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Abstract

This paper provides a theory and empirical evidence of how production networks are orga-

nized in space and how they shape the spatial distribution of economic activity. Consistent

with stylized facts from administrative �rm-to-�rm transaction-level data from Chile, we

model �rms’ decision of forming a network of supplier and buyer relationships depending

on their productivity and geographic location. By aggregating these decisions at the regional

level, we provide a tractable characterization of the positive and normative properties of the

general equilibrium. We calibrate our model to the observed domestic and international trade

patterns and to the impacts of international trade shocks on domestic production networks

in Chile. Counterfactual simulations of international trade shocks and transportation infras-

tructure reveal strong endogenous responses in the domestic production network, which sig-

ni�cantly contribute to the heterogeneous welfare e�ects depending on the regions’ exposure

to the domestic and global production network.
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1 Introduction

One of the most important features of the modern economy is the geographic complexity of pro-

duction value chains. Production of clothes, automobiles, or smartphones requires a number of

production steps fragmented across countries, regions within a country, and �rms within a re-

gion. Policymakers advocate that successful integration into these global production networks, or

“Global Value Chain,” is key to countries’ and regions’ economic success (e.g., World Bank (2019)).

Re�ecting this importance, a burgeoning academic literature has deepened our understanding on

both the microeconomics and the macroeconomics of production networks (see Johnson (2018)

and Antràs and Chor (2021) for reviews).
1

However, owing to the complexity of the endoge-

nous production decisions and the limitations in availability of data for production networks

across regions and countries, we have limited understanding about how these microeconomic

and macroeconomic forces interact within and across country borders. Basic questions are yet to

be addressed: How do endogenous production networks form across countries or regions based

on �rm-level decisions of forming supplier and buyer relationships? How do these networks

endogenously respond to macroeconomic shocks and what are the aggregate implications?

This paper studies how production networks are organized in space and how their endoge-

nous formation shapes the spatial distribution of economic activity. We combine rich adminis-

trative �rm-to-�rm transaction-level data from Chile with a microfounded model of endogenous

spatial production network formation with tractable aggregation properties. In line with our

data, we model �rms’ decisions to search for suppliers and buyers and to form relationships de-

pending on their productivity and geographic location. By aggregating these decisions at the

regional level, we provide a tractable characterization of the positive and normative properties

of the general equilibrium. We calibrate our model to the observed domestic and international

trade patterns and to the impacts of international trade shocks on domestic production networks

in Chile. By undertaking counterfactual simulations of international trade shocks and transporta-

tion infrastructure, we �nd strong endogenous responses in the domestic production network.

We also �nd that these responses signi�cantly contribute to the aggregate and heterogeneous

welfare e�ects depending on the regions’ exposure to the domestic and global production net-

work.

We start our analysis by providing a set of descriptive facts about spatial production networks

using detailed transaction-level �rm-to-�rm data of the universe of �rms in Chile. We present

1
The macroeconomic literature focuses on how countries’ or regions’ macroeconomic conditions are deter-

mined given the topography of production networks (e.g., Yi 2003, 2010, Johnson and Noguera 2012, Caliendo and

Parro 2015, Johnson and Moxnes 2019, Antràs and De Gortari 2020). The microeconomic literature highlights how

�rms participate and form production networks, endogenously shaping the topography of production networks (e.g.,

Bernard, Moxnes, and Saito 2019, Dhyne, Kikkawa, Mogstad, and Tintelnot 2020, Ober�eld 2018, Lim 2018, Huneeus

2018, Bernard, Dhyne, Magerman, Manova, and Moxnes 2020, Demir, Fieler, Xu, and Yang 2021).
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three facts about the nature of spatial production networks. First, we show that the number

of suppliers and buyers per �rm is correlated with �rms’ geographic location and overall size.

Second, we show that the cross-regional trade �ows increase in the geographic proximity, and

this e�ect is driven to a larger extent by the number of supplier-to-buyer relationships (exten-

sive margin) than the transaction volume per relationship (intensive margin). Third, we �nd that

the domestic supplier-to-buyer linkages respond to international trade shocks depending on the

�rms’ exposure to international markets. These pieces of evidence jointly suggest an important

link between the spatial organization of production networks and the spatial distribution of eco-

nomic activity.

Guided by these descriptive patterns, we develop a microfounded model of endogenous spatial

production networks, shaped by heterogeneous �rms across di�erent regions. Firms search for

suppliers and buyers for each location depending on the anticipated pro�t and location-pair-

speci�c search costs. These supplier and buyer searches turn into a successful relationship at a

certain probability depending on the matching technology and how many suppliers and buyers

are searching in each pair of locations. By aggregating these decisions, the model predicts gravity

equations of bilateral trade �ows in the extensive margin (number of relationships) and in the

intensive margin (transaction volume per relationship). These two gravity equations have distinct

bilateral resistance terms as a function of search costs, matching e�ciency, and iceberg trade

costs, hence the model rationalizes di�erent spatial structures of intensive and extensive margins

of trade �ows as we document from data.

We next embed this endogenous spatial production network formation in general equilibrium

and study its positive and normative properties. Despite the complexity of �rm-level decisions

and their spatial interactions, we show that the equilibrium is characterized by two simple sets

of equilibrium conditions corresponding to buyer access and supplier access. These buyer and

supplier access conditions are analogous to the ones proposed in existing trade models based on

gravity equations (Anderson and Van Wincoop 2003, Redding and Venables 2004, Donaldson and

Hornbeck 2016), yet our conditions accommodate the presence of endogenous responses of pro-

duction network structure. Using this equilibrium characterization, we establish a condition for

equilibrium existence and uniqueness, characterize counterfactual equilibrium from an aggregate

shock, and provide a su�cient statistics expression for welfare. Welfare, in particular, depends

not only on familiar aggregate su�cient statistics omnipresent in the gravity trade models (Arko-

lakis, Costinot, and Rodríguez-Clare 2012) but also on the additional term that summarizes the

endogenous changes in production networks. Furthermore, we show that our model nests a wide

class of gravity trade models with intermediate goods as a special case (Eaton and Kortum 2002,

Costinot and Rodríguez-Clare 2014), a well-accepted benchmark model used to study macroeco-

nomic implications of exogenous production networks (Antràs and Chor 2021).
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In the �nal section of our paper, we quantitatively assess the implication of endogenous spa-

tial production networks on the spatial organization of economic activity. We calibrate our model

by combining cross-sectional patterns of the inter- and intra-national trade in Chile and the re-

sponses of domestic production networks on international trade shocks. We also estimate the

spatial frictions for production network formation for each pair of locations, and exactly decom-

pose them into the components attributed to physical (iceberg) trade cost and the component

attributed to search and matching frictions. We show that both types of frictions are quantita-

tively important and strongly related to the geographic proximity between the regions.

Armed with the calibrated model, we conclude our paper by studying how international and

domestic trade shocks a�ect the spatial organization of economic activity through two sets of

counterfactual simulations. In our �rst counterfactual simulation, we study the reduction of ex-

port and import costs to three major trading partners of Chile: China, Germany, and the United

States of America (USA). Using our calibrated model, we �nd a strong reorganization of the do-

mestic production networks from these international trade shocks. Furthermore, the estimated

welfare gains are substantially larger compared to a special case of our model with no extensive

margin responses of production networks. These patterns of results indicate that the endogenous

responses of domestic production networks amplify the welfare gains. We also �nd substantial

heterogeneity in the welfare gains across regions in Chile, which is shaped not only by the re-

gions’ direct exposure to international markets but also by their indirect connections through

domestic production networks.

In our second counterfactual simulation, we study an improvement in domestic transportation

infrastructure: a large-scale bridge between the mainland of Chile to Chiloé island, the biggest

island in Chile. This bridge, planned to open in 2025 as the largest suspension bridge in South

America, is expected to shorten the travel time between the mainland to Chiloé island from 35

minutes by ferry to just 2 minutes. By calibrating the expected travel cost reduction from the

predicted travel time reduction, we estimate that the opening of the bridge leads to a 0.84 per-

centage point increase in the aggregate welfare. On the other hand, when we instead use a special

case of our model with no extensive margin responses of production networks, we �nd only a 0.5

percentage point increase in aggregate welfare, which is about 60 percent of the prediction of our

baseline model. Therefore, taking into account the endogenous production network formation

quantitatively matters for an evaluation of an important domestic policy.

This paper contributes to several strands of literature. First, this paper contributes to the lit-

erature on spatial production networks and global value chains. As mentioned earlier, and as sur-

veyed by Johnson (2018) and Antràs and Chor (2021), limited attempts have been made to connect

the microeconomics of �rms’ production network formation in space and the macroeconomics of

how countries’ and regions’ aggregate economic activities are a�ected by production networks.
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An important exception is Eaton, Kortum, and Kramarz (2018), who build a micro-founded model

of �rm-to-�rm trade in space that predicts aggregate gravity equations of cross-regional trade

�ows. The key distinction from their model is that we assume that each �rm matches with a con-

tinuum of suppliers, as in Lim (2018), and we incorporate endogenous search intensity following

the buyer and supplier search framework of Arkolakis (2010) and Demir, Fieler, Xu, and Yang

(2021). We show that this feature of our model leads to tractable characterization of aggregate

equilibrium.
2

Second, this paper contributes to the literature of micro-founded quantitative trade models

based on gravity equations, which also serve as a well-accepted benchmark for studying the

macroeconomic implication of exogenous spatial production networks (Antràs and Chor 2021).

This literature develops tractable multi-location trade models based on Armington models (An-

derson (1979)), Ricardian models (Eaton and Kortum (2002)) and models with �rm heterogeneity

and selective entry into trade (Melitz (2003), Eaton, Kortum, and Kramarz (2011)). More recently,

Arkolakis, Costinot, and Rodríguez-Clare (2012) have shown that these models with di�erent

micro-foundations have common su�cient statistics expressions for the welfare gains from trade.

We contribute to this literature by providing a multi-location model of trade with endogenous

production networks that predict similar sets of gravity equations of trade. However, despite

this similarity, we show that endogenous production network formation crucially matters for the

counterfactual equilibrium outcomes. Furthermore, we provide a modi�ed su�cient statistics ex-

pression for the welfare gains that depend on the endogenous response of production networks.

Third, this paper contributes to the literature on the propagation of economic shocks through

production networks within and across countries. There is a broad consensus that input-output

linkages propagate economic shocks across �rms (Carvalho, Nirei, Saito, and Tahbaz-Salehi 2021),

sectors (Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi 2012, Acemoglu, Akcigit, and Kerr

2016), and regions (Caliendo, Parro, Rossi-Hansberg, and Sarte 2018). At the same time, a growing

number of papers have shown that endogenous responses of �rm-level production network for-

mation a�ect the nature of shock propagation (Dhyne, Kikkawa, Mogstad, and Tintelnot (2020),

Lim (2018), Huneeus (2018), Adao, Carrillo, Costinot, Donaldson, and Pomeranz (2020)). We con-

tribute to this literature by providing a theoretical framework that connects �rm-level responses

of production network formation to aggregate macroeconomic variables across space and by pro-

viding empirical evidence on the responses of �rm-level and macroeconomic variables to inter-

national trade input cost shocks.

2
As an extension of Eaton, Kortum, and Kramarz (2018), Miyauchi (2021) incorporates dynamic search and

matching to study agglomeration economies through increasing returns to scale in matching, and Panigraphi (2021)

incorporates multiple dimensions of �rm heterogeneity to �t the micro evidence from spatial �rm-to-�rm trade

in India. Antràs and De Gortari (2020) develop a model of sequential production in space, instead of roundabout

production, with attractive aggregation properties.
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The rest of the paper is organized as follows. Section 2 describes our main data set from Chile

and presents descriptive facts about spatial production networks. Section 3 presents our model.

Section 4 presents theoretical results on our model’s positive and normative predictions. Section

5 calibrates our model using Chilean data and presents counterfactual simulation results. Section

6 concludes.

2 Data and Descriptive Facts

In this section, we describe our main data set, the �rm-to-�rm transaction data from Chile. We

also present a set of salient facts about spatial production networks.

2.1 Data

Our key data source is a �rm-to-�rm transaction-level data set that covers the universe of do-

mestic trade between �rms in Chile. This data set is built on the entire receipts of the transaction

between �rms and is electronically submitted to the Internal Revenue Service (IRS, or SII for its

acronym in Spanish) in Chile. Reporting this information is mandatory for all �rms regardless

of the �rm size. Each receipt includes information of the day that the transaction occurred, the

total amount of the transaction, the products involved in the transaction, the price of the trans-

action, and the seller’s and buyer’s geographic location at the municipality level (there are 345

municipalities in Chile).
3

Unless otherwise stated, we use the time period of 2018-19.

To study the interaction of domestic production networks with international trade, we merge

this data set with customs data. As is usual in other countries, this data set reports the export

and import activity of �rms, including information of the product being traded, the country of

origin or destination, the total nominal �ow involved in the transaction, and the unit value of the

transaction. We also merge this data set with �rm balance sheet information (SII tax form 29) to

identify total sales and the main industry of the �rm and with matched employer-employee data

set (SII tax a�davits 1887 and 1879) to identify labor compensation by the �rm. We merge these

data sets using unique tax IDs of �rms that are common across data sources.
4

From the entire set of �rms in our data set, we drop samples that report no value-added or em-

ployment, and samples that report negative value of value-added, sales, or material inputs. After

3
Note that the seller’s and buyer’s location may not coincide with �rm headquarters for the case of multiple

establishment �rms. Our empirical results are robust to specifying the unit of �rms by �rm-municipality pair, instead

of �rms de�ned by a unique tax ID.

4
To secure the privacy of workers and �rms, we do not have direct access to individual-level data after merging

each of these data sets. In addition, all the results presented in this paper are statistically processed using at least 25

tax IDs under the requirement by the Chilean SII.
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imposing these sample restrictions, the data set contains 42 million �rm-to-�rm-year supplier-

to-buyer transactions with 19 million observations of unique �rm pairs, which consists of 654

(981) thousand unique supplier-year (buyer-year) observations and 235 (211) thousand unique

suppliers (buyers).

Given this paper’s focus on the spatial dimension of production networks, we also construct

several key geographic variables for our analysis. First, we construct the population size of each

municipality in Chile using population census data in 2017.
5

Second, we construct the bilateral

travel time and travel distance between all pairs of municipalities in Chile using Google Maps

API.

2.2 Descriptive Facts on Spatial Production Networks

In this subsection, we document a number of stylized facts characterizing production networks

across space in Chile. We use these patterns to motivate our modeling choices in Section 3. We

also calibrate key model parameters using some of these facts in Section 5.

Fact 1. The number of domestic suppliers and buyers per �rm is correlated with both �rms’
geographic location and �rm size. We �rst show that the number of linkages (suppliers and

buyers) per �rm is strongly related to key geographic variables. Panel A of Figure 1 shows the

relationship between the average number of domestic suppliers per �rm (conditional on having

at least one supplier) and buyers per �rm (conditional on having at least one buyer) and the

population density at the municipality level. The number of buyers is on average higher than

the number of suppliers because there are more �rms with positive number of supplier linkages

than those with positive number of buyer linkages. Despite these di�erences in the levels, both

variables are strongly positively correlated with the population density.

In Panel B, we show that these relationships are statistically signi�cant at the �rm level in a

regression framework, conditional on other �rm characteristics such as �rm sales. Columns 1 and

4 show that the population density is positively and signi�cantly correlated with the number of

linkages. Columns 2 and 5, in turn, show that the number of linkages is positively correlated with

the logarithm of �rm sales. The R-squared of these relationships is particularly high at 0.458 for

the number of buyers and lower at 0.197 for the number of suppliers, consistent with the �nding

Bernard, Dhyne, Magerman, Manova, and Moxnes (2020) that the number of buyers importantly

governs the �rm-level sales. Despite these strong statistical relationships with �rm sales, the

number of linkages is statistically signi�cantly related with population density conditional on

5
See Appendix Figure C.1 for the map and the spatial patterns of population density in Chile.
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sales, as evident in Columns 3 and 6.
6

These facts are consistent with previous �ndings of Miyauchi (2021), who documents that the

number of suppliers per �rm and the matching rates with new suppliers are positively correlated

with �rm density in Japan. These facts are also related to Eaton, Kortum, and Kramarz (2018),

who document a strong relationships between the number of bilateral exporting relationships

by French exporters and the market size of the destination country.
7

These pieces of evidence

support the idea that the geographic location of the �rm is correlated with �rms’ production

linkages. Motivated by these �ndings, we develop a model where the �rm linkages and sales are

determined by both the geographic factors, on top of the �rm-level productivity.

Fact 2. Cross-regional trade �ows increase in the geographic proximity, and this e�ect is
driven to a larger extent by the number of supplier-to-buyer relationships (extensive mar-
gin) than the transaction volume per relationship (intensive margin). We next discuss the

spatial structure of production networks across pairs of municipalities in Chile. In Table 1, we

present the results of gravity regressions, where we regress the logarithm of the total transaction

volume between a pair of municipalities on the logarithm of the distance, controlling for origin

and destination �xed e�ects. Column 1 shows that the coe�cient on the log of distance is signif-

icant at -1.324, indicating that a 10% increase of travel time is associated with 13.24% decrease in

aggregate trade �ows. Column 2 shows that the coe�cient on the log of travel time is signi�cant

at -1.515. These patterns of spatial decay of the domestic production networks are consistent with

the previous �ndings by Bernard, Moxnes, and Saito (2019) using the number of supplier-to-buyer

relationships in Japan and Panigraphi (2021) using the total �rm-to-�rm transaction volume in

India.

To further understand the nature of these spatial frictions, we decompose the total trans-

action volumes into the number of supplier-to-buyer relationships (extensive margin) and the

transaction volume per relationship (intensive margin) using our detailed �rm-to-�rm trade data.

Columns 3 and 4 present the regression coe�cient on the log of distance and travel time on the

extensive margin, and Columns 5 and 6 present that on the intensive margin. Mechanically, the

sum of the coe�cients of Columns 3 and 5 coincides with that of Column 1, and the sum of the

coe�cients of Columns 4 and 6 coincides with that of Column 2. We �nd that both extensive

and intensive margins are signi�cantly negatively correlated with distance proxies, while the

magnitude is substantially larger for the extensive margin (-0.941 for travel distance and -1.074

for travel time) compared to the intensive margin (-0.383 for travel distance and -0.441 for travel

6
Appendix Table C.1 shows that these relationships are robust to controlling for industry �xed e�ects (at 6-digit

level) and by controlling for the export and import activity of the �rm.

7
Note that they focus on the total number of relationships summed across all �rms in the destination location,

unlike the average number of relationships per �rm at the destination location as shown above.
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Figure 1: Number of Domestic Suppliers and Buyers and Geography

(A) Number of Linkages and Population Density

(B) Number of Linkages by Geography and Firm Size

Buyers Suppliers

(1) (2) (3) (4) (5) (6)

Log Density 0.034 0.025 0.115 0.106

(0.001) (0.001) (0.002) (0.002)

Log Sales 0.422 0.421 0.447 0.445

(0.001) (0.001) (0.001) (0.001)

R2
0.011 0.458 0.459 0.018 0.197 0.205

Year FE 3 3 3 3 3 3

State FE 3 3 3 3 3 3

N 380588 380588 380588 381362 381362 381362

Notes: Panel A plots the average number of domestic suppliers and buyers per �rm averaged at the municipality level (conditional on having at

least one linkage) and population density in 2018 at the municipality level. The size of the circle represents the population size of each municipality.

The straight line represents the �t of the linear regressions between the two variables. Panel B presents the regression results at the �rm level,

where the dependent variable is the number of domestic links per �rm (with buyers in Columns 1-3 and suppliers in Columns 4-6). The regression

includes year and state �xed e�ects. There are 15 states in Chile.

time).

Motivated by these �ndings, we build a model in Section 3 that predict gravity equations in

both extensive and intensive margins with di�erent spatial structure, where the di�erence in the

bilateral resistance arises due to di�erent types of spatial frictions.
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Table 1: Gravity Regression: Total Trade Flows, Intensive and Extensive Margin

Total Intensive Extensive

(1) (2) (3) (4) (5) (6)

Log Distance -1.324 -0.383 -0.941

(0.008) (0.007) (0.004)

Log Time Travel -1.515 -0.441 -1.074

(0.010) (0.008) (0.004)

R2
0.640 0.639 0.306 0.306 0.822 0.819

Origin Municipality FE 3 3 3 3 3 3

Destination Municipality FE 3 3 3 3 3 3

N 65871 65871 65871 65871 65871 65871

Notes: This table presents the results of the gravity regressions, where we regress the logarithm of the total transaction volume between a pair

of municipalities on the logarithm of the distance, controlling for origin and destination �xed e�ects using SII data from 2018. The dependent

variable corresponds to total trade �ow, average trade �ow (intensive margin), and the number of links between municipalities (extensive margin).

Distance (time travel) is measured with kilometers (minutes of time travel) between municipalities using the fastest land or water transportation

method available within Chile.

Fact 3. Localized shocks from international markets a�ect domestic production networks.
As a �nal set of descriptive facts, we study how international trade shocks a�ect domestic pro-

duction linkages. In particular, following a similar speci�cation as implemented by Autor, Dorn,

and Hanson (2013) and Hummels, Jørgensen, Munch, and Xiang (2014), we study how �rms with

di�erent import and export exposure respond di�erently to country-and-product speci�c import

and export shocks.

More concretely, we estimate the following regression model:

∆ log yit = α0 + α1∆ZD
it + α2∆ZS

it + εit, (1)

where i indexes a �rm and t indexes year. yit are outcomes of �rm i at year t, including the �rms’

import, export, total sales, the number of domestic suppliers and buyers, and the average trans-

action volume per supplier and per buyer. ∆x represents the time di�erence operator of variable

x. We mainly consider a long di�erence speci�cation (the di�erence between two time periods),

hence we do not have to control for time or �rm �xed e�ects. ∆ZD
it and ∆ZS

it are shift-share de-

mand and supply shocks at �rm i at year t, respectively. In particular, following Autor, Dorn, and

Hanson (2013) and Hummels, Jørgensen, Munch, and Xiang (2014), we measure these shocks as

an interaction between �rms’ exposure to a particular international country and product and the

country-and-product speci�c demand and supply shifters constructed from international trade

patterns outside Chile. More concretely, we de�ne ∆ZD
it and ∆ZS

it as:

∆ZD
it = ∑

c,k
wD

ickt0
∆ log WIDckt, ∆ZS

it = ∑
c,k

wS
ickt0

∆ log WESckt,
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where WIDckt, world import demand, is country c’s total purchases of product k from the world

market minus purchases from Chile in year t. WESckt, world export supply, is country c’s total

supply of product k to the world market minus its supply to Chile in year t. The weights for the

export shock, wD
ickt0

, is given by:

wD
ickt0

=
Exportsickt0

TotalSalesit0

where Exportsickt0 are total value of export of �rm i to country c of product k at baseline year

t = t0, and TotalSalesit0 is the total sales of �rm i at year t = t0. The weight for the import

shock, wS
ickt0

, is given by:

wS
ickt0

=
Importsickt0

WageBillit0 + DomesticPurchaseit0 + ∑c,k Importsickt0

,

where Importsickt0 are total value of import of �rm i from country c of product k at baseline year

t = t0, WageBillit0 is the total wage bills of �rm i in year t = t0, and DomesticPurchaseit0 is

the total value of domestic sourcing.

In our baseline analysis, we take the initial period as 2007 and post-period as 2009 and imple-

ment the long-di�erence speci�cation as explained above. These are the time periods when there

is a signi�cant economic disturbance in the international trade market. To construct the baseline

import and export shares for the �rm-speci�c weights, we take the average of two time periods

t0 = {2003, 2004} in order to minimize the measurement error speci�c to one particular year.
8

Table 2 presents the results from this analysis. Column 1 shows that �rms’ import responds

signi�cantly to the import shocks constructed above, while they are una�ected by the export

shocks. This con�rms that the constructed proxies of import shocks indeed increased the imports

by Chilean �rms. Column 2 shows that the �rms’ export positively responds to our proxies

for the export shocks, while the relationship is statistically insigni�cant. The lack of statistical

insigni�cance for the export shocks is potentially driven by the fact that a signi�cantly smaller

number of �rms engage in export than import. Consistent with this interpretation, Column 3

shows that import shocks signi�cantly increase �rms’ revenue, while we �nd limited responses

of sales on export. Due to the lack of signi�cant e�ects of export shocks, we focus our subsequent

discussion on the responses from import shocks.

Columns 4-7 present how the international trade shocks a�ect the architecture of domestic

production networks. Columns 4 and 5 document the impacts on the number of domestic sup-

8
We use international trade data of di�erent products traded between countries across the globe for the period of

1996-2018. This information comes from the BACI data from CEPII, that is sourced from Comtrade (United Nations).

This data set is merged with the customs data using the product classi�cation and country IDs.
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pliers and average transaction volume per domestic supplier, respectively, and Columns 6 and

7 document the impacts on the number of domestic buyers and average transaction volume per

domestic buyer, respectively. We �nd a signi�cant positive response on the number of domestic

suppliers (Column 4).
9

This implies that there is gross complementary between imported inputs

and domestic sourcing. The average transaction volume, number of buyers, and transaction vol-

ume per buyer respond positively, yet they are all statistically insigni�cant. Strong responses

on the number of domestic suppliers imply that import shocks a�ect other �rms and regions

indirectly through the endogenous changes of production network structure.

These pieces of evidence provide additional insights on the role of endogenous production

network formation on the propagation of international trade shocks to the literature. In partic-

ular, by implementing a similar identi�cation design, Dhyne, Kikkawa, Mogstad, and Tintelnot

(2020) and Adao, Carrillo, Costinot, Donaldson, and Pomeranz (2020) document that international

trade shocks a�ect sales activity of �rms that are indirectly connected to direct importers or ex-

porters in Belgium and Ecuador, respectively. Demir, Fieler, Xu, and Yang (2021) document that

these international trade shocks a�ect the labor compensation by these indirectly connected �rms

in Turkey. Huneeus (2018) studies similar indirect e�ects, as well as the changes of supplier-to-

buyer linkages, and concludes that the formation of domestic �rm-to-�rm linkages responds to

international trade shocks.

In Section 5, we show that our model can rationalize these responses of domestic production

networks to international trade shocks. We also show how these responses of domestic produc-

tion networks matter for the welfare gains from international trade.

Table 2: International Trade Shocks and Domestic Production Networks

Suppliers Buyers

Imports Exports Sales Number Mean Value Number Mean Value

(1) (2) (3) (4) (5) (6) (7)

Import Shock 0.566 -0.052 0.516 0.253 0.159 0.048 0.251

(0.206) (0.497) (0.167) (0.093) (0.160) (0.144) (0.250)

Export Shock -0.296 0.147 0.125 0.072 0.320 0.054 -0.211

(0.348) (0.202) (0.146) (0.082) (0.140) (0.147) (0.255)

Industry Fixed E�ects 3 3 3 3 3 3 3

N 9192 4201 27516 27718 27541 19600 19362

Notes: This table presents the results from estimating with OLS the Equation (1). Changes are between 2007 and 2009. The regression includes

industry �xed e�ects at the 2-digit level.

9
See Furusawa, Inui, Ito, and Tang (2017) for a related discussion and evidence about the substitution between

domestic sourcing and imports.
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3 Model

In this section, we present a model of endogenous spatial production networks.

We consider an economy that is partitioned by a �nite number of locations i, u, d ∈ N. In

each location, there is a continuum of workers of measure Li, which are exogenously given. There

are two types of goods in the economy: intermediate goods and �nal goods. Intermediate goods

are traded across regions. Shipping intermediate goods from location u (supplier’s production

location) to location d (buyer’s production location) requires an iceberg trade cost of τud ≥ 1.

Final goods are not traded across regions and are only provided by �nal goods producers in the

region.

3.1 Production

Intermediate goods are produced by intermediate goods producers that we simply refer to as

“�rms”. Each �rm produces a distinct variety that is used by other �rms for their production.

Each �rm has a distinct level of productivity denoted by z. Following a long tradition in the

international trade of intermediate goods (e.g. Krugman and Venables (1995), Eaton and Kor-

tum (2002)), in order to produce intermediate goods, each �rm uses a continuum of intermediate

goods. The set of goods that each �rm has access to is determined by a search-and-matching pro-

cess that we describe below. We assume that these intermediate goods are imperfect substitutes

with constant elasticity of substitution, while the labor and the composite of intermediate goods

have the elasticity of substitution equal to one. Therefore, the unit cost of production for �rm ω,

c (ω), is given by

c (ω) =
1

z (ω)
wβ

i

(∫
υ∈Ω(ω)

p (υ, ω)1−σ dυ

) 1−β
1−σ

, (2)

where z (ω) is �rm’s productivity; wi is the wage at �rm ω’s production location; Ω(ω) is the

set of intermediate goods producers that �rm ω has access to; p (υ, ω) is the intermediate goods

price that supplier υ charges to �rm ω (net of iceberg trade cost); β is the share of labor input

(0 ≤ β ≤ 1); and σ is the elasticity of substitution across di�erent intermediate goods (σ > 1).

The set of intermediate goods producers Ω(ω) are endogenously determined in the equilibrium

through search and matching as described below.

Since each �rm ω is matched with a continuum of suppliers, and since each supplier is mo-

nopolistic, prices charged by the supplier υ to �rm ω is a constant markup of their marginal cost,

inclusive of the iceberg trade cost. Denoting supplier υ’s location as u and buyer ω’s location as

i, p (υ, ω) is given by

p (υ, ω) = σ̃c (υ) τui. (3)
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where σ̃ = σ/ (σ− 1) is the markup ratio under constant elasticity of substitution input demand.

The �nal goods sector is perfectly competitive. Goods are produced using local intermediate

goods with constant elasticity of substitution (CES) production function with the elasticity of

substitution σ, which we assume is the same elasticity as those for the production of the inter-

mediate goods.
10

The �nal goods are not traded across space and are only supplied by the local

�nal goods producers. Under perfect competition, the �nal goods price index in region i is given

by

PF
i =

(∫
υ∈ΩF

i

pF (υ)1−σ dυ

) 1
1−σ

, (4)

where pF (υ) is the price of the intermediate goods provided by �rm υ. Unlike the transaction

between intermediate goods producers, there are no search and matching frictions between in-

termediate and �nal goods producers, and hence ΩF
i is simply the set of intermediate goods

producers in region i.
For simplicity, we assume that �nal goods producers have all the bargaining power over in-

termediate goods suppliers. Therefore, the price of intermediate goods by supplier υ, pF (υ), is

simply the marginal production cost by suppliers, i.e.,
11

pF (υ) = c (υ) . (5)

3.2 Firm Search

There are search and matching frictions in the intermediate goods market. Firms post advertise-

ments to search for buyers and suppliers for each location depending on the anticipated pro�t

and location-pair-speci�c search costs. These supplier and buyer searches turn into a successful

relationship at a certain probability depending on the matching technology and how many sup-

pliers and buyers are searching in each pair of locations. In this section, we discuss �rms’ search

decisions given matching rates, and we discuss how matching rates are determined in the next

section.

We �rst describe �rm decisions for searching buyers. In order for �rms in region i to acquire

buyers in region d, they have to post advertisements. Posting nB
id ∈ R+ measure of advertise-

ments requires payment of ei f B
id
(
nB

id
)γB

/γB
, where ei is the unit cost of advertisement services

10
Our argument is broadly una�ected by assuming di�erent elasticity of substitution across intermediate inputs

between intermediate goods producers and �nal goods producers, except that it a�ects the relevant elasticities for

the su�cient statistics expression for welfare in Proposition 3. Similarly, our argument is broadly una�ected by

alternatively assuming that �nal goods production requires labor in addition to intermediate goods.

11
We abstract from endogenous search and matching and pro�t from sales to �nal goods producers to focus on

the role of search and matching in the intermediate goods market. One can alternatively introduce consumer search

for �nal goods producers, as in Arkolakis (2010), and our model implications remain broadly the same.
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in region i, γB > 1 is a parameter that governs the curvature of the advertisement cost for buyer

search, and f B
id is the cost shifter for the location pair i and d. Each of these advertisement turns

into a successful match with a random buyer in location d who posts a supplier advertisement

to location i at rate mB
id, where mB

id is endogenously determined given matching technology as

described in the next section. Once the �rm matches with a buyer, they face a monopolistic com-

petition with other �rms that also sell to the matched buyer. Therefore, the expected pro�t by a

�rm in location i with marginal production cost c per matched buyer in location d is therefore

given as follows:

πd (cτid) =
1
σ

Dd (cτid)
1−σ

(6)

where Dd is the destination-speci�c intermediate goods demand shifter, which is exogenous to

the �rm but is endogenously determined in general equilibrium in Section 3.5.

We next describe �rm decisions for searching suppliers. In order for �rm ω in region i to

post nS
ui ∈ R+ measure of advertisements for suppliers in region u, the �rm has to pay an

advertisement cost ei f S
ui
(
nS

ui
)γS

/γS
, where ei is the unit cost of advertisement services in region

i, γS > 1 is a parameter that governs the curvature of the advertisement cost for supplier search,

and f S
ui is the cost shifter for the location pair u and i. Each of these advertisements turns into

a successful match with a random supplier in location u who posts a supplier advertisement

to location i at rate mS
ui, where mS

ui is endogenously determined given matching technology as

described in the next section.
12

We denote the average unit cost of a supplier in location u (net

of trade cost) by Cui, which a�ects the incentive for searching suppliers in location u.

Together, �rms’ search decision for buyers, {nB
id}d∈N , and suppliers, {nS

ui}u∈N , is given be-

low:

πi (z) = max
{nS

ui}u,{nB
id}d

1
σ ∑

d∈N
mB

idnB
idDi (cτid)

1−σ − ei

∑
d∈N

f B
id

(
nB

id
)γB

γB + ∑
u∈N

f S
ui

(
nS

ui
)γS

γS


subject to c =

wβ
i

(
∑u∈N nS

uim
S
ui (Cui)

1−σ
) 1−β

1−σ

z
(7)

The objective function of this problem is the net pro�t of �rms in location i with productivity

z. The �rst term inside the max operator represents the pro�t from sales to other intermediate

goods producers, where nB
idmB

id is the number of successful customers �rms are able to match and

sell to, and c is the marginal cost of production of this �rm. The second term is the advertisement

12
Whenever the equilibrium variables involve two locations with an upstream and downstream relationships,

we adopt the convention of denoting the upstream location �rst followed by the downstream location in subscripts.

For example, nS
ui denotes the supplier advertisement posting by �rms in location i to upstream location u, while nB

id
denotes the customer advertisement posting by �rms in location i to downstream location d.
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cost as discussed above. The marginal cost of the �rm, c, in turn, depends on wages wi, number

of matched suppliers from location u, nS
uim

S
ui, average intermediate production cost of matched

suppliers in location u to location i, Cui, and �rm productivity, z.

We impose a parameter restriction that 1− 1
γB −

1−β

γS > 0, which guarantees that �rms make

positive sales and pro�t. In Appendix A.1, we show that the solution of the optimization takes

the following form:

nS
ui (z) = aS

uiz
δ1
γS ; nB

id (z) = aB
idz

δ1
γB , (8)

where δ1 ≡ σ−1
1− 1

γB−
1−β

γS
> σ− 1, and aS

ui, aB
id are given by

aB
id =

(
mB

id
Dd

ei f B
id
(τid)

1−σ (C∗i )
1−σ

) 1
γB−1

, (9)

aS
ui =

 (1− β) D∗i

eiw
− β

1−β (1−σ)

i f S
ui

mS
ui (C

∗
i )

β σ−1
1−β (Cui)

1−σ


1

γS−1

, (10)

where we further de�ne the demand shifter from buyers in all locations by

D∗i = ∑
d

mB
idaB

idDd (τid)
1−σ , (11)

and we de�ne the production cost shifter for �rms in location i by

(C∗i )
1−σ ≡ wβ(1−σ)

i

(
∑

u∈N
aS

uim
S
ui (Cui)

1−σ

)1−β

. (12)

In expression (8), search intensity, nS
ui (z) , nB

id (z), depend on location-pair-speci�c compo-

nents, aS
ui, aB

id, and the �rm-speci�c component proportional to �rm productivity, z
δ1
γS , z

δ1
γB

. These

expressions are consistent with Fact 1 in Section 2 that the number of suppliers and buyers are

related the geographic location of the �rm on top of �rm-speci�c component. The location-

pair-speci�c components, aS
ui, aB

id, are determined by the bilateral matching rates, mS
ui, mB

ui, local

wages, wi, unit cost, Cui, demand shifters, Dd, D∗i , and the search cost shifters, f S
ui, f B

id.

Using these expressions for aS
ui, aB

id, the unit cost of a �rm with productivity z, ci (z), is given
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by

ci (z) = (C∗i ) z
− δ1

γS
1−β
σ−1−1

. (13)

Note that the unit cost of �rms, ci (z), decays at a faster rate than z−1
because more productive

�rms search suppliers more intensively (equation 10). As a result, �rm revenue, ri (z), and �rm

pro�t, πi (z), are also increasing in �rm productivity:

ri (z) =D∗i (C
∗
i )

1−σ (z)δ1 , (14)

πi (z) =
1

δ1σ̃
D∗i (C

∗
i )

1−σ (z)δ1 , (15)

where again σ̃ ≡ σ/(σ− 1). Both these magnitudes increase at a faster rate than zσ−1
(recall

δ1 > σ− 1) because more productive �rms search suppliers and buyers more intensively. Fur-

thermore, average costs of intermediate goods form suppliers in region u to �rm buyers in region

i, Cui, takes the multiplicative form of average costs in region u, Cu, and the iceberg trade cost,

τui, such that:

Cui = Cuτui, (16)

where we de�ne Cu as the average production cost by �rms in location u (weighted by the number

of customer advertisement postings).

3.3 Matching between Suppliers and Buyers

We now describe how the matching rates between suppliers and buyers, mS
ui, mB

ui, are determined

for each pair of locations.

To do so, we �rst derive the aggregate measure of supplier and buyer advertisement postings

for each pair of locations. The aggregate measure of supplier advertisement posting by customers

in location d for suppliers in location u is given by:

MS
ud = Nd

∫
nS

ud(z)dGd(z) = NdaS
udMd

(
δ1

γS

)
, (17)

where Nd is the measure of �rms that produces in location d, and Gd(·) is the cumulative distri-

bution function of �rm productivity in location d, which we assume to be an arbitrary function of

location d. For notational convenience, we denote the integral of the power function of the pro-

ductivity with respect to the productivity distribution by Md (χ) =
∫

zχdGd(z). Similarly, the
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aggregate measure of customer advertisement posting by suppliers in location u for customers

in location d is given by:

MB
ud = Nu

∫
nB

ud(z)dGu(z) = NuaB
udMu

(
δ1

γB

)
. (18)

Due to matching frictions, only a fraction of supplier advertisement and buyer advertisement

lead to a successful match. Following a long tradition in the literature of labor search and match-

ing (Diamond 1982, Mortensen 1986, Pissarides 1985), we assume that the aggregate number of

successful matches between a supplier advertisement in location u and the buyer advertisement

in location d is determined by matching technology represented by a Cobb-Douglas matching

function:

Mud = κud

(
MS

ud

)λS (
MB

ud

)λB

, (19)

where λS
and λB

denote the elasticities of total matches created for the pair of regions with

respect to the supplier and buyer advertisement postings, respectively, and κud is the parameter

governing the e�ciency of matching technology. We accommodate the possibility of the scale

e�ects of the matching technology, such that λS + λB
is not necessarily equal to one.

13
Given

the number of total supplier-to-buyer matches between bilateral regions, the matching rates mS
ud

and mB
ud are now de�ned by:

mS
ud =

Mud

MS
ud

, mB
ud =

Mud

MB
ud

. (20)

3.4 Aggregate Trade Flows

We now derive the aggregate trade �ows between a pair of locations. In particular, we show that

both the extensive margin of trade �ows (number of supplier-to-buyer relationships) and the

intensive margin of trade �ows (transaction volume per relationship) follow the form of gravity

equations. In this section, we present our main results, and we leave all mathematical derivations

in Appendix A.2.

We start with the extensive margin of trade �ows. By solving equations (8), (17), (18), (19),

and (20), the number of supplier-to-buyer relationships Mud from supplier location u to buyer

location d is given the following gravity equation:

Mud = χE
udζE

u ξE
d , (21)

13
See Eaton, Kortum, and Kramarz (2018) and Miyauchi (2021) for the evidence of the increasing returns to scale

in matching technology between suppliers and buyers.
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where the bilateral resistance term χE
ud is given by:

χE
ud = $E

[
κud

(
f B
ud

)−λ̃B (
f S
ud

)−λ̃S (
τ1−σ

ud

)λ̃B+λ̃S]δ2

,

where we de�ne λ̃S ≡ λS/γS
and λ̃B ≡ λB/γB

as the ratio of matching function elasticities and

search cost elasticities, and we also de�ne δ2 ≡
[
1− λ̃S − λ̃B]−1

and $E ≡ (1− β)λ̃Sδ2
. In other

words, the bilateral resistance term is a combination of bilateral search, matching, and iceberg

frictions, which jointly enter as a shifter for the cost of forming a supplier-to-buyer linkages in

each pair of locations. The origin-speci�c shifter takes the form:

ζE
u =

(NuMu

(
δ1

γB

))λB γB−1
γB {

e−1
u (C∗u)

1−σ
}λ̃B (

Cu
)(1−σ)λ̃S

δ2

,

which summarizes the capability of location u to generate buyer relationships, which depends

on the measure of �rms, Nu, productivity, Mu

(
δ1
γB

)
, and cost shifters, C∗u, Cu. The destination-

speci�c shifter takes the form:

ξE
d =

(NdMd

(
δ1

γS

))λS γS−1
γS

(Dd)
λ̃B

{
D∗de−1

d w
β(1−σ)

1−β

d (C∗d)
− β(1−σ)

1−β

}λ̃Sδ2

,

which summarizes the capability of location d to generate supplier relationships, which depends

on the measure of �rms, Nd, productivity, Md

(
δ1
γS

)
, and demand shifters, Dd, D∗d .

We next derive the intensive margin of trade �ows. Using equation (6), we can also derive the

average volume of bilateral transactions between suppliers in location u and buyers in location

d as

rud = χI
udζ I

uξ I
d, (22)

where the bilateral component is only a function of iceberg costs such that

χI
ud = (τud)

1−σ ,

and the origin- and destination-speci�c shifters are given by:

ζ I
u = (C∗u)

1−σ Mu (δ1)

Mu

(
δ1
γB

) , ξ I
d = Dd.

The intuition of this gravity equation is as follows. The bilateral resistance term, χI
ud = (τud)

1−σ
,
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captures the iceberg trade cost between the location. The origin location �xed e�ects, ζ I
u, capture

the average unit cost of location u and depend on the cost index of the origin. Lower cost will

increase the �rm intensive margin. The destination �xed e�ects, ξ I
d, capture the intermediate

goods demand per �rm in location d.

Equations (21) and (22) show that the gravity equations for extensive and intensive margins

have a di�erent spatial structure. Importantly, while the bilateral resistance term of the intensive

gravity equation captures only the iceberg trade cost, (τud)
1−σ

, in Equation (22), the bilateral re-

sistance term of the extensive gravity equation captures the combination of the match e�ciency,

κud, the bilateral search cost shifters, f B
ud, f S

ud, in addition to the iceberg trade cost. This di�er-

ence gives a structural interpretation of the di�erent spatial decay of the extensive and intensive

margin of �rm-to-�rm trade across regions in Chile as documented in Fact 2 of Section 2.2. In

Section 5, we use these model predictions to decompose the component of trade costs into the

component attributed to iceberg trade cost and those attributed to search and matching frictions.

At this juncture, it is worth discussing the di�erence of our gravity equations with the ones

derived by Eaton, Kortum, and Kramarz (2018). In their model, �rms have a �nite number of

tasks that they outsource from a selected set of suppliers. This selection mechanism, together

with their assumption of the extreme-value distribution of �rm productivity, implies that the

expected transaction value does not depend on origin-speci�c shifters or iceberg shipping costs.

Therefore, in their model, the bilateral resistance of the gravity equations are driven entirely by

the extensive margin, which is in turn driven by the combination of iceberg costs and search

frictions.
14

Our model instead assumes that �rms match with a continuum of suppliers that are

imperfect substitutes for each other. As a result, our model predicts that intensive margin of trade

�ow responds to iceberg trade costs and to origin-speci�c shifters.

3.5 General Equilibrium

We now embed the aforementioned search and matching framework of spatial production net-

work formation in general equilibrium. In particular, we discuss how the advertisement cost, ei,

the average production costs, Ci, the demand shifters, D∗i and Di, �rm entry, Ni, and wages, wi,

are determined in general equilibrium. Because these characterizations are relatively standard

in the literature of quantitative trade models, we present the key equations in this section and

delegate the mathematical derivations to the Appendix A.3.

First, we assume that advertisement service is provided by perfectly competitive advertise-

ment service providers using labor and intermediate goods with Cobb-Douglas production tech-

nology. Similarly to �nal goods producers as discussed in Section 3.1, advertisement service

14
Similar property of gravity equations holds for Miyauchi (2021) and Panigraphi (2021), which in turn build on

Eaton, Kortum, and Kramarz (2018).
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providers face no search and matching frictions and access all intermediate goods varieties pro-

duced in location i. Therefore, the cost for advertisement service ei is given by

ei = Ai (wi)
µ (C∗i )

1−µ , (23)

where Ai captures the productivity of the advertisement sector, µ is the input expenditure share

for labor, and C∗i is the cost shifter for the intermediate goods de�ned by equation (12).

Second, we show that the average cost of intermediate goods sold by suppliers in location i,
Ci, introduced in equation (7), is proportional to the cost index, C∗i , such that:

Ci = (C∗i ) (σ̃)

 Mi (δ1)

Mi

(
δ1
γB

)
1/(1−σ)

, (24)

where the last component (Mi (δ1) /Mi

(
δ1
γB

)
) captures the advertisement intensity by �rms

with di�erent productivity.

Third, we characterize the demand shifters using the labor and intermediate goods market

clearing conditions. Demand shifters for �rms’ sales at origin location (de�ned in equation 11),

D∗i , is given by

D∗i =
1
ϑ

wiLi(
C∗i
)1−σ Ni

1
Mi (δ1)

, (25)

where ϑ = β− 1
δ1σ̃

(
1− β + µ

1
γB +

1−β

γS

1− 1
γB−

1−β

γS

)
is the ratio of aggregate �rm revenue to aggregate

labor compensation. Furthermore, demand shifter for intermediate goods sales at destination

location (de�ned in equation 6), Dd, is given by

Dd =
1

ϑ (σ̃)σ−1
Ld

NdMd

(
δ1
γS

) (wd)
1−βσ
1−β (C∗d)

σ−1
1−β . (26)

Note that, except for parameters and exogenous variables, the demand shifters are only a function

of wages wi, cost shifter C∗i , and �rm entry Ni.

Fourth, we characterize �rm entry Ni. We follow a long tradition in international trade and

spatial economics and assume that in each region, there is a pool of potential entrants of interme-

diate goods producers (�rms) in region i. Once they pay a �xed cost payment Fi in the unit of local

labor, each �rm stochastically draws productivity z from cumulative distribution function Gi(·),
where this productivity distribution can arbitrarily depend on region i. The zero-pro�t condition
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for the potential entrants implies that �rm entry is proportional to market size, Li, such that:

Ni =
ϑ

δ1σ̃

Li

Fi
. (27)

Finally, we assume that trade is balanced. Thus, total expenditure in imported intermediate

inputs, ∑u Xui = ∑u rui Mui equals total intermediate goods sales to other regions; ∑d Xid =

∑d ridMid.

We now de�ne the general equilibrium. Recall that gravity equations (21 and 22) and �rm

search intensity (9, 10) are functions of ei, Ci, D∗i , Di, Ni, which are in turn functions of the pro-

�les of wages, {wi}, and cost shifters, {C∗i }, as characterized above by equations (23)-(27) and

the trade balancing condition. Therefore, we can de�ne a general equilibrium by the pro�les of

{wi, C∗i } that satisfy the above set of equations.

4 Theoretical Analysis

In this section, we establish the theoretical properties of the general equilibrium of our model.

In Section 4.1, we show that the equilibrium is characterized by two equations corresponding

to buyer and supplier access, and we use this characterization to establish the conditions for the

existence and the uniqueness of the equilibrium. In Section 4.2, we characterize the counterfactual

equilibrium given a change in exogenous variables. In Section 4.3, we characterize su�cient

statistics to evaluate the welfare changes as a response to changes in exogenous variables.

4.1 Equilibrium Characterization

As discussed in Section 3.5, the equilibrium is characterized by the pro�les of wages, wi, and cost

shifters, C∗i . While the equilibrium involves many equations, we show that the equilibrium boils

down to two sets of simple equations corresponding to buyer access and supplier access. These

two sets of equations are reminiscent of the buyer and supplier access in canonical gravity-based

trade models (e.g., Anderson and Van Wincoop (2003) and Redding and Venables (2004)), while

we accommodate endogenous search and matching in �rm-to-�rm trade.

We �rst discuss how wages are determined by buyer access. Since the total compensation to

labor is ϑ fraction of total �rm revenue from other intermediate goods producers, we have:

wi =
ϑ

Li
∑
d

Xid, (28)

where Xid = Midrid is the aggregate intermediate goods trade �ow from i to d. This equation
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resembles a standard buyer access equation in trade and spatial models: the wage in a location

depends on the potential revenue of the location by selling to various other locations. How-

ever, unlike these standard models, endogenous search and matching a�ect the buyer access by

endogenously shifting Mid.

We next discuss how intermediate cost shifters are determined by supplier access. By com-

bining equation (12) and (24), we have

(C∗i )
1−σ = wβ(1−σ)

i

[
(σ̃)σ−1

Mi

(
δ1

γS

)
Ni

]β−1(∑u Xui

Di

)1−β

. (29)

This equation is reminiscent of a supplier access equation in standard trade models: A better

access to intermediate goods (∑u Xui/Di) or lower wages (wi) guarantees that the cost shifter of

location i, C∗i , is lower. However, unlike a standard trade model, endogenous search and matching

a�ect the supplier access by endogenously shifting Mui.

In Appendix A.4, we show that the above buyer access and supplier access equations (28 and

29) are rewritten only in terms of wi and C∗i for endogenous variables, such that:

(wi)
1+λ̃Bδ2µ (C∗i )

(σ−1)δ2+λ̃Bδ2(1−µ) = ∑
d

KD
id (wd)

δG (C∗d)
(σ−1)δ2

1−β −λ̃Sδ2(1−µ) , (30)

(wi)
1−δG (C∗i )

− (σ−1)δ2
1−β +λ̃Sδ2(1−µ)

= ∑
u

KU
ui (wu)

−λ̃Bδ2µ (C∗u)
−(σ−1)δ2−λ̃Bδ2(1−µ) , (31)

where δG is combination of parameters that summarize the demand e�ects of downstream loca-

tions’ wages on upstream locations’ economic activity, de�ned as

δG =

[
λ̃Sµ +

1− βσ

1− β

]
δ2.

In this expression of δG, the �rst term captures the endogenous search decisions by �rms in

downstream locations, and the second term is the reminiscent of market size e�ect standard in

the literature. Furthermore, KD
id and KU

id are the upstream and downstream connectivity shifters

between regions, given by

KD
id =

1
Li

Kid, KU
ui =

1
Li

Kui,

where Kid is a composite of bilateral resistance terms of gravity equations, χE
id and χI

id, produc-
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tivity distribution, Mi(·) and Md(·), and the population size, Li and Ld, such that:

Kid = ςχE
idχI

id

[
Mi

(
δ1

γB

)λB−1

Md

(
δ1

γS

)λS−1

Mi (δ1)
λ̃S

Md (δ1)
−λ̃S

L
λB γB−1

γB

i L
λS γS−1

γS

d

]δ2

(32)

where ς ≡ $Eσ̃δ2[(1−σ)((λ̃B+1)δ2+1)−(λB+λS−δ−1
2 )]δ

−δ2(λB+λS−δ−1
2 )

1 ϑ

(
λS γS−1

γS +λS γS−1
γS

)
δ2−1

is a

composite of model parameters.

There are three important implications about the system of equations (30) and (31). First, it

shows that the equilibrium is completely characterized by the upstream and downstream con-

nectivity shifters, KD
id , KU

ui, and the set of structural parameters {σ, β, µ, λ̃B
, λ̃S

}. Conditional

on these variables, other exogenous variables such as iceberg costs, τid, search and matching

costs, f S
id, f B

id, matching technology e�ciency, κid, or productivity distributions, Gi(·), are redun-

dant. This feature of the equilibrium characterization is particularly useful for characterizing

counterfactual changes of equilibrium as discussed in Section 4.2. Furthermore, given KD
id , KU

ui,

matching elasticity, λS, λB
, and search cost elasticity, γS, λB

, matter only in the form of ratios,

λ̃B ≡ λB/γB
and λ̃S ≡ λS/γS

. Intuitively, λ̃B
and λ̃S

summarize the changes of the realized

matches as a response to the changes in wi and C∗i through endogenous search decision, γB, γS
,

and the shape of matching technology, λB, λS
. Only the net e�ects of these two matter for the

aggregate equilibrium implications.

The second important remark about the above equilibrium characterization is that it nests a

wide class of gravity trade models as a special case. In particular, when λ̃S = λ̃B = 0, supplier-

to-buyer relationships between locations do not respond to endogenous equilibrium variables,

hence the production networks are e�ectively exogenously given. In Appendix A.5, we show that

this special case is isomorphic to a canonical multi-country Ricardian model with intermediate

goods trade as in Eaton and Kortum (2002), Alvarez and Lucas (2007) when σ− 1 is instead set

as sector productivity dispersion; to the multi-country trade model with �rm heterogeneity and

selective entry as in Melitz (2003), Eaton, Kortum, and Kramarz (2011) when σ− 1 is instead set

as the shape parameter for the Pareto productivity distribution; and to a broad class of gravity-

based trade models as studied in Arkolakis, Costinot, and Rodríguez-Clare (2012), Costinot and

Rodríguez-Clare (2014) when σ − 1 is instead set as trade elasticity. On the other hand, in our

general case where λ̃S 6= 0 or λ̃B 6= 0, our model is not isomorphic to these canonical gravity

trade models. In Section 5, we quantitatively assess how our model prediction di�ers to the special

case of λ̃S = λ̃B = 0.

The third important remark is about the existence and uniqueness of the equilibrium. Impor-
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tantly, the system of equations (30) and (31) follow the same mathematical architecture as the

ones that commonly appear in trade and spatial equilibrium models. In particular, using the re-

sults from Allen, Arkolakis, and Li (2020), we provide su�cient conditions for the existence and

the uniqueness of the equilibrium, summarized by the following proposition:

Proposition 1 If β(σ−1)
1−β ≥ (1− µ)

(
λ̃B + λ̃S) and δG ≤ 1 then the equilibrium always exists and

it is unique up-to-scale.

Proof. See Appendix B.1.

These su�cient conditions are intuitive. The �rst condition ensures that the scale e�ects of

matching technology related to the search cost elasticity, λ̃B + λ̃S
, have to be su�ciently small.

The second condition ensures that, δG, which summarizes the demand e�ects of downstream

locations’ wages on upstream locations’ economic activity (equation 30), has to be less than one

so that the positive feedback e�ects from a downstream location do not accumulate to in�nity.

4.2 Responses to Shocks

In this subsection, we derive the system of equations for the changes of equilibrium variables as

a response to shocks in exogenous variables such as trade costs or productivity shocks.

In particular, we consider how the shocks to connectivity shifters K̂D
id and K̂U

id changes the

equilibrium con�gurations. Here, we adopt the conventional notation to use hat (x̂) to denote

the proportional changes of x such that x̂ = x′/x, where x′ is the value of x in the presence of

the shocks. Note that the changes of K̂D
id and K̂U

id can be induced by the changes in productivity,

Gi(·), population, Li, iceberg trade costs, τid, search costs, f B
id, f S

id, matching e�ciency, κid, or the

population size Li, following of KD
id and KU

id the expression in equation (32).

Following the exact-hat algebra approach by Dekle, Eaton, and Kortum (2008), we show that

the counterfactuals in our model can be determined just by these observed trade �ows, Xid, and

the set of structural parameters {σ, β, µ, λ̃B
, λ̃S

}, as summarized by the following proposition:

Proposition 2 Given the set of structural parameters {σ, β, µ, λ̃B, λ̃S} and the observed bilateral
trade �ows, Xid, the counterfactual changes of wages ŵi and intermediate costs Ĉ∗i from the changes
in exogenous variables summarized by K̂D

id and K̂U
id are given by

(ŵi)
1+λ̃Bδ2µ (Ĉ∗i )(σ−1)δ2+λ̃Bδ2(1−µ)

= ∑
d

K̂D
id (ŵd)

δG
(
Ĉ∗d
) (σ−1)δ2

1−β −λ̃Sδ2(1−µ) Ψid (33)

(ŵi)
1−δG

(
Ĉ∗i
)− (σ−1)δ2

1−β +λ̃Sδ2(1−µ)
= ∑

u
K̂U

ui (ŵu)
−λ̃Bδ2µ (Ĉ∗u)−(σ−1)δ2−λ̃Bδ2(1−µ) Λui (34)
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where we de�ne Ψid = Xid/ (∑` Xi`) as the observed share of intermediategoods sales of �rms
in location i to location d, and Λui = Xui/ (∑` X`i) as the observed share of intermediate goods
expenditure by �rms in location i from location u.

Proof. See Appendix B.2.

Similarly to the characterization of baseline equilibrium by equations (30) and (31), the propo-

sition states that the equilibrium is completely characterized by the set of su�cient statistics of

structural parameters and exogenous variables. Moreover, compared to (30) and (31), we do not

have to know the baseline level of connectivity shifters KD
id , KU

ui. Instead, we only need to know

the baseline level of bilateral trade �ows Xid. Intuitively, bilateral trade �ows Xid summarize all

the information about the connectivity shifters KD
id , KU

ui. It is also important to observe that �ner

microdata about �rm-to-�rm trade, such as the extensive and intensive margin of trade �ows, Mid

and rid, are not required for the counterfactual simulation. In other words, endogenous search

and matching in spatial production networks a�ect the counterfactual equilibrium predictions

only through the structural parameters, λ̃B
, λ̃S

, and µ.

4.3 Su�cient Statistics for Welfare

In this section, we study how productivity or trade shocks a�ect the residents’ welfare in each

location. In particular, following the spirit of Arkolakis, Costinot, and Rodríguez-Clare (2012),

we derive a su�cient statistics formula for the welfare changes using a small set of elasticities

and equilibrium variables. We show that our welfare formula depends not only on familiar ag-

gregate su�cient statistics omnipresent in the gravity trade models (Arkolakis, Costinot, and

Rodríguez-Clare 2012) but also on the additional term that summarizes the endogenous changes

in production networks.

For simplicity, we consider the welfare changes of residents in location i from shocks summa-

rized by K̂D
id , K̂U

id that do not involve the changes in the productivity or population in their own

location i, Gi(·) and Li(·), and the within-location iceberg trade costs, search costs, and matching

e�ciency, τii, f B
ii , f S

ii , κii. The following proposition derives a su�cient-statistics expression for

the changes of worker welfare, de�ned by the changes in real wages,
̂wi/PF

i , as a response to

these shocks.

Proposition 3 Given shocks to the economy summarized by K̂D
id , K̂U

id, the proportional changes of
welfare is expressed as:

ŵi

PF
i
=
(
Λ̂ii
)− 1

σ−1
1−β

β
(

M̂ii
) 1

σ−1
1−β

β
(35)
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Proof. See Appendix B.3.

The proposition shows that the welfare changes are summarized by the responses of only

two equilibrium variables. The �rst variable is Λ̂ii, the change of the share of intermediate goods

expenditure from the producers in their own location. The �rst term is omnipresent in the anal-

ysis of a wide class of trade mode with intermediate input trade as reviewed by Costinot and

Rodríguez-Clare (2014) and Antràs and Chor (2021). The exponent is the multiplication of the

inverse of trade elasticity, 1/(σ − 1), and the term capturing multiplier e�ects through input-

output linkages, (1− β) /β, as typical in these models.
15

The second variable is M̂ii, the change

of the number of supplier linkages within their own location. The second term only arises due to

the presence of endogenous spatial production networks through search and matching, and it is

absent from canonical gravity trade models as discussed above.

A closer examination of the second term conveys more intuition behind the role of endoge-

nous production networks on welfare. In particular, using equations (17) and (19), we have:

M̂ii = âS
iim̂

S
ii.

Therefore, this new margin arises due to the change in production cost by the increased number

of suppliers matched per �rm, which is, in turn, a combination of the changes of search inten-

sity for suppliers, âS
ii, and the endogenous matching rates, m̂S

ii. The responses of these variables

are therefore related to the values of λ̃S
and λ̃B

. In particular, in a special case of exogenous

supplier and buyer search and matching as discussed above (λ̃S = λ̃B = 0), these terms are all

equal to one, giving the same expression for the welfare gains for canonical gravity trade models.

Furthermore, the value of µ, the labor share of the advertisement services (equation 23), is also

relevant for the welfare gains. When µ = 0, search cost only responds to intermediate goods cost

shifter, C∗i , and when µ = 1, search cost responds only to local wages, wi. In the next section, we

estimate these key parameters for welfare predictions using the observed changes of domestic

production networks from international trade shocks.

5 Quantitative Analysis

In this section, we assess our model’s quantitative implication by calibrating to �rm-to-�rm trade

data from Chile. In Section 5.1, we discuss our calibration strategy. In Section 5.2, we estimate

various sources of frictions in shaping spatial production networks across municipalities in Chile.

15
See Arkolakis, Costinot, and Rodríguez-Clare (2012), Ossa (2015), Melitz and Redding (2015), Caliendo and Parro

(2015), Costinot and Rodríguez-Clare (2014) for the su�cient statistics expressions for trade models with input-output

linkages.
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In Section 5.3, we undertake counterfactual simulations of international trade shocks and trans-

portation infrastructure in Chile.

5.1 Calibration

In this section, we discuss how we calibrate our model to data.

We �rst specify the mapping of our model’s locations to data. We assume that our model

locations consist of a combination of 345 municipalities within Chile and the set of the major

international trade partners of Chile. In particular, we include United States, China, and Germany,

as three distinct locations in the model, and designate all other countries as a single location in

our model.

As discussed in Proposition 2, in order to undertake counterfactual equilibrium simulations,

we only need baseline values of the trade �ows across locations, Xud, and the set of structural

parameters {σ, β, µ, λ̃B
, λ̃S

}. We calibrate the trade �ows to exactly match the data. In particular,

we obtain cross-regional trade �ows Xud by aggregating �rm-to-�rm trade data across munic-

ipalities (when both u and d are municipalities in Chile), by aggregating customs import and

export data (when either of u or d is the international country), or by using country-to-country

international trade data (when both u and d are international countries).

We calibrate the structural parameters {σ, β, µ, λ̃B
, λ̃S

} using microdata from Chile. We start

by calibrating β, the labor share for producing intermediate goods. In our data, we observe total

labor compensation (from employer-employee matched data) and the total intermediate goods

expenditure (from �rm-to-�rm trade data). By taking the share of labor compensation out of the

sum of these two, and taking the average of this share across all �rms, we obtain the approximate

value of β = 0.2.

We calibrate the remaining parameters {σ, µ, λ̃B
, λ̃S

} through indirect inference procedure

targeting the responses of import shocks documented as Fact 3 in Section 2.2.
16

More speci�cally,

we use the linearized equilibrium system to obtain the analytical expressions of the regression

coe�cients of the responses of the �rms’ domestic supplier and buyer con�gurations (the number

of domestic suppliers and buyers, and the transaction volume per domestic supplier and buyer)

on our empirical import shock proxies that we use in Table 2. We then search for parameter

con�gurations {σ, µ, λ̃B
, λ̃S

} that minimize the Euclidean distance between the actual regres-

sion coe�cients and the model-predicted regression coe�cients. Appendix D.2 describes further

details of this estimation procedure.

These regression coe�cients intuitively capture the information about each of our target pa-

rameters. The impacts of import shocks on domestic sourcing (both extensive and intensive mar-

16
We target import shocks, instead of export shocks, because we do not observe signi�cant e�ects of our proxy

of export shocks on the actual export in Table 2.
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gin) are informative about the value of σ because it captures the degree of substitution between

imported intermediate goods and domestic intermediate goods. The average responses of exten-

sive margin (number of suppliers and buyers) relative to intensive margin (volume of transaction

per supplier and per buyer) are informative about the value of λ̃S
and λ̃B

, which are key elas-

ticities summarizing the models’ endogenous responses of production networks through search

and matching. Recall that, in our special case of λ̃S = λ̃B = 0, the model predicts no responses

on these extensive margins. Since λ̃S
and λ̃B

are di�cult to separately identify in practice, we

impose a restriction that λ̃S = λ̃B
. Lastly, the average responses of extensive margin are also

informative about µ, because µ governs which factor prices (wages or composite intermediate

goods) matter more for the incentive of search. In particular, a higher value of µ indicates a more

positive response on the number of suppliers and buyers from import shocks, because import

shocks directly decrease the cost shifter C∗i .
17

Table 3 presents our calibration results. Panel A reports our estimated parameters. Panel

B reports the model �t, in which we present the regression coe�cients of import shocks using

actual data (in Panel B (i), reproduced from Table 2) and the same regression coe�cients using

model prediction under the estimated parameters (in Panel B (ii)). We �nd a moderately small

elasticity of substitution across intermediate inputs σ = 3.07, implying a relatively small degree

of substitution between domestic and international intermediate goods. Consistent with this

interpretation, positive import shocks (increased attractiveness of imported intermediate goods)

have positive impacts on domestic sourcing, both in the data and in the model prediction, as

evident in Column 2 and 3 of Panel B. We �nd positive values of λ̃B = λ̃S = 0.19, indicating that

endogenous responses of extensive margin of production networks are important. In particular,

the model replicates the strong positive responses in the number of suppliers as found in Column

2 of Panel B. Lastly, we �nd µ = 0.74, indicating that search costs are more strongly in�uenced

by the composite intermediate goods costs than wages.

5.2 Unpacking Spatial Frictions in Production Network Formation

In this section, we estimate the spatial frictions for production network formation for each pair

of locations. In particular, we use our model structure to exactly decompose these frictions into

iceberg trade costs and search and matching frictions. We also study how each of these margins is

related to the geographic proximity between regions in Chile, which we use for the counterfactual

17
In addition to the four parameters discussed above, we also introduce and estimate the parameter that translates

the empirical proxy for import shocks (as constructed in Section 2.2) to the structural import shock proxy KU
ui,

targeting the changes of import values. See Appendix D.2 for the details. To ensure that we obtain stable results

for the counterfactual simulation, we impose constraints in parameters so that they satisfy su�cient conditions for

equilibrium uniqueness as derived in Proposition 1. We �nd that our estimated parameters are at the boundary of

δG = 1.
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Table 3: Parameter Estimates and Model Fit

Panel (A) Estimated Parameters

Parameters Value

β 0.2 (calibrated)

σ 3.07
λ̃B = λ̃S 0.19
µ 0.74

Panel (B) Model Fit

Suppliers Buyers

Imports Number Mean Value Number Mean Value

(1) (2) (3) (4) (5)

(i) Data
Import Shock 0.566 0.253 0.159 0.048 0.251

(0.206) (0.093) (0.160) (0.144) (0.250)

(ii) Model Prediction
Import Shock 0.572 0.192 0.199 0.155 0.208

Notes: This table reports the estimation results (Panel A) and the model �t of the structural parameters (Panel B). In Panel B, we present the

regression coe�cients of import shocks using actual data (in Panel B (i), reproduced from Table 2) and the same regression coe�cients using

model prediction under the estimated parameters (in Panel B (ii)). See Appendix D.2 for the details of the estimation procedure.

simulation for transportation infrastructure in Section 5.3.

To start the analysis, we �rst reformulate the gravity equations of the aggregate trade vol-

ume from u to d, Xud. By noting that Xud is the multiplication of extensive margin (number of

relationships), Mud, and the intensive margin (transaction volume per relationship), rud, both of

which follow gravity equations (Equations 21 and 22), Xud is expressed as:

Xud = Mudrud = χudζuξd,

where χud = χE
udχI

ud, ζu = ζE
u ζ I

u, and ξd = ξE
d ξ I

d. In particular, the bilateral resistance term of

the extensive margin gravity equation, χE
ud = $E

[
κud f B

ud
−λ̃B

f S
ud
−λ̃S

(
τ1−σ

ud

)λ̃B+λ̃S]δ2

, is a�ected

by both search and matching frictions and iceberg trade cost, while the bilateral resistance of the

intensive margin gravity equation, χI
ud = (τud)

1−σ
, is only a�ected by the iceberg trade cost.

Therefore, we can exactly decompose the bilateral resistance of total trade �ows, χud, into the

component that is related to search and matching frictions and that related to iceberg trade costs:

χud = χsearch

ud χ
iceberg

ud ,

χsearch

ud =

[
κud

(
f B
ud

)−λ̃B (
f S
ud

)−λ̃S]δ2

, χ
iceberg

ud =
(

τ1−σ
ud

)λ̃B+λ̃S+1
. (36)
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Note that we de�ne χsearch

ud by the combination of the matching e�ciency, χud, and search costs

shifters, f B
ud and f S

ud. In our model, these objects always appear in the form of χsearch

ud , and hence

we do not have to separately identify these components.

We now proceed to estimate χsearch

ud and χ
iceberg

ud . As is standard in gravity-based trade models,

we cannot separately identify the bilateral resistance terms, χud, from origin and destination

shifters, ζu and ξd. Therefore, we follow Head and Ries (2001) to construct the proxies for bilateral

trade costs relative to within-location trade. More speci�cally, by combining the expressions for

the gravity equations in extensive and intensive margins (Equations 21 and 22), we have:

χ̃
iceberg

ud ≡
χ

iceberg

ud

χ
iceberg

uu

χ
iceberg

du

χ
iceberg

dd

=

(
rud
ruu

rdu
rdd

)λ̃B+λ̃S+1

(37)

χ̃search

ud ≡
χsearch

ud
χsearch

uu

χsearch

du
χsearch

dd
=

(
Mud
Muu

Mdu
Mdd

)(
rud
ruu

rdu
rdd

)−(λ̃B+λ̃S)δ2

Note that these proxies can be constructed with the extensive and intensive margin trade �ows

between regions using domestic �rm-to-�rm trade data in Chile and the estimated parameters of

λ̃B
and λ̃S

.
18

Figure 2 presents the probability distribution functions of the estimated log(χ̃iceberg

ud ) and

log(χ̃search

ud ) across pairs of municipalities in Chile. We �nd that both log(χ̃search

ud ) and log(χ̃iceberg

ud )

are on average in the negative range, while log(χ̃search

ud ) is on average larger in absolute values

than log(χ̃iceberg

ud ), indicating that search and matching frictions are more relevant frictions than

iceberg costs. At the same time, both log(χ̃search

ud ) and log(χ̃iceberg

ud ) have a wide dispersion, indi-

cating that both types of frictions are relevant in shaping the heterogeneity of frictions in spatial

production network formation across regions.

To further understand the nature of these frictions, we investigate how these two types of

trade costs are related to the geographic proximity of the municipality pairs. To do so, we express

both iceberg costs and search frictions as functions of geographic proximity up to idiosyncratic

factors, such that χ
iceberg

ud = Tνi

ud exp(εi
ud) and χsearch

ud = Tνs

ud exp(εs
ud), where Tud is the proxy

for the geographic proximity between u and d (travel time or distance), and νs
and νi

are the

elasticities of the trade cost with respect to Tud, and εi
ud and εs

ud are idiosyncratic factors. By

applying the similar transformation as in Equation (37) and taking log, we have our estimating

18
Since the customs data does not report the identity of the counterpart of international trade by Chilean �rms,

we can construct these proxies only for the pairs of municipalities in Chile, but not between Chilean municipalities

and international countries.
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Figure 2: Distribution of log(χ̃iceberg

ud ) and log(χ̃search

ud )

Notes: Probability distribution functions of log of the Head and Ries (2001)-proxy for the iceberg cost shifters log(χ̃iceberg

ud ) and search and

matching friction shifters log(χ̃search

ud ), estimated using Equation (37) with λ̃B = λ̃S = 0.19 and the data of �rm-to-�rm transactions from the

SII from 2018.

equations for νs
and νi

:

log χ̃search

ud = νs log T̃ud + log ε̃s
ud,

log χ̃
iceberg

ud = νi log T̃ud + log ε̃i
ud, (38)

where T̃ud = Tud
Tuu

Tdu
Tdd

, ε̃s
ud =

εs
ud

εs
uu

εs
du

εs
dd

, and ε̃i
ud =

εi
ud

εi
uu

εi
du

εi
dd

, and χ̃
iceberg

ud and χ̃search

ud are as constructed

in Equation (37).

Table 4 presents the estimation results of the regression equations (38) by ordinary least

squares (OLS) estimators. Columns 1 and 2 presents the results using the distance of kilometers

between municipalities in Chile. Columns 3 and 4 present the results using travel time between

municipalities. The table shows that, while there is a strong negative correlation of both frictions
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with geographic proximity proxies (longer travel time or distance imply for greater frictions), the

regression coe�cients for the search-matching frictions (Columns 1 and 2) is signi�cantly larger

in absolute value than iceberg frictions (Columns 3 and 4). In other words, bilateral search-

matching costs increase signi�cantly more with longer travel distance and travel time than ice-

berg cost frictions. Furthermore, the R2
of the regression of search and matching friction on log

distance is signi�cantly larger (0.278) than the regression of iceberg trade cost on log distance

(0.049). Thie �nding reinforces the interpretation that geographic proximity matters more for

search and matching frictions than for iceberg trade costs. These �ndings are in line with the

recent evidence that search and matching frictions are relevant for the spatial trade structure.
19

Table 4: Decomposition of Spatial Frictions in Production Network Formation

Iceberg Search and Matching

(1) (2) (3) (4)

Log Distance -0.376 -0.633

(0.007) (0.004)

Log Time Travel -0.436 -0.682

(0.008) (0.005)

R2
0.049 0.053 0.278 0.257

N 53956 53956 53956 53956

Notes: This table presents the regression results of the bilateral frictions in iceberg cost (χ̃
iceberg

ud ) and search-matching frictions (χ̃search

ud ) on travel

time and travel distance at the bilateral location-level using SII data from 2018. Distance (time travel) is measured with kilometers (minutes of

time travel) between municipalities using the fastest land or water transportation method available within Chile. p<0.1.

5.3 Counterfactual Simulations

In this section, we present two sets of counterfactual simulations: international trade shocks

from major trading partners, and a planned domestic transportation infrastructure that connects

di�erent regions in Chile.

5.3.1 International Trade Shocks

In this section, we study how international trade shocks a�ect domestic economic activity in the

presence of endogenous spatial production networks formation. In particular, using our model,

19
See Chaney (2014), Allen (2014), Brancaccio, Kalouptsidi, and Papageorgiou (2020), Dasgupta and Mondria

(2018), Eaton, Jinkins, Tybout, and Xu (2016), Lenoir, Martin, and Mejean (2020), Krolikowski and McCallum (2021),

Startz (2021), Miyauchi (2021) for recent theory and evidence of search frictions in international and intranational

trade. In particular, Eaton, Kortum, and Kramarz (2018) provide a similar decomposition of trade frictions into

iceberg cost and search frictions using a di�erent theoretical framework, and reach a similar conclusion about the

importance of search and matching frictions.
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we simulate the equilibrium responses from the changes in the trade costs between Chile and

three major international trade partners, China, Germany, and the USA. We show that the ag-

gregate and distributional implications of these international trade shocks are substantially in-

�uenced by incorporating the endogenous formation of spatial production networks.

More concretely, we consider a 10% reduction of iceberg trade cost between Chile and the

three countries (China, Germany, and the USA), in both directions of exports and imports. From

Equations (21) and (22), this change of iceberg trade cost is isomorphic to the change of bilateral

resistance shifters χ̂ud = χ̂E
udχ̂I

ud = 1.35 under our calibrated parameters of λ̃B
and λ̃S

. Note

that, because di�erent municipalities in Chile have di�erent import and export exposures to each

of the three countries, these simulated international trade shocks di�erently a�ect di�erent mu-

nicipalities in Chile. Furthermore, these trade shocks can have indirect e�ects on municipalities

in Chile through domestic production networks, even if the regions themselves are not directly

exposed to international markets.

To benchmark our results, we also simulate the equilibrium by hypothetically shutting down

the endogenous responses of domestic production networks. More concretely, simulate the equi-

librium by hypothetically setting λ̃S = λ̃B = 0, instead of our baseline calibration of λ̃S = λ̃B =

0.19. As discussed in Section 4.1, in this special case, the extensive margin of spatial production

networks do not respond to aggregate shocks. Therefore, the di�erence between our baseline

model (λ̃S = λ̃B = 0.19) and this special case (λ̃S = λ̃B = 0) is informative about the role of

endogenous spatial production network formation in the economic e�ects of international trade

shocks. To make sure that these di�erences are solely attributed to the endogenous responses

of production networks, but not to the magnitudes of the international trade shocks, we set the

same value of the changes in bilateral resistance shifters between municipalities in Chile and the

three international countries as the baseline, such that χ̂ud = 1.35.

We start by presenting the aggregate welfare e�ects from these international trade shocks.

In Table 5, we present the percentage point changes of the aggregate welfare, measured by the

population-weighted average of welfare changes across municipalities. We �nd that the trade

shock to China increases welfare by 3.65%, a larger value compared to those to Germany (0.40%)

and the United States (2.55%). These di�erences in the magnitudes re�ect the di�erent levels

of direct trade exposures between Chile and the three countries, as well as the indirect trade

exposures through domestic production linkages within Chile, as we further discuss below.
20

At

the same time, under the alternative model with no endogenous extensive margin response (λ̃S =

λ̃B = 0), welfare gain decreases relative to the baseline model by 2.11, 0.10 and 1.19 percentage

20
In 2018, exports to China constitute about 32% of overall exports, and imports from China constitute about 22%

of overall imports, which correspond to about 9% and 6% of Chile’s GDP, respectively. In contrast, the exports from

Germany are signi�cantly smaller, with 0.4% of GDP for exports and 1% of GDP for imports.

33



points, respectively. Thus, ignoring the endogenous extensive margin response underestimates

the welfare responses signi�cantly.

Table 5: Aggregate Welfare Gains from International Trade Shocks (%)

China Germany USA

Baseline 3.65 0.40 2.55

No Extensive 1.54 0.30 1.37

Baseline - No Extensive 2.11 0.10 1.19

Notes: This table presents the aggregate welfare e�ects from the international trade shocks from the three countries: China, Germany, and the

USA. The welfare gains are measured by the percentage point increase in the population-weighted average of welfare changes across munici-

palities. “Baseline” and “No Extensive” correspond to our simulation results using our baseline calibration of λ̃S = λ̃B = 0.19 and our model’s

special case of no extensive margin response λ̃S = λ̃B = 0, respectively. For all cases of China, Germany, and the USA, and for both model

speci�cations, we set the magnitudes of trade cost reduction as χ̂ud = 1.35.

These aggregate numbers of welfare changes mask signi�cant heterogeneity across di�erent

municipalities in Chile. In Panel A of Figure 3, we plot the welfare gains for each municipality

in Chile against the proxy of the direct exposure to international trade, measured by the sum of

the import and export share to each of the international countries. Furthermore, we decompose

the welfare changes into direct e�ects (the components of the welfare changes attributed to the

changes of trade cost from and to the region) and the indirect e�ects (the components of the

welfare changes attributed to the changes of wages and intermediate goods costs in other regions),

using the linearized model discussed in Appendix D.1.
21

Panel A of Figure 3 shows that there is a strong and positive correlation between the direct

welfare e�ects and direct exposure to international trade. The variation of the direct e�ects tends

to be larger than the indirect e�ects, indicating that direct e�ects importantly govern the regions’

welfare gains. At the same time, indirect e�ects are also non-negligible, both in terms of the ag-

gregate values and in terms of the variation across regions. Note that the indirect e�ects can

be both positive and negative, depending on the equilibrium responses of other regions.
22

On

average, we �nd that indirect e�ects tend to be positive, as evident from the positive values of

indirect e�ects for regions with zero direct exposure to international trade. Interestingly, the in-

direct e�ects are relatively �at across di�erent levels of direct international trade exposure. These

patterns of results indicate that the geography of domestic networks matters for the spatial dis-

21
The decomposition of the general equilibrium e�ects to direct and indirect e�ects is similar in spirit with Adao,

Arkolakis, and Esposito (2019). We �nd that the gap between the prediction of the linearized model and our original

nonlinear model is limited, con�rming the tight approximation of the linearized model.

22
For example, indirect e�ects can be positive if the locations’ main domestic sourcing destinations decrease

production costs or the locations’ main sales destinations increase demand. Conversely, indirect e�ects can be neg-

ative if the locations’ main domestic sourcing destinations increase production costs or the locations’ main sales

destinations decrease demand.
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tribution of welfare gains on top of the direct exposures to international trade, again emphasizing

the important role of production networks within a country.

As further robustness of our results about the heterogeneity of direct and indirect e�ects of

international trade shocks, in Panel B of Figure 3, we present the results of the variance decompo-

sition of the total welfare e�ects across municipalities in Chile into the components attributed to

direct e�ects, indirect e�ects, and the covariance term, separately for each international country

of shocks. The results indicate that the direct e�ects account for the majority of heterogeneity

across municipalities, with some heterogeneity across international countries of shocks. At the

same time, the indirect e�ects are also relevant for the regional variation of welfare gains (e.g.,

11% for the USA shock to 26% for the China shock). Interestingly, the covariance terms are pos-

itive for China shock and negative for Germany and USA shocks, highlighting that shocks from

di�erent international countries have di�erent spatial propagation patterns.
23

5.3.2 Transportation Infrastructure

In our second counterfactual simulation, we study how planned large-scale transportation infras-

tructure a�ects the shape of the domestic spatial production networks, and how it leads to the

welfare gains of residents across di�erent regions in Chile.

To study the impacts of transportation infrastructure in a policy-relevant context, we focus on

a new bridge planned to open in 2025 that connects the mainland of Chile and Chiloé, the biggest

island in Chile.
24

Chiloé is populated by approximately 1% of Chile’s population. As of 2021, the

only available transportation mode to access Chiloé island from the mainland is through a ferry

crossing the Chacao Channel, which takes about 35 minutes (including average waiting time)

over around 2 kilometers of sea travel. To promote the economic development and growth of the

island, the government has implemented a plan to construct a new bridge. The bridge is planned

as a suspension bridge of around 2.6 kilometers, the largest of such bridges in South America.

The new bridge is estimated to reduce the time of crossing the Chacao channel to just 2 minutes.

We use our calibrated model to study the welfare implications of the new bridge. Undertak-

ing this counterfactual simulation requires an assumption about how the new bridge a�ects the

trade cost across regions in Chile. For simplicity, we assume that the reduction of trade costs is

proportional to the expected changes in travel time. More concretely, using the same assumption

as in Section 5.2, we assume that the changes of bilateral residence of trade cost attributed to the

23
In Appendix Table D.1 and D.2, we present how the patterns of heterogeneous welfare gains di�er between

our baseline model and the version of our model by shutting endogenous responses in the extensive margin of

production networks (λ̃S = λ̃B = 0). We show that the contribution of the indirect e�ects is substantially smaller

in the model with no extensive margin adjustment (Table D.2), indicating that endogenous formation of domestic

production networks is particularly relevant for welfare gains through indirect e�ects.

24
See Figure C.1 for the geographic location of the future bridge.
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Figure 3: Heterogeneous Welfare Gains from International Trade Shocks

(A) Welfare Gains from Trade Shocks and Direct International Trade Exposures

(B) Variance Decomposition of Welfare Gains

China Germany USA

Direct 65 105 97

Indirect 26 19 15

Covariance 9 -23 -12

Total 100 100 100

Notes: This �gure documents the heterogeneous e�ects across municipalities of trade shocks to di�erent countries. Panel A shows the correlation

between the proxy for the direct international trade exposure and the welfare gains from trade shocks as discussed in Section 5.3.1. Direct

international trade exposure is measured as the sum of the share of imports and exports to regional total expenditure: Λcountry,i + Ψi,country .

The �gure also decomposes the welfare changes into direct e�ects (the components of the welfare changes attributed to the changes of trade

cost from and to the region) and the indirect e�ects (the components of the welfare changes attributed to the changes of wages and intermediate

goods costs in other regions), using the linearized model discussed in Appendix D.1. Each municipality circle is weighted by population. Panel

B shows the variance decomposition of the same welfare gains across regions into the direct welfare e�ects, the indirect welfare e�ects, and the

covariance term between the two.

iceberg trade costs are given by χ̂
iceberg

ud = T̂νi

ud, and that attributed to search and matching fric-

tions is given by χ̂search

ud = T̂νs

ud, where T̂ud is the proportional travel time change between u and

d due to the new bridge, and we use the estimated values of νi
and νs

from the cross-sectional

36



data in Table 4.
25

These assumptions of trade cost reduction, of course, are an approximation,

because the new bridge may a�ect other dimensions of trade costs than travel time. Therefore,

the goal of this counterfactual is not to provide an accurate prediction about the impacts of the

new bridge. Instead, the goal of this exercise is to highlight how the endogenous spatial network

formation matter for the welfare assessment of domestic transportation infrastructure.

We start by presenting our prediction on the aggregate welfare e�ects. Table 6 presents the

estimated aggregate welfare e�ect from the new bridge, measured by the population-weighted

average of welfare changes across municipalities. We �nd that the bridge increases welfare by

0.84 percentage points. While the e�ects are small in aggregates, these e�ects are concentrated

around the population of the Chiloé islands and the surrounding regions, as further discussed

below.

Similarly to Section 5.3.1, we also undertake the same counterfactual simulation by hypothet-

ically assuming that there are no endogenous responses of the extensive margin of production

networks, such that λ̃S = λ̃B = 0. Under this alternative scenario, we �nd that the aggregate

welfare gains of the bridge are 0.50 percentage points. This number is more than a third less than

the baseline model. Thus, ignoring the endogenous changes of production networks leads to a

signi�cant underestimation of welfare gains from transportation infrastructure. Intuitively, the

model abstracting endogenous production formation rules out the productivity gains through the

increased extensive margin of production linkages, as discussed in Proposition 3.

Table 6: Aggregate Welfare Gains from the Bridge to Chiloé Island

New Bridge

Baseline 0.84

No Extensive 0.50

Baseline - No Extensive 0.34

Notes: This table presents the aggregate welfare e�ects of the new bridge. The welfare gains are measured by the percentage point increase in

the population-weighted average of welfare changes across municipalities. “Baseline” and “No Extensive” correspond to our simulation results

using our baseline calibration of λ̃S = λ̃B = 0.19 and our model’s special case of no extensive margin response λ̃S = λ̃B = 0, respectively.

We conclude this section by further studying the sources of heterogeneity of the welfare gains

from the bridge. In Figure 4, we plot the relationship between the direct and indirect welfare gains

against the trade shares of each municipality to and from the Chiloé island, where we follow the

25
We estimate T̂u,island = (T0

u,island − 35)/T0
u,island, where T0

ud is the minutes it takes from travelling from

location u to the island of Chiloé before the construction of the bridge using the fastest land or water transportation

method available within Chile. 35 minutes correspond to the time travel saved by the construction of the bridge in

traveling to the island. We calibrate the changes of travel time from the island T̂island,d similarly as above.
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same decomposition of direct and indirect e�ects as discussed in Section 5.3.1. These �gures show

a substantial heterogeneity of welfare gains across regions. In particular, regions that are highly

connected with the island in baseline (higher value of the horizontal axis) tend to bene�t more.
26

Furthermore, indirect e�ects also tend to correlate with trade shares with the island. Therefore,

abstracting indirect e�ects through endogenous production networks not only underestimate

the welfare gains, but also the distributional gains to regions close to Chiloé island, the intended

bene�ciary from this policy.

Figure 4: Heterogeneous Welfare Gains from the Bridge to Chiloé Island

Notes:This �gure documents the heterogeneous e�ects across municipalities of transportation infrastructure, in particular the new bridge to the

main island Chiloé. The �gure shows the correlation across municipalities between the exposure to trade with the island and the direct (left-hand

side graph) and indirect welfare e�ects (right-hand side graph) for both the baseline model and the model without extensive margin adjustment,

that is when λ̃S = λ̃B = 0. Exposure to trade is measured as the sum of the exposure to suppliers and buyers of the island implied by the model:

Λisland,i + Ψi,island . Direct and indirect welfare e�ects are derived in Appendix D.1. Each municipality circle is weighted by population.

26
Naturally, these locations with higher trade exposure to Chiloé island is geographically close to Chiloé island,

as further discussed by Appendix D.4.
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6 Conclusion

In this paper, we study how production networks are organized in space and how their endoge-

nous formation shapes the spatial distribution of economic activity. Using rich administrative

�rm-to-�rm transaction-level data from Chile, we document that production networks are related

to geography; geographic proximity a�ects trade �ows both in the extensive margin (number of

supplier-to-buyer relationships) and in the intensive margin (transaction volume per relation-

ship); and international trade shocks a�ect the shape of domestic production networks. Guided

by these pieces of evidence, we build a microfounded model of spatial production network for-

mation based on �rms’ decisions to search for suppliers and buyers and to form relationships

depending on their productivity and geographic location. By aggregating these decisions at the

regional level, we provide a tractable characterization of the positive and normative properties

of the general equilibrium. We calibrate our model to the observed domestic and international

trade patterns and to the impacts of international trade shocks on domestic production networks

in Chile. By undertaking counterfactual simulations of international trade shocks and transporta-

tion infrastructure, we �nd strong endogenous responses in the domestic production network.

We also �nd that these responses signi�cantly contribute to the aggregate and heterogeneous

welfare e�ects depending on the regions’ exposure to the domestic and global production net-

work.
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A Mathematical Derivations
In this appendix, we describe the details of the mathematical derivations of our model presented

in Section 3 and 4.

A.1 Firm Search

In this appendix, we solve for �rms’ search problem (7) in Section 3.2. We �rst note that �rms’

search problem (7) is a strictly convex optimization problem when γB > 1 and γS > 1. Therefore,

there is a unique solution to the problem and the �rst order conditions are necessary and su�cient

for the solution. The �rst-order condition of (7) with respect to nB
id , and nS

ui are given by:
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Now, we conjecture that the solutions take the form of (8), replicated here:

nS
ui (z) = aS

uiz
δ1
γS ; nB

id (z) = aB
idz

δ1
γB

(A.3)

where we de�ne δ1 ≡ (σ− 1) /
{

1− 1
γB −

1−β

γS

}
> 0 and aS

ui, aB
id are unknown constants.

Plugging these equations into (A.1), and (A.2), we obtain the expressions for aS
ui, aB

id as stated in

equations (9), and (10) in the main paper. Because the solution is unique, this is the only possible

solution.

By plugging these equations into the cost function (the constraint of equation 7), the unit cost

of a �rm with productivity z is given by

ci (z) =
wβ

i

(
∑u∈N aS

uiz
δ1
γS mS

ui (Cui)
1−σ
) 1−β

1−σ

z
= (C∗i ) z

δ1
γS

1−β
1−σ−1

(A.4)

Furthermore, the revenue of a �rm with productivity z is given by

ri (z) =

{
∑

d∈N
nB

idmB
idDd (τid)

1−σ

}
(ci (z))

1−σ = D∗i (C
∗
i )

1−σ (z)δ1
(A.5)

which coincide with equations (13) and (14), respectively. Lastly, by plugging the �rst-order

conditions into the optimal �rm pro�t (7), we obtain the pro�t equation expressed in terms of
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�rm productivity

πi (z) =
1
σ

D∗i (c)
1−σ − ei

∑
d∈N

f B
id

(
nB

id
)γB

γB + ∑
u∈N

f S
ui

(
nS

ui
)γS

γS


=

1
σ

D∗i (c)
1−σ − 1

σ

∑d∈N nB
idmB

idDd (τid)
1−σ

γB (c)1−σ − 1
σ

1
γS D∗i (c)

1−σ (1− β)

=
1
σ

{
1− 1

γB −
1− β

γS

}
D∗i (C

∗
i )

1−σ (z)δ1

=
1

δ1σ̃
D∗i (C

∗
i )

1−σ (z)δ1 , (A.6)

where we de�ne σ̃ ≡ σ
σ−1 , and this expression corresponds to equation (15) of our main paper.

Lastly, the demand for advertisement services is given by

hi (z) =
1
σ

{
1

γB +
1− β

γS

}
D∗i (C

∗
i )

1−σ (z)δ1 =

1
γB + 1−β

γS

1− 1
γB −

1−β

γS

πi (z) . (A.7)

A.2 Aggregate Trade Flows

Extensive margin. We use equations (8), (17), (18), (19), and (20) to solve for the aggregate num-

ber of successful supplier-to-buyer matches, Mud, aggregate number of advertisement postings,

MS
ud,MB

ud, and the matching probabilities, mS
ud,mB

ud. First, by combining equation (20), (17), and

(10), we have:

Mud =mS
udNdaS

udMd

(
δ1

γS

)
=
(

mS
ud

) γS

γS−1 ãS
ud, (A.8)

where

ãS
ud = NdMd

(
δ1

γS

) 1
ed f S

ud
D∗d (1− β)wβ(1−σ)

d

(
∑
`∈N

aS
`dmS

`d
(
C`τ`d

)1−σ

)−β (
Cuτud

)1−σ

 1
γS−1

= NdMd

(
δ1

γS

)(
1

ed f S
ud

D∗d (1− β)w
β(1−σ)

1−β

d (C∗d)
− β(1−σ)

1−β
(
Cuτud

)1−σ

) 1
γS−1

, (A.9)

where the second transformation uses equation (12). Similarly, by combining equation (20), (18),

and (9), we have:

Mud = mB
udNuaB

udMu

(
δ1

γB

)
=
(

mB
ud

) γB

γB−1 ãB
ud, (A.10)
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where

ãB
ud = NuMu

(
δ1

γB

)(
1

eu f B
ud

Dd (τud)
1−σ (C∗u)

1−σ

) 1
γB−1

. (A.11)

Lastly, from equations (A.8) and (A.10), we have

(
mS

ud

) γS

γS−1 =
(

mB
ud

) γB

γB−1

(
ãB

ud

ãS
ud

)
(A.12)

Now, by plugging (20) into equation (19), and using equations (A.8) and (A.12), we have(
mS

ud

)λS (
mB

ud

)λB

= κudMλS+λB−1
ud

⇐⇒
((

mB
ud

) γB

γB−1

(
ãB

ud

ãS
ud

))λS γS−1
γS (

mB
ud

)λB

= κud

((
mS

ud

) γS

γS−1 ãS
ud

)λS+λB−1

⇐⇒
((

mB
ud

) γB

γB−1

(
ãB

ud

ãS
ud

))λS γS−1
γS (

mB
ud

)λB

= κud

((
mB

ud

) γB

γB−1 ãB
ud

)λS+λB−1

⇐⇒
(

mB
ud

) γB

γB−1

{
λS

γS +
λB

γB−1
}
= κ−1

ud

(
ãB

ud

)1− λS

γS−λB (
ãS

ud

)−λS γS−1
γS

By plugging this equation into equation (A.10), we have

Mud =

[
κud

(
ãB

ud

)λB γB−1
γB
(

ãS
ud

)λS γS−1
γS

]δ2

,

where δ2 =
[
1− λ̃S − λ̃B]−1

, λ̃S = λS/γS
, and λ̃B = λB/γB

as de�ned in our main paper.

Plugging ãB
ud and ãS

ud from equations (A.9) and (A.11) in the equation above,

Mud = (1− β)λ̃Sδ2

×
[

κud

(
f B
ud

)−λ̃B (
f S
ud

)−λ̃S (
τ1−σ

ud

)λ̃B+λ̃S]δ2

×

(NuMu

(
δ1

γB

))λB γB−1
γB {

e−1
u (C∗u)

1−σ
}λ̃B (

Cu
)(1−σ)λ̃S

δ2

×

(NdMd

(
δ1

γS

))λS γS−1
γS

(Dd)
λ̃B

{
D∗de−1

d w
β(1−σ)

1−β

d (C∗d)
− β(1−σ)

1−β

}λ̃Sδ2

,

which corresponds to the extensive margin gravity equation (21).
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Intensive margin We now derive the average volume of transactions between suppliers in lo-

cation u and buyers in location d, rud. Using equation (6), rud is expressed as

rud =

∫
Dd (ci(z)τud)

1−σ aB
udz

δ1
γB mB

uddGi(z)
Mud

,

where the numerator is the total transaction volume from u to d, and the denominator is the

number of realized matches from u to d.

The numerator is rewritten as∫
z∗u

Dd (ci(z)τud)
1−σ aB

udz
δ1
γB mB

uddGi(z)

= aB
udmB

udDd (τud)
1−σ

∫
(C∗u)

1−σ z
δ1
γS (1−β)+(σ−1)

z
δ1
γB dGu(z)

= aB
udmB

udDd (τud)
1−σ (C∗u)

1−σ
Mu (δ1) ,

where the last transformation used the fact that δ1 = δ1
γS (1− β) + (σ− 1) + δ1

γB . The denomi-

nator is rewritten as

Mud =
∫

aB
udz

δ1
γB mB

uddGi(z) = aB
udmB

udMu

(
δ1

γB

)
.

Therefore,

rud = Dd (τud)
1−σ (C∗u)

1−σ Mu (δ1)

Mu

(
δ1
γB

) ,

which corresponds to the intensive margin gravity equation (22).

A.3 General Equilibrium

In this appendix, we analytically solve for the average intermediate goods cost, Ci, and demand

shifters, D∗i , Di, as discussed in Section 3.5..

A.3.1 Average Intermediate Goods Prices (Ci)

The average intermediate goods price by �rms in location i before trade cost payment (weighted

by customer advertisement postings) Ci is given by

C1−σ
i τ1−σ

id =

∫
pi (z)

1−σ τ1−σ
id nB

id (z) dGi(z)∫
nB

id (z) dGi(z′)
,
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for any d, where pi (z) is the prices charged by the �rm before trade cost payment, given by

pi (z)
1−σ =

(
σ

σ− 1

)1−σ
(

wβ
i

z

)1−σ(
∑

u∈N
aS

uim
S
uiz

δ1
γS
(
τuiCu

)1−σ

)1−β

.

From the above equation, we have

C1−σ
i =

∫
pi (z)

1−σ z
δ1
γB dGi(z)∫

z
δ1
γB dGi(z′)

.

The numerator of C1−σ
i is given by

∫
z∗i

pi (z)
1−σ z

δ1
γB dGi(z)

=
∫

z∗i

(
σ

σ− 1

)1−σ
(

wβ
i

z

)1−σ(
∑

u∈N
aS

uim
S
uiz

δ1
γS
(
τuiCu

)1−σ

)1−β

z
δ1
γB dGi(z)

=

(
σ

σ− 1

)1−σ

(C∗i )
1−σ

Mu

(
δ1

γS (1− β) + (σ− 1) +
δ1

γB

)
=

(
σ

σ− 1

)1−σ

(C∗i )
1−σ

Mu (δ1) ,

where we use equation (12) in the second equality. Therefore, we obtain equation (24),

C1−σ
i = (σ̃)1−σ (C∗i )

1−σ Mi (δ1)

Mi

(
δ1
γB

) .

A.3.2 Origin-Location-Speci�c Demand Shifter (D∗i )

We derive the origin-speci�c demand shifter, D∗i using the labor market clearing condition.

There are two sources of labor demand: intermediate goods producers and advertisement ser-

vice providers. The aggregate revenue and pro�t by intermediate goods producers in location i
is given by

Ri = Ni

∫
ri(z)Gi(z)dz = NiD∗i (C

∗
i )

1−σ
Mi (δ1) , (A.13)

Πi = Ni

∫
πi (z) Gi(z)dz =

1
δ1σ̃

NiD∗i (C
∗
i )

1−σ
Mi (δ1) =

1
δ1σ̃

Ri,
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where above transformation use the expression for �rm revenue from other intermediate pro-

ducers, ri(z), and �rm pro�t, πi(z), in equations (14) and (15). In the free entry equilibrium, �rm

pro�t is completely o�set by the �xed cost payment for labor. Therefore, the total labor compen-

sation by intermediate goods producers is given by β (Ri −Πi) + Πi, where the �rst term is the

component of the marginal cost, and the second term is the component of the �xed cost.

Second, we derive the labor demand by advertisement intermediaries. From equation (A.7),

the revenue of the advertisement sector is

1
γB +

1−β

γS

1− 1
γB−

1−β

γS
times aggregate pro�t, Πi.

Under labor market clearing condition, the total labor supply, Li, must be equal to labor de-

mand. Therefore, we have:

wiLi = [β (Ri −Πi) + Πi] +

1
γB + 1−β

γS

1− 1
γB −

1−β

γS

Πi ≡ ϑRi

where ϑ = β − 1
δ1σ̃

(
1− β + µ

1
γB +

1−β

γS

1− 1
γB−

1−β

γS

)
is the ratio of aggregate �rm revenue from other

intermediate producers to labor compensation. Combining this equation with (A.13), we have

D∗i =
1
ϑ

wiLi(
C∗i
)1−σ Ni

1
Mi (δ1)

,

which is the same equation as equation (25).

A.3.3 Destination-Location-Speci�c Demand Shifter (Di)

In this subsection, we derive the destination-speici�c demand shifter (Di). Note that the aggregate

intermediate goods demand Yi is the same as aggregate intermediate goods sales under trade

balancing. Therefore,

Yi = Ri =
1
ϑ

wiLi,

where ϑ is again the ratio of aggregate �rm revenue from other intermediate producers to labor

compensation. Noting the de�nition of Di in equation (6) as the demand shifter per matched
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buyer, intermediate goods market clearing implies that:

1
ϑ

wdLd = ∑
u

Nu

∫
(τud)

1−σ Dd (cd (z))
1−σ nB

ud (z)mB
uddGu (z)

= Dd ∑
u

Nu (τud)
1−σ

∫
(C∗u)

1−σ aB
udmB

udz
δ1
γB +

δ1
γS (1−β)+(σ−1)

dGu (z)

= Dd ∑
u
(τud)

1−σ (C∗u)
1−σ NuaB

udmB
udMu (δ1)

= Dd ∑
u
(τud)

1−σ (C∗u)
1−σ NdaS

udmS
ud

Md

(
δ1
γS

)
Mu

(
δ1
γB

)Mu (δ1)

= Dd (σ̃)
σ−1 NdMd

(
δ1

γS

)
∑
u
(τud)

1−σ C1−σ
u aS

udmS
ud (from equation 24)

= Dd (σ̃)
σ−1 NdMd

(
δ1

γS

) [
w−β

d C∗d
] 1−σ

1−β
(from equation 12)

Therefore,

Dd =
wdLd

ϑ (σ̃)σ−1 NdMd

(
δ1
γS

) [
w−β(1−σ)

d

(
C∗d
)1−σ

] 1
1−β

.

=
1

ϑ (σ̃)σ−1
Ld

NdMd

(
δ1
γS

) (wd)
1−βσ
1−β (C∗d)

σ−1
1−β

which correspond to equation (26).

A.4 Deriving System of Equations inWages (wi) and Intermediate Costs (C∗i )

In this section, we derive the equations (30) and (31) that characterize the general equilibrium in

Section 4.1. We �rst derive equation (30), which corresponds to the buyer access equation. By

plugging gravity equations (21) and (22) into the buyer access condition (28), we have

wi = ϑ
1
Li

ζE
i ζ I

i ∑
d

χE
idχI

idξE
d ξ I

d (A.14)
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Now, the origin-speci�c shifters of the gravity equations, ζE
i ζ I

i , is given by

ζE
i ζ I

i =

(NiMi

(
δ1

γB

))λB γB−1
γB {

w−µ
i C∗i

−(1−µ)C∗i
1−σ
}λ̃B

σ̃1−σC∗i
1−σ Mi (δ1)

Mi

(
δ1
γB

)
λ̃S

δ2

× C∗i
1−σ Mi (δ1)

Mi

(
δ1
γB

) (A.15)

= Kζ
i w−λ̃Bδ2µ

i (C∗i )
−(σ−1){[λ̃B+λ̃S]δ2+1}−λ̃Bδ2(1−µ)

= Kζ
i w−λ̃Bδ2µ

i (C∗i )
−(σ−1)δ2−λ̃Bδ2(1−µ) , (A.16)

where we de�ne

Kζ
i = (σ̃)(1−σ)δ2 (Ni)

λB γB−1
γB δ2

(
Mi

(
δ1

γB

))(λB γB−1
γB −λ̃S

)
δ2−1

(Mi (δ1))
λ̃Sδ2

= (σ̃)(1−σ)δ2

(
ϑ

δ1σ̃

Li

Fi

)λB γB−1
γB δ2

(
Mi

(
δ1

γB

))(λB−1)δ2

(Mi (δ1))
λ̃Sδ2

= (σ̃)
(1−σ)δ2−λB γB−1

γB δ2
δ
−δ2λB γB−1

γB

1 (ϑ)
λB γB−1

γB δ2
(

Mi

(
δ1

γB

))(λB−1)δ2

(Mi (δ1))
λ̃Sδ2 (Li)

λB γB−1
γB δ2 .

Similarly, the destination-speci�c shifters of the gravity equations, ξE
d ξ I

d, is given

ξE
d ξ I

d =

(NdMd

(
δ1

γS

))λS γS−1
γS

(Dd)
λ̃B

{
D∗d
(
(wd)

µ (C∗d)
1−µ
)−1

w
β(1−σ)

1−β

d (C∗d)
− β(1−σ)

1−β

}λ̃Sδ2

Dd

=

(
NdMd

(
δ1

γS

))λS γS−1
γS δ2

w
λ̃Sδ2

(
β(1−σ)

1−β −µ
)

d (Dd)
λ̃Bδ2+1 {D∗d}

λ̃Sδ2 (C∗d)
λ̃Sδ2

(
− β(1−σ)

1−β −(1−µ)
)

=

(
NdMd

(
δ1

γS

))λS γS−1
γS δ2

w
λ̃Sδ2

(
β(1−σ)

1−β −µ
)

d

 1

ϑ (σ̃)σ−1
Ld

NdMd

(
δ1
γS

) (wd)
1−βσ
1−β (C∗d)

σ−1
1−β

λ̃Bδ2+1

×
{

1
ϑ

wdLd(
C∗d
)1−σ Nd

1
Md (δ1)

}λ̃Sδ2

(C∗d)
λ̃Sδ2

(
− β(1−σ)

1−β −(1−µ)
)

= Kξ
d (C

∗
d)

σ−1
1−β(λ̃Bδ2+1)+(σ−1)λ̃Sδ2+λ̃Sδ2

(
− β(1−σ)

1−β −(1−µ)
)
(wd)

λ̃Sδ2

(
β(1−σ)

1−β −µ
)
+

1−βσ
1−β (λ̃Bδ2+1)+λ̃Sδ2

= Kξ
d (C

∗
d)

σ−1
1−β(λ̃Bδ2+λ̃Sδ2+1)−(1−µ)λ̃Sδ2 (wd)

λ̃Sδ2

(
β(1−σ)

1−β −µ
)
+

1−βσ
1−β (λ̃Bδ2+1)+λ̃Sδ2

= Kξ
d (C

∗
d)

(σ−1)δ2
1−β −(1−µ)λ̃Sδ2 (wd)

δG
(A.17)
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where we de�ne δG = λ̃Sδ2

(
µ + 1−βσ

1−β

)
+
(
λ̃Bδ2 + 1

) 1−βσ
1−β = λ̃Sδ2µ + 1−βσ

1−β δ2, and

Kξ
d = (σ̃)(1−σ)(λ̃Bδ2+1) ϑ−δ2 (Nd)

δ2

(
λS γS−1

γS −1
) (

Md

(
δ1

γS

))λS γS−1
γS δ2−λ̃Bδ2−1

(Md (δ1))
−λ̃Sδ2 (Ld)

δ2

= (σ̃)(1−σ)(λ̃Bδ2+1) ϑ−δ2

(
ϑ

δ1σ̃

Ld
Fd

)δ2

(
λS γS−1

γS −1
) (

Md

(
δ1

γS

))λS γS−1
γS δ2−λ̃Bδ2−1

(Md (δ1))
−λ̃Sδ2 (Ld)

δ2

= (σ̃)
(1−σ)(λ̃Bδ2+1)−δ2

(
λS γS−1

γS −1
)

δ
−δ2

(
λS γS−1

γS −1
)

1 ϑ
δ2λS γS−1

γS F
−δ2

(
λS γS−1

γS −1
)

d

×
(

Md

(
δ1

γS

))(λS−1)δ2

(Md (δ1))
−λ̃Sδ2 L

δ2λS γS−1
γS

d .

Furthermore, the multiplication of the constant terms, Kζ
i Kξ

d , is given by:

Kζ
i Kξ

d = (σ̃)(1−σ)((λ̃B+1)δ2+1)δ2−δ2(λB+λS−δ−1
2 ) δ

−δ2(λB+λS−δ−1
2 )

1 (ϑ)

(
λS γS−1

γS +λS γS−1
γS

)
δ2

×
[(

Mi

(
δ1

γB

))λB−1 (
Md

(
δ1

γS

))λS−1

(Mi (δ1))
λ̃S

(Md (δ1))
−λ̃S

(Li)
λB γB−1

γB L
λS γS−1

γS

d

]δ2

.

By plugging these equations into the buyer access equation (A.14),

(wi)
1+λ̃Bδ2µ (C∗i )

(σ−1)δ2+λ̃Bδ2(1−µ) = $Eϑ
1
Li

∑
d

χE
idχI

idKζ
i Kξ

d (C
∗
d)

(σ−1)δ2
1−β −λ̃Sδ2(1−µ)

(wd)
−δG

= ς
1
Li

∑
d

Kid (C∗d)
(σ−1)δ2

1−β −λ̃Sδ2(1−µ)
(wd)

−δG

which corresponds to equation (30) by de�ning ς and Kid as in the main paper.
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We next derive equation (31). From the de�nition of C∗i in equation (12),

(C∗i )
1−σ = wβ(1−σ)

i

(
∑

u∈N
aS

uim
S
ui (Cui)

1−σ

)1−β

= wβ(1−σ)
i

 ∑
u∈N

Mui

NiMi

(
δ1
γS

) (τui)
1−σ (σ̃)1−σ (C∗u)

1−σ Mu (δ1)

Mu

(
δ1
γB

)
1−β

= wβ(1−σ)
i

 ∑
u∈N

Mui

NiMi

(
δ1
γS

) rui

Di
(σ̃)1−σ

1−β

= wβ(1−σ)
i

 (σ̃)1−σ

NiMi

(
δ1
γS

) 1
Di

1−β(
∑

u∈N
Muirui

)1−β

= wβ(1−σ)
i

 (σ̃)1−σ

NiMi

(
δ1
γS

) 1
1

ϑ(σ̃)σ−1
Li

NiMi

(
δ1
γS

) (wi)
1−βσ
1−β

(
C∗i
) σ−1

1−β


1−β(

$EξE
i ξ I

i ∑
u

ζE
u ζ I

uχE
uiχ

I
ui

)1−β

= (ϑ)1−β wβ(1−σ)
i

 1

Li (wi)
1−βσ
1−β

(
C∗i
) σ−1

1−β

1−β (
Kζ

i (C
∗
i )

(σ−1)δ2
1−β −(1−µ)λ̃Sδ2 (wi)

−δG

)1−β

×
(

$E ∑
u

χE
uiχ

I
uiK

ζ
uw−λ̃Bδ2µ

u (C∗u)
−(σ−1)δ2−λ̃Bδ2(1−µ)

)1−β

= (ϑ)1−β wβ(1−σ)−(1−βσ)−δG(1−β)
i (C∗i )

(σ−1)δ2−(1−µ)λ̃Sδ2(1−β)

×
(

$E 1
Li

Kζ
i ∑

u
χE

uiχ
I
uiK

ζ
uw−λ̃Bδ2µ

u (C∗u)
−(σ−1)δ2−λ̃Bδ2(1−µ)

)1−β

⇐⇒

w1+δG
i (C∗i )

− σ−1
1−β δ2+λ̃Sδ2(1−µ)

= $Eϑ
1
Li

Kζ
i ∑

u
χE

uiχ
I
uiK

ζ
uw−λ̃Bδ2µ

u (C∗u)
−(σ−1)δ2−(1−µ)λ̃Sδ2

= ς ∑
u

Kuiw
−λ̃Bδ2µ
u (C∗u)

−(σ−1)δ2−λ̃Bδ2(1−µ)

which corresponds to equation (31).

A.5 Isomorphism to Gravity Trade Models when λ̃S = λ̃B = 0

In this section, we discuss that our model comes down to be isomorphic to canonical gravity

trade models in the literature when we set λ̃S = λ̃B = 0, δ2 = 1 and δG = 1−βσ
1−β . Under these
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parameter values, the equilibrium conditions (30) and (31) come down to the following set of

equations:

(wi) (C∗i )
(σ−1) = ∑

d
KD

id (wd)
− βσ−1

1−β (C∗d)
σ−1
1−β , (A.18)

(wi)
1+ βσ−1

1−β (C∗i )
− σ−1

1−β = ∑
u

KU
ui (C

∗
u)
−(σ−1) . (A.19)

To see the isomorphism to canonical gravity trade models more closely, we rede�ne the cost

shifter C∗i such that

C∗i = wβ
i C̃1−β

i

Using the newly de�ned C̃i, the �rst equation (A.18) is rewritten as

(wi)
1+β(σ−1) C̃(1−β)(σ−1)

i = ∑
d

KD
id (wd)

− βσ−1
1−β +

β(σ−1)
1−β

(
C̃d
)σ−1 ⇐⇒

(wi)
1+β(σ−1) C̃(1−β)(σ−1)

i = ∑
d

KD
id (wd)

1 (C̃d
)σ−1 ,

and the second equation (A.19) is rewritten as

(wi)
1+ βσ−1

1−β −
σ−1
1−β β (C̃i

)−(σ−1)
= ∑

u
KU

uiw
−β(σ−1)
i C̃−(1−β)(σ−1)

i ⇐⇒(
C̃i
)−(σ−1)

= ∑
u

KU
uiw
−β(σ−1)
i C̃−(1−β)(σ−1)

i

The �rst and second equations correspond to equation (3.10 + 3.14) and (3.8) in Alvarez and

Lucas (2007) with θ = 1/(σ− 1) without taxes, respectively. Furthermore, the �rst and second

equations correspond to (45) and (42-45) in Eaton, Kortum, and Kramarz (2011) with θ = σ− 1
without taxes, respectively.

B Proofs

B.1 Proof of Proposition 1

We will use Theorem 1 (ii) in Allen, Arkolakis, and Li (2020) and express the system in terms of

their notation. Notice that the matrices KD
id , KU

id > 0. De�ne the matrices

Γ =

[
1 + λ̃Bδ2µ (σ− 1) δ2 + λ̃Bδ2 (1− µ)

1− δG − (σ−1)δ2
1−β + λ̃Sδ2 (1− µ)

]
=

[
1 + c1 c2
1− δG −c3

]
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and

B =

[
δG

(σ−1)δ2
1−β − λ̃Sδ2 (1− µ)

−λ̃Bδ2µ − (σ− 1) δ2 − λ̃Bδ2 (1− µ)

]
=

[
δG c3
−c1 −c2

]
where

c1 = λ̃Bδ2µ

c2 = (σ− 1) δ2 + λ̃Bδ2 (1− µ)

c3 =
(σ− 1) δ2

1− β
− λ̃Sδ2 (1− µ)

where c1 > 0 and c2 > 0 under our model parameter assumptions. We will provide a su�cient

condition that the spectral radius of A = |BΓ−1| is equal to 1 and thus the equilibrium is unique

according to the theorem. To show this, note that:

BΓ−1 =
1

−c3 (1 + c1)− c2 (1− δG)

[
δG c3
−c1 −c2

] [
−c3 −c2

− (1− δG) 1 + c1

]
=

1
−c3 (1 + c1)− c2 (1− δG)

[
c3 −δGc2 + c3 (1 + c1)

c1c3 + (1− δG) c2 −c2

]
We now show that, when δG ≤ 1 and

β(σ−1)
1−β > (1− µ)

(
λ̃B + λ̃S)

as assumed in Proposition

1, the largest eigenvalue of BΓ−1
is less than one. From second condition, we have c3 > 0 and

c3 > c2. Furthermore, −δGc2 + c3 (1 + c1) ≥ c1c3 + (1− δG) c2 > 0. Therefore, the absolute

value of BΓ−1
is given by

|BΓ−1| = 1
c3 (1 + c1) + c2 (1− δG)

[
c3 −δGc2 + c3 (1 + c1)

c1c3 + (1− δG) c2 c2

]
Note that the sum of the rows for the �rst column and second column are both one. Therefore,

from Collatz–Wielandt Formula (see Remark 5 in Allen, Arkolakis, and Li (2020)), the largest

eigenvalue of BΓ−1
is one under this condition. Therefore, when δG < 1 and

β(σ−1)
1−β > (1− µ)

(
λ̃B + λ̃S)

,

the equilibrium exists and it is unique up to scale.

B.2 Proof of Proposition 2

In the main text, we de�ne Ψid = Xid
∑` Xi`

as the observed share of intermediate goods sales by �rms

in location i to location d, and Λui =
Xui

∑` X`i
is the observed share of intermediate goods expen-

diture by �rms in location i from location u. Following a similar manipulations as in Appendix

A.4, we have

Ψid =
Xid

∑` Xi`
=

χE
idχI

idξE
d ξ I

d

∑` χE
i`χ

I
i`ξ

E
` ξ I

`

=
KD

id (wd)
δG
(
C∗d
) (σ−1)δ2

1−β

∑` KD
i` (w`)

δG
(
C∗`
) (σ−1)δ2

1−β

56



Λui =
Xui

∑` X`i
=

ζE
u ζ I

uχE
uiχ

I
ui

∑` ζE
` ζ I

`χ
E
`iχ

I
`i
=

KU
ui (wu)

−λ̃Bδ2 (C∗u)
−(σ−1)δ2

∑` KU
`i (w`)

−λ̃Bδ2
(
C∗`
)−(σ−1)δ2

where KD
id and KU

ui correspond to the de�nitions of equations (30) and (31). Now, by denoting the

variable x in the new equilibrium by x′ (with a prime) and the ratio change of x as x̂ = x/x′, we

can rearrange equation (30) as

(ŵi)
1+λ̃Bδ2

(
Ĉ∗i
)(σ−1)δ2 =

∑d KD′
id

(
w
′
d

)δG
(

C∗
′

d

) (σ−1)δ2
1−β

∑` KD
id (wd)

δG
(
C∗d
) (σ−1)δ2

1−β

= ∑
d

KD′
id

(
w
′
d

)δG
(

C∗
′

d

) (σ−1)δ2
1−β Ψid

KD
id (wd)

δG
(
C∗d
) (σ−1)δ2

1−β

= ∑
d

K̂D
id (ŵd)

δG
(
Ĉ∗d
) (σ−1)δ2

1−β Ψid

which corresponds to equation (33) of Proposition 2. Similarly, we have

(ŵi)
1+δG

(
Ĉ∗i
)− (σ−1)δ2

1−β = ∑
u

K̂U
ui (ŵu)

−λ̃Bδ2
(
Ĉ∗u
)−(σ−1)δ2 Λui,

which corresponds to equation (34) of Proposition 2.

B.3 Proof of Proposition 3

To derive the su�cient statistics for welfare, we �rst obtain the analytical expression for the �nal

goods price index, PF
i . Under the assumptions of production functions and perfect competition

of �nal goods producers (equation 4), PF
i is given by:(

PF
i

)1−σ
=
∫
{ci (z)}1−σ Gi (z) dz = (C∗i )

1−σ
Mi

(
− δ1

γS
1− β

σ− 1
− 1
)

. (B.1)

Therefore, the �nal goods price index is proportional to the cost index C∗i .

Next, we derive the expression of the changes of cost shifter C∗i . To do so, �rst note that the

share of intermediate goods expenditure from suppliers in location u is given by:

Λui =
aS

uim
S
ui
(
Cuτui

)1−σ

∑`∈N aS
`im

S
`i

(
C`τ`i

)1−σ
, (B.2)

where this expression comes from the solution to the �rms’ search problem (7). By combining

this expression with the de�nition of C∗i in equation (12), and because Ĉ∗u = Ĉu from equation
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(24), we have

(
Ĉ∗u
)1−σ

= ŵβ(1−σ)
u

(
âS

uum̂S
uu

(
Ĉu

)1−σ
Λ̂−1

uu

)1−β

= ŵβ(1−σ)
u

(
âS

uum̂S
uu
(
Ĉ∗u
)1−σ

Λ̂−1
uu

)1−β

= ŵβ(1−σ)
u

(
M̂uu

(
Ĉ∗u
)1−σ

Λ̂−1
uu

)1−β
(from equations 17 and 20)

= ŵ(1−σ)
u

(
M̂uu

) 1−β
β Λ̂

− 1−β
β

uu

Together, the changes of welfare is given by

ŵi

PF
i
=
(
Λ̂ii
)− 1

σ−1
1−β

β
(

M̂ii
) 1

σ−1
1−β

β ,

which corresponds to the expression in Proposition 3.

C Additional Figures and Tables for Descriptive Facts
In this section, we provide additional �gures and tables for Section 2 of the paper.

In Figure C.1 we plot the population density of municipalities in Chile. We show that density

is concentrated near Santiago and in the south of Santiago. We also show the location of Chacao

Bridge, the planned bridge that we study in one of our counterfactual simulations in Section 5.3.2.

In Table C.1 we document robustness exercises of Fact 2 from Section 2.2. The Table presents

the results of the same regression as Panel B of Figure 1, where we further control for additional

�rm-level characteristics, such as narrow industry classi�cation and international trade activity

(both exports and imports). We �nd that the coe�cients on the population density remain pos-

itive and signi�cant, providing further support to the fact that geographic proxies are strongly

correlated with the number of domestic suppliers and buyers.

58



Figure C.1: Map of Chile with Population Density
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Santiago

Chacao Bridge

Santiago

Notes: This �gure shows the map of Chile at the municipality level. Darker color indicates a higher population per squared kilometers (density).

The map shows the location of the capital city of Chile, Santiago, and the new Chacao Bridge, which is planned to connect the mainland with the

largest island of Chile, Chiloé, by 2025.

59



Table C.1: Number of Suppliers and Buyers and Geography: Robustness

Customers Suppliers

(1) (2) (3) (4) (5) (6)

Log Density 0.028
∗∗∗

0.017
∗∗∗

0.062
∗∗∗

0.051
∗∗∗

(0.001) (0.001) (0.002) (0.002)

Log Sales 0.422
∗∗∗

0.422
∗∗∗

0.414
∗∗∗

0.413
∗∗∗

(0.001) (0.001) (0.001) (0.001)

R2
0.188 0.537 0.537 0.290 0.414 0.415

Year FE 3 3 3 3 3 3

Industry FE 3 3 3 3 3 3

State FE 3 3 3 3 3 3

Other Controls 3 3 3 3 3 3

N 380588 380588 380588 381362 381362 381362

Notes: This table documents the �rm relationship between the number of links with population density using SII data. It shows a regression

analysis at the �rm level where the left-hand-side variable is the number of links per �rm (with buyers in Columns 1-3 and suppliers in Columns

4-6). The regression includes a year, state and industry �xed e�ects. There are 15 states in Chile. It includes also controls for dummies of export

and import status, as well as export and import intensities of �rms engaged in international trade.
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D Quantitative Section Appendix

D.1 Linearized Equilibrium System

In this section, we provide a linearized equilibrium system. We use this system for the calibration

of structural parameters in Section 5.1 and for the decomposition of direct and indirect shocks in

Section 5.3.

To do so, we start by log-linearizing our equilibrium system in equation (33) and (34). We

follow Adao, Arkolakis, and Esposito (2019) in computing the direct and the indirect e�ects of

the general equilibrium system and in expressing the full upstream and downstream e�ect of the

trade shocks. By denoting x̃ = log (x′/x) where x′ is the new equilibirum under the shock, the

log-linearized system is given by:(
1 + λ̃Bδ2µ

)
(w̃i) + c̄B

(
C̃∗i
)
= ∑

d
Ψid

(
K̃D

id + δGw̃d + c̄SC̃∗d
)

, (D.1)

(1− δG) (w̃i)− c̄S
(
C̃∗i
)
= ∑

u
Λui

(
K̃U

ui − λ̃Bδ2µw̃u − c̄BC̃∗u
)

, (D.2)

where

c̄S ≡ δ2

[
(σ− 1)
1− β

− λ̃S (1− µ)

]
, c̄B ≡ δ2

[
(σ− 1) + λ̃B (1− µ)

]
.

We rewrite the above system of equations in the matrix form. The �rst equation is rewritten as:

(c̄B Ī − c̄sΨ̄)C∗ = −
((

1 + λ̃Bδ2µ
)

Ī− δGΨ̄
)

w + η̄Ψ =⇒

C∗ = − (c̄B Ī− c̄sΨ̄)
−1
((

1 + λ̃Bδ2µ
)

Ī− δGΨ̄
)

w + (c̄B Ī− c̄sΨ̄)
−1

η̄Ψ
(D.3)

where we denote Ψ̄ is the matrix of Ψid with rows for the upstream location (i) and columns for

the downstream location (d), η̄Ψ
is a vector of η̂Ψ

i ≡ ∑d Ψid
(
K̂D

id
)
, C∗ and w are the vector of

C̃∗i and w̃i, respectively, and Ī is identity matrix. Similarly, the second equation is rewritten as

(c̄S Ī − c̄BΛ̄)C∗ =
(
(1− δG) Ī− λ̃Bδ2µΛ̄

)
w− η̄Λ =⇒

C∗ = (c̄S Ī − c̄BΛ̄)
−1
[(

(1− δG) Ī + λ̃Bδ2µΛ̄
)

w− η̄Λ
]

(D.4)

where Λ̄ is the matrix of Λui with rows for the upstream location (u) and columns for the down-

stream location (i), and Λ
is a vector of ηΛ

i ≡ ∑d Λdi
(
K̂U

di
)
. By combining equations (D.3) and

(D.4), we have:

(c̄S Ī − c̄BΛ̄)
−1
(
(1− δG) Ī + λ̃Bδ2µΛ̄

)
w− (c̄S Ī − c̄BΛ̄)

−1
η̄Λ

= − (c̄B Ī− c̄sΨ̄)
−1
[((

1 + λ̃Bδ2µ
)

Ī− δGΨ̄
)

w− η̄Ψ
]
⇐⇒
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[
(c̄S Ī − c̄BΛ̄)

−1
(
(1− δG) Ī + λ̃Bδ2µΛ̄

)
+ (c̄B Ī− c̄sΨ̄)

−1
((

1 + λ̃Bδ2µ
)

Ī− δGΨ̄
)]

w

= (c̄S Ī − c̄BΛ̄)
−1

η̄Λ︸ ︷︷ ︸
upstream shock

+ (c̄B Ī− c̄sΨ̄)
−1

η̄Ψ︸ ︷︷ ︸
downstream shock

, (D.5)

which solves the wages w. Given w, C∗ is solved using equation (D.4). Furthermore, since

�nal goods prices PF
i is proportional to C∗i , the welfare changes are given by w−C∗. Lastly, in

our special case where we shut down endogenous responses of production network formation

(λ̃S = λ̃B = 0), the above equations hold the same with c̄S = (σ−1)
1−β , c̄B = σ− 1, δ2 = 1, and

δG = 1−βσ
1−β .

De�nition of direct and indirect e�ects. In Section 5.3, we separate the welfare e�ects of shocks

into direct and indirect e�ects using above linearized system. We de�ne direct e�ects by the

e�ects of shocks that are directly attributed to the changes of K̂D
id , but not through the changes

of wages wi′ and cost shifter C∗i′ outside the location i. Formally, we de�ne the direct e�ects of

the shocks to w̃i and C̃∗i that satisfy the following set of equations:(
1 + λ̃Bδ2µ

)
(w̃i) + c̄B

(
C̃∗i
)
= Ψii

(
K̃D

ii + δGw̃i + c̄SC̃∗i
)
+ ∑

d 6=i
ΨidK̃D

id , (D.6)

(1− δG) (w̃i)− c̄S
(
C̃∗i
)
= Λii

(
K̃D

ii + δGw̃i + c̄SC̃∗i
)
+ ∑

u 6=i
ΛuiK̃U

ui, (D.7)

where the di�erence from (D.3) and (D.4) is the omission of w̃i′ and C̃∗i′ for i′ 6= i from the left

hand side.

Similarly to the full e�ect, we can express the direct e�ects on w̃i and C̃∗i by the matrix form

as:

C∗ = ((c̄S Ī − c̄BΛ̄)⊗ Ī)−1
[(

(1− δG) Ī + λ̃Bδ2µΛ̄
)

w− η̄Λ
]

, (D.8)

[((c̄S Ī − c̄BΛ̄)⊗ Ī)−1
(
(1− δG) Ī + λ̃Bδ2µΛ̄⊗ Ī

)
+ ((c̄B Ī− c̄sΨ̄)⊗ Ī)−1

((
1 + λ̃Bδ2µ

)
Ī− δGΨ̄⊗ Ī

)
]w

= ((c̄S Ī − c̄BΛ̄)⊗ Ī)−1
η̄Λ + ((c̄B Ī− c̄sΨ̄)⊗ Ī)−1

η̄Ψ. (D.9)

where ⊗ indicates element-by-element multiplication.

Using the direct e�ects characterized by (D.8) and (D.9), indirect e�ects are de�ned by sub-

tracting these direct e�ects from the full e�ects characterized by (D.4) and (D.5).

D.2 Indirect Inference Procedure

In this section, we describe the indirect inference procedure for parameters (σ, µ, λ̃B
, λ̃S

) as

discussed in Section 5.1. The basic idea is to use the linearized equilibrium system to obtain
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the analytical expressions of the regression coe�cients on the proxies for the import shocks. We

then search parameter con�gurations {σ, µ, λ̃B
, λ̃S

} that minimize the Euclidean distance between

the regression coe�cients on imports, the number of suppliers, average transaction volume per

supplier, number of buyers, average transaction volume per buyer, and the change of import

value, from data in Table 2 and from the model prediction.

More precisely, we �rst use the linearized system (equations D.4 and D.5) as derived in Ap-

pendix D.1 to obtain the expression of w̃i and C̃∗i as a linear function of parameters and the vector

of import and export shocks (η̄Λ
and η̄Ψ

). Given the derived w̃i and C̃∗i , the changes of the origin

and destination components of the gravity equations are given by:
ζ̃ I

i
ζ̃E

i
ξ̃ I

i
ξ̃E

i

 = D
[

w̃i
C̃∗i

]
, D =


0 (1− σ)

−λ̃Bδ2µ − (σ− 1) (δ2 − 1)− λ̃Bδ2 (1− µ)
1−βσ
1−β

σ−1
1−β

δG − 1−βσ
1−β

(σ−1)
1−β (δ2 − 1)− λ̃Sδ2 (1− µ)

 . (D.10)

Using these ζ̃ I
i , ζ̃E

i , ξ̃ I
i , ξ̃E

i , we predict the changes of the number of suppliers by �rms in location

i, MS
i , and the average purchases from suppliers, r̃S

i , by the following expressions:

MS
i = ∑

u

Mui

∑` M`i
ζ̃E

u + ξ̃E
i , r̃S

i = ∑
u

rui

∑` r`i
ζ̃ I

u + ξ̃ I
i (D.11)

where MS
i and r̃S

i correspond to the outcome variables documented in Fact 3 in Section 2.2. Sim-

ilarly, the changes of the number of buyers by �rms in location i, MB
i , and the average sales to

buyers, r̃B
i , is given by

MB
i = ∑

d

Mid

∑` Mi`
ξ̃E

d + ζ̃E
d , r̃B

i = ∑
d

rid

∑` ri`
ξ̃E

d + ζ̃E
d (D.12)

where MB
i and r̃B

i correspond to the outcome variables documented in Fact 3 in Section 2.2. Using

these outcome variables as outcome variables, we can run the same regressions as de�ned in Fact

3 in Section 2.2, where the dependent variable is the proxies for import and export shocks as

discussed in Section 2.2. We de�ne β(Θ) as these regression coe�cients under model parameter

Θ.

We now �nally de�ne the indirect inference estimator. We �rst assume that our proxy of

import shocks in Section 2.2, K̃∗URi , is a linear function of the import shock, K̃U
Ri, such that K̃U

Ri =

ψUK̃∗URi and ψU ≥ 0 is some parameter. Similarly, we assume that our proxy of export shocks,

K̃∗DiR , is a linear function of the import shock, K̃∗DiR , such that K̃D
iR = ψDK̃∗DiR and ψD ≥ 0 is some

parameter. Denoting the combination of parameters Θ ≡ {σ, µ, λ̃B, λ̃S, ψU, ψD}, the indirect

inference estimator Θ̂ is de�ned by the minimizer of the Euclidean distance between the model-

predicted regression coe�cients and the regression coe�cients estimated using actual data:

Θ̂ = min
Θ

∑ ||β(Θ)− β̂||2/Var(β̂)
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where β̂ is the shift-share regression coe�cients from data, Var(β̂) is the variance of these regres-

sion coe�cients, and β(Θ) is again the predicted regression coe�cients under model parameter

Θ.

Note that we target the shift-share regression coe�cients of the impacts of import shocks at

the �rm level (in Table 2), instead of at the location level. Our model predicts that these two are

identical because the import shares are identical across �rms within a location. Therefore, the

model-predicted regression coe�cients are identical at the �rm-level and location-level.

To ensure that we obtain stable results for the counterfactual simulation, we impose con-

straints in parameters so that they satisfy su�cient conditions for equilibrium uniqueness as

derived in Proposition 1.

D.3 Additional Results for International Trade Shocks Counterfactuals

In this section, we provide additional results of our counterfactual simulation of international

trade shocks as presented in Section 5.3.1.

In Figure D.1, we plot the welfare gains for each municipality in our baseline model (λ̃S =
λ̃B = 0.19) and by shutting down extensive margin responses of production network formation

(λ̃S = λ̃B = 0), against our proxy of the direct international trade exposure as de�ned in Figure

3. Interestingly, we �nd that the di�erences in the welfare gains from these two models are overall

similar across di�erent levels of direct international trade exposure.

To further understand these patterns, in Figure D.2, we decompose the welfare gains predicted

by our model of extensive margin responses (λ̃S = λ̃B = 0) into direct and indirect e�ects,

similarly for our baseline model in Figure 3. In Panel A, we �nd a similar positive correlation

between international trade shares and the direct e�ects as in our baseline model. However,

compared to our baseline model, we �nd a smaller contribution of the indirect e�ects. Relatedly,

in Panel B of Figure D.2, we show that the contribution of the indirect e�ects to the overall

variation of regional welfare gains is signi�cantly smaller by assuming away extensive margin

responses (λ̃S = λ̃B = 0) compared to our baseline model in Panel B of Figure 3. For example,

in the baseline model, the indirect e�ects account for 26 percent of the variance of welfare e�ect

to trade shocks from China, whereas in the model with no extensive margin, it accounts only

for 13 percent. These pieces of evidence jointly indicate that endogenous formation of domestic

production networks is particularly relevant for welfare gains through indirect e�ects.
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Figure D.1: Heterogeneous Indirect Welfare E�ect of International Trade Shocks: Baseline versus

No Extensive Margin Model

Notes: This �gure shows the results of the counterfactual simulation as presented in Figure 3 except that we conduct simulation by shutting

down endogenous extensive margin responses (λ̃S = λ̃B = 0), unlike Figure 3 where we allow for extensive margin responses with baseline

calibration (λ̃S = λ̃B = 0.19). The �gure plots the total welfare gains for each region in the two models induced by the shocks to each of the

three international countries. See the footnote of Figure3 for the de�nitions of the �gures.
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Figure D.2: Heterogeneous Welfare Gains from International Trade Shocks: No Extensive Margin

Model

(A) Welfare Gains from Trade Shocks and Direct International Trade Exposures

(B) Variance Decomposition of Welfare Gains

China Germany USA

Direct 75 111 98

Indirect 13 12 8

Covariance 11 -23 -5

Total 100 100 100

Notes: This �gure shows the results of the counterfactual simulation as presented in Figure 3, except that we conduct simulation by shutting

down endogenous extensive margin responses (λ̃S = λ̃B = 0), unlike Figure 3 where we allow for extensive margin responses with baseline

calibration (λ̃S = λ̃B = 0.19). See the footnote of Figure3 for the de�nitions of the �gures.

D.4 Additional Results for Transportation Infrastructure Counterfactuals

In this section, we provide additional results of our counterfactual simulation of domestic trans-

portation infrastructure as presented in Section 5.3.2.

Figure D.3 presents how the magnitude of the shocks and welfare gains implied by the new

bridge varies by the geographic proximity to the bridge. In the �gure, the horizontal axis corre-

sponds to the relative latitudes of the municipality. Zero in the horizontal axis corresponds to the

municipality that is positioned to the same latitude as the bridge. Note that Chile spans north to

south, and hence latitude approximates the geographic position of the location. We �nd that, nat-
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urally, regions around the new bridge face the largest reduction of travel time; the average travel

time to all other municipalities decreases by around 10%. Under our calibration described in Sec-

tion 5.3.2, this change increases χ̂
iceberg
ud and χ̂search

ud by slightly more than 10% in most a�ected

areas. Lastly, most a�ected areas near the bridge face welfare gains of up to 80% in locations,

while this bene�t decays sharply as a function of the geographic distance to the bridge.

Figure D.3: Travel Time Changes, Trade Frictions, and Welfare E�ects by the Relative Geographic

Position to Chacao Bridge

Notes: This �gure plots the average changes in time travel to all other locations in Chile, χ̂
iceberg
ud , χ̂search

ud , and welfare gains predicted by our

counterfactual in Section 5.3.2, against the relative latitudes of the municipality. Zero in the horizontal axis corresponds to the municipality that

is positioned to the same latitude as the bridge. Note that Chile spans north to south, and hence latitude approximates the geographic position of

the location.
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