫ k̂+

k̂−
p(P(k̂) + 1)ek̂g′′(k̂) dk̂ = p(P(k̂) + 1)ek̂g′(k̂)

∣∣∣
k̂∗−

k̂−
+ p(P(k̂) + 1)ek̂g′(k̂)

∣∣∣
k̂∗+

k̂∗−
+ p(P(k̂) + 1)ek̂g′(k̂)

∣∣∣
k̂+

k̂∗+︸ ︷︷ ︸
T2

(A.71)

−
[ ∫ k̂+

k̂∗+

(
p(P(k̂) + 1) + pP ′(k̂)

)
ek̂g′(k̂) dk̂ +

∫ k̂∗+

k̂∗−

(
p(P(k̂) + 1) + pP ′(k̂)

)
ek̂g′(k̂) dk̂ +

(A.72)

∫ k̂∗−

k̂−
ek̂
(
p(P(k̂) + 1) + pP ′(k̂)

)
g′(k̂) dk̂

]

= −T2 − T3 − p
∫ k̂+

k̂−
P ′(k̂)ek̂g′(k̂) dk̂

= −T2 − T3 − p


P
′(k̂)ek̂g(k̂)

∣∣∣
k̂∗−

k̂−
+ P ′(k̂)ek̂g(k̂)

∣∣∣
k̂∗+

k̂∗−
+ P ′(k̂)ek̂g(k̂)

∣∣∣
k̂+

k̂∗+︸ ︷︷ ︸
= 0

−
∫ k̂+

k̂−
ek̂
[
P ′(k̂) + P ′′(k̂)g(k̂)

]
dk̂




= −T2 − T3 + p E
[
ek̂
(
P ′(k̂) + P ′′(k̂)

)]

Substituting (A.68) to (A.71) into (A.67)

rqK̂ =
αAŶ + νT3 + σ2

2 (T2 + T4)

p
(A.73)

=
αAŶ + νT3 − σ2

2

(
T3 − p E

[
ek̂
(
P ′(k̂) + P ′′(k̂)

)])

p

= αAŶ +

(
σ2

2
− ν
)
K̂ +

(
σ2

2
− ν
)
E
[
ek̂
(
P(k̂) + P ′(k̂)

)]
+

σ2

2
E
[
ek̂
(
P ′(k̂) + P ′′(k̂)

)]

Dividing both sides by K̂ = E[ek̂] and defining the weights φ(k̂) = ek̂/K̂ we obtain the result:

q =
1

r

[
αAŶ

pK̂
+

(
σ2

2
− ν
)

+

(
σ2

2
− ν
)
E
[
φ(k̂)

(
P(k̂) + P ′(k̂)

)]
+

σ2

2
E
[
φ(k̂)

(
P ′(k̂) + P ′′(k̂)

)]]
(A.74)

If we apply Ito’s lemma to φ(k̂)P̃(k̂) and using the Markov property of {k̂s}, we have

Es[dek̂sP(k̂s)|k̂s = k̂] =

[
−νek̂s

(
P(k̂) + P ′(k̂)

)
+
σ2

2
ek̂
[
(P(k̂) + 2P̃ ′(k̂) + P ′′(k̂)

]]
ds(A.75)

=

(
σ2

2
− ν
)[

φ(k̂)
(
P(k̂) + P ′(k̂)

)]
+

σ2

2

[
φ(k̂)

(
P ′(k̂) + P ′′(k̂)

)]
ds

Thus, taking the mean over k̂ using g(k̂)
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(A.76) q =
1

r

(
αAŶ

pK̂
+

(
σ2

2
− ν
)

+ E
[

1

ds
Es
[
d(P(k̂s)φ(k̂s))

]])
.

A.6.3 Aggregate productivity

We approximate the aggregate productivity term. Using a second-order Taylor expansion, we obtain:

(A.77)
Ŷ

K̂
=

E[eαk̂]

E[ek̂]
= exp

{
−(1− α)

(
E[k̂] +

α

2
Var[k̂]

)}
+ o(2).

A.6.4 Irreversibility

Now, we show (59).

Lemma A.1. The following relation holds for
(A.78)

E

[
E[dφ(k̂)P(k̂)]

ds

]
=

E
[
E
[
φ(k̂τ )P(k̂τ )(k̂τ )|∆k̂

]]
− E

[
E
[
φ(k̂∗(∆k̂))P(k̂∗)|∆k̂

]]

E[τ ]
≈ −

Cov
[
∆k̂,P(k̂∗)

]

E[τ ]
< 0

Proof. Define Ys = φ(k̂s)P(k̂s). We apply Ito’s Lemma to Yt to obtain:
(A.79)

dYs =

[
−νφ(k̂s)

(
P(k̂s) + P ′(k̂s)

)
+
σ2

2
φ(k̂s)

(
P(k̂s) + 2P ′(k̂s) + P ′′(k̂s)

)]
ds+ φ(k̂s)

(
P(k̂s) + P ′(k̂s)

)
dBs.

Applying the OST, we have

E±
[
φ(k̂τ )P(k̂τ )

]
− φ(k̂∗±)P(k̂∗±) = −νEk̂∗±

[∫ τ

0

φ(k̂s)
(
P(k̂t) + P ′(k̂t)

)
ds

]
+
σ2

2
Ek̂
∗±
[∫ τ

0

φ(k̂s)
(
P(k̂s) + 2P ′(k̂s) + P ′′(k̂s)

)
ds

]

· · ·+ Ek̂0
[∫ τ

0

φ(k̂t)
(
P(k̂t) + P ′(k̂t)

)
dWs

]

︸ ︷︷ ︸
=0

(A.80)

Using the occupancy measure, k̂τ = k̂∗(∆k̂) − ∆k̂, and taking expectations again to average across positive and
negative adjustments, we get:

− νE
[
φ(k̂)

(
P(k̂) + P ′(k̂)

)]
+
σ2

2

[
φ(k̂)

(
P(k̂) + 2P ′(k̂) + P ′′(k̂)

)]
(A.81)

=
E
[
E
[
φ(k̂τ )P(k̂τ )(k̂τ )|∆k̂

]]
− E

[
E
[
φ(k̂∗(∆k̂))P(k̂∗)|∆k̂

]]

E[τ ]
(A.82)

Note that P(k̂τ ) = P(k̂∗) since it only depends on the sign of investment in the outer inaction region, thus

− νE
[
φ(k̂)

(
P(k̂) + P ′(k̂)

)]
+
σ2

2

[
φ(k̂)

(
P(k̂) + 2P ′(k̂) + P ′′(k̂)

)]
(A.83)

=
E
[
E
[
(φ(k̂τ )− φ(k̂∗(∆k̂)))P(k̂∗)|∆k̂

]]

E[τ ]
(A.84)
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Finally, using the following approximations

E[ek̂] = eE[k̂]E[ek̂−E[ek̂]] ≈ eE[k̂]E[1 + k̂ − E[ek̂]))] = eE[k̂](A.85)

φ(k̂τ )− φ(k̂∗(∆k̂) ≈ ek̂τ−E[k̂] − ek̂∗(∆k̂)−E[k̂](A.86)

≈ k̂τ − k̂∗(∆k̂) = −∆k̂(A.87)

With this approximation

(A.88) E

[
E[dφ(k̂)P(k̂)]

ds

]
≈ −E[∆k̂P(k̂∗)]

E[τ ]
= −

E[∆k̂]

=0︷ ︸︸ ︷
E[P(k̂∗)] +Cov

[
∆k̂P(k̂∗)

]

E[τ ]
.

Since P(k̂∗) > 0 when ∆k̂ > 0 and P(k̂∗) < 0 when ∆k̂ < 0, the covariance term in negative.

A.7 Proof of Proposition 4

Proposition 4 characterizes the CIR as a function of cross-sectional steady-state moments. Let g(k̂) be the capital-

productivity steady-state distribution and gt(k̂) the distribution t-periods after an aggregate productivity shock of

size δ > 0, with g0(k̂) = g(k̂ − δ). Let f(k̂) be a continuous function of k̂. Define the cumulative impulse response
of the function f as follows:

CIR(f, δ) ≡
∫ ∞

0

∫ k̂+

k̂−
f(k̂)

[
gs(k̂)− g(k̂)

]
dk̂ ds.(A.89)

Note that in the main text we take f(k̂) = k̂.

Strategy. The proof has four steps. Step 1 we express the CIR as the integral of a value function m(k̂) and

g′(k̂). Step 2 characterizes the terminal value of the value function. Step 3 constructs the master equation. Step 4
characterizes the CIR as a function of steady-state moments.

First order approximation. Start from the definition of the CIR, (1) operates over the integral; (2) uses

conditional expectation, where gs(k̂|k̂0)dk̂ is the probability of the state k̂ at time s with initial condition k̂0; (3)
uses the definition of the initial condition; (4) and (5) apply Fubini’s theorem and the definition of limit of an
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integral; (7) applies a Taylor approximation over δ.

CIR(f, δ) =

∫ ∞

0

∫ k̂+

k̂−
f(k̂)

(
gs(k̂)− g(k̂)

)
dk̂ ds

=(1)

∫ ∞

0

∫ k̂+

k̂−

(
f(k̂)− E[f(k̂)]

)
gs(k̂) dk̂ ds

=(2)

∫ ∞

0

∫ k̂+

k̂−

[∫ k̂+

k̂−

(
f(k̂)− E[f(k̂)]

)
gs(k̂|k̂0)g0(k̂0) dk̂0

]
dk̂ ds

=(3)

∫ ∞

0

∫ k̂+

k̂−

[∫ k̂+

k̂−

(
f(k̂)− E[f(k̂)]

)
gs(k̂|k̂0)g(k̂0 − δ) dk̂0

]
dk̂ ds

=(4)

∫ k̂+

k̂−

[∫ ∞

0

∫ k̂+

k̂−

(
f(k̂)− E[f(k̂)]

)
gs(k̂|k̂0) dk̂ ds

]
g(k̂0 − δ) dk̂0

=(5)

∫ k̂+

k̂−




lim
T→∞

∫ T

0

∫ k̂+

k̂−

(
f(k̂)− E[f(k̂)]

)
gs(k̂|k̂0) dk̂ ds

︸ ︷︷ ︸
≡ mT (k̂)



g(k̂0 − δ) dk̂0

=(6)

∫ k̂+

k̂−
lim
T→∞

mT (k̂)g(k̂ − δ) dk̂

=(7) −δ
∫ k̂+

k̂−
lim
T→∞

mT (k̂)g′(k̂) dk̂ + o(δ2)

where we define

(A.90) mT (k̂) ≡
∫ T

0

∫ k̂+

k̂−

(
f(k̂)− E[f(k̂)]

)
gs(k̂|k̂0) dk̂ ds

A.7.1 Without partial irreversibility

Without partial irreversibility there is one investment price p and one reset state k̂∗.

Step 1: Up to first order, the CIR equals:

(A.91) CIR(f, δ) = −δ
∫ k̂+

k̂−
m(k̂)g′(k̂) dk̂ + o(δ2),

where the function m(k̂) ∈ C, C1 satisfies the following HJB and border conditions:

0 = f(k̂)− E[f(k̂)]− νm′(k̂) +
σ2

2
m′′(k̂) + Λ(k̂)(m(k̂∗)−m(k̂)),(A.92)

0 = m(k̂∗)−m(k̂±),(A.93)

0 =

∫ k̂+

k̂−
m(k̂)g(k̂) dk̂.(A.94)

1. Show that limT→∞mT (k̂) = m(k̂) for all k̂.

See Baley and Blanco (2021).

2. We show that
∫ k̂+
k̂−

mT (k̂)g(k̂) dk̂ = 0.

Substitute the definition of mT (k̂) in the integral. In the following equalities, (1) and (2) use Fubini’s

theorem and Bayes’ theorem; (3) uses the fact that g(k̂) is the steady-state distribution; (4) solves the first
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and second integrals.

∫ k̂+

k̂−
mT (k̂)g(k̂) dk̂ =

∫ k̂+

k̂−

[∫ T

0

∫ k̂+

k̂−

(
f(k̂)− E[f(k̂)]

)
gs(k̂|k̂0) dk̂ ds

]
g(k̂0) dk̂0(A.95)

=(1)

∫ T

0

∫ k̂+

k̂−

∫ k̂+

k̂−

(
f(k̂)− E[f(k̂)]

)
gs(k̂|k̂0)g(k̂0) dk̂ dk̂0 ds

=(2)

∫ T

0

∫ k̂+

k̂−

(
f(k̂)− E[f(k̂)]

)[∫ k̂+

k̂−
gs(k̂|k̂0)g(k̂0) dk̂0

]
dk̂ ds

=(3)

∫ T

0

∫ k̂+

k̂−

(
f(k̂)− E[f(k̂)]

)
g(k̂) dk̂ ds =(4) 0.

3. Show that
∫ k̂+
k̂−

m(k̂)g(k̂) dk̂ = 0.

Write m(k̂) = limT→∞mT (k̂) inside the integral, pull the limit outside the integral, and use the previous
result in (A.95) to get:

(A.96)

∫ k̂+

k̂−
m(k̂)g(k̂) dk̂ =

∫ k̂+

k̂−
lim
T→∞

mT (k̂)g(k̂) dk̂ = lim
T→∞

∫ k̂+

k̂−
mT (k̂)g(k̂) dk̂ = 0

4. HJB and border conditions for mT (k̂).

The function mT (k̂) satisfies the following HBJ with border conditions:

0 = f(k̂)− E[f(k̂)]− dmT (k̂)

dT − ν dmT (k̂)

dk̂
+
σ2

2

d2mT (k̂)

dk̂2
+ Λ(k̂)(mT (k̂∗)−mT (k̂))

0 = mT (k̂∗)−mT (k̂±)

0 =

∫ k̂+

k̂−
mT (k̂)g(k̂) dk̂

5. HJB and border conditions for m(k̂).

Taking the limit to T → ∞, and using point-wise convergence of mT (k̂), we have the result.

Step 2: We characterize the terminal value m(k̂∗) = −Cov[a, f(k̂)] .

Proof of Step 2. Observe that m(k̂) satisfies the following recursive representation

(A.97) m(k̂) = E
[∫ τ

0

(f(k̂s)− E[f(k̂)]) ds+m(k̂∗)

∣∣∣∣ k̂0 = k̂

]
.

Define the following auxiliary function

(A.98) z(k̂|ϕ) = E
[∫ τ

0

eϕs(f(k̂s)− E[f(k̂)]) ds+ eϕτm(k̂∗)

∣∣∣∣ k̂0 = k̂

]
.

and note that z(k̂|0) = m(k̂). The auxiliary function z(k̂|ϕ) satisfies the following HBJ and border condition

−ϕz(k̂|ϕ) + Λ(k̂)
(
z(k̂|ϕ)−m(k̂∗)

)
= f(k̂))− E[f(k̂)]− ν ∂z(k̂|ϕ)

∂k̂
+
σ2

2

∂2z(k̂|ϕ)

∂k̂2
,(A.99)

z(k̂±, ϕ) = m(k̂∗).(A.100)

Since z(k̂|0) = m(k̂), (A.96) implies that
∫ k̂+
k̂−

z(k̂|0)g(k̂) dk̂ =
∫ k̂+
k̂−

m(k̂)g(k̂) dk̂ = 0. Taking the derivative with
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respect to ϕ in (A.99), we have that

(Λ(k̂)− ϕ)
∂z(k̂|ϕ)

∂ϕ
− z(k̂|ϕ) = −ν ∂

2z(k̂, ϕ)

∂k̂∂ϕ
+
σ2

2

∂3z(k̂|ϕ)

∂k̂2∂ϕ
,(A.101)

∂z(k̂±|ϕ)

∂ϕ
= 0.(A.102)

Using the Schwarz’s theorem to exchange partial derivatives, evaluating at ϕ = 0, and using z(k̂|0) = m(k̂)

Λ(k̂)
∂z(k̂|0)

∂ϕ
−m(k̂) = −ν ∂

∂k̂

(
∂z(k̂|0)

∂ϕ

)
+
σ2

2

∂2

∂k̂2

(
∂z(k̂|0)

∂ϕ

)
,(A.103)

∂z(k̂±|0)

∂ϕ
= 0.(A.104)

(A.103) and (A.103) are the HBJ and border conditions for ∂z(k̂|0)
∂ϕ = E

[∫ τ
0
m(k̂s) ds

∣∣∣k0 = k̂
]
. Evaluating ∂z(k̂|0)

∂ϕ

at k̂∗, and using the occupancy measure, we write the previous equation as:

(A.105)
∂z(k̂∗|0)

∂ϕ
= E

[∫ τ

0

m(k̂s) ds
∣∣∣k0 = k̂∗

]
= E[τ ]E[m(k̂)] = 0

At the same time, we have that

(A.106)
∂z(k̂∗|0)

∂ϕ
= E

[∫ τ

0

s
(
f(k̂s)− E

[
f(k̂)

])
ds+ τm(k̂∗)

∣∣∣∣ k̂0 = k̂∗
]
,

Together (A.105) and (A.106) imply:

(A.107) 0 = E
[∫ τ

0

s
(
f(k̂s)− E

[
f(k̂)

])
ds

∣∣∣∣ k̂0 = k̂

]
+ E

[
τ | k̂0 = k̂

]
m(k̂∗).

Solving for mk̂∗ :

(A.108) m(k̂∗) = −
E
[∫ τ

0
s
(
f(k̂s)− E

[
f(k̂)

])
ds
∣∣∣ k̂0 = k̂

]

E
[
τ | k̂0 = k̂

] .

Thus, we find the terminal value:

(A.109) m(k̂∗) = −E[a(f(k̂)− E[f(k̂)])] = −Cov[a, f(k̂)].

Step 3: In this step we show

(A.110) −
∫ k̂+

k̂−
m(k̂)g′(k̂) d k̂ = Cov

[
f(k̂),

k̂ + νa

σ2

]

Substituting Λ(k) =
νg′(k̂)+σ2

2 g
′′(k̂)

g(k̂)
and using equation (A.155)

(A.111)
νg′(k̂) + σ2

2 g
′′(k̂)

g(k̂)
m(k̂) = f(k̂)− E[f(k̂)]− νm′(k̂) +

σ2

2
m′′(k̂) +

νg′(k̂) + σ2

2 g
′′(k̂)

g(k̂)
m(k̂∗).
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Multiplying by g(k̂)k̂ and taking the integral between k̂− and k̂+

0 = E
[
f(k̂)k̂

]
− E

[
k̂
]
E
[
f(k̂)

]
− νT1 +

σ2

2
T2 +m(k̂∗)T3(A.112)

T1 =

∫ k̂+

k̂−
k̂
[
m′(k̂)g(k̂) +m(k̂)g′(k̂)

]
d k̂(A.113)

T2 =

∫ k̂+

k̂−
k̂
[
m′′(k̂)g(k̂)−m(k̂)g′′(k̂)

]
d k̂(A.114)

T3 =

∫ k̂+

k̂−
k̂

(
νg′(k̂) +

σ2

2
g′′(k̂)

)
d k̂.(A.115)

T1 is equal to

T1 =

∫ k̂+

k̂−
k̂
[
m′(k̂)g(k̂) +m(k̂)g′(k̂)

]
d k̂(A.116)

=(1)

∫ k̂∗

k̂−
k̂
[
m′(k̂)g(k̂) +m(k̂)g′(k̂)

]
d k̂ +

∫ k̂+

k̂∗
k
[
m′(k̂)g(k̂) +m(k̂)g′(k̂)

]
d k̂

=(2)

∫ k̂∗

k̂−
k̂
d
(
m(k̂)g(k̂)

)

d k̂
d k̂ +

∫ k̂+

k̂∗
k
d
(
m(k̂)g(k̂)

)

d k̂
d k̂

=(3) k̂m(k̂)g(k̂)
∣∣∣
k̂∗

k̂−
+ k̂m(k̂)g(k̂)

∣∣∣
k̂+

k̂∗︸ ︷︷ ︸
=0

−
[∫ k̂∗

k̂−
m(k̂)g(k̂) d k̂ +

∫ k̂+

k̂∗
m(k̂)g(k̂) d k̂

]

=(4) −
∫ k̂+

k̂−
m(k̂)g(k̂) d k̂

= 0

In step (1), we divide the integral across the discontinuity points; in (2), we use m′(k̂)g(k̂)+m(k̂)g′(k̂) =
d(m(k̂)g(k̂))

d k̂
;

in (3), we use integration by parts, the border conditions, and continuity of m(k̂) and g(k̂) around k̂∗.
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T2 satisfies

T2 =

∫ k̂+

k̂−
k̂
[
m′′(k̂)g(k̂)−m(k̂)g′′(k̂)

]
d k̂(A.117)

=(1)

∫ k̂∗

k̂−
k̂
[
m′′(k̂)g(k̂)−m(k̂)g′′(k̂)

]
d k̂ +

∫ k̂+

k̂∗
k̂
[
m′′(k̂)g(k̂)−m(k̂)g′′(k̂)

]
d k̂

=(2) k̂
[
m′(k̂)g(k̂)−m(k̂)g′(k̂)

]∣∣∣
k̂∗

k̂−
+ k̂

[
m′(k̂)g(k̂)−m(k̂)g′(k̂)

]∣∣∣
k̂+

k̂∗

· · · −
[∫ k̂∗

k̂−

[
m′(k̂)g(k̂)−m(k̂)g′(k̂)

]
d k̂ +

∫ k̂+

k̂∗

[
m′(k̂)g(k̂)−m(k̂)g′(k̂)

]
d k̂

]

=(3) k̂m′(k̂)g(k̂)
∣∣∣
k̂+

k̂−︸ ︷︷ ︸
=0

−m(k̂∗)

[
k̂g′(k̂)

∣∣∣
k̂∗

k̂−
+ k̂g′(k̂)

∣∣∣
k̂+

k̂∗

]

· · · −
[∫ k̂∗

k̂−

[
m′(k̂)g(k̂)−m(k̂)g′(k̂)

]
d k̂ +

∫ k̂+

k̂∗

[
m′(k̂)g(k̂)−m(k̂)g′(k̂)

]
d k̂

]

=(4) −m(k̂∗)

[
k̂g′(k̂)

∣∣∣
k̂∗

k̂−
+ k̂g′(k̂)

∣∣∣
k̂+

k̂∗

]
−
∫ k̂+

k̂−
m′(k̂)g(k̂) d k̂ +

∫ k̂+

k̂−
m(k̂)g′(k̂) d k̂

=(5) −m(k̂∗)

[
k̂g′(k̂)

∣∣∣
k̂∗

k̂−
+ k̂g′(k̂)

∣∣∣
k̂+

k̂∗

]
−


m(k̂)g(k̂)

∣∣∣
k̂+

k̂−︸ ︷︷ ︸
=0

−
∫ k̂+

k̂−
m(k̂)g′(k̂) d k̂


+

∫ k̂+

k̂−
m(k̂)g′(k̂) d k̂

= −m(k̂∗)

[
k̂g′(k̂)

∣∣∣
k̂∗

k̂−
+ k̂g′(k̂)

∣∣∣
k̂+

k̂∗

]
+ 2

∫ k̂+

k̂−
m(k̂)g′(k̂) d k̂.

In step (1), we divide the integral across the discontinuity points; in (2), we use the equality m′′(k̂)g(k̂) −
m(k̂)g′′(k̂) =

d [m′(k̂)g(k̂)−m(k̂)g′(k̂)]
d k̂

and integration by parts. In step (3), we use continuity of m′(k̂) and g(k̂)

around k̂∗ and the border condition g(k̂+) = g(k̂−) = 0 for k̂m′(k̂)g(k̂)
∣∣∣
k̂+

k̂−
= 0. We use the border conditions

m(k̂+) = m(k̂−)m(k̂∗) for k̂m(k̂)g′(k̂)
∣∣∣
k̂∗

k̂−
+ k̂m′(k̂)g(k̂)−m(k̂)g′(k̂)

∣∣∣
k̂+

k̂∗
= m(k̂∗)

[
k̂g′(k̂)

∣∣∣
k̂∗

k̂−
+ k̂g′(k̂)

∣∣∣
k̂+

k̂∗

]
. Step (5)

uses integration by part to the term to the term
∫ k̂+
k̂−

m′(k̂)g(k̂) d k̂.
Following similar steps as before, T3 is equal to

T3 =

∫ k̂+

k̂−
k̂

(
νg′(k̂) +

σ2

2
g′′(k̂)

)
d k̂(A.118)

= ν

[∫ k̂∗

k̂−
k̂g′(k̂) d k̂ +

∫ k̂+

k̂∗
k̂g′(k̂) d k̂

]
+
σ2

2

[∫ k̂∗

k̂−
k̂g′′(k̂) d k̂ +

∫ k̂+

k̂∗
k̂g′′(k̂) d k̂

]

= ν


 k̂g(k̂)

∣∣∣
k̂∗

k̂−
+ k̂g(k̂)

∣∣∣
k̂+

k̂∗︸ ︷︷ ︸
=0

−
∫ k̂+

k̂−
g(k̂) d k̂

︸ ︷︷ ︸
=1


+

σ2

2

[
k̂g′(k̂)

∣∣∣
k̂∗

k̂−
+ k̂g′(k̂)

∣∣∣
k̂+

k̂∗
−
∫ k̂+

k̂−
g′(k̂) d k̂

]

= −ν +
σ2

2


 k̂g

′(k̂)
∣∣∣
k̂∗

k̂−
+ k̂g′(k̂)

∣∣∣
k̂+

k̂∗
− g(k̂)

∣∣∣
k̂+

k̂−︸ ︷︷ ︸
=0




= −ν +
σ2

2

[
k̂g′(k̂)

∣∣∣
k̂∗

k̂−
+ k̂g′(k̂)

∣∣∣
k̂+

k̂∗

]
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Using step 2, and the expressions for T1, T2, and T3 in equations (A.117) to (A.119)

0 = E
[
f(k̂)k̂

]
− E

[
k̂
]
E
[
f(k̂)

]
− νT1 +

σ2

2
T2 +m(k̂∗)T3(A.119)

= E
[
f(k̂)k̂

]
− E

[
k̂
]
E
[
f(k̂)

]
− ν0 +

σ2

2

[
−m(k̂∗)

[
k̂g′(k̂)

∣∣∣
k̂∗

k̂−
+ k̂g′(k̂)

∣∣∣
k̂+

k̂∗

]
+ 2

∫ k̂+

k̂−
m(k̂)g′(k̂) d k̂

]

· · ·+m(k̂∗)

[
−ν +

σ2

2

[
k̂g′(k̂)

∣∣∣
k̂∗

k̂−
+ k̂g′(k̂)

∣∣∣
k̂+

k̂∗

]]

= E
[
f(k̂)k̂

]
− E

[
k̂
]
E
[
f(k̂)

]
+ σ2

∫ k̂+

k̂−
m(k̂)g′(k̂) d k̂ + νE

[
a
(
f(k̂)− E

[
f(k̂)

])]

= Cov
[
f(k̂), k̂ + νa

]
+ σ2

∫ k̂+

k̂−
m(k̂)g′(k̂) d k̂. ⇐⇒ −

∫ k̂+

k̂−
m(k̂)g′(k̂) = Cov

[
f(k̂),

k̂ + νa

σ2

]

(A.120)

Using step 1 and the previous equation

(A.121)
dCIR(f, δ)

dδ

∣∣∣∣
δ=0

= −
∫ k̂+

k̂−
m(k̂)g′(k̂) d k̂ = Cov

[
f(k̂),

k̂ + νa

σ2

]

A.7.2 With partial irreversibility

Step 1: Up to first order, the CIR equals:

(A.122) CIR(f, δ) = −δ
∫ k̂+

k̂−
m(k̂)g′(k̂) dk̂ + o(δ2)

where the function m(k̂) ∈ C, C1 satisfies the following HJB and border conditions:

0 = f(k̂)− E[f(k̂)]− νm′(k̂) +
σ2

2
m′′(k̂) + Λ(k̂)(M(k̂∗)−m(k̂)),(A.123)

0 = M(k̂∗)−m(k̂±),(A.124)

0 =

∫ k̂+

k̂−
m(k̂)g(k̂) dk̂.(A.125)

with where M̃(k̂) ∈ C2 is defined as

M̃(k̂) =

{
m(k̂∗−) if k̂ ∈ [k̂−, k̂∗−]

m(k̂∗+) if k̂ ∈ [k̂∗+, k̂+]
(A.126)

Proof of Step 1. Following the same steps as in the case without irreversibility, we obtain:

CIR(f, δ) = −δ
∫ k̂+

k̂−
lim
T→∞

mT (k̂)g′(k̂) dk̂ + o(δ2).(A.127)

1. Show that limT→∞mT (k̂) = m(k̂) for all k̂.

Let {Ti}N(T )
i=0 be the adjustment dates between 0 and T for all i = 1, 2, . . . , N(T ) − 1 and T0 = 0 and

TN(T ) = T . Then, we can write mT (k̂) as

(A.128) mT (k̂) = E



N(T )∑

i=1

∫ Ti

Ti−1

(
f(k̂s)− E[f(k̂)]

)
∣∣∣∣∣∣
k̂0 = k̂




Taking the limit T → ∞, we obtain the following equalities: (1) divides the sum; (2) uses the indicator
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function to write the finite sum; (3) uses the fact that

E
[

lim
T→∞

I(N(T ) ≥ i+ 1)
∣∣∣ k̂0 = k̂

]
= 1,∀i;

(4) uses the fact that E
[∑∞

i=1

∫ Ti
Ti−1

(
f(k̂s)− E[f(k̂)]

)
ds
∣∣∣ k̂0 = k̂

]
is an independent of T .

limT→∞mT (k̂)

(A.129)

= E


 lim
T→∞

N(T )∑

i=1

∫ Ti

Ti−1

(
f(k̂s)− E[f(k̂)]

)
ds

∣∣∣∣∣∣
k̂0 = k̂




=(1) E


 lim
T→∞

N(T )−1∑

i=1

∫ Ti

Ti−1

(
f(k̂s)− E[f(k̂)]

)
ds+ lim

T→∞

∫ T

N(T )−1

(
f(k̂s)− E[f(k̂)]

)
ds

∣∣∣∣∣∣
k̂0 = k̂




=(2) E

[
lim
T→∞

∞∑

i=1

I(N(T ) ≥ i+ 1)

∫ Ti

Ti−1

(
f(k̂s)− E[f(k̂)]

)
ds+ lim

T→∞

∫ T

N(T )−1

(
f(k̂s)− E[f(k̂)]

)
ds

∣∣∣∣∣ k̂0 = k̂

]

=(3) E

[ ∞∑

i=1

∫ Ti

Ti−1

(
f(k̂s)− E[f(k̂)]

)
ds+ lim

T→∞

∫ T

N(T )−1

(
f(k̂s)− E[f(k̂)]

)
ds

∣∣∣∣∣ k̂0 = k̂

]

=(4) E

[
lim
T→∞

∫ T

τmax{N(T )−1,0}

(
f(k̂s)− E[f(k̂)]

)
ds

∣∣∣∣∣ k̂0 = k̂

]
+ terms independent of T

2. Show that E
[

limT→∞
∫ T
N(T )−1

(
f(k̂s)− E[f(k̂)]

)
ds
∣∣∣ k̂0 = k̂

]
is independent of k̂ and T . Let us define

(A.130) V(k̂∗±, T ) = E

[∫ T

τmax{N(T )−1,0}

(
f(k̂s)− E[f(k̂)]

)
ds

∣∣∣∣∣ k̂τ−max{N(T )−1,0}
= k̂∗±

]
.

Let P+
N (k̂) = E

[
E[k̂τ−N

≥ k̂∗+
∣∣∣ k̂0 = k̂

]
and P−N (k̂) = E

[
E[k̂τ−N

≤ k̂∗−
∣∣∣ k̂0 = k̂

]
. Then, we using conditional

expectation, we can write

= E

[
lim
T→∞

∫ T

τmax{N(T )−1,0}

(
f(k̂s)− E[f(k̂)]

)
ds

∣∣∣∣∣ k̂0 = k̂

]
,

=(1) E
[

lim
T→∞

V(k̂∗+, T ) lim
T→∞

P+
max{N (T )−1,0}(k̂0) + lim

T→∞
V(k̂∗−, T ) lim

T→∞
P−max{N (T )−1,0}(k̂0)

∣∣∣ k̂0 = k̂
]
,

=(2) lim
T→∞

V(k̂∗+, T )P+,∞ + lim
T→∞

V(k̂∗−, T )P−,∞,

=(3) V∞(k̂∗+)P+,∞ + V∞(k̂∗−)P−,∞.

Here, in step (1) we use law of iterated expectation. Step (2) comes from convergence of discrete Markov

chains (see chapter 11 of Stokey (1989)). To show this claim, define PN (k̂) =
[
P−N (k̂);P+

N (k̂)
]
∈ R2×1, then

(A.131) PN (k̂) = PTPN−1(k̂),

where P = [P−1 (k̂∗−), 1 − P+
1 (k̂∗−); 1 − P−1 (k̂∗+);P+

1 (k̂∗+)] ∈ R2×2 is a 2 × 2 transition probability where

the rows are the transition probability. Under the assumption that P−1 (k̂∗−), P+
1 (k̂∗+) ∈ (0, 1), we that that

(A.132) lim
N→∞

PN (k̂) = lim
N→∞

PN−1P1(k̂) = [P−∞;P+∞].

where the last equality comes from Theorem 11.1 in Stokey (1989). So, limT→∞ P+
max{N (T )−1,0}(k̂0) is

21



independent of T and k̂0. See Baley and Blanco (2021) and Alexandrov (2021) for the convergence of

limT→∞ V(k̂∗±, T ) = V∞(k̂∗±).

3. Show that
∫ k̂+
k̂−

mT (k̂)g(k̂) dk̂ = 0.

Using the property that Λ(k̂) = 0 for all k̂ ∈ (k̂∗−, k̂∗+), we can write in a simple form the HJB and border

conditions satisfied by mT (k̂):

0 = f(k̂)− E[f(k̂)]− dmT (k̂)

dT − ν dmT (k̂)

dk̂
+
σ2

2

d2mT (k̂)

dk̂2
+ Λ(k̂)(M̃T (k̂)−mT (k̂))(A.133)

0 = M̃T (k̂∗±)−mT (k̂±),(A.134)

0 =

∫ k̂+

k̂−
mT (k̂)g(k̂) dk̂.(A.135)

where M̃T (k̂) ∈ C2 is defined as

M̃T (k̂) =

{
mT (k̂∗−) if k̂ ∈ [k̂−, k̂∗−]

mT (k̂∗+) if k̂ ∈ [k̂∗+, k̂+]
(A.136)

Taking the limit to T → ∞ and using point-wise convergence of mT (k̂), we have the result.

Step 2: Define the following objects

E±[f(k̂)] ≡
E
[∫ τ

0
f(k̂s) ds

∣∣∣ k̂0 = k̂∗±
]

E
[
τ | k̂0 = k̂∗±

] ,(A.137)

P±+ ≡ E
[
1{k̂τ≥k̂∗+}

∣∣∣ k̂0 = k̂∗±
]
.(A.138)

where E±[f(k̂)] is the mean f(k) conditional of a positive or negative last investment and P±+ is the probability
of a negative investment after a positive or negative investment. Then

m(k̂∗−) = −Cov
[
f(k̂), a

]
+

E[τI(k̂τ ≥ k̂∗+)]

E[τ ]

(
E−[f(k̂)]− E[f(k̂)]

)
E−[τ ]

1− P−− ,

m(k̂∗+) = −Cov
[
f(k̂), a

]
+

E[τI(k̂τ ≤ k̂∗−)]

E[τ ]

(
E+[f(k̂)]− E[f(k̂)]

)
E+[τ ]

1− P++
.(A.139)

Proof of Step 2. Observe that M(f, k̂) satisfies the following recursive representation

m(k̂) = E
[∫ τ

0

(
f(k̂s)− E

[
f(k̂)

])
ds+m(k̂)

∣∣∣∣ k̂0 = k̂

]
.(A.140)

Define an auxiliary function z(k̂|ϕ) as follows:

z(k̂|ϕ) ≡ E
[∫ τ

0

eϕs
(
f(k̂s)− E[f(k̂)]

)
ds+ eϕτm(k̂)

∣∣∣∣ k̂0 = k̂

]
.(A.141)

and note the relationship: z(k̂|0) = m(k̂), z(·|ϕ) ∈ C, C1 for all ϕ, and

−ϕz(k̂|ϕ) + Λ(k̂)
(
z(k̂|ϕ)− vf∗(k̂)

)
= f(k̂))− E[f(k̂)]− νz′(k̂|ϕ) +

σ2

2
z′′(k̂|ϕ),(A.142)

z(k̂±|ϕ) = m(k̂∗).(A.143)

Since z(k̂|0) = m(k̂), then we have
∫ k̂+
k̂−

z(k̂|0)g(k̂) dk̂ =
∫ k̂+
k̂−

m(k̂)g(k̂) dk̂ = 0. Taking the derivative with respect
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to ϕ in (A.142), we have that

(Λ(k̂)− ϕ)
∂z(k̂|ϕ)

∂ϕ
− z(k̂|ϕ) = −ν ∂

2z(k̂|ϕ)

∂k̂∂ϕ
+
σ2

2

∂3z(k̂|ϕ)

∂k̂2∂ϕ
,(A.144)

∂z(k̂±, ϕ)

∂ϕ
= 0.(A.145)

Using the Schwarz’s theorem to exchange partial derivatives and evaluating at ϕ = 0:

Λ(k̂)
∂z(k̂, ϕ)

∂ϕ

∣∣∣∣∣
ϕ=0

−m(k̂) = −ν
∂
∂
∂z(k̂,ϕ)
∂ϕ

∣∣∣
ϕ=0

∂ϕ

∂k̂
+
σ2

2

∂2 ∂z(k̂,ϕ)
∂ϕ

∣∣∣
ϕ=0

∂k̂2
,(A.146)

∂z(k̂, ϕ)

∂ϕ

∣∣∣∣∣
ϕ=0

= 0.(A.147)

From the previous equation, using the occupancy measure and the renewal distribution, we have that

E
[
∂z(k̂∗(∆k̂)|0)

∂ϕ

]

E[τ ]
=

E
[
E
[∫ τ

0
m(k̂s)ds|k0 = k̂∗(∆k̂)

]]

E[τ ]
,

= E[m(k̂)],

= 0.(A.148)

Therefore, E
[
∂z(k̂∗(∆k̂)|0)

∂ϕ

]
= 0. Using this result, the renewal distribution, the OST, and the (R+,R−) =

(
N+

N , N
−

N

)
, we have

0 =
E
[
∂z(k̂∗(∆k̂)|0)

∂ϕ

]

E[τ ]
,

=
E
[
E
[∫ τ

0
s
(
f(k̂s)− E

[
f(k̂)

])
ds+ τm(k̂∗)

∣∣∣ k̂0 = k̂∗(∆k̂)
]]

E[τ ]
,

= E
[
a
(
f(k̂)− E[f(k̂)]

)]
+

E
[
E[τvf∗(k̂τ )|k̂0 = k̂∗(∆k̂)]

]

E[τ ]
,

= Cov
[
a, f(k̂)

]
+
R−E−[τvf∗(k̂τ )] +R+E+[τvf∗(k̂τ )]

E[τ ]
,

= Cov
[
a, f(k̂)

]
+
R−E−[τ

(
m(k̂∗+)I(k̂τ ≥ k̂∗+) +m(k̂∗−)

(
1− I(k̂τ ≥ k̂∗+)

))
]

E[τ ]
. . .

+
R+E+[τ

(
m(k̂∗+)I(k̂τ ≥ k̂∗+) +m(k̂∗−)

(
1− I(k̂τ ≥ k̂∗+)

))
]

E[τ ]

= Cov
[
a, f(k̂)

]
+m(k̂∗−) + (m(k̂∗+)−m(k̂∗−))

E[τI(k̂τ ≥ k̂∗+)]

E[τ ]
(A.149)

To characterize m(k̂∗+)−m(k̂∗−), observe that

(A.150) m(k̂∗−) =
(
E−[f(k̂)]− E[f(k̂)]

)
E−[τ ] + (1− P−−)(k̂∗+) + P−−m(k̂∗−)
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where E−[f(k̂)] is the expected k̂ conditional of a positive investment. Thus,

(A.151) − (m(k̂∗+)−m(k̂∗−)) =

(
E−[f(k̂)]− E[f(k̂)]

)
E−[τ ]

1− P−−

From (A.149) and (A.151), we have that

m(k̂∗−) = −Cov
[
f(k̂), a

]
+

E[τI(k̂τ ≥ k̂∗+)]

E[τ ]

(
E−[f(k̂)]− E[f(k̂)]

)
E−[τ ]

1− P−− .(A.152)

With similar steps as before, it is easy to show that

m(k̂∗+) = −Cov
[
f(k̂), a

]
+

E[τI(k̂τ ≤ k̂∗−)]

E[τ ]

(
E+[f(k̂)]− E[f(k̂)]

)
E+[τ ]

1− P++
.(A.153)

Step 3: In this step, we show

(A.154)
CIR(f, δ)

δ
= Cov

[
f(k̂),

k̂ + νa

σ2

]
+ E

[
1

ds
Es[d(M(k̂s)k̂s)]

]

Proof of Step 3. From steps 1 and 2

0 = f(k̂)− E[f(k̂)]− νm′(k̂) +
σ2

2
m′′(k̂) + Λ(k̂)(M(k̂) + Cov

[
f(k̂), a

]
−m(k̂)),(A.155)

0 = M(k̂∗) + Cov
[
f(k̂), a

]
−m(k̂±),(A.156)

0 =

∫ k̂+

k̂−
m(k̂)g(k̂) dk̂.(A.157)

Using (A.43) to get Λ(k) =
νg′(k̂)+σ2

2 g
′′(k̂)

g(k̂)
and using equation (A.155)

(A.158)
νg′(k̂) + σ2

2 g
′′(k̂)

g(k̂)
m(k̂) = f(k̂)−E[f(k̂)]− νm′(k̂) +

σ2

2
m′′(k̂) +

νg′(k̂) + σ2

2 g
′′(k̂)

g(k̂)
(M(k̂) +Cov

[
f(k̂), a

]
)

Multiplying by g(k̂)k̂ and taking the integral between k̂− and k̂+

0 = E
[
f(k̂)k̂

]
− E

[
k̂
]
E
[
f(k̂)

]
− νT1 +

σ2

2
T2 + νT3 +

σ2

2
T4(A.159)

T1 =

∫ k̂+

k̂−
k̂
[
m′(k̂)g(k̂) +m(k̂)g′(k̂)

]
dk̂(A.160)

T2 =

∫ k̂+

k̂−
k̂
[
m′′(k̂)g(k̂)−m(k̂)g′′(k̂)

]
dk̂(A.161)

T3 =

∫ k̂+

k̂−
(M(k̂) + Cov

[
f(k̂), a

]
)k̂g′(k̂) dk̂(A.162)

T4 =

∫ k̂+

k̂−
(M(k̂) + Cov

[
f(k̂), a

]
)k̂g′′(k̂) dk̂.(A.163)

Next, we compute each of the terms Tj , for j ∈ {1, 2, 3, 4}. Using the fact that
[
m′(k̂)g(k̂) +m(k̂)g′(k̂)

]
=
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(
m(k̂)g(k̂)

)′
and

∫ k̂+
k̂−

m(k̂)g(k̂) dk̂ = 0

T1 =

∫ k̂+

k̂−
k̂
[
m′(k̂)g(k̂) +m(k̂)g′(k̂)

]
dk̂(A.164)

=

∫ k̂+

k̂−
k̂
(
m(k̂)g(k̂)

)′
dk̂

= k̂m(k̂)g(k̂)
∣∣∣
k̂∗−

k̂−
+ k̂m(k̂)g(k̂)

∣∣∣
k̂∗+

k̂∗−
+ k̂m(k̂)g(k̂)

∣∣∣
k̂+

k̂∗+︸ ︷︷ ︸
=0

−
∫ k̂+

k̂−
m(k̂)g(k̂) dk̂ = 0

Using similar steps as before

T2 =

∫ k̂+

k̂−
k̂
[
m′′(k̂)g(k̂)−m(k̂)g′′(k̂)

]
dk̂

(A.165)

=

∫ k̂∗−

k̂−
k̂

d
[
m′(k̂)g(k̂)−m(k̂)g′(k̂)

]

dk̂
dk̂ +

∫ k̂∗+

k̂∗−
k̂
d
[
m′(k̂)g(k̂)−m(k̂)dg(k̂)

dk̂

]

dk̂
dk̂ +

∫ k̂+

k̂∗+
k̂

d
[
m′(k̂)g(k̂)−m(k̂)g′(k̂)

]

dk̂
dk̂

= k̂

[
dm(k̂)

dk̂
g(k̂)−m(k̂)g′(k̂)

]∣∣∣∣∣

k̂∗−

k̂−

+ k̂

[
dm(k̂)

dk̂
g(k̂)−m(k̂)g′(k̂)

]∣∣∣∣∣

k̂∗+

k̂∗−

+ k̂

[
dm(k̂)

dk̂
g(k̂)−m(k̂)g′(k̂)

]∣∣∣∣∣

k̂+

k̂∗+

· · · −
[∫ k̂∗−

k̂−

[
dm(k̂)

dk̂
g(k̂)−m(k̂)g′(k̂)

]
d k̂ +

∫ k̂∗+

k̂∗−

[
dm(k̂)

dk̂
g(k̂)−m(k̂)g′(k̂)

]
d k̂ +

∫ k̂+

k̂∗+

[
dm(k̂)

dk̂
g(k̂)−m(k̂)g′(k̂)

]
d k̂

]

= k̂
dm(k̂)

dk̂
g(k̂)

∣∣∣∣∣

k̂+

k̂−

+ k̂
dm(k̂)

dk̂
g(k̂)

∣∣∣∣∣

k̂∗+

k̂∗−

+ k̂
dm(k̂)

dk̂
g(k̂)

∣∣∣∣∣

k̂+

k̂∗+︸ ︷︷ ︸
=0

−
[
m(k̂)k̂g′(k̂)

∣∣∣
k̂∗−

k̂−
+ m(k̂)k̂g′(k̂)

∣∣∣
k̂∗+

k̂∗−
+ m(k̂)k̂g′(k̂)

∣∣∣
k̂−

k̂∗−

]

· · · −
[∫ k̂+

k̂−

dm(k̂)

dk̂
g(k̂) d k̂ −

∫ k̂+

k̂−
m(k̂)g′(k̂)dk̂

]

= −


m(k̂)k̂g′(k̂)

∣∣∣
k̂∗−

k̂−
+ m(k̂)k̂g′(k̂)

∣∣∣
k̂∗+

k̂∗−
+ m(k̂)k̂

dg(k̂)

dk̂

∣∣∣∣∣

k̂+

k̂∗+


−

∫ k̂+

k̂−

dm(k̂)

dk̂
g(k̂) d k̂ +

∫ k̂+

k̂−
m(k̂)

dg(k̂)

dk̂
d k̂

= −


m(k̂)k̂g′(k̂)

∣∣∣
k̂∗−

k̂−
+ m(k̂)k̂g′(k̂)

∣∣∣
k̂∗+

k̂∗−
+ m(k̂)k̂

dg(k̂)

dk̂

∣∣∣∣∣

k̂+

k̂∗+


+

∫ k̂+

k̂−
m(k̂)g′(k̂) dk̂

−


m(k̂)g(k̂)

∣∣∣
k̂∗−

k̂−
+ m(k̂)g(k̂)

∣∣∣
k̂∗+

k̂∗−
+ m(k̂)g(k̂)

∣∣∣
k̂+

k̂∗+︸ ︷︷ ︸
=0

−
∫ k̂+

k̂−
m(k̂)g′(k̂) dk̂




= −
[
m(k̂)k̂g′(k̂)

∣∣∣
k̂∗−

k̂−
+ m(k̂)k̂g′(k̂)

∣∣∣
k̂∗+

k̂∗−
+ m(k̂)k̂g′(k̂)

∣∣∣
k̂+

k̂∗+

]
+ 2

∫ k̂+

k̂−
m(k̂)g′(k̂) d k̂.

= −
[(
M(k̂) + Cov

[
f(k̂), a

])
k̂g′(k̂)

∣∣∣
k̂∗−

k̂−
+
(
M(k̂) + Cov

[
f(k̂), a

])
k̂g′(k̂)

∣∣∣
k̂∗+

k̂∗−
+
(
M(k̂) + Cov

[
f(k̂), a

])
k̂g′(k̂)

∣∣∣
k̂+

k̂∗+

]

+ 2

∫ k̂+

k̂−
m(k̂)g′(k̂) d k̂

25



The term T3 is equal to

T3 =

∫ k̂+

k̂−

(
M(k̂) + Cov

[
f(k̂), a

])
k̂g′(k̂) dk̂

=(1)

∫ k̂∗−

k̂−
k̂
(
M(k̂) + Cov

[
f(k̂), a

])
g′(k̂) dk̂ +

∫ k̂∗+

k̂∗−
k̂
(
M(k̂) + Cov

[
f(k̂), a

])
g′(k̂) dk̂

(A.166)

+

∫ k̂+

k̂∗+
k̂
(
M(k̂) + Cov

[
f(k̂), a

])
g′(k̂) dk̂

=(2)
(
M(k̂) + Cov

[
f(k̂), a

])
k̂g(k̂)

∣∣∣
k̂∗−

k̂−
+
(
M(k̂) + Cov

[
f(k̂), a

])
k̂g(k̂)

∣∣∣
k̂∗+

k̂∗−
+
(
M(k̂) + Cov

[
f(k̂), a

])
k̂g(k̂)

∣∣∣
k̂+

k̂∗+︸ ︷︷ ︸
=0

(A.167)

−
∫ k̂+

k̂−

[
M(k̂) + Cov

[
f(k̂), a

]
+ k̂M′(k̂)

]
g(k̂) dk̂

=(3) −Cov
[
f(k̂), a

]
− E

[
M(k̂) + k̂M′(k̂)

](A.168)

Step (1) divides the integration domain in the discontinuity points. Step (2) uses continuity of M(k̂) and g(k̂),

together with the boundaries conditions of g(k̂±) = 0.
Finally, T4 is equal to

T4 =

∫ k̂+

k̂−
k̂
(
M(k̂) + Cov

[
f(k̂), a

]) d2g(k̂)

dk̂2
dk̂

(A.169)

=

∫ k̂∗−

k̂−
k̂
(
M(k̂) + Cov

[
f(k̂), a

]) d2g(k̂)

dk̂2
dk̂ +

∫ k̂∗+

k̂∗−
k̂
(
M(k̂) + Cov

[
f(k̂), a

]) d2g(k̂)

dk̂2
dk̂

+

∫ k̂+

k̂∗+
k̂
(
M(k̂) + Cov

[
f(k̂), a

]) d2g(k̂)

dk̂2
dk̂

=
(
M(k̂) + Cov

[
f(k̂), a

])
k̂g′(k̂)

∣∣∣
k̂∗−

k̂−
+
(
M(k̂) + Cov

[
f(k̂), a

])
k̂g′(k̂)

∣∣∣
k̂∗+

k̂∗−

+
(
M(k̂) + Cov

[
f(k̂), a

])
k̂g′(k̂)

∣∣∣
k̂+

k̂∗+
−
∫ k̂+

k̂−

[
M(k̂) + Cov

[
f(k̂), a

]
+ k̂M′(k̂)

] dg(k̂)

dk̂
dk̂

=
(
M(k̂) + Cov

[
f(k̂), a

])
k̂

dg(k̂)

dk̂

∣∣∣∣∣

k̂∗−

k̂−

+
(
M(k̂) + Cov

[
f(k̂), a

])
k̂

dg(k̂)

dk̂

∣∣∣∣∣

k̂∗+

k̂∗−

+
(
M(k̂) + Cov

[
f(k̂), a

])
k̂

dg(k̂)

dk̂

∣∣∣∣∣

k̂+

k̂∗+

· · · −
[
M(k̂) + Cov

[
f(k̂), a

]
+ k̂M′(k̂)

]
k̂g(k̂)

∣∣∣
k̂+

k̂−︸ ︷︷ ︸
=0

+

∫ k̂+

k̂−

[
2M′(k̂) + k̂M′′(k̂)

]
g(k̂) dk̂

=
(
M(k̂) + Cov

[
f(k̂), a

])
k̂

dg(k̂)

dk̂

∣∣∣∣∣

k̂∗−

k̂−

+
(
M(k̂) + Cov

[
f(k̂), a

])
k̂

dg(k̂)

dk̂

∣∣∣∣∣

k̂∗+

k̂∗−

+
(
M(k̂) + Cov

[
f(k̂), a

])
k̂

dg(k̂)

dk̂

∣∣∣∣∣

k̂+

k̂∗+

+ E
[
2M′(k̂) + k̂M′′(k̂)

]
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From equations (A.163) to (A.170)

0 = E
[
f(k̂)k̂

]
− E

[
k̂
]
E
[
f(k̂)

]
− νT1 +

σ2

2
T2 + νT3 +

σ2

2
T4

= E
[
f(k̂)k̂

]
− E

[
k̂
]
E
[
f(k̂)

]
+ σ2

∫ k̂+

k̂−
m(k̂)g′(k̂) d k̂ − νE

[
vf∗∗(k̂) + k̂

dvf∗∗(k̂)

dk̂

]
+
σ2

2
E

[
2

dvf∗∗(k̂)

dk̂
+ k̂

d2vf∗∗(k̂)

dk̂2

]

= Cov
[
f(k̂), k̂

]
+ σ2

∫ k̂+

k̂−
m(k̂)g′(k̂) d k̂ + νCov

[
f(k̂), a

]
− νE

[
M(k̂) + k̂M′(k̂)

]
+
σ2

2
E
[
2M′(k̂) + k̂M′′(k̂)

]
.

(A.170)

Therefore, we obtain:

(A.171)
CIR(f, δ)

δ
= Cov

[
f(k̂),

k̂ + νa

σ2

]
− ν

σ2
E
[
M(k̂) + k̂M′(k̂)

]
+

1

2
E
[
2M′(k̂) + k̂M′(k̂)

]
+ o(δ)

Finally, if we apply Ito’s lemma to k̂M(k̂) , we have that

(A.172) Es[d(k̂sM(k̂s))|k̂s = k̂] =

[
−ν
[
M(k̂) + k̂M′(k̂)

]
+
σ2

2
E
[
2M′(k̂) + k̂M′′(k̂s)

]]
ds

(A.173)
CIR(f, δ)

δ
= Cov

[
f(k̂),

k̂ + νa

σ2

]
+

1

σ2
E
[

1

ds
Es[d(M(k̂s)k̂s)]

]

A.7.3 Irreversibility

Now, we show (62).

Lemma B.2. The following relation holds for

(A.174) E
[

1

ds
Es
[
d(M(k̂s)k̂s)

]]
= −Cov[∆k̂,M(∆k̂)]

E[τ ]
> 0.

Proof. If we apply Ito’s lemma to k̂sM(k̂s) , we have that

(A.175) Es[d(k̂sM(k̂s))] =

[
−ν
[
M(k̂s) + k̂sM′(k̂s)

]
+
σ2

2
E
[
2M′(k̂s) + k̂sM′′(k̂s)

]]
ds

Taking the integral between 0 and τ , and applying the occupancy measure

(A.176)
E
[
E
[
k̂τM(k̂τ )|∆k̂

]]
− E

[
E
[
k̂∗M(k̂∗)|∆k̂

]]

E[τ ]
= E

[
1

ds
Es
[
d(M(k̂s)k̂s)

]]

Operating, we have that

(A.177) −
E
[
∆k̂M(∆k̂)

]

E[τ ]
= E

[
1

ds
Es
[
d(M(k̂s)k̂s)

]]

27



A.8 Proof of Proposition 1

This proposition splits the investment problem into static and dynamic components. Then substitutes the para-
metric changes introduced by taxation and redefines the investment frictions in terms of after-tax profits.

A.8.1 Flow profits with user cost of capital

Depart from the sufficient optimality conditions (HJB, value matching, optimality and smooth pasting) established
in Lemma 2:

rv(k̂) = Aeαk̂ − νv′(k̂) +
σ2

2
v′′(k̂), k̂ ∈ (k̂−, k̂+),(A.178)

v(k̂−) = v(k̂∗−) − θ + pbuy(ek̂
− − ek̂∗−),(A.179)

v(k̂+) = v(k̂∗+) − θ + psell(ek̂
+ − ek̂∗+),(A.180)

v′(k̂) = pbuyek̂, k̂ ∈
{
k̂−, k̂∗−

}
,(A.181)

v′(k̂) = psellek̂, k̂ ∈
{
k̂∗+, k̂+

}
.(A.182)

Define the auxiliary function:

(A.183) W(k̂) ≡ v(k̂)− pek̂
A

=⇒ v(k̂) = AW(k̂) + pek̂.

Substitute the new expression for v(k̂) in (A.183) into both sides of (A.178):

(A.184) rAW(k̂) + rpek̂ = Aeαk̂ − νAW ′(k̂)− νpek̂ +
σ2

2
AW ′′(k̂) +

σ2

2
pek̂.

Divide by A, join terms with pek̂, and rearrange, to obtain:

(A.185) rW(k̂) = eαk̂ −
(
r + ν − σ2

2

)
p

A
ek̂

︸ ︷︷ ︸
Π(k̂)

− νW ′(k̂) +
σ2

2
W ′′(k̂),

where flow profits including the user cost are defined as:

(A.186) Π(k̂) ≡ eαk̂ −
(
r + ν − σ2

2

)
p

A
ek̂.

Substitute the auxiliary function into the value matching conditions (A.179) to (A.180) and simplify:

W(k̂−) = W(k̂∗−) − θ

A
+

(pbuy − p)
A

(ek̂
− − ek̂∗−)(A.187)

W(k̂+) = W(k̂∗+) − θ

A
+

(pbuy − p)
A

(ek̂
+ − ek̂∗−)

Substitute the auxiliary function into the smooth pasting and optimality conditions (A.181) to (A.182) and simplify:

W ′(k̂) =
(pbuy − p)

A
ek̂, k̂ ∈

{
k̂−, k̂∗−

}
,(A.188)

W ′(k̂) =
(psell − p)

A
ek̂, k̂ ∈

{
k̂∗+, k̂+

}
.

Summarizing, the optimality conditions satisfied by W(k̂) are: (A.185), (A.186), (A.187), and (A.188).
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A.8.2 Static component

Define the static policy k̂ss as the capital-productivity ratio that maximizes Π(k̂) in (A.186):

(A.189) k̂ss =
1

1− α log

(
αA

p(r + ν − σ2/2)

)
=

1

1− α log

(
αA

p(ρ+ ξk − σ2)

)
,

where in the second equality we have substituted r = ρ−µ−σ2/2. Next, do an infinite-order Taylor approximation

of flow profits around the static policy k̂ss, denoting the n-th derivative with Πn(·):

(A.190) Π(k̂) =(1)
∞∑

n=0

Πn(k̂ss)

n!
(k̂−k̂ss)n =(2) eαk̂

ss
∞∑

n=0

(αn − α)

n!
(k̂−k̂ss)n =(3) eαk̂

ss
(
eα(k̂−k̂ss) − αe(k̂−k̂ss)

)
.

where equality (2) substitutes the derivatives of flow profits evaluated at the static policy

(A.191) Πn(k̂ss) = αneαk̂ −
(
r + ν − σ2

2

)
p

A
ek̂
∣∣∣∣
k̂=k̂ss

= eαk̂
ss

(αn − α);

and equality (3) applies the definition of the exponential function f(z) = ez =
∑∞
n=0 z

n/n! evaluated at the points

z = α(k̂ − k̂ss) and z = (k̂ − k̂ss). Thus we obtain the following expression for flow profits:

(A.192) Π(k̂) = eαk̂
ss
(
eα(k̂−k̂ss) − αe(k̂−k̂ss)

)
.

A.8.3 Dynamic component

Consider the normalized capital-productivity ratios x = k̂ − k̂ss. Its dynamics are given by dxs = dk̂s = −ν ds+
σ dWs. Using the normalized ratios x, the auxiliary function W(k̂) in (A.183), and the static policy k̂ss in (A.189),
define the function V(x), the flow profits Π(x), and the dynamic policy X as follows:

V(x) ≡ W(x+ k̂ss)

eαk̂ss
,(A.193)

π(x) ≡ Π(x+ k̂ss)

eαk̂ss
= eαx − αex,(A.194)

X ≡ (x−, x∗−, x∗+, x+) = (k̂− − k̂ss, k̂∗− − k̂ss, k̂∗+ − k̂ss, k̂+ − k̂ss).(A.195)

Rewrite the optimality conditions (A.185), (A.186), (A.187), and (A.188) using V(x), π(x), and X as follows:

rV(x) = π(x) − νV ′(x) +
σ2

2
V ′′(x), x ∈ (x−, x+),(A.196)

V(x−) = V(x∗−) − θ

Aeαk̂ss
+

pbuy − p
Ae(α−1)k̂ss

(ex
− − ex∗−),

V(x+) = V(x∗+) − θ

Aeαk̂ss
+

psell − p
Ae(α−1)k̂ss

(ex
+ − ex∗+),

V ′(x) =
pbuy − p
Ae(α−1)k̂ss

ex, x ∈
{
x−, x∗−

}
,

V ′(x) =
psell − p
Ae(α−1)k̂ss

ex, x ∈
{
x+, x∗+

}
.

Remark: We construct the user cost of capital with p, i.e., the price of positive investment. Nevertheless, it is
easy to check that the proofs above hold for any p.
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A.8.4 Adding corporate taxes

Substitute the parametric changes that incorporate corporate taxation in the problem:

(A.197) A→ (1− tc)A, ρ→
(

1− tp
1− tg

)
ρ, p(∆k̂)→

(
1− tcz − ω(1− tc)1{∆k̂<0}

)
p, θ → (1− tcz)θ,

into the static policy:

(A.198) k̂ss =
1

1− α log

(
1− tc
1− tcz

αA

pŨ

)

where Ũ ≡ 1−tp
1−tg ρ + ξk − σ2 is the after-tax user cost of capital. Then, define the effective fixed cost θ̃, which is

scaled by after-tax profits; the effective price wedge (p̃buy, p̃sell), which is scaled by after-tax output-capital ratio;
and the effective discount factor r̃ as follows:

θ̃ ≡ 1− tcz
1− tc

θ

Aeαk̂ss
,(A.199)

(p̃buy, p̃sell) ≡ 1− tcz
1− tc

(0,−ω(1− tc)p)
Ae(α−1)k̂ss

,(A.200)

r̃ ≡
(

1− tp
1− tg

)
ρ− µ− σ2

2
.(A.201)

Using these definitions, convert the system in (A.196) simplifies to the final expressions:

r̃V(x) = eαx − αex − νV ′(x) +
σ2

2
V ′′(x), x ∈ (x−, x+),(A.202)

V(x−) = h(x∗−) − θ̃ + p̃buy(ex
− − ex∗−),

V(x+) = h(x∗+) − θ̃ + p̃sell(ex
+ − ex∗+),

V ′(x) = p̃buyex, x ∈
{
x−, x∗−

}
,

V ′(x) = p̃sellex, x ∈
{
x+, x∗+

}
.

The previous system solves the stopping problem:

V(x) = max
τ,∆x

E
[∫ τ

0

e−r̃τ (eαxs − αexs) ds(A.203)

+ er̃τ
(
−θ̃ + p̃(∆x)(exτ+∆x − exτ ) + V(xτ + ∆x)

) ∣∣∣x0 = x
]

p̃(∆x) = p̃buy
1{∆x>0} + p̃sell

1{∆x<0}.(A.204)

A.9 Proof of Proposition 4

This proposition computes the optimal investment policy and the macro outcomes for driftless symmetric models.
Assume ν → 0 (symmetry stochastic process) and following the remark in A.8.3, we can use p(1− ω

2 ) to construct

the static component and k̂ss. Under this normalization, the positive and negative capital gains are given by
pbuy−p(1−ω2 )

Ae(α−1)k̂ss
= ωα

2U =: p̃ and
psell−p(1−ω2 )

Ae(α−1)k̂ss
= −ωα2U = −p̃. Similarly, for the fixed cost θ̃ = θ

Aeαk̂ss
= θ

[
p(1−ω/2)U
αA1/α

]
.

Finally, under this normalization, since optimal dynamic policies X are symmetric in all the following cases, then
E[x] = 0 and Cov[x, a] = 0. We characterize the case with both frictions active. It nests the solution for only fixed
costs (setting x∗ = 0) and only price wedge (setting x∗ = x).
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A.9.1 Sufficient optimality conditions

The solution is characterized by a symmetric inaction region with borders ±x and two reset points ±x∗ that satisfy
the following system of equations:

r̃V(x) = eαx − αex +
σ2

2
V ′′(x), ∀x ∈ (−x, x),(A.205)

V(−x) = V(−x∗) − p̃(e−x
∗ − e−x)− θ̃,(A.206)

V(x) = V(x∗) − p̃(ex − ex∗) − θ̃,(A.207)

V ′(x) = p̃ex, x ∈ {−x,−x∗} ,(A.208)

V ′(x) = −p̃ex, x ∈ {x, x∗} .(A.209)

A.9.2 Optimal policy

Assume p̃ and θ̃ are small. A second order Taylor approximation of the flow profits π(x) = eαx − αex in (A.194)
around the (frictionless) point x = 0 yields:

(A.210) π(x) = π(0) + π′(0)x+
π′′(0)

2
x2 = 1− α+

α2 − α
2

x2 = (1− α)− α(1− α)

2
x2.

For the characterization, we ignore the constant term. Next, a first order approximation of the exponential function
ex = 1 + x yields ex − ex∗ = x− x∗ and e−x

∗ − e−x = x− x∗. Under these approximations, we write the system of
equations as:

r̃V(x) = −α(1− α)

2
x2 +

σ2

2
V ′′(x), ∀x ∈ (−x, x),(A.211)

V(−x) = V(−x∗) − p̃(x− x∗)− θ̃,(A.212)

V(x) = V(x∗) − p̃(x− x∗)− θ̃,(A.213)

V ′(x) = p̃(1 + x), x ∈ {−x,−x∗} ,(A.214)

V ′(x) = −p̃(1 + x), x ∈ {x, x∗} .(A.215)

Since the problem is symmetric, we only work with the positive domain and use equations (A.211), (A.213), and
(A.215). Next, we derive two conditions that pin down the optimal policy by approximating the value function
and its derivatives. We denote the nth derivative with Vn(x) for n > 2.

To derive the first condition, we approximate the value function with a 4th order Taylor expansion around
x = 0, noting that odd derivatives evaluated at zero are equal to zero by symmetry:

(A.216) V(x) = V(0) +
V ′′(0)

2!
x2 +

V4(0)

4!
x4.

The second derivative of (A.211) evaluated at zero equals:

r̃V ′′(0) = −α(1− α) +
σ2

2
V4(0).(A.217)

Taking the limit r̃ → 0 in the previous expression, we find V4(0):

V4(0) =
2α(1− α)

σ2
.(A.218)
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Substitute the approximation to V(x) into the value matching condition in (A.212) and simplify:

V(x) = V(x∗) − p̃(x− x∗)− θ̃

V(0) +
V ′′(0)

2
x2 +

V4(0)

24
x4 = V(0) +

V ′′(0)

2
x∗2 +

V4(0)

24
x∗4 − p̃(x− x∗)− θ̃

V ′′(0)

2
(x2 − x∗2) +

α(1− α)

12σ2
(x4 − x∗4) = − p̃(x− x∗)− θ̃

V ′′(0)

2
(x2 − x∗2) +

α(1− α)

12σ2
(x2 + x∗2)(x2 − x∗2) = − p̃(x− x∗)− θ̃

V ′′(0) +
α(1− α)

6σ2
(x2 + x∗2) = − 2

(
p̃(x− x∗) + θ̃

(x2 − x∗2)

)

To derive a second condition, we approximate the first derivative of the value function with a 3rd order Taylor
approximation, noting that odd derivatives evaluated at zero are zero by symmetry:

V ′(x) =
V ′′(0)

1!
x+
V4(0)

3!
x3(A.219)

Evaluating at x and x∗ and substituting the expression for the fourth derivative:

−p̃(1 + x) = V ′′(0)x+
α(1− α)

3σ2
x3; −p̃(1 + x∗) = V ′′(0)x∗ +

α(1− α)

3σ2
x∗3.(A.220)

Taking the difference between the two previous conditions and subtracting θ̃

−p̃(x− x∗) = V ′′(0)(x− x∗) +
α(1− α)

3σ2
(x3 − x∗3)(A.221)

and solving for V ′′(0):

−V
′′(0)

2
=
p̃

2
+
α(1− α)

6σ2
(x2 + x∗2 + xx∗)(A.222)

Back into optimality:

xx∗(x+ x∗) =
3σ2p̃

α(1− α)
(A.223)

x4 − x∗4 = xx∗(x+ x∗)(x− x∗) (1 + x+ x∗) +
6σ2θ̃

α(1− α)
(A.224)

The optimal policy nests the two extreme cases:

1. With only a fixed cost, p̃ = 0 and x∗ = 0. The first condition is irrelevant and the second condition pins
down the optimal policy:

(A.225) x4 =
6σ2θ̃

α(1− α)
=⇒ x =

(
6σ2θ̃

α(1− α)

)1/4

.

2. With only a price wedge, θ̃ = 0 and x∗ = x∗ = x. The second condition is irrelevant and the first condition
pins down the optimal policy:

(A.226) 2x∗3 =
3σ2p̃

α(1− α)
=⇒ x∗ =

(
3σ2p̃

2α(1− α)

)1/3

.
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A.9.3 Cross-sectional and renewal distributions and adjustment probabilities

Cross-sectional distribution. The stationary density g(x) solves the KFE with border, continuity, and reinjec-
tion (exit mass equals entry mass) conditions:

0 =
σ2

2
g′′(x),(A.227)

g(x) = g(−x) = 0,(A.228)
∫ x

−x
g(x) dx = 1,(A.229)

lim
x↓−x∗

g(x) = lim
x↑−x∗

g(x), lim
x↓x∗

g(x) = lim
x↑x∗

g(x),(A.230)

lim
x↓−x

g′(x) = lim
x↑−x∗

g′(x)− lim
x↓−x∗

g′(x), lim
x↑x

g′(x) = lim
x↓x∗

g′(x)− lim
x↑x∗

g′(x).(A.231)

Solving for g(x), we obtain a linear function:

(A.232) g′′(x) = 0, g′(x) = A, g(x) = Ax+B.

We split the state-space into three segments [−x,−x∗] ∪ [−x∗, x∗] ∪ [x∗, x] and consider three different functions
gk(x) = Akx+Bk for j = 1, 2, 3, one for each segment. Evaluating at the border conditions, we obtain relationships
for (A1, B1) and (A3, B3):

−A1x+B1 = 0

A3x+B3 = 0

}
=⇒ x = B1/A1 = −B3/A3.(A.233)

Evaluating at the reinjection conditions, we obtain A2:

A1 = A1 −A2

A3 = A3 −A2

}
=⇒ A2 = 0.(A.234)

Evaluating at the continuity conditions, using A2 = 0 we obtain for (A1, B1) and (A3, B3):

B2 = −A1x
∗ +B1

B2 = A3x
∗ +B3

}
=⇒ x∗ =

B1 −B2

A1
=
B2 −B3

A3
.(A.235)

Finally, we use the fact that the density integrates to one:

1 =

∫ −x∗

−x
(A1x+B1) dx+

∫ x∗

−x∗
B2 dx+

∫ x

x∗
(A3x+B3) dx(A.236)

=

(
A1

x2

2
+B1x

) ∣∣∣
−x∗

−x
+B2x

∣∣∣
x∗

−x∗
+

(
A3

x2

2
+B3x

) ∣∣∣
x

x∗

= A1

(
x∗2 − x2

2

)
+B1 (x− x∗) + 2B2x

∗ +A3

(
x2 − x∗2

2

)
+B3(x− x∗)

= (A3 −A1)

(
x2 − x∗2

2

)
+ 2B2x

∗ + (B1 +B3)(x− x∗).

Substituting B1 = xA1 and B3 = −xA3 from (A.233) into the previous expression:

1 = (A3 −A1)

(
x2 − x∗2

2

)
+ 2B2x

∗ − x (A3 −A1) (x− x∗)(A.237)

= (A3 −A1) (x− x∗)
[
x+ x∗

2
− x
]

+ 2B2x
∗

= (A3 −A1)
(x− x∗)2

2
+ 2B2x

∗.
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Therefore, the cross-sectional density is equal to:

g(x) =
1

x2 − x∗2





x+ x for x ∈ [−x,−x∗]
x− x∗ for x ∈ [−x∗, x∗]
x− x for x ∈ [x∗, x].

(A.238)

Renewal probabilities and relative shares. The renewal probabilities (the mass of adjusters from each reset
point) are equal to:

N− =
σ2

2
lim
x↓−x

g′(x) =
σ2

2
A1 =

σ2

2

1

(x2 − x∗2)
(A.239)

N+ = −σ
2

2
lim
x↑x

g′(x) = −σ
2

2
A3 =

σ2

2

1

(x2 − x∗2)
.(A.240)

The shares of total, upward, and downward adjustment are:

N = N− +N+ =
σ2

(x2 − x∗2)
(A.241)

N−
N =

1

2
;

N+

N =
1

2
.(A.242)

Probability of negative adjustment. Let P+(x) ≡ Pr[∆x < 0|x] denote the probability of doing a negative
adjustment (after hitting the upper bound) conditional on the state x. It solves the HJB with border conditions:

0 = P+′′(x); P+(x) = 1; P+(−x) = 0(A.243)

Solving for P+(x) = Ax+B and evaluating at the border conditions:

Ax+B = 1

−Ax+B = 0

}
=⇒ A = 1/2x

B = 1/2

}
=⇒ P+(x) =

x+ x

2x
=

1

2
+

x

2x
.(A.244)

The unconditional probability of a negative adjustment is:

(A.245) E[P+] =
1

2
+

1

2x
E[x] =

1

2
.

The probability of a negative adjustment conditional on the last adjusting being positive (a switch in adjustment
sign) equals:

(A.246) P+(−x∗) ≡ Pr[∆x < 0| − x∗] =
x− x∗

2x
.

Probability of positive adjustment. Let P−(x) ≡ Pr[∆x > 0|x] denote the probability of doing a positive
adjustment (after hitting the lower bound) conditional on the state x. It solves the HJB with border conditions:

0 = P−′′(x); P−(−x) = 1; P−(x) = 0.(A.247)

Solving for P−(x) = Ax+B and evaluating at the border conditions:

−Ax+B = 1

Ax+B = 0

}
A = −1/2x

B = 1/2

}
P−(x) =

x− x
2x

=
1

2
− x

2x
.(A.248)

The unconditional probability of a positive adjustment is:

(A.249) E[P−] =
1

2
− 1

2x
E[x] =

1

2
.

The probability of a positive adjustment conditional on the last adjusting being negative (a switch in adjustment
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sign) equals:

(A.250) P−(x∗) ≡ Pr[∆x > 0|x∗] =
x− x∗

2x
.

A.9.4 Expected duration of inaction

Let T (x) ≡ E[τ |x]. It solves the HJB with border conditions:

(A.251) 0 = 1 +
σ2

2
T ′′(x), T (x) = T (−x) = 0.

Solving for T (x):

(A.252) T ′′(x) = − 2

σ2
, T ′(x) = − 2

σ2
x+A, T (x) = −x

2

σ2
+Ax+B.

Evaluating at the border conditions, we obtain values for A and B:

−x
2

σ2
+Ax+B = 0

−x
2

σ2
−Ax+B = 0





=⇒
2Ax = 0

−2x2

σ2
+ 2B = 0



 =⇒

A = 0

B =
x2

σ2



 =⇒ T (x) =

x2 − x2

σ2
.(A.253)

The expected duration of inaction given the current state E[τ |x], the expected duration of a complete inaction

spell conditional on the last reset point (E+
[τ ],E−[τ ]), and the unconditional expected duration of inaction E[τ ]

are given by:

E[τ |x] =
x2 − x2

σ2
,(A.254)

E+
[τ ] = E−[τ ] =

x2 − x∗2
σ2

,(A.255)

E[τ ] =
N+

N E+
[τ ] +

N−
N E−[τ ] =

x2 − x∗2
σ2

,(A.256)

where the shares of upward and downward adjustment are identical: N+/N = N−/N = 1/2.

A.9.5 Cross-sectional means

Let m(x) ≡ E
[∫ τ

0
xs ds|x0 = x

]
. It solves the HJB with border conditions:

(A.257) 0 = x+
σ2

2
m′′(x), m(x) = m(−x) = 0.

Solving for m(x):

(A.258) m′′(x) = − 2

σ2
x, m′(x) = −x

2

σ2
+A, m(x) = − x3

3σ2
+Ax+B.

Evaluating at the border conditions, we obtain values for A and B:

− x3

3σ2
+Ax+B = 0

x3

3σ2
−Ax+B = 0





=⇒ A =
x2

3σ2

B = 0



 =⇒ m(x) =

x2x− x3

3σ2
=
x

3

x2 − x2

σ2
=
x

3
E[τ |x](A.259)

Unconditional means. Using the occupancy measure, we obtain the means conditional on the last rest point:

(A.260) E−[x] =
m(−x∗)
E−[τ ]

= −x
∗

3
; E+

[x] =
m(x∗)

E+
[τ ]

=
x∗

3
,
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where E−[τ ] = E[τ | − x∗] and E+
[τ ] = E[τ |x∗].

Unconditional mean. By symmetry, E[x] = 0. To show this formally, we use the conditional means and the
renewal distribution:

(A.261) E[x] =
N+

N E+
[x] +

N−
N E−[x] =

1

2

(
x∗

3

)
+

1

2

(−x∗
3

)
= 0.

A.9.6 Cross-sectional variances

Unconditional variance. Since E[x] = 0, then Var[x] = E[x2]. Using the cross-sectional distribution, the second
moment equals:

Var[x] =

∫ x

−x
x2g(x) dx(A.262)

=
1

(x2 − x∗2)

[∫ −x∗

−x
x2(x+ x) dx + (x− x∗)

∫ x∗

−x∗
x2 dx +

∫ x

x∗
x2(x− x) dx

]

=
1

(x2 − x∗2)

[(
x3x

3
+
x4

4

) ∣∣∣
−x∗

−x
+ (x− x∗)x

3

3

∣∣∣
x∗

−x∗
+

(
x3x

3
− x4

4

) ∣∣∣
x

x∗

]

=
1

(x2 − x∗2)

[
−x∗3x

3
+
x∗4

4
+
x∗4

3
− x4

4
+ (x− x∗)x

∗3 + x∗3

3
+
x4

3
− x4

4
− x∗3x

3
+
x∗4

4

]

=
1

(x2 − x∗2)

(
x4 − x∗4

6

)
=

1

(x2 − x∗2)

(
(x2 − x∗2)(x2 + x∗2)

6

)

=
x2 + x∗2

6

Conditional variance. Let m2(x) ≡ E
[∫ τ

0
x2
s ds|x0 = x

]
. It solves the HJB with borders:

(A.263) 0 = x2 +
σ2

2
m′′(x), m2(x) = m2(−x) = 0.

Solving for m2(x):

(A.264) m′′2(x) = −2x2

σ2
, m′2(x) = −2x3

3σ2
+A, m(x) = − x4

6σ2
+Ax+B.

Evaluating at the border conditions, we obtain values for A and B:

− x4

6σ2
+Ax+B = 0

− x4

6σ2
−Ax+B = 0





=⇒
A = 0

B =
x4

6σ2



 =⇒ m2(x) =

x4 − x4

6σ2
=
x2 + x2

6
E[τ |x].(A.265)

Using the occupancy measure, the second moments conditional on the last rest point are:

(A.266) E+
[x2] =

m2(x∗)

E[τ |x∗] =
x2 + x∗2

6
; E−[x2] =

m2(−x∗)
E[τ | − x∗] =

x2 + x∗2

6
.

Finally, by definition of the variance, we have that:

Var+
[x] = E+

[x2]− (E+
[x])2 =

x2 + x∗2

6
− x∗2

9
(A.267)

Var−[x] = E−[x2]− (E−[x])2 =
x2 + x∗2

6
− x∗2

9
(A.268)

where the conditional means are computed in (A.260).
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Variance decomposition. According to the law of total variance:

(A.269) Var[x]︸ ︷︷ ︸
total

= E[Var[x|∆x]]︸ ︷︷ ︸
within

+ Var[E[x|∆x]]︸ ︷︷ ︸
between

.

The within variance is computed as:

E[Var[x|∆x]] =
N+

N
E+

[τ ]

E[τ ]
Var+[x] +

N−
N

E−[τ ]

E[τ ]
Var−[x](A.270)

= 2

(
1

2

)
(1)

(
x2 + x∗2

6
− x∗2

9

)
=
x2 + x∗2

6
− x∗2

9
.

The between variance is computed as:

Var[E[x|∆x]] =
N+

N
E+

[τ ]

E[τ ]
(E+[x]− E[x])2 +

N−
N

E−[τ ]

E[τ ]
(E−[x]− E[x])2(A.271)

=
1

2
(1)

(
x∗

3

)2

+
1

2
(1)

(
−x
∗

3

)2

=
x∗2

9
.

In the benchmark cases we decompose the total variance as:

(A.272) Var[x] =





x2

6︸︷︷︸
total

=
x2

6︸︷︷︸
within

+ 0︸︷︷︸
between

if p̃ = 0

x2

3︸︷︷︸
total

=
2x2

9︸︷︷︸
within

+
x2

9︸︷︷︸
between

if θ̃ = 0.

A.9.7 Aggregate q.

From (32) and (59) aggregate q with taxes and without drift equals:

(A.273) q =
1

r̃

[
1− tc
1− td

αAŶ

pK̂
+

σ2

2
−

Cov
[
∆k̂,P(∆k̂)

]

E[τ ]

]
.

We first compute the aggregate productivity term and the irreversibility terms.

Aggregate productivity. The numbers refer to the steps below. In equality (1) we start from the approximation

of Ŷ /K̂; in equality (2) we substitute E[k̂] = k̂ss+E[x] = 1
1−α log

(
1−tc
1−td

αA
pŨ

)
+E[x] and Var[k̂] = Var[x]; in equality

(3) we simplify, in equality (4) we do a Taylor approximation to the exponential function, and in equality (5) we
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substitute E[x] = 0:

Ŷ

K̂
=(1) exp

{
−(1− α)

(
E[k̂] +

α

2
Var[k̂]

)}

=(2) exp

{
−(1− α)

(
1

1− α log

(
1− tc
1− td

αA

pŨ

)
+ E[x] +

α

2
Var[x]

)}

=(3) pŨ
αA

1− td
1− tc exp

{
−(1− α)E[x]− α(1− α)

2
Var[x]

}

=(4) pŨ
αA

1− td
1− tc

(
1− (1− α)E[x]− α(1− α)

2
Var[x]

)

=(5) pŨ
αA

1− td
1− tc

(
1− α(1− α)

2
Var[x]

)
.(A.274)

Irreversibility term. The numerator in the irreversibility term equals the covariance of adjustment size and
the auxiliary pricing function P(∆x). We compute this term using conditioning on the last reset point and then
averaging with the conditional renewal distribution:

Cov [∆x,P(∆x)] = E [∆xP(∆x)]− E [∆x]E [P(∆x)]

=
1

2

(
E− [∆xP(∆x)] + E+

[∆xP(∆x)]
)

=
1

2

(
(x− x∗)

(
pbuy

p
− 1

)
+ (x∗ − x)

(
psell

p
− 1

))

=
(x− x∗)

2

[
pbuy − psell

p

]

= (x− x∗) Ũ
α
p̃.

In the last line we use the relationship between effective and fundamental price wedge in (A.350) and the assumption
of a symmetric wedge:

(A.275)
pbuy − psell

p
=
Ũ
α

(p̃buy − p̃sell) =
2Ũ p̃
α

.

The denominator of the irreversibility term is the expected duration of inaction in (A.256): E[τ ] = (x2 − x∗2)/σ2.
Therefore, the irreversibility term for aggregate q equals:

(A.276) − Cov [∆x,P(∆x)]

E[τ ]
= − (x− x∗)Ũ p̃

α

σ2

x2 − x∗2 = −Ũ
α

p̃σ2

x+ x∗
= −xx

∗

3
Ũ(1− α) < 0.

where the last equality uses the first condition for the optimal policy in (A.223). Finally, substituting the aggregate
productivity term (A.274) and the irreversibility term (A.276) into the expression for q (without drift), simplifying,
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and using the driftless aftertax user cost Ũ = ρ̃− σ2 and the driftless after-tax discount r̃ = ρ̃− σ2/2:

q =
1

r̃

[
1− tc
1− td

αA

p

Ŷ

K̂
+
σ2

2
− xx∗

3
Ũ(1− α)

]

=
1

r̃

[
1− tc
1− td

αA

p

1− td
1− tc

pŨ
αA

(
1 − α(1− α)

2
Var[x]

)
+
σ2

2
− xx∗

3
Ũ(1− α)

]

=
1

r̃

[
Ũ
(

1 − α(1− α)

2
Var[x]

)
+
σ2

2
− xx∗

3
Ũ(1− α)

]

=
Ũ + σ2/2

r̃
− Ũ

r̃

α(1− α)

2
Var[x]− xx∗

3r̃
Ũ(1− α)

= 1 − Ũ
r̃

α(1− α)

2

[
Var[x] +

2

α

xx∗

3

]
.

In the benchmark cases:

(A.277) q =





1 − Ũ
r̃
α(1−α)

2 Var[x] if p̃ = 0,

1 − Ũ
r̃
α(1−α)

2

(
1 + 2

α

)
Var[x] if θ̃ = 0,

where for the case θ̃ = 0 we note that Var[x] = x∗2/3.

A.9.8 CIR

From (38) and (62), the CIR without drift equals:

(A.278)
CIR(δ)

δ
=

Var[x]

σ2
− Cov[∆k̂,M(∆k̂)]

E[τ ]
+ o(δ).

Cumulative deviations. Recall the values for the unconditional probabilities of a negative and a positive ad-
justment E[P+] = E[P−] = 1/2 in (A.245) and (A.249), and the conditional probabilities of switching adjustment
sign P+(−x∗) = P−(x∗) = (x − x∗)/2x in (A.246) and (A.250). Substituting these probabilities, the conditional
means E−[x] = −x∗/3 and E−[x] = x∗/3 in (A.260), and the conditional durations E−[τ ] = E+[τ ] = (x2 − x∗2)/σ2

in (A.255) into the definition of cumulative deviations Mbuy in (60) and Msell in (61) yields:

Mbuy = E[P−]
1

P+(−x∗) (E−[x]− E[x])E−[τ ] =
1

2

(
2x

x− x∗
)(
−x
∗

3
− 0

)
x2 − x∗2

σ2
= −x

∗x(x+ x∗)

3σ2
,(A.279)

Msell = E[P+]
1

P−(x∗)
(E+[x]− E[x])E+[τ ] =

1

2

(
2x

x− x∗
)(

x∗

3
− 0

)
x2 − x∗2

σ2
=

x∗x(x+ x∗)

3σ2
.(A.280)

Irreversibility term. The irreversibility term for the CIR equals the covariance of the adjustment size and
the auxiliary capital-deviation deviation function M(∆x) defined in (39). Recall x∗ = x − ∆x for ∆x < 0 and
−x∗ = −x−∆x for ∆x > 0 and by symmetry E [∆x] = 0. The numerator of the irreversibility term equals:

Cov[∆x,M(∆x)] = E [∆xM(∆x)]− E [∆x]E [M(∆x)]

=
1

2

[
E− [∆xM(∆x)] + E+

[∆xM(∆x)]
]

=
1

2

[
(x− x∗)Mbuy + (x∗ − x)Msell

]
= (x− x∗)Mbuy,

= −(x− x∗)x
∗x(x+ x∗)

3σ2
= −x

∗x

3

(
x2 − x∗2

σ2

)

= −x
∗x

3
E[τ ].
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Therefore, the irreversibility term of the CIR equals:

(A.281) − Cov[∆x,M(∆x)]

E[τ ]
=

x∗x

3
> 0.

Finally, substituting the expression for the cross-sectional variance in (A.262) and the irreversibility term in (A.281)
into the CIR yields:

CIR(δ)

δ
=

x2 + x∗2

6σ2
+

x∗x

3
+ o(δ).(A.282)

In the benchmark cases:

(A.283) CIR =





x2

6σ2 + o(δ) if p̃ = 0,

(1+σ2)x∗2

3σ2 + o(δ) if θ̃ = 0,

A.10 Proof of Proposition 5

This proposition computes the optimal investment policy and the macro outcomes for models with very large drift
relative to idiosyncratic costs. Assume ν → ∞. If ν → ∞ then economy converges to an economy with ν > 0
and σ → 0 since idiosyncratic shocks are small relative to the drift—see Álvarez, Beraja, Gonzalez-Rozada and
Neumeyer (2018) for details in the context of price-setting. The firm investment problem is given by:

V(x) = max
τ,∆x

E
[∫ τ

0

e−r̃τ (xαs − αxs) ds+ e−r̃τ
(
−θ̃ + V(xτ )

) ∣∣∣x0 = x

]
,(A.284)

dxs = −νxs ds.(A.285)

A.10.1 Sufficient optimality conditions

This problem was studied by Sheshinski and Weiss (1977). They show that the optimal policy consists of a one-
sided inaction region with lower threshold x− and a reset point x∗. Since there are no idiosyncratic shock, there is
no mass above x∗ and the cross-sectional distribution is uniform in the range [x−, x∗].

Let h(x) ≡ xα−αx. Following Sheshinski and Weiss (1977), the optimal policy satisfies the following conditions
(in our notation):

h(x∗) − h(x−) = r̃θ̃,(A.286)
∫ ex

∗

ex−
h′(x) x

r̃
ν dx = 0.(A.287)

The first optimality condition equals:

eαx
∗ − αex∗ = r̃θ̃ + eαx

− − αex− .(A.288)

The second optimality condition equals:

(A.289)

∫ ex
∗

ex−
α(xα−1 − 1)x

r̃
ν dx =

xr̃/ν + α+

r̃/ν + α+
− xr̃/ν + 1

r/ν + 1

∣∣∣∣
ex
∗

ex−
= 0,

or equivalently:

(A.290)
e(r̃/ν+α)x∗ − e(r̃/ν+α)x−

r/ν + α
=

e(r̃/ν+1)x∗ − e(r̃/ν+1)x−

r/ν + 1
.
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A.10.2 Optimal investment policy

Next we approximate the decision problem. As in (A.210), we do a second-order Taylor approximation of the flow

profits π(x) = eαx − αex around x = 0: π(x) = (1 − α) − α(1−α)
2 x2. Applying this approximation to the first

optimality condition in (A.288) yields:

x∗2 − x−2
= − 2r̃θ̃

α(1− α)
.(A.291)

Since the cross-sectional distribution is uniform in the range [x−, x∗], it has the following moments:

(A.292) Var[x] =
(x∗ − x−)2

12
; E[x] =

x∗ + x−

2
.

Thus we can write the first optimality condition in (A.291) as:

(A.293) E[x]
√
Var[x] = − r̃θ̃

2
√

3α(1− α)
.

Next, consider a third-order approximation to the following exponential function:

(A.294)
eβx

β
= 1 + x+

β

2
x2 +

β2

6
x2.

Apply this approximation to both sides of the second optimality condition, using β ∈ {r̃/ν + α, r̃/ν + 1}, and
rearrange to obtain:

[
(r̃/ν + α)− (r̃/ν + 1)

2

]
(x∗2 − x−2

) +

[
(r̃/ν + α)2 − (r̃/ν + 1)2

6

]
(x∗3 − x−3

) = 0(A.295)

(x∗ + x−)

2
+

(2r̃/ν + α+ 1)

6
((x∗ + x−)2 − x∗x−) = 0.(A.296)

Note the following relationship:

(A.297) − x∗x− =
(x∗ − x−)2 − (x∗ + x−)2

4

Substituting back this expression into (A.296) and also E[x] = (x∗ + x−)/2 we get:

E[x] +
(2r̃/ν + α+ 1)

6

(
(x∗ + x−)2 +

(x∗ − x−)2 − (x∗ + x−)2

4

)
= 0(A.298)

6E[x] + (2r̃/ν + α+ 1)

(
3(x∗ + x−)2 + (x∗ − x−)2

4

)
= 0(A.299)

E[x] = −
(
r̃

ν
+
α+ 1

2

)
E[x2].(A.300)

Therefore, together with (A.292), the optimal policy (x−, x∗) is characterized by the following 2 × 2 non-linear
system:

E[x]
√

Var[x] = − r̃θ̃√
12α(1− α)

;
E[x]

Var[x] + E[x]2
= −

(
r̃

ν
+
α+ 1

2

)
.(A.301)

A.10.3 Macro outcomes

(i) Misallocation. The cross-sectional variance is the variance of a uniform distribution in the range [x−, x∗]:

(A.302) Var[x] =
(x∗ − x−)2

12
.
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(ii) Aggregate q. Let ρ̃ ≡ ρ(1− tp)/(1− tg). Without idiosyncratic shocks, the after-tax user cost is Ũ = ρ̃+ ξk

and the after-tax discount is r̃ = ρ̃− µ and simplifying:

q =
1− tc
1− td

αA

pr̃

Ŷ

K̂
− ν

r̃

=
1− tc
1− td

αA

pr̃

1− td
1− tc

pŨ
αA

(
1 − (1− α)E[x] − α(1− α)

2
Var[x]

)
− ν

r̃

= 1 − ρ̃+ ξk

ρ̃− µ (1− α)
(
E[x] +

α

2
Var[x]

)

(iii) CIR: From Corollary 2 in Baley and Blanco (2021):

(A.303)
CIR(δ)

δ
= 0.
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A.11 Illustrative example.

Consider an economy in which most firms make frequent upward adjustments. The durations of inaction are

E[τ ] = 2, E−[τ ] = 1.5, and E+
[τ ] = 4, and the frequencies are N = 0.5, N− = 0.4, and N+ = 0.1.24 The

shares of upward and downward adjustments are N−/N = 0.8 and N+/N = 0.2, and the relative durations

are E−[τ ]/E[τ ] = 0.75 and E+
[τ ]/E[τ ] = 2. While only 20% of adjustments are downward, they happen after

longer inactions spells with twice the average duration, implying that the underlying states k̂ generating those
adjustments are occupied for longer periods of time. To account for this higher occupancy, the implied duration-

modified frequencies, N− E−[τ ] = 0.6 andN+ E+
[τ ] = 0.4, are the appropriate weights to recover the unconditional

distribution of firms as g = 0.6 g− + 0.4 g+. Thus the effective share of downward adjustments increases from 0.2
to 0.4.

A.12 Proof of Proposition 1

This proposition expresses the parameters of the stochastic process (ν, σ2) as functions of the data. The proof
follows the strategy in Baley and Blanco (2021), but taking into account the two reset points arising from partial

irreversibility. Let k̂s follow a Brownian motion with drift ν and volatility σ and two reset states k̂∗− < k̂∗+, where
k̂∗− = k̂∗(∆k̂ > 0) and k̂∗+ = k̂∗(∆k̂ < 0).

A.12.1 Drift

Evaluating the law of motion k̂s = k̂∗(∆k̂)− νt+ σWt at a stopping time s = τ ,

(A.304) k̂τ − k̂∗(∆k̂) + ντ = σWτ .

Since the stopped capital depends on the adjustment sign, we take conditional using the distribution of adjusters
H(∆k̂, τ):

(A.305) E
[
k̂τ

∣∣∣∆k̂
]
− k̂∗(∆k̂) + νE

[
τ
∣∣∣∆k̂

]
= 0.

Taking expectation again with H and using the law of iterating expectation, we obtain

E
[
E
[
k̂τ

∣∣∣∆k̂
]]

︸ ︷︷ ︸
E[k̂∗(∆k̂)] − E[∆k̂]

− E
[
k̂∗(∆k̂)

]
+ ν E

[
E
[
τ
∣∣∣∆k̂

]]

︸ ︷︷ ︸
E[τ ]

= 0(A.306)

To compute the first term, we substitute the relationship between stopped capital, reset state and adjustment size,
k̂τ = k̂∗(∆k̂)−∆k̂, and then use the Markovian property of adjustments:

(A.307) E
[
E
[
k̂τ

∣∣∣∆k̂
]]

= E
[
E
[
k̂∗(∆k̂′)

∣∣∣∆k̂
]]
− E

[
E
[
∆k̂′

∣∣∣∆k̂
]]

= E
[
k̂∗(∆k̂)

]
− E[∆k̂].

To compute the second term, we use the law of iterated expectations and obtain:

(A.308) E
[
E
[
τ ′
∣∣∣∆k̂

]]
= E [τ ] .

Substituting (A.307) and (A.308) into (A.306) and rearranging, we obtain the result

(A.309) ν =
E[∆k̂]

E[τ ]
.

24Note that E[τ ] = 1/N but E±[τ ] 6= 1/N±.
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A.12.2 Idiosyncratic volatility

Let Ys ≡ (k̂s + νs)2. Applying Itō’s lemma to Ys,

(A.310) dYs = 2(k̂s + νs)(dk̂s + ν ds) + (dk̂s)
2 = 2(k̂s + νs)σ dWs + σ2 ds

We integrate both sides from 0 to τ and take conditional expectations with respect to the initial condition k̂0 =
k̂∗(∆k̂), which is a function of ∆k. Then, we use the OST to set the martingale to zero, E[

∫ τ
0

(k̂s + νs) dWs] = 0,
and obtain:

(A.311) E
[
Yτ (∆k)− Y0

∣∣∣∆k̂
]

= 2σE
[∫ τ

0

(k̂s + νs) dWs

∣∣∣∆k
]

+ σ2E
[∫ τ

0

1 ds
∣∣∣∆k

]
= σ2E[τ |∆k]

Substituting Yτ ≡ (k̂τ (∆k) + ντ)2 and Y0 ≡ k̂∗(∆k̂)2, and taking expectations again to average across positive and
negative adjustments, we get:

(A.312) E
[
E
[
(k̂τ (∆k̂′) + ντ ′)2|∆k̂

]]
− E

[
k̂∗(∆k̂′)2

∣∣∣∆k
]

= σ2E
[
E
[
τ ′
∣∣∣∆k

]]
.

By the Markovian property of ∆k and τ , the previous expression simplifies to:

(A.313) E[(k̂τ (∆k̂) + ντ)2]− E[k̂∗(∆k̂)2] = σ2E[τ ]

Rearranging, we obtain the mapping to σ2:

(A.314) σ2 =
E[(k̂τ (∆k̂) + ντ)2]− E[k̂∗(∆k̂)2]

E[τ ]
.

A.12.3 Reset states

To characterize the reset states as a function of the data, we first apply the envelope theorem.

Envelope theorem. Start from the recursive definition of v(k̂) in (C.388) for an arbitrary initial condition k̂0 and

evaluate it at the optimal policy (τ∗, k̂∗)

(A.315) v(k̂0) = E

[∫ τ∗

0

Ae−rs+αk̂s ds + e−rτ
∗
(
−θ − p(∆k̂)(ek̂

∗ − ek̂τ∗ ) + v(k̂∗)
)]

Substitute the evolution of log capital-to-productivity ratios k̂s = k̂0 − νs + σWs and take the derivative with

respect to the initial state k̂0 (note that the terms −θ − p(∆k̂)ek̂
∗

+ v(k̂∗) are independent of k̂0) to get

v′(k̂0) = E

[∫ τ∗

0

dAe−rs+α(k̂0−νs+σWs)

dk̂0

ds + p(∆k̂)e−rτ
∗ dek̂0−ντ

∗+σWτ∗

dk̂0

]
(A.316)

= E

[∫ τ∗

0

αAe−rs+αk̂s ds + p(∆k̂)e−rτ
∗+k̂τ∗

]

In the second line apply the envelope condition for arbitrary choice sets (Milgrom and Segal, 2002) to ignore the
derivative of the optimal policies with respect to the initial condition.

Because there are two reset points, at this step we must condition on the appropriate initial condition to
evaluate (A.316). If the last reset point is k̂0 = k̂∗− (there was a capital purchase), then we use the optimality

condition v′(k̂∗−) = pbuyek̂
∗

in the LHS to get:

(A.317) pbuyek̂
∗

= E−
[∫ τ∗

0

αAe−rs+αk̂s ds + p(∆k̂)e−rτ
∗+k̂τ∗

]
.

Analogously, if the last reset point is k̂0 = k̂∗+ (there was a capital sale), then we use the optimality condition
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v′(k̂∗+) = psellek̂
∗

in the LHS to get:

psellek̂
∗+

= E+

[∫ τ∗

0

αAe−rs+αk̂s ds + p(∆k̂) e−rτ
∗+k̂τ∗

]
.(A.318)

Reset state without partial irreversibility. We depart from the optimality condition

(A.319) pek̂
∗

= E
[∫ τ

0

αAe−rs+αk̂s ds+ pe−rτ+k̂τ
∣∣∣k̂0 = k̂∗

]

Now we write the RHS as a function of observable data. Define Ys = e−rs+αk̂s and apply Ito’s lemma:

(A.320) dYs = Ys

(
−r ds+ α dk̂s +

α2

2
dk̂2

s

)
=

(
α2σ2

2
− r − αν

)
Ys ds+ ασYs dBs.

Let φ ≡ r + αν − α2σ2/2. Integrating both sides from 0 to τ , taking expectations conditional on adjustment, i.e.,

with respect to the initial condition k̂0 = k̂∗, and using the OST to set the expectation of martingales to zero, we
obtain:

E
[∫ τ

0

dYs ds

]
= −φE

[∫ τ

0

Ys ds

]
+ ασ E

[∫ τ

0

Ys dWs

]

︸ ︷︷ ︸
=0

.(A.321)

Since Yτ = e−rτ+αk̂τ = e−rτ+α(k̂∗−∆k̂) and Y0 = eαk̂
∗

(A.322) E [Yτ − Y0 ] = −φE
[∫ τ

0

e−rs+αk̂s ds

]
⇐⇒ eαk̂

∗ 1− E[e−rτ−α∆k̂]

φ
= E

[∫ τ

0

Ys ds

]
.

Since k̂τ = k̂∗ −∆k̂

(A.323) E
[
pe−rτ+k̂τ |k̂0 = k̂∗

]
= pek̂

∗
E
[
e−rτ−∆k̂|k̂0 = k̂∗

]
.

From equations (A.319) to (A.323),

pek̂
∗

= E
[∫ τ

0

αAe−rs+αk̂s ds+ pe−rτ+k̂τ |k̂0 = k̂∗
]

= αAeαk̂
∗ 1− E[e−rτ−α∆k̂]

φ
+ pek̂

∗
E
[
e−rτ−∆k̂

]
(A.324)

Operating from the previous equation

k̂∗ =
1

1− α


log

(
αA

r + αν − α2σ2/2

)
− log(p) + log


1− E[e−rτ−α∆k̂]

1− E
[
e−rτ−∆k̂

]




(A.325)

Finally, letting Φ ≡ log
(
αA
φ

)
= log

(
αA

(r+αν−α2σ2/2)

)
, we obtain the result

(A.326) k̂∗ =
1

1− α


Φ− log(p) + log


1− E[e−rτ−α∆k̂]

1− E
[
e−rτ−∆k̂

]




 .

Reset states with partial irreversibility. We follow similar steps but taking into account that adjustments
happen at two different reset points. Consider the optimality condition of a firm that has sold capital at price psell
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and resetting to k̂∗+

psellek̂
∗+

= αAE+
[∫ τ

0

e−rs+αk̂s ds

]
+ E+

[
p(∆k̂)e−rτ+k̂τ

]
(A.327)

psellek̂
∗+

= eΦeαk̂
∗+
(

1− E+
[e−rτ+α(k̂τ−k̂∗+)]

)
+ psellek̂

∗+
E+

[
p(∆k̂)

psell
e−rτ+k̂τ−k̂∗+

]

e(1−α)k̂∗+ =
eΦ

psell

1− E+
[e−rτ+α(k̂τ−k̂∗+)]

1− E+
[
p(∆k̂)
psell

e−rτ+k̂τ−k̂∗+
]

Taking logs, we obtain the reset point for negative investments:

(A.328) k̂∗+ =
1

1− α


Φ− log(psell) + log


 1− E+

[e−rτ+α(k̂τ−k̂∗+)]

1− E+
[
p(∆k̂)
psell

e−rτ+k̂τ−k̂∗+
]




 .

With analogous steps we obtain the reset point for positive investments:

k̂∗− =
1

1− α


Φ− log(pbuy) + log


 1− E−[e−rτ+α(k̂τ−k̂∗−)]

1− E−
[
p(∆k̂)
pbuy

e−rτ+(k̂τ−k̂∗−)
]




 .(A.329)

A.13 Proof of Proposition 2

This proposition expresses the cross-sectional moments of k̂ and joint moments of (k̂, a) as functions of the data.
The proof follows the strategy in Baley and Blanco (2021), but taking into account the two reset points arising
from partial irreversibility.

A.13.1 Moments of k̂.

We apply Itō’s lemma to k̂ns for n ≥ 2:

(A.330) dk̂n+1
s = −ν(n+ 1)k̂ns ds + σ(n+ 1)k̂ns ds +

σ2n(n+ 1)

2
k̂n−1
s ds.

We integrate this expression from 0 to τ and take conditional expectations with respect to the initial condition
k̂0 = k̂∗, which is a function of ∆k:

(A.331) E±
[
k̂n+1
τ − (k̂∗)n+1

]
= −ν(n+ 1)E±

[∫ τ

0

k̂ns ds

]
+
σ2n(n+ 1)

2
E±
[∫ τ

0

k̂n−1
s ds

]
.

Next, take law of iterated expectation to average E− and E+
, divide both sides by E[τ ], and then use Auxiliary

Theorem 2 to recover steady-state moments using the occupancy measure:

E
[
k̂n+1
τ − (k̂∗)n+1

]

E[τ ]
= −ν(n+ 1)

E
[∫ τ

0
k̂ns ds

]

E[τ ]
+
σ2n(n+ 1)

2

E
[∫ τ

0
k̂n−1
s ds

]

E[τ ]
(A.332)

= −ν(n+ 1)E[k̂n] +
σ2n(n+ 1)

2
E[k̂n−1].(A.333)

Solving for E[k̂n] and substituting ν = E[∆k̂]/E[τ ]:

(A.334) E[k̂n] =
1

n+ 1

E
[
(k̂∗)n+1 − k̂n+1

τ

]

E[∆k̂]
+
σ2n

2ν
E[k̂n−1].
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Applying similar steps as before, we compute the centered moments:

(A.335) E[(k̂ − E[k̂])n] =
1

n+ 1

E[(k̂∗ − E[k̂])n+1]− E
[
(k̂τ − E[k̂])n+1

]

E[∆k̂]
+
σ2n

2ν
E[(k̂ − E[k̂])n−1].

Mean of k̂. Evaluate expression (A.334) at n = 1 and use the formula for the drift (A.309) to obtain:

(A.336) E[k̂] =
E
[
(k̂∗)2 − k̂2

τ

]

2E[∆k̂]
+
σ2

2ν
.

Without a price wedge (only fixed costs), there is a unique reset point k̂∗. Factorize the quadratic difference

(k̂∗)2 − k̂2
τ and substitute ∆k̂ = k̂∗ − k̂τ to obtain:

E[k̂] =
E
[
(k̂∗ + k̂τ )(k̂∗ − k̂τ )

]

2E[∆k̂]
+
σ2

2ν
= E

[
k̂∗ + k̂τ

2

(
∆k

E[∆k̂]

)]
+
σ2

2ν
.(A.337)

Conditional means:

E−[k̂] = E−
[
k̂∗− + k̂τ

2

(
∆k

E−[∆k̂]

)]
+

σ2

2

E−[τ ]

E−[∆k̂]
(A.338)

E+[k̂] = E+

[
k̂∗+ + k̂τ

2

(
∆k

E+
[∆k̂]

)]
+

σ2

2

E+
[τ ]

E+
[∆k̂]

(A.339)

Variance of k̂. To compute the variance of k̂, we evaluate expression for centered moments (A.335) at n = 2:

(A.340) Var[k̂] =
E[(k̂∗ − E[k̂])3]− E

[
(k̂τ − E[k̂])3

]

3E[∆k̂]

Without a price wedge (only fixed costs), there is a unique reset point k̂∗ and we can simplify the previous expression.

Inside the first term, add and subtract k̂τ and substitute ∆k̂ = k̂∗ − k̂τ . Expand the cubic polynomials, cancel
terms, and rearrange:

Var[k̂] =
E[(k̂τ − E[k̂] + ∆k̂)3 − (k̂τ − E[k̂])3]

3E[∆k̂]

=
E[(k̂τ − E[k̂])3 + 3(k̂τ − E[k̂])2∆k̂ + 3(k̂τ − E[k̂])∆k̂2 + ∆k̂3 − (k̂τ − E[k̂])3]

3E[∆k̂]

=
E[(k̂τ − E[k̂])2∆k̂ + (k̂τ − E[k̂])∆k̂2]

E[∆k̂]
+

E[∆k̂3]

3E[∆k̂]

=
E[∆k̂(k̂τ − E[k̂])(k̂∗ − E[k̂]) + ∆k̂(k̂∗ − k̂τ )2/3]

E[∆k̂]

= E

[(
(k̂τ − E[k̂])(k̂∗ − E[k̂]) +

(k̂∗ − k̂τ )2

3

)(
∆k̂

E[∆k̂]

)]
.
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A.13.2 Joint moments of (k̂, a).

To compute the joint moments of k̂ and its age a, we consider the function Ys = (k̂s − E[k̂])n+1s. Applying Itō’s
lemma, we obtain:

dYs = (k̂s − E[k̂])n ds − νn(k̂s − E[k̂])n−1sds + σn(k̂s − E[k̂])n−1sdWs(A.341)

+
σ2

2
n(n− 1)(k̂s − E[k̂])n−2sds.

We integrate this expression from 0 to τ and take conditional expectations with respect to the initial condition
k̂0 = k̂∗, which is a function of ∆k.

(A.342)
E
[
(k̂τ − E[k̂])n+1τ

]

E[τ ]
= E[(k̂ − E[k̂])n+1]− ν(n+ 1)E[(k̂ − E[k̂])na] +

σ2

2
n(n+ 1)E[(k̂ − E[k̂])n−1a]

Rearranging:

(A.343) E[(k̂ − E[k̂])na] =
1

ν(n+ 1)

[
E[(k̂ − E[k̂])n+1]− E[(k̂τ − E[k̂])n+1τ ]

E[τ ]
+
σ2

2
nE[(k̂ − E[k̂])n−1a]

]

Finally, to compute the covariance between (k̂, a), we evaluate expression (A.343) at n = 1 to obtain

(A.344) Cov[k̂, a] =
1

2ν

(
Var[k̂]− E[(k̂τ − E[k̂])2τ ]

E[τ ]
+
σ2

2

E[τ ]

2
(1 + CV2[τ ])

)

A.14 Disentangling investment frictions with microdata

The previous analysis teaches us that the the nature of adjustment frictions matters for the macroeconomy. How
can we disentangle their relative importance? Here we show that a decomposition of the allocation of capital
provides relevant information. Using the law of total variance, we decompose Var[x] into two terms that condition
on the last adjustment:

(A.345) Var[x]︸ ︷︷ ︸
total

= E [Var[x|∆x]]︸ ︷︷ ︸
within

+ Var [E[x|∆x]]︸ ︷︷ ︸
between

.

The first term is the average of the variance within each conditional distribution g+ and g−, that is, the
average of Var−[k̂] and Var+[k̂], where each variance is computed conditioning on the sign of ∆k̂ and using the
conditional renewal measure as in (47)). Both investment frictions add to this dispersion. The second term reflects

the distance between the conditional means E−[k̂] and E+[k̂], where each mean is computed conditioning on the

sign of ∆k̂ and using the conditional renewal measure. This term arises exclusively from the price wedge that
generates two different means. The larger the price wedge, the further apart are the conditional means and the
larger the between variance. Note that this term is zero when only fixed costs are present as there is a unique reset
point.

Next, we show that the relative size of frictions affects the response of misallocation to an increase in these
frictions. Figure A.1 illustrates the effects of each adjustment friction on the total, within, and between variances
of capital-productivity ratios. To sharpen the exposition, we assume zero drift and a symmetric price wedge. Panel
A plots the stationary density g(k̂). Panels B and C are log-log plots of misallocation against one friction, setting
the other friction either at zero or at a large value. We use a log-log scale to highlight the linearity that arises. We
also mark within (W), between (B), and total (T) variances.

Consider an environment where the fixed cost is the only investment friction (orange lines). The density is a
triangle that concentrates at the unique reset point and decreases linearly toward the boundaries of the inaction
region. A higher fixed cost widens the inaction region and increases misallocation in a log-log linear way (Panel
B). Now consider an environment where the price wedge is the only investment friction (blue lines). The density
is a rectangle between the two reset/inaction points. In this case, a higher price wedge increases all components of
misallocation (within and between) in a log-log linear way (Panel C).
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Figure A.1 – Misallocation and Investment Frictions
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Notes: Figures assume zero drift and symmetric price wedge. Panel A plots the steady-state distribution of

capital-productivity ratios, normalized by their mean. Triangle = only fixed costs; Rectangle = only price wedge;

Parallelogram = both frictions. Panel B plots misallocation against the fixed cost for a zero (orange) and a large

(black) price wedge. Panel C plots misallocation against the price wedge for a zero (blue) and a large (black) fixed

cost. Variances: total (T), within (W) and between (B).

With both frictions active (black lines), the density is a trapezoid. The relationship between misallocation
and frictions is now flattened in the following sense. Consider the case with fixed costs and a large price wedge.
Misallocation is at a higher level but the relationship between misallocation and the fixed cost flattens out. A higher
fixed cost still widens the distance between inaction thresholds, increasing the within variance, but simultaneously
reduces the distance between the reset points, decreasing the between variance. These opposing forces compensate
each other cancelling the effects on misallocation (see the dotted and dashed black lines in Panel B which move in
opposite directions). Now consider the case with partial irreversibility and a large fixed cost. Again, misallocation
is at a higher level and the relationship between misallocation and the price wedge flattens out. The between
variance disappears (its log becomes very negative).

A.15 Proof of Proposition 6

This proposition expresses the effective investment frictions in terms of fundamental parameters and taxes. Then
it computes the derivatives of after-tax frictions with respect to taxes.

A.15.1 Effective frictions

Let Ũ ≡ (1−tp)
(1−tg)ρ+ ξk − σ2 be the after-tax user cost of capital. Substitute the static policy in (25), given by

(A.346) k̂ss =
1

1− α log

(
1− tc
1− td

αA

pŨ
,

)
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into the after-tax static profits and into the after-tax profit-capital ratio:

(1− tc)Aeαk̂ss = (1− tc)A
(

1− tc
1− tcz

αA

pŨ

) α
1−α

=

(
(1− tc)A
(1− tcz)α

) 1
1−α

(
α

pŨ

) α
1−α

(A.347)

(1− tc)
(1− tcz)Ae

(α−1)k̂ss =
(1− tc)
(1− tcz)A

(
1− tc
1− tcz

αA

pŨ

)α−1
1−α

=
(1− tc)
(1− tcz)A

(1− tcz)pŨ
(1− tc)αA =

pŨ
α
.(A.348)

Therefore, the scaled investment frictons are equal to:

θ̃ ≡ 1− tcz
1− tc

θ

Aeαk̂ss
=

(
(1− td)α
(1− tc)A

) 1
1−α

(
pŨ
α

) α
1−α

(1− tcz)θ =

(
(1− tcz)
(1− tc)A

) 1
1−α

(
pŨ
α

) α
1−α

θ,(A.349)

p̃buy − p̃sell ≡ 1− tcz
1− tc

ωp(1− tc)
Ae(α−1)k̂ss

=
α

Ũ
ω(1− tc).(A.350)

A.15.2 Derivatives of frictions wrt. taxes

Now we compute the derivatives with respect to taxes T. Assume tc > 0, Ũ > 0 and p fixed. To correctly isolate
the tax effects, we define the following parameters:

(A.351) tρ ≡ 1− tp
1− tg , ξ̃d ≡ ξd

tρρ+ ξd
, td = tcξ̃d.

To ease the computations, we sign the tax effects on the log of θ̃:

(A.352) log θ̃ =
1

1− α log

(
1− tcξd

tρρ+ ξd

)
− 1

1− α log(1− tc)A+
α

1− α logR+
α

1− α log
( p
α

)
+ log θ.

• Effects of taxes on the effective fixed cost in (A.349).

∂ log θ̃

∂tc
=

1

(1− α)(1− tc)

[
1− ξd(1− tc)

tρρ+ ξd(1− tc)

]
> 0,

∂ log θ̃

∂ξd
=

1

1− α

[
1− tc

tρρ+ ξd(1− tc) −
1

tρρ+ ξd

]
< 0,

∂ log θ̃

∂tp
= − 1

1− α
ρ

1− tg
[

1

tρρ+ ξd(1− tc) −
1

tρρ+ ξd
+

1

R

]
< 0,

∂ log θ̃

∂tg
=

1

1− α
ρ(1− tp)
(1− tg)2

[
1

tρρ+ ξd(1− tc) −
1

tρρ+ ξd
+

1

R

]
> 0.

• Effects of taxes on the effective price wedge in (A.350)

∂(p̃buy − p̃sell)

∂tc
= 0,

∂(p̃buy − p̃sell)

∂ξd
= 0,

∂(p̃buy − p̃sell)

∂tp
=

α

pR3

ρ

1− tg (pbuy − psell) > 0,

∂(p̃buy − p̃sell)

∂tg
= − α

pR3

ρ(1− tp)
(1− tg)2

(pbuy − psell) < 0.
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B Generalized Hazard Model

In the main text, we specialize investment frictions to a symmetric adjustment cost θ paid indistinctly for positive
and negative investments, and a price wedge that gives rise to partial irreversibility. We examine this model mainly
for pedagogical reasons, as it simplifies the exposition of the theory. In this section, we expand the scope of the
analysis and present an asymmetric generalized hazard model, which follows the contributions by Caballero and
Engel (1999, 2007) and examined in contemporaneous work by Álvarez, Lippi and Oskolkov (2020), which may
accommodate other empirically-relevant frictions.

The generalized hazard function depends mainly on the assumption over the fixed cost of adjustment. For that
reason, in this section, we assume technology and shocks as as in Section 2. Moreover, the firm can control its
capital stock through buying and selling investment goods at prices pbuy and psell, with pbuy > psell. For simplicity,
we assume away the tax system.

Adjustment costs. The first step generalizes the adjustment cost structure. For every investment i = ∆k, the
firm must pay an adjustment cost θs proportional to current productivity us and measured in consumption units
(Caballero and Engel, 1999):

(B.353) θs = Θ(is,dN
−
s ,dN

+
s , ϑ

−
s , ϑ

+
s )us,

where the function Θ(·) > 0 is described by

Θ(i,dN+,dN−, ϑ−, ϑ+) =





0 if i = 0
θ̄+(1− dN) + dNϑ+ if i < 0
θ̄−(1− dN) + dNϑ− if i > 0.

(B.354)

Let us describe each element in equation (B.354).

(i) N+
s and N−s follows Poisson counter with unit increments and arrival rates λ+ and λ−;

(ii) θ̄+ and θ̄− are non negative number; and

(iii) ϑ+
s and ϑ−s are i.i.d. random variables with support Supp(ϑ+) = [0, ϑ̄+] and Supp(ϑ−) = [0, ϑ̄−]. We assume

that ϑ− ≤ θ̄− and ϑ+ ≤ θ̄+. Define J+(x) ≡ Pr(ϑ+ < x) and J−(x) ≡ Pr(ϑ− < x) the cumulative
distribution for each random variable.

Relationship to the literature. The stochastic process of fixed cost in (B.354) can derive the majority of lumpy
adjustment models used previous work.

1. Setting λ+ = λ− = 0 and θ̄+ = θ̄− yields the standard fixed cost model of adjustment, originally proposed
by Scarf (1959) in an inventory model and Sheshinski and Weiss (1977) in a pricing context.

2. Setting λ+ = λ− > 0 and Supp(ϑ+) = Supp(ϑ−) = {0}, and θ̄+ = θ̄− > 0 yields the CalvoPlus model
proposed by Nakamura and Steinsson (2010), which nests the standard fixed cost model and the time-
dependent Calvo model.

3. Under this case, if θ̄+ 6= θ̄−, then we have the Bernoulli fixed cost model or asymmetric Bernoulli fixed cost
model if λ+ 6= λ−, see Baley and Blanco (2021).

4. Finally, setting λ+ = λ− > 0 and ϑ̄+ = ϑ̄− = θ̄− = θ̄+ yields the generalized hazard model originally
proposed by Caballero and Engel (1993).

Value. Let V (k, u) denote the value of a firm with capital stock k and productivity u. Given initial conditions
(k0, u0), the firm chooses a sequence of adjustment dates {Th}∞h=1 and investments {iTh}∞h=1, where h counts the
number of adjustments, to maximize its expected discounted stream of profits. The sequential problem is

(B.355) V (k0, u0) = max
{Th,iTh}

∞
h=1

E

[∫ ∞

0

e−ρsπs ds−
∞∑

h=1

e−ρTh (θTh + p (iTh) iTh)

]
,

subject to the production technology (1), the idiosyncratic productivity shocks (2), the investment price function
(4), the law of motion for the capital stock (6), and the stochastic process of adjustment cost in (B.354).
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Capital-productivity ratios k̂. As in the main text, it is easy to show that v(k, u) = uv(k̂) where

(B.356) v(k̂) = max
τ,∆k̂

E
[∫ τ

0

Ae−rs+αk̂s ds + e−rτ
(
−θτ (∆k̂)− p(∆k̂)(ek̂τ+∆k̂ − ek̂τ ) + v(k̂τ + ∆k̂)

) ∣∣∣k̂0 = k̂
]
.

Here, θτ (∆k̂) is a random variable instead of a number and it is a function of the sign of adjustment—similarly to
he price of investment.

Optimal investment policy. The optimal investment policy is characterize by four numbers K ≡ {k̂− ≤ k̂∗− ≤
k̂∗+ ≤ k+}, and a hazard rate of adjustment Λ(k̂). k̂− and k+ correspond to the lower and upper borders of the
inaction region

(B.357) R =
{
k̂ : k̂− < k̂ < k̂+

}
,

and k̂∗− < k̂∗+ to the two reset points following a positive and a negative investment, respectively. Λ(k̂) : R → R+

is a non-negative function corresponding to the arrival rate of a new Poisson counter NΛ. Given R and NΛ, the
optimal adjustment dates are

(B.358) Th = inf
{
s ≥ Th−1 : k̂s /∈ R or dNΛ

s (k̂) = 1
}

with T0 = 0.

Following Øksendal and Sulem (2005) and Oksendal (2007), Lemma C.3 establishes the optimality conditions that
characterize (B.356).

Lemma C.3. The value function v(k̂) and the policy K ≡ {k̂−, k̂∗−, k̂∗+, k̂+} satisfy:

(i) For all k̂ ∈ R, v(k̂) solves the HJB equation:

rv(k̂) = Aeαk̂ − νv′(k̂) +
σ2

2
v′′(k̂)(B.359)

+ λ−
∫ ϑ̄−

0

max
{
vbuy(k̂)− ϑ, 0

}
dJ−(ϑ) + λ+

∫ ϑ̄+

0

max
{
vsell(k̂)− ϑ, 0

}
dJ+(ϑ)

where the values vbuy and vsell are defined as follows:

vbuy(k̂) ≡ v(k̂−)− v(k̂)− pbuy(ek̂
− − ek̂),(B.360)

vsell(k̂) ≡ v(k̂+)− v(k̂)− psell(ek̂+ − ek̂).(B.361)

(ii) At the borders of the inaction region, v(k̂) satisfies the value-matching conditions:

vbuy(k̂−) = θ̄−; vsell(k̂+) = θ̄+;(B.362)

(iii) At the borders of the inaction region and the two reset states, v(k̂) satisfies the smooth-pasting and the
optimality conditions:

dvbuy(k̂)

dk̂
= pbuyek̂, k̂ ∈

{
k̂−, k̂∗−

}
,(B.363)

dvsell(k̂)

dk̂
= psellek̂, k̂ ∈

{
k̂∗+, k̂+

}
.(B.364)

Hazard rate of adjustment Λ(k̂). We are now ready to define Λ(k̂), which gives the probability of adjustment

Λ(k̂) dt in a time period dt a firm with k̂ ∈ R. The hazard rate of adjustment is given by

(B.365) Λ(k̂) = λ−J−
(
vbuy(k̂)

)
1{k̂∈(k̂−,k̂∗−)} + λ+J+

(
vsell(k̂)

)
1{k̂∈(k̂∗+,k̂+)}.

The hazard function Λ(k̂) satisfies the following properties:
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1. Λ(k̂) = 0 in the inner inaction region, i.e., for all k̂ ∈ (k̂∗−, k̂∗+),

2. Λ(k̂) is weakly decreasing in (k̂−, k̂∗−) and weakly increasing in (k̂∗+, k̂+);

3. If J−(0) > 0 then Λ(k̂) is bounded below in the domain (k̂−, k̂∗−) by Λ(k̂) = λ−J−(0).

4. If J+(0) > 0 then Λ(k̂) is bounded below in the domain (k̂∗+, k̂+) by Λ(k̂) = λ+J+(0)
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C A General Equilibrium Framework

This section provides a general equilibrium model that microfounds the parsimonious investment model presented
allows to examine the macroeconomic effects of corporate tax reforms in an equilibrium setting. Its backbone
components are: a small open economy with an exogenous interest rate, a corporate tax structure as in Summers
(1981), and “capital quality shocks” as in Baley and Blanco (2021).

C.1 Economic environment

Time is continuous and it extends forever. Five types of agents live in the economy: (i) A representative household,
(ii) a capital–goods producer, (iii) a final–good producer, (iv) a unit mass of intermediate–good firms indexed by
f ∈ [0, 1] who are subject to capital adjustment frictions, and (v) a government.

(i) Representative household. The household chooses the stochastic processes for consumption Cs, risk free

bonds Bs and equality for each firm Efs subject to the law of motion of nominal wealth Ws =
∫ 1

0
Eft df +Bt

(C.366) dBs +

∫ 1

0

Pfs dEfs df = (Ys − Cs) ds− tg
∫ 1

0

dPfsEfs df,

where Pfs is the price of equity for firm f , tg is the capital gain tax, and Ys is after tax available income given by

(C.367) Ys = Rs + (1− tp)
(∫ 1

0

DfsEfs df + ρ̃sBs

)
.

Here, Rs are lump-sum transfers for the government, Dfs are firm’s f dividend payments, tp denotes the personal
income tax, and ρ̃s is the world interest rate. We omit the profits of the final–good producer and the capital–good
since they have constant returns to scale and do not generate profits for the household. Thus, we omit those sectors’
profits from the household budget constraint. Taking the prices of equity {Pfs}fs, the real interest rate ρ̃s, and
taxes (tp, tg, {Rs}s) as given, the household’s problem is to maximize her expected utility (discounted at the rate
χ)

(C.368) max
{Cs,Bs,{Eft}f}∞t=0

E0

[∫ ∞

0

e−χ̃t logCs ds

]
,

subject to her budget constraints in (C.366) and (C.367) and initial conditions B0 and {Ef0}f .

(ii) Capital–good producer. The capital–good producer manufactures firm-specific investment goods {ift}f∈[0,1]

in competitive market, according to a linear technology

(C.369)

∫ 1

0

(
ϕ(ift)ifs
ufs

)
df = is,

where

(C.370) ϕ (ift) =

{
ϕ− if ift > 0
ϕ+ if ift ≤ 0

.

We refer to ufs as capital quality shocks. The parameters ϕ− and ϕ+ measure the level of partial irreversibility
with ϕ− > ϕ+. Taking the prices of firm-specific investment goods pkjs as given, the capital–good firm problem
maximizes her profits

(C.371) max
{ift,it}∞t=0

(1− tc)
(∫ 1

0

pkfsifs df − is
)
,

subject to the technology described in (C.369). Here, tc denotes the corporate income tax and is is the aggregate
investment to produce capital. Note that ift may be positive or negative as there is no technological constraint on
its sign.
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(iii) Final–good producer. The final–good producer assembles output Ys using intermediate inputs {ŷfs}f∈[0,1]

according to a linear aggregator

(C.372) Ys =

∫ 1

0

(
ŷfs
ufs

)
df,

where capital quality ufs decreases the marginal product of the intermediate good f . Taking the prices of inter-
mediate inputs pft as given, the producer’s problem entails choosing final–good supply Ys and input demands ŷfs
to maximize her profits

(C.373) max
Ys,ŷfs

(1− tc)
(
Yt −

∫ 1

0

pftŷft df

)
,

subject to the aggregator in (C.372).

(iv) Intermediate-good firms. These are the most important agents in the economy for our question as they
make investment choices subject to adjustment costs. Intermediate–good firm f ∈ [0, 1] produces output yfs using
capital kfs according to a production function with decreasing returns to scale

(C.374) yfs = u1−α
s kαfs, α < 1.

Firm’s total productivity is driven by an idiosyncratic components

(C.375) dlog(ufs) = µds+ σ dWfs Wfs ∼Wiener,

where the processes Wft are independent across intermediate–good firms.
The firm pays the corporate income tax rate tc on its cash flow pfsyfs net of deductions ξdkfs, where ξd denotes

the deduction rate. Since the physical and the legal depreciation rates differ, we distinguish deductions from the
capital stock and denote these with dfs. The state space now includes deductions (k, u, d). The corporate income
tax and deductions jointly determine the after–tax profit rate

(C.376) πfs = pfsyfs − tc(pfsyfs − ξddfs) = (1− tc)pfsyfs + tcξddfs,

and the evolution of deductions

log dfs = log d0 − ξds+
∑

h:Tfh≤s

(
1 +

pk (̂ifTfh )̂ifTfh + θfTh
dfT−fh

)
.(C.377)

Here, θs = θus where θ > 0 is constant and î is firm’s investment.
Taking the prices of the intermediate goods pft, the marginal investor discount factor Qt, and firm-specific

capital goods pkft(̂i) as given, together with the adjustment friction θft, each firm f chooses a sequence of capital
adjustment dates {Tfh}∞h=1 and investments {if,Tfh}∞h=1 to maximize its expected discounted stream of profits

(C.378) max
{Tfh ,̂if,Tfh}

∞
h=1

E

[∫ ∞

0

Qtπft ds−
∞∑

h = 1

QTfhp
k
f,Tfh

(
θfTfh + pkfTfh (̂ifTfh )̂ifTfh

)]
,

subject to the profits function in (C.376) and the law of motion for its capital stock

log(kft) = log(kf0)− ζt+
∑

h:Tfh≤t

log

(
1 +

îf,Tfh
kT−fh

)
.(C.379)

(v) Government. Since Ricardian equivalence holds, we assume the government follows a period by period
balance budget without loss of generality. The period expenditures, given by the lump-sum transfers Rs, has to be
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equal to the revenue from the firms
∫ 1

0
Tjs df and the household Ths

Rs =

∫ 1

0

Tfs df + Ths ,

Tfs = tc
(
pfsyfs − ξddjs

)
,

Ths = tp
(∫ 1

0

DfsEfs df + ρ̃sBs

)
+ tg

∫ 1

0

PfsEfs df.(C.380)

Market structure. There are three type of goods (respectively, markets) in the economy: (i) final good, (ii)
intermediate goods, and (iii) firm-specific investment goods. There are two assets: (i) risk-free bonds and (ii)
equity. All good and asset markets are competitive. We assume equity can only be hold by the representative
household, thus we have segmented equity market, and the bond market is freely trade across countries. The
market clearing conditions, respectively, are as follows:

Efs = 1 for all t and f,(C.381)

ŷfs = yfs for all s and f,(C.382)

îfs = ifs for all s and f.(C.383)

Equilibrium. Given a stochastic processes for capital quality {ufs}fs, and adjustment costs θft, an equilibrium is a
set of stochastic processes for prices {ρ̃s, {pfs, pkfs(i), Pfs}f∈[0,1]}∞s=0, the household’s policy {Cs, Bs, {Efs}f∈[0,1]}∞t=0,

the final–good producer’s policy
{
Ys, {ŷfs}f∈[0,1]

}∞
t=0

, the capital–good producer’s policy
{
{ifs}f∈[0,1], is

}∞
t=0

, and

the intermediate–good firms’ policy
{
{Tfh, if,Thf }∞h=1

}
such that:

(i) Given prices {rs, Pfs}, the household solves (C.368).

(ii) Given prices {pkfs}, the capital–good producer solves (C.371).

(iii) Given prices {pfs}, the final–good producer solves (C.373).

(iv) Given prices {Qs, pfs, pkfs}, intermediate–good firms solve (C.378).

(v) Market clears in (C.381) to (C.383).

C.2 Equilibrium characterization

We now describe equilibrium determination of prices and quantities, in that order. For now on, we assume that
world interest rate is constant: ρ̃s = ρ̃. We derive the three macroeconomic outcomes (e.g., capital allocation,
valuations, and dynamics) departing from first principles.

Equilibrium determination of prices. The household’s optimality conditions over bonds and equity are

ρ̃(1− tp) ds = χds− d(1/Cs)

1/Cs
∀s

(1− tg)E[dP ifs] + (1− tp)Di
fs ds

P ijs
= χds− d(1/Cs)

1/Cs
∀s, f(C.384)

The differential equations in (C.384) jointly imply an unique equilibrium for the price of equity. Under the equi-
librium condition of an unit supply of equity in (C.381), we that

(C.385) V0 = P0 =
1− tp
1− tg E0

[∫ ∞

0

e−ρ̃
1−tp
1−tg sDs ds

]
.

Finally, the zero profit conditions for the final– and capital–good producers imply the following relationships for
the input and output prices of the respective goods:

(C.386) pft =
1

uft
; pkft(i) = pftϕ(i),
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where ϕ(i) = ϕ+
1{i<0} + ϕ−1{i>0} and pkft(i) stands for the relative price of capital.

Equilibrium policy of intermediate good firms. With these facts about equilibrium prices established, we
turn to the problem facing an individual intermediate–good firm. Let V (k, u, d) be the value of a firm with capital
k, productivity u, and capital depreciation deductions d. The sufficient optimality conditions satisfied by a firm’s
policy are: (i) the HJB equation valid during periods of inactivity, (ii) the value matching conditions, and (iii) the
smooth pasting conditions. The firm policy consists of an inaction region R ≡ {(k, u, d) : k−(u, d) ≤ k ≤ k+(u, d)},
where k−(u, d) and k+(u, d) are the lower and upper inaction thresholds, together with a reset capitals k∗−(u, d)
and k∗+(u, d) for positive and negative investments upon adjustment.

Define the PDV of depreciation deductions:

z ≡ ξd

ρ̃ 1−tp
1−tg + ξd

.(C.387)

Also let r ≡ ρ̃(1− tp)(1− tg)−µ (without subtracting σ2/2, in contrast to the main text) be the adjusted discount

factor and let v(k̂) : R→ R be a function of the log capital-productivity ratio equal to
(C.388)

v(k̂) = max
τ,∆k̂

E
[∫ τ

0

(1− tc)e−rs+αk̂s ds + e−rτ
(
−θ(1− tcz)− p(∆k̂)(ek̂τ+∆k̂ − ek̂τ ) + v(k̂τ + ∆k̂)

) ∣∣∣k̂0 = k̂
]

where the price function with taxes now given by:

p (is) = (1− tcz)
(
ϕ−1{is>0} + ϕ+

1{is<0}
)
.(C.389)

Then the firm value equals V0 = 1−tp
1−tg

[
v(k̂0) + tczd0

]
.

A few remarks about the firms’ investment policy are in place. The formulations of the capital quality shocks
and the adjustment costs allow us to collapse the state-space of the firms (k, u) into the capital-to-productivity ratio

k̂ = k/u. Note, that the value of the firm v(k̂0) is not scale by the level of productivity to recover the time-0 value
V0.The prices of intermediate goods pft and capital goods pkft, as well as the adjustment costs θft, are proportional
to capital quality uft, making profits and investment scaled by total productivity the relevant variables for the firm.

Equilibrium determination of macroeconomic outcomes. With equilibrium prices and firms’ policies, we
can determine equilibrium aggregate quantities. Lemma D.4 characterizes the equilibrium detrended aggregate
quantities: It shows that all aggregates are functions of the distribution of capital-to-productivity ratios.

Lemma D.4. Let g(k̂) be the density of capital-to-productivity ratios and define the following expectations: E
[
exp(k̂)

]
≡

∫ k̂+
k̂−

exp(k̂)g(k̂) dk̂. Then, the equilibrium aggregate output is

Ŷt ≡
∫ 1

0

pftyft df = E
[
exp(αk̂t)

]
,(C.390)

In principle, we cannot sum firms’ capital since they are different goods, but as in the main text, the only input
to determine output in this economy is capital–productivity. Thus, we define aggregate capital as

(C.391) K̂t = E
[
exp(k̂t)

]
.

Equations (C.390) and (C.391) shows an important property in this economy: Without fixed cost of adjustment
and partial irreversibility, the supply side of this model collapses to a neoclassical firm with technology Ŷ = K̂α.
Doing a first order approximation on equation (C.391), it follows the CIR(δ) definition in 37.

With these facts over aggregate quantities, we now describe misallocation and the Tobin’s q in our economy.
Misallocation is define as the dispersion of the log of productivity weighted marginal revenue given by

(C.392) V
[
log

(
(1− tc)uf

dpfyf
dkf

)]
= V

[
log ((1− tc)) + log

(
uf
kf

(
kf
uf

)α)]
= (1− α)V

[
k̂
]
.

The argument of why we need weight according to capital capital quality comes from the technology to produce
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investment. If the rate of transformation from consumption goods to firm–specific investment good is one, then
there is no need to weight with capital capital. This is not the case, in our economy since the rate of transformation
from consumption goods to firm–specific investment good is given by uf . This the main reason we need to weight
by the idiosyncratic capital quality shocks to obtain misallocation or productivity in this economy.

With a similar discussion as before, the aggregate Tobin’s q is given by

(C.393)

∫ 1

0
uf

dV (kf ,uf ,df )
dkf

pK̂
= E[v′(k̂)].

C.3 Remarks on the economic framework

General equilibrium structure. Capital quality uft was first used in Baley and Blanco (2021) in the investment
context. In the pricing literature, an analogous formulation was first used by Woodford (2009) to keep the tractabil-
ity of their model. It is also used by Midrigan (2011), Álvarez and Lippi (2014), Baley and Blanco (2019), and
Blanco (2020), among others. This formulation implies that aggregate feasibility only depends on firms’ capital-
to-productivity ratios instead of capital and productivity separately. As a result, capital quality shocks reduce the
dimensionality of the aggregate state space from the joint distribution of capital and productivity to the distribution
of their ratio.

Partial irreversibility. The price wedge is a technological constraint in the capital–good producer, and therefore,
it is exogenous. We choose this modeling strategy to focus on its consequences for capital allocation, capital valua-
tion, and capital dynamics. This formulation follows Veracierto (2002) and Khan and Thomas (2008). Alternative,
partial irreversibility could be the outcome of distortionary taxation. For example, Chen et al. (2019) use China’s
2009 VAT reform to study changes in the level of partial irreversibility. It would be easy to extend our framework
to micro-found partial irreversibility as an outcome of a tax system as in Chen et al. (2019). See Lanteri (2018) for
a model that endogenies partial irreversibility.

Financial markets. We assume that the representative household can trade in the bond market, but the economy
is closed to the equity market. That is, only the household in the small open economy is the firms’ owner, and
it provides the firms’ discount factor. While these are extreme assumptions, they are a reasonable approximation
of small open economies. On the empirical ground, it is well known that central banks, firms, and households in
emerging economies tend to save in dollar-denominated risk–free assets (e.g., T-bill). Moreover, it is also well known
that despite the globalization of finance and financial institutions, market participants put the majority of their
wealth into assets from their own country. This “home bias” might be due to regulatory constraints, information
and transaction costs, but some are regarded as a matter of taste. While the current version of the model is an
extreme version of the “home bias” facts, it provides a starting point to analyze the macroeconomic consequence
of corporate taxation without considering the effect of personal taxation in other countries though its effect in the
firms discount factor.

Tractability. Given the novelty of the general equilibrium framework, a further discussion of the assumptions
and economic adjusting mechanisms is warranted. The tractability of our framework arises from three features.
First, all aggregate variables are express in terms of the distribution of capital-to-productivity ratios. This result
comes directly from how we introduce capital quality shocks and the shape of capital adjustment costs. Second,
the model generates a constant real interest rate due to the small open economy assumption. Third, by the close
equity market assumption, we can determine the first discount factor as a function of the world interest rate and
the personal taxation in the economy.

The theory developed in the main text takes as given that the cross-sectional distribution of capital-to-
productivity ratios is the relevant aggregate state, exogenous interest rate, and taxation in general equilibrium.
The general equilibrium framework presented here provides a microfoundation to analyze the macroeconomics
consequences of corporate tax changes.
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D Data Appendix

This Appendix describes the Chilean tax and investment data.

D.1 OECD Statistics

Among OECD countries, corporate income tax revenue in 2018 accounted for an average of 10% of total tax revenue,
ranging from 3.4% in Latvia to 25% in Colombia (Panel A in Figure D.2). The importance of corporate taxation
remains large, despite a generalized falling trend in tax rates over the last four decades; in particular, the median
corporate income tax rate has decreased from 42% in 1980 to 25% in 2020. At the country level, corporate tax
reforms happen infrequently and thus are very persistent. In the US, for instance, only two reforms in the corporate
income tax rate have occurred in the last 40 years, in 1986 and 2018. (Panel B in Figure D.2)

Figure D.2 – Corporate Taxes in OECD Countries

(A) Corporate income tax revenue (B) Corporate income tax rate
(% of total tax revenue) (%, highest marginal rate)

Source: OECD Revenue Statistics Database. Corporate income tax revenue includes corporate income tax and
capital gains tax revenue. Data for the largest OECD countries in terms of GDP and the countries with the lowest
and the highest value in the sample.

D.2 Corporate Tax Policy in Chile

Policy Context.

• The 1974 tax reform introduced different corporate income tax rates depending on the type of enterprise,
at least up to 1984. We decided to take to keep rates applicable to corporations (sociedades anónimas) as
those were the highest ones, including surtaxes.

• At least since 1984, Chile maintains an integrated tax system. It owes its name to the fact that the
system integrates corporate income, capital gains and personal incomes.

• In 2014, a tax reform implemented during Bachelet’s second presidency created the so-called semi-integrated
tax system for corporate income. Under this scheme, which came into force in 2017, business owners pay
taxes over rents or distributed rents. Taxes over regular enterprise profits may be deferred if those earnings
are reinvested. Another important distinction is that corporation can not longer take the total amount of
corporate taxes as credit for the global complementary tax. Finally, marginal rates are higher under this
system. As a consequence, for 2017, 2018 and 2019 we decided to take those rates as our observations for
corporate income tax rate.
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Tax rates.

• Corporate income tax tc. Corporate income tax rates apply to business owners over the profits (in broad
sense, including capital gains) generated by the enterprises they own (impuesto de primera categoŕıa).

• Personal income tax tp. Personal income (for example, salary, fees, pension) is also taxed, progressively
according to income level (impuesto de segunda categoŕıa).

• Global complementary tax. Both sources of income (corporate and personal) constitute the base of
the global complementary tax (Impuesto Global Complementario). By that means, ultimately all sources
of income are taxed under a single scheme. Consequently, to avoid double taxation, the amount payed as
corporate income tax can be taken as tax credit when facing the annual global complementary tax25.

• Capital gains tax tg. Chile does not features a specific tax for capital gains, which are taxed by the
corporate income tax. Ultimately personal income tax rates apply to all sources of income. Therefore, in
our data set capital gains rates coincides with personal income tax rates every year.

D.2.1 Data sources

We searched for major tax reforms in Chile starting from 1974. We cross-checked several sources: Arenas de Mesa
(2016), Barris et al. (1994), Boylan (1996), Cheyre (1986), Fairfield (2015), Focanti et al. (2016), Mahon (2004),
Marfán (2001) and Weyland (1997). Compiling data included in those sources, we managed to construct new time
series for corporate and personal income tax rates. We always keep the top marginal rate to ensure consistency.

Table C.II – Mapping of data sources for Table C.I

1 Arenas de Mesa (2016) 6 Focanti et al. (2016)
2 Boylan (1996) 7 Mahon (2004)
3 Carciofi et al. (1994) 8 Marfan (2001)
4 Cheyre (1986) 9 Weyland (1997)
5 Fairfield (2015) 10 OECD data

25Non residents are taxed by Impuesto Adicional instead of Impuesto Global Complementario. The former
features a flat rate that nowadays it is set on 35%.
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We present a table below with specific sources that give support to each observation for Chilean time series.

Table C.I – Sources of Chilean data

year vat tr tp = tg tc

1975 3,4,7 4 3,4
1976 3,4 4 3,4
1977 3,4 4 3,4
1978 3,4 4 3,4
1979 3,4 4 3,4
1980 3,4 4 3,4
1981 3,4 4 3,4
1982 3,4 4 3,4
1983 3,4 4 3,4
1984 3,4 4 3,4
1985 3 3 3
1986 3 3 3
1987 3 3 3
1988 2,3,8 3 3
1989 1,3,6 2,6,8 2,8
1990 1,3,5,6,8 2,6,8,9 2,3,5,6,8,9
1991 1,5,6,8 2,6,8 1,3,6,8
1992 1,5,6,8 2,6,8 1,3,6,8
1993 1,5,6,8 2,6,8 1,3,6,8
1994 1,5,6,8 1,6,8 1,5,6
1995 1,5,6,8 6,8 1,5,6
1996 1,5,6,8 6,8 1,5,6
1997 1,5,6,8 6,8 1,5,6
1998 1,5,6,8 6,8 1,5,6
1999 1,5,6 6 1,5,6
2000 1,5,6 5,6 1,5,6
2001 1,5,6 5,6 1,5,6
2002 1,5,6 6 1,5,6
2003 1,5,6 6 1,5,6
2004 1,5,6 6 1,5,6
2005 1,5 5,10 1,5
2006 1,5 5,10 1,5
2007 5 5,10 1,5
2008 5 5,10 1,5
2009 5 5,10 1,5
2010 5 5,10 1,5
2011 5 5,10 1,5
2012 5 5,10 1,5
2013 5 5,10 1,5
2014 1 1,10 1
2015 1 1,10 1
2016 1 1 1
2017 1 1 1
2018 10 1 1
2019 10 10 10
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D.2.2 Time series of corporate income tax rate in Chile

One important feature of our data is that it diverges from Vegh and Vuletin (2015) inputs, specially before the
year 2000. Below, we transcribe the two series and present some plots to point out differences between data sets.

Figure D.3 – Top marginal rates in Chile using data by Vegh and Vuletin (2015) data

Figure D.4 – Top marginal rates in Chile using sources listed in Table C.II
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D.3 Establishment-level investment data

This section describe the sources, the construction of variables, and the filters we apply to clean the data in order
to construct the investment series at the firm level in order

D.3.1 Source, description and data cleaning

Data come from the Encuesta Nacional Industrial Anual (ENIA). The sample period covers 31 years, from 1980
to 2011, with an average of 543 manufacturing plants per year. We have a total number of plant-year observations
of 154,591.

1. First, we drop the 3,984 permanently small firms (i.e. with less than 10 workers throughout the sample
period, 4% of sample). This filter is motivated by the lack of good quality data with respect to these firms
since ENIA is directed to plant with more than 10 workers.

2. Second, we drop 5,343 observations with non-positive total value of book capital, wage bill or sales.

3. Third, we drop 12,161 observations that had a frequency of non-zero investment lower than 10% of the
sample period.

4. Finally, we drop 5,556 plants with less than 3 years of coverage (6% of the sample). Note that we consider
as new plants (and give a new ID) those that disappear from the sample more than three years and reappear
in the sample after that.

5. In total, we drop about 18% of the year-plant observations and keep 127,631 observations. Within this
remaining sample, a balanced panel would maintain 101,160 plant-years.

Table D.3 summarizes the cleaning process and shows the number of observations dropped at each step.

Table D.3 – Data cleaning

Description Chile

Start year 1980
End year 2011
Avg. number of plants per year 543
Plant-year observations 154,591

Cleaning Removed observations

Less than 10 employees 3,984
Non-positive wage bill, capital, or sales 5,343
Frequency of non-zero investment less than 10 12,161
Less than 3 years of coverage 5,556

Remaining observations 127,631
% of total 82.6

With more than 10 years of data 101,160
% of remaining observations 79.3

Sources: Authors’ calculations using establishment-level survey data from Chile. Less than 10 employees refers to

plants with less than 10 employees for all the years in the sample.
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D.3.2 Perpetual Inventory Method

In order to deal with reporting and measurement errors in the surveys, we construct capital series using the stan-
dard perpetual inventory method (PIM) with the addition of an investment price wedge.

Capital stocks. Let firm’s i stock of capital on year t be given by:

(D.394) ki,t = (1− ξk)ki,t−1 +
Ii,t

p(It)Dt
for ki,t0 given.

We consider the following elements to construct the capital series:

• Capital types considered are j ∈ {structures,machinery and equipment, vehicles}.
• Gross investment: Ii,j,t is gross nominal investment into capital of type j at time t, and it is based on the

information on purchases, reforms and improvements, and sales of fixed assets reported by each plant in the
ENIA and EAM data sets.

(D.395) Ii,j,t = puchasesi,j,t + reformsi,j,t + improvementsi,j,t − salesi,j,t

• Depreciation rate: ξk = 0.09 is a the depreciation rate.

• Price deflators: Dj,t are gross fixed capital formation deflators by capital type from Penn World Tables
(PWT).

• Investment prices and wedge.

• Initial capital: Ki,j,t0 is given by:

(D.396) Ki,j,t0 =
K̃i,j,t0

Dt0

if K̃i,j,t0 ≥ 0,

where K̃i,j,t0 is firm i’s self-reported nominal stock of capital of type j at current prices on the starting year
t0 = t0,i,j , which is the first year in which firm i reports a non-negative capital stock of type j.

Investment rates Once we construct the investment and capital stock series, we generate the investment rate
ii,j,t by dividing investment by initial capital:

(D.397) ii,j,t =
Ii,j,t

Ki,j,t−1
,

Outliers. In both countries, once we generate the series of investment rates, we eliminate investment rates below
the 2nd percentile and above the 98th percentile of the investment rate distribution.

Figure D.5 plots the aggregate capital stock computed with the perpetual inventory method and compare it to
the reported book value. We observe that, in the aggregate, the reported book value is consistent with the PIM
series, for each capital-type and for the total stock. This shows the good quality of the micro-data. Moreover,
given the similarity in the series, we validate our choice of using the initial book value reported by the a plant as
the initial condition for the PIM construction.

D.3.3 Comparison with National Accounts

This section verifies that the information contained in the survey data is consistent with aggregated information
from National Accounts.

The national account office in Chile uses the ENIA survey as a source to compute several indices, such as
variations in inventories or value added by type of industry. Nevertheless, National Accounts does not use ENIA
to compute total investment or investment in the manufacturing sector; for that purpose, it uses sources related
to the supply of capital goods (i.e., balance of payments, national statistical institute, Corporacion de Desarrollo
Tecnologico de Bienes de Capital). Therefore, National Accounts serve as an orthogonal source to verify that the
micro-data from the survey is consistent with the total investment in the manufacturing sector.

Panel A of Figure D.6 describes total nominal investment constructed from the ENIA (dashed black line) and
the total nominal investment in the manufacturing sector constructed using National Accounts (solid blue line), in
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Figure D.5 – Chile: Reported Book Value vs Perpetual Inventory
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Notes: Aggregate capital stock in Chile’s manufacturing sector reported by plants and computed through the PIM. All the variables

are in logs and real terms, normalized to zero in 1980.

current millions of pesos. As we can see, the two series are very close to each other with a correlation of 0.62. Total
investment from the micro-data for the period 2005-2009 seems to growth at a much faster rate than National
Accounts, but we found that this is mainly explained by a few outliers. For example, if we drop observations
with investment rates larger than 5% of aggregate investment (dashed-dotted red line), then the fit between the
aggregate investment from the micro-data and the national account is much better, both in levels and cyclicality.
Finally, Panel B of D.6 describes the proportion of total investment that is done in the manufacturing sector, which
represents on average 7% in the sample period, but has been declining.

For the year 2003-2009, the National Accounts calculates the distribution of investment by capital types at the
sector level. Table D.4 describes the composition of capital across different types from the ENIA and from National
Accounts. We find that the proportions invested in structures are similar between National Accounts and in ENIA,
but the decomposition between machinery and vehicles is different across datasets.

Table D.4 – Chile: Distribution of Investment Across types of Capital

Structures Machinery Vehicles

National Accounts 35.4 51.4 13.1
ENIA 29.1 68.6 2.1

Notes: Proportion of investment across different types of capital in the ENIA and national accounts.

D.3.4 Inputs from data

In this section, we construct cross-sectional statistics using the panel data on (∆x, τ) and then use them as inputs
into our observation formulas to recover parameters, steady state moments and the CIR. First, we explain how to

65



Figure D.6 – Chile: Micro-data vs. National Accounts
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sector over total investment. Nominal investment from national account uses the concatenated investments from the base year 2015.

use the data on investment rates to construct changes in capital gaps, and second, we explain how to construct the
stopping time distribution and some challenges.

Capital gaps. Recall that the change in capital gaps is given by the log difference in the capital stock between
an adjustment date τi,j,t and immediately before adjustment τ−i,j,t:

(D.1) ∆xi,j,t = x̂− xτ−i,j,t = log
(
Kτi,j,t/Kτ−i,j

)
= log (1 + ii,j,t)

Using the information on investment rates, we construct capital gaps as:

(D.2) ∆xi,j,t =

{
log (1 + ii,j,t) if |ii,j,t| > i

0 if |ii,j,t| < i,

where i > 0 is a parameter that captures the idea that small maintenance investments do not incur the fixed cost
of investment. Following Cooper and Haltiwanger (2006), we set i = 0.01, such that all investments smaller than
1% in absolute value are excluded and considered as part of the inaction frequency.
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D.4 Mappings from microdata to macro outcomes

This section describes the application of the theory with producer level investment data. Let Ift be the nominal
investment in period t for firm f . The sequence of steps describe next, describe the steps to compute all the
macroeconomic outcomes describe in Table II.

Construction of (∆k̂fh, τfh)fh and weights ωf : We follow Baley and Blanco (2021) Online Appendix L to
drop observations that do not satisfy a set of criteria (e.g., positive sales, wage bill, minimum number of year,
etc.). We apply perpetual inventory to construct the capital stock kft of firm f in period t

(D.3) kt = (1− ξk)kt−1 + It/(p(It)Dt),

where ξk is the physical depreciation rate; Ift is the nominal value of investment; p(Ift) is the investment pricing
function, which considers different prices for capital purchases and sales; Dt is the gross fixed capital formation
deflator, and kf0 is a plant’s self-reported nominal capital stock at current prices for the first year enter in the

data or its firms investment level. We construct the change in the capital-productivity ratio upon action ∆k̂h as

(D.4) ∆k̂fh =

{
log
(

1 +
Ift/(p(Ift)Dt)

kft−1

)
if |ιh| > ι,

0 if |ιh| < ι.

With ∆k̂fh, we construct τfh as the number of periods between non-zero investments.

Unobserved heterogeneity in the frequency of non-zero investment can generate a bias in the estimation of moment
relevant for the theory. For that reason, we construct firms’ weights using the inverse of the frequency of non-zero
investments. By definition of weights

(D.5)
∑

fh

ωf = 1.

Estimation of (k̂∗−, k̂∗+, σ): First we estimate the drift as:

(D.6) ν =

∑
fh ∆k̂fhωf∑
fh τfhωf

,

With the estimate of the drift we design an iterative method to estimate (k̂∗−, k̂∗+, σ2). The method constructs

a sequence (k̂∗−j , k̂∗+j , σ2
j )∞j=0 that converges to the solution of the implicit equations (51), (54), and (55) from

Section 3.

0. Fix a convergence parameter ξ > 0 and a dumpening parameter Γ ∈ (0, 1).

1. Construct (k̂∗−0 , k̂∗+0 , σ0) assuming no partial irreversibility: Under the assumption of no partial irreversibil-
ity, we can estimate σ2 as

σ2
0 =

∑
fh ∆k̂2

fhωf∑
fh τfhωf

− 2ν

(∑
fh ∆k̂fhωf

2
(1− CV[τ ]) +

Cov[∆hk, τ ]∑
fh τfhωf

)
(D.7)

CV[τ ] :=

∑
fh(τfh − τ̄)2ωf
(∑

fh τfhωf

)2 , where τ̄ =
∑

fh

τfhωf ,(D.8)

Cov[∆hk, τ ] :=
∑

fh

(τfh − τ̄)(∆k̂fh − ¯
∆k̂)ωf , where

¯
∆k̂ =

∑

fh

∆k̂fhωf .(D.9)
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With σ2
0 , we compute

Φ = log

(
α(1− tc)

r̃ + αν − σ2
0α

2

2

)
(D.10)

k̂∗−0 =
1

1− α

(
Φ− log((1− td)pbuy) + log

(
1−Num−0
1−Den−0

))
(D.11)

k̂∗+0 =
1

1− α

(
Φ− log((1− td)pbuy) + log

(
1−Num+

0

1−Den+
0

))
(D.12)

where the numerators and denominators in the last terms are computed as:

Num+
0 =

∑
fh exp(−r̃τfh − α∆k̂fh)I(∆k̂fh−1 < 0)ωf

∑
fh I(∆k̂fh−1 < 0)ωf

(D.13)

Den+
0 =

∑
fh exp(−r̃τfh −∆k̂fh)I(∆k̂fh−1 < 0)ωf

∑
fh I(∆k̂fh−1 < 0)ωf

(D.14)

Num−0 =

∑
fh exp(−r̃τfh − α∆k̂fh)I(∆k̂fh−1 > 0)ωf

∑
fh I(∆k̂fh−1 > 0)ωf

(D.15)

Den−0 =

∑
fh exp(−r̃τfh −∆k̂fh)I(∆k̂fh−1 > 0)ωf

∑
fh I(∆k̂fh−1 > 0)ωf

(D.16)

Define k̂∗0(∆k̂) as:

k̂∗0(∆k̂) = k̂∗−0 1{∆k̂>0} + k̂∗+0 1{∆k̂<0},(D.17)

2. For j = 1, 2, 3, . . . , J , compute (
˜̂
k∗−j ,

˜̂
k∗+j , σ̃2

j ) as

σ̃2
j =

∑
fh(k̂∗j−1(∆k̂fh)−∆k̂fh + ντfh)ωf −

∑
fh k̂

∗
j−1(∆k̂fh)ωf∑

fh τfhωf
(D.18)

Φj = log


 α(1− tc)
r̃ + αν − σ2

j−1α
2

2


(D.19)

˜̂
k∗−j =

1

1− α

(
Φ− log((1− td)pbuy) + log

(
1−Num−j
1−Den−j

))
(D.20)

˜̂
k∗+j =

1

1− α

(
Φ− log((1− td)psell) + log

(
1−Num+

j

1−Den+
j

))
(D.21)
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where the numerators and denominators in the last terms are computed as:

Num+
j =

∑
fh exp

(
−r̃τfh + α

(
k̂∗j−1(∆k̂fh)− k̂∗+j−1 −∆k̂fh

))
I(∆k̂fh−1 < 0)ωf

∑
fh I(∆k̂fh−1 < 0)ωf

(D.22)

Den+
j =

∑
fh

p(∆k̂fh)

p(∆k̂fh−1)
exp

(
−r̃τfh + k̂∗j−1(∆k̂fh)− k̂∗+j−1 −∆k̂fh

)
I(∆k̂fh−1 < 0)ωf

∑
fh I(∆k̂fh−1 < 0)ωf

(D.23)

Num−j =

∑
fh exp

(
−r̃τfh + α

(
k̂∗j−1(∆k̂fh)− k̂∗−j−1 −∆k̂fh

))
I(∆k̂fh−1 > 0)ωf

∑
fh I(∆k̂fh−1 > 0)ωf

(D.24)

Den−j =

∑
fh

p(∆k̂fh)

p(∆k̂fh−1)
exp

(
−r̃τfh + k̂∗j−1(∆k̂fh)− k̂∗+j−1 −∆k̂fh

)
I(∆k̂fh−1 > 0)ωf

∑
fh I(∆k̂fh−1 > 0)ωf

(D.25)

Update (k̂∗−j , k̂∗+j , σ2
j ) with the dampening parameter Γ

σ2
j = (1− Γ)σ̃2

j + Γσ2
j−1(D.26)

k̂∗−j = (1− Γ)
˜̂
k∗−j + Γk̂∗+j−1(D.27)

k̂∗+j = (1− Γ)
˜̂
k∗+j + Γk̂∗+j−1(D.28)

3. Repeat step 2 until there is a j, such that, ||σ2
j − σ2

j−1, k̂
∗−
j − k̂∗−j−1, k̂

∗+
j − k̂∗+j−1)|| < ξ.

We construct the reset points k̂∗(∆k̂) and stopped capitals k̂τ (∆k̂) as:

k̂∗(∆k̂) = k̂∗−1{∆k̂>0} + k̂∗+1{∆k̂<0}(D.29)

k̂τ (∆k̂) = k̂∗(∆k̂)−∆k̂(D.30)

Estimation of misallocation: To estimate misallocation, first we estimate the mean level of capital–productivity
ratio as

E[k̂] =

∑
fh k̂

∗(∆k̂fh)2ωf −
∑
fh k̂τ (∆k̂fh)2ωf

2
∑
fh ∆k̂fhωf

+
σ2

2ν
(D.31)

V[k̂] =

∑
fh(k̂∗(∆k̂fh)− E[k̂])3ωf −

∑
fh(k̂τ (∆k̂fh)− E[k̂])3ωf

3
∑
fh ∆k̂fhωf

(D.32)

Estimation of aggregate q: We estimate with and without the approximation of the output–capital ratio, and
they give similar magnitude. The computation of the output–capital ratio is immediately with equations (D.31)
and (D.32). We also computed without the approximation. In this case, capital and output are given by

Ŷ =

∑
fh exp

(
αk̂∗(∆k̂fh)

)
ωf −

∑
fh exp

(
αk̂τ (∆k̂fh)

)
ωf

(να− σ2α2/2)
∑
fh τfhωf

,(D.33)

K̂ =

∑
fh exp

(
k̂∗(∆k̂fh)

)
ωf −

∑
fh exp

(
k̂τ (∆k̂fh)

)
ωf

(ν − σ2/2)
∑
fh τfhωf

.(D.34)

We estimate irreversibility term in q using the following expression:
(D.35)

E
[

1

ds
Es
[
d(P(k̂s)ω(k̂s))

]]
=

∑
fh exp

(
k̂∗(∆k̂fh)

)(
p(∆k̂fh)

p − 1
)
ωf −

∑
fh exp

(
k̂τ (∆k̂fh)

)(
p(∆k̂fh)

p − 1
)
ωf

K̂
∑
fh τfhωf
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From equation (D.33), (D.34), and (D.35), we estimate the Tobin’s q as

(D.36) q =
1

r̃

[
α(1− t)Ŷ

pK̂
+
σ2

2
− ν + E

[
1

ds
Es
[
d(P(k̂s)ω(k̂s))

]]]
.

Estimation of CIR(δ): To estimate the CIR(δ), we need to estimate the covariance and the partial irreversibility
term in (38). We estimate the covariance using the sample moment of (58) given by

(D.37) Cov[k̂, a] = −
∑
fh(k̂τ (∆k̂fh)− E[k̂])2τfhωf

2ντ̄
+

V[k̂]

2ν
+
σ2

2ν
τ̄(1 + CV(τ)),

where CV(τ) and τ̄ are estimated using (D.8), V[k̂] is estimated using (D.32), and E[k̂] is estimated using (D.31).
We estimate the irreversibility term following its sample counter-part. First, we estimate Mbuy and Mbuy as:

Mbuy = (E−[k̂]− E[k̂])E−[τ ]
E[P+]

P−+
< 0,(D.38)

Msell = (E+
[k̂]− E[k̂])E+

[τ ]
E[P−]

P+− > 0.(D.39)

where we compute conditional means as:

E−[k̂] =
k̂∗− −∑fh k̂τ (∆k̂fh)2

1{∆k̂fh−1>0}ωf
2
∑
fh ∆k̂fh1{∆k̂fh−1>0}ωf

+
σ2

2ν
,(D.40)

E+
[k̂] =

k̂∗+ −∑fh k̂τ (∆k̂fh)2
1{∆k̂fh−1<0}ωf

2
∑
fh ∆k̂fh1{∆k̂fh−1<0}ωf

+
σ2

2ν
,(D.41)

conditional durations of inaction as:

E−[τ ] =

∑
fh τfh1{∆k̂fh>0}ωf∑
fh 1{∆k̂fh>0}ωf

,(D.42)

E+[τ ] =

∑
fh τfh1{∆k̂fh<0}ωf∑
fh τfh1{∆k̂fh<0}ωf

,(D.43)

and probabilities as:

P−+ =

∑
fh 1{∆k̂fh<0}1{∆k̂fh−1>0}ωf∑

fh 1{∆k̂fh−1>0}ωf
,(D.44)

P+− =

∑
fh 1{∆k̂fh>0}1{∆k̂fh−1<0}ωf∑

fh 1{∆k̂fh−1<0}ωf
,(D.45)

E[P+] =

∑
fh τfh1{∆k̂fh<0}ωf

τ̄
,(D.46)

E[P−] =

∑
fh τfh1{∆k̂fh>0}ωf

τ̄
.(D.47)

With these result, we obtain the irreversibility term in the CIR(δ) given by

E
[

1

ds
Es
[
d(M(k̂s)k̂s)

]]
=

∑
fh

(
Mbuy

1{∆k̂fh>0} +Msell
1{∆k̂fh<0}

)
∆k̂fhωf

∑
fh τfhωf

,(D.48)
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and the CIR(δ) given by

(D.49)
CIR(δ)

δ
=

Var[k̂]

σ2
+
νCov[k̂, a]

σ2
+ E

[
1

ds
Es[d(M(k̂s)k̂s)]

]
+ o(δ).
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D.5 Results for Chile

Next, we present yearly averages of cross-sectional statistics. Inaction frequency is defined as the fraction of
observations with investment below 1% in absolute value; positive spikes are investments above 20% and negative
spikes below −20%.

Table D.5 presents the yearly average of cross-sectional statistics by capital category for a balanced panel within
the ENIA establishment-level survey data for Chile. Note that the column total considers the statistics for the total
capital stock, and it is not the average of the statistics by capital type. For comparison, we include information
for the US in Cooper and Haltiwanger (2006) and Zwick and Mahon (2017). Following these papers, investment
rates reported in this table are computed as Investment divided by Initial Capital. We use perpetual inventories
to compute capital stock.

Table D.5 – Investment Rate Statistics (Chile: by capital type)

Structures Machinery Vehicles Total US I US II

Average Investment 7.3 17.0 17.1 15.8 12.2 10.4

Positive Fraction (i > 1%) 22.2 54.9 25.5 56.8 81.5 —
Negative Fraction (i < −1%) 0.5 1.5 5.3 3.1 10.4 —
Inaction rate (|i| <= 1%) 77.3 43.7 69.2 40.1 8.1 23.7

Spike rate (|i| > 20%) 8.9 23.2 21.2 22.8 20.4 14.4
Positive spikes (i > 20%) 8.9 23.2 18.7 22.7 18.6 —
Negative spikes (i < −20%) 0.0 0.0 2.5 0.1 1.8 —

Serial correlation 0.0 0.0 0.0 0.0 0.1 0.4

Notes: Authors calculations using establishment-level survey data for Chile (balanced panel).
US I shows data from Cooper and Haltiwanger (2006) and US II shows data reported in Zwick
and Mahon (2017) for the balanced panel. Following these papers, investment rates reported in
this table are computed as investment divided by initial capital. We use the perpetual inventory
method to compute capital stocks. We eliminate investment rates below the 1st percentile and
above the 99th percentile of the investment rate distribution.

D.6 Comparative Statics

This section conducts a comparative statics exercise with respect to the irreversibility wedge ω and the returns to
scale α. Other parameters are described in Table I.
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Table D.6 – Aggregate Capital Behavior: Comparative Statics

ω = 0.15 α = 0.5

Benchmark α = 0.4 α = 0.6 ω = 0.05 ω = 0.25

Productivity process

ν 0.11 0.11 0.11 0.12 0.11
σ 0.23 0.23 0.24 0.23 0.24

Investment Policy

Difference in reset capitals (k̂∗+ − k̂∗−) 0.568 0.472 0.697 0.221 0.914
Exogenous price wedge 0.325 0.271 0.406 0.102 0.575
Endogenous response 0.243 0.201 0.291 0.118 0.339

Capital Allocation

Variance 0.098 0.097 0.099 0.096 0.098

Capital Valuation

Tobin’s q 1.06 1.07 1.05 1.07 1.05
Productivity 1.09 1.10 1.08 1.08 1.10
Irreversibility -0.03 -0.03 -0.03 -0.01 -0.05

Capital Fluctuations

CIR 3.07 3.71 2.50 3.40 2.62
Responsiveness 2.29 2.37 2.17 2.51 1.93
Irreversibility 0.77 1.33 0.33 0.89 0.69

Notes: Objects recovered from theory mappings applied to establishment-level data from Chile. Compar-
ative statics with respect to the wedge ω and the returns to scale α. Other parameters are described in
Table I.
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