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Abstract
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1 Introduction

Some recent papers have raised the issue of information acquisition in repeated games
(Ben-Porath and Kahneman (2003), Kandori and Obara (2004), Miyagawa, Miyahara
and Sekiguchi (2008)). On the ground that the apparently exogenous monitoring
structure reflects players’ efforts to obtain information and that those efforts are never
costless, they have formulated models where players have an option to pay costs to
acquire perfect or almost perfect information about each other’s past actions, in addi-
tion to private signals they can obtain costlessly.1 All those papers show that the folk
theorem or efficiency results extend to the case of costly information acquisition.

One common assumption of those papers is that the monitoring decision is binary;
each player simply decides whether to obtain (almost) perfect information at a cost or
not to obtain additional information at all. This paper relaxes that assumption, and
allows players to have much more flexibility in choosing quality of information, possibly
at varying cost levels. More concretely, we assume that players have costly options
to control the amount of noise the additional information may contain, and that they
can pay for options arbitrarily close to the zero noise (perfect monitoring). In other
words, we assume costly, almost perfect monitoring. Our formulation includes existing
ones as a special case, where players can pay for perfect information (Ben-Porath and
Kahneman (2003), Miyagawa, Miyahara and Sekiguchi (2008)). However, ours covers
the case where perfect monitoring per se is not purchasable.

We state our results only in the repeated prisoners’ dilemma model like Kandori
and Obara (2004). At the end of each period, after selecting an action and receiving
a costless signal, each player independently and privately decides how much to invest
in quality of information he additionally obtains. The additional information is an
indicator of the opponent’s action, and the more a player invests, the less noise it
contains.2 The information acquisition activities are never observable to the other
players. Due to the assumption of costly almost perfect information, the investment
levels arbitrarily close to the zero noise, possibly the zero noise itself, are feasible.

Under this setting, we prove that the standard folk theorem extends to the case
of costly almost perfect monitoring. That is, given a stage game structure (including
monitoring technology), any payoff pair which Pareto dominates the payoff pair of the
static equilibrium can be approximated as an equilibrium if the players are arbitrarily
patient. Thus the result shows that the folk theorem is robust to extensions where
good information must come with costs, and the information may not be completely
perfect.

Roughly speaking, existing results on repeated games with costly observations can
be compared from three dimensions: (i) whether the costly observation is perfect or

1Among others, realized period-payoffs are a typical example of the free signals.
2We assume that the players anyway obtain the information even if they invest nothing in moni-

toring. In this case, the information will be uninformative at all.
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almost perfect, (ii) whether observational decisions are (almost) observable or not, and
(iii) whether the observational decision takes place simultaneously with the choice of
stage-actions, or it takes place after the stage-action is selected (namely, simultaneous
or sequential observational decision). The first paper in the literature is Ben-Porath
and Kahneman (2003), and they assume costly perfect monitoring with simultaneous,
unobservable decisions. Ben-Porath and Kahneman (2003) also assume that explicit
communication is available. Miyagawa, Miyahara and Sekiguchi (2008) assume costly
perfect monitoring with sequential, unobservable decisions, but they do not assume
explicit communication. Both papers prove a standard, minmax folk theorem for
general stage games. Kandori and Obara (2004) consider the case of costly imperfect
monitoring, with simultaneous and almost observable decisions. They show that in
the limit of vanishing noise in costly observations, cooperation is sustainable in the
prisoners’ dilemma or its generalization. This paper assumes costly almost perfect
monitoring with sequential, unobservable decisions, but limits attention to the two-
player prisoners’ dilemma. Therefore all those papers report independent results.

In our model, due to lack of perfect observations, it is difficult to coordinate future
play as in the construction by Ben-Porath and Kahneman (2003) which uses explicit
communication, or the construction by Miyagawa, Miyahara and Sekiguchi (2008)
which uses stage actions and mutual monitoring for implicit communication. Thus,
like Kandori and Obara (2004), we invoke the belief-free approach in repeated games
with imperfect monitoring (Piccione (2002), Ely and Valimaki (2002), Ely, Horner and
Olszewski (2005), and Kandori and Obara (2006)). Furthermore, due to unobservabil-
ity of observational decisions, it is difficult to provide incentives to invest in monitoring.
That is why our construction has an examination state, as in Miyagawa, Miyahara and
Sekiguchi (2008), whose details are explained later.

Here we briefly explain the main idea of our construction, assuming that the target
payoff pair is Pareto inferior to the payoff pair of mutual cooperation. As in Ely and
Valimaki (2002), the equilibrium strategies are state-based ones, but in our construc-
tion each strategy has two cooperation states and one examination state. Each player
randomly starts play with one of the cooperation states, and its probability distri-
bution determines the opponent’s payoff. The cooperation states are either a strong
cooperation state, where the player cooperates with a probability close to 1, or a weak
cooperation state, where he rather defects with a probability close to 1. In either state,
observational decisions are coordinated by a public randomization device. The players
do not invest in monitoring at all and remain in the same cooperation state in the next
period with some large probability. With the remaining, small probability, each player
is prescribed to invest in monitoring for very precise information. After the mutual
monitoring, the state shifts to the examination state in the next period. It is important
that the public randomization device is available in the middle of the period. In order
to reduce expected monitoring costs, our construction relies on random monitoring,
and there must be uncertainty as to whether a player is monitored when he selects a
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stage-action.
The crux of our construction is the introduction of the examination state, which

always follows after a cooperation state with mutual monitoring. In this state, a public
randomization device selects one player as an examiner, the other as an examinee. The
sunspot also decides the type of the examination; in one type, the examinee is expected
to answer the examiner’s action in the previous period, and in the other type, he is
expected to answer what the examiner did not play in that period. Note that if the
examinee had chosen the prescribed investment level in the previous period, he can
choose a correct answer almost surely. The examiner decides whether the examinee
answers correctly or not, based on her costless private signal.

In the examination state, no player invests in monitoring, and the state in the next
period is one of the cooperation states. Which cooperation state is selected depends
on the role of a player and on what happened in the previous two periods. If a player
is an examinee, then he stochastically selects the state so as to keep the opponent
indifferent over cooperation and defection in the previous cooperation period. This
ensures belief-freeness of the play in the cooperation states. If he is an examiner,
then he stochastically chooses the state so that the opponent apparently sending a
wrong answer is punished, and the opponent apparently sending a correct answer is
rewarded. The probabilities are selected so that the opponent has an incentive to
invest in monitoring in the previous period.3

Though a primary contribution of our folk theorem is to establish a robustness
of existing results on repeated games with observation activities, it also has some
implications on repeated games with private monitoring, where monitoring is given
exogenously. Starting from Sekiguchi (1997), much of the literature on private mon-
itoring deals with approximate folk theorems (or efficiency results): the target payoff
vectors can be approximated as an equilibrium if the players are sufficiently patient and
if the underlying monitoring structure is sufficiently close to perfect monitoring.4 In
other words, this line of research first fixes expected payoffs, but not stage games. This
is in sharp contrast with standard folk theorems under public monitoring (Fudenberg,
Levine and Maskin (1994)), where the stage game is fixed together with its public mon-
itoring structure. Notable exceptions are Matsushima (2004) and Yamamoto (2007),
who study the case where private signals are conditionally independent or satisfy some
similar conditions, and prove standard folk theorems when the stage game is a prison-
ers’ dilemma or its generalization.5 Therefore our model can be regarded as another
class of stage games for which the standard folk theorem holds.

3Due to the introduction of examination states, our equilibrium is not a belief-free equilibrium
in the literal sense (Ely, Horner and Olszewski (2005)). Since the correct answer depends on the
opponent’s history, the continuation play in an examination state does not satisfy belief-freeness.

4See Bhaskar and Obara (2002), Ely and Valimaki (2002), Piccione (2002) and Horner and Ol-
szewski (2006), for instance.

5A recent paper by Fong, Gossner, Horner and Sannikov (2007) deals with a different monitoring
structure.
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Our folk theorem also has a more direct implication on the approximate folk theo-
rems under private monitoring. To see that, suppose players can choose their monitor-
ing investments costlessly. Then we can prove the same folk theorem by just applying
the argument of Ely and Valimaki’s (2002) approximate folk theorem by belief-free
strategies. This fact implies that existing approximate folk theorems by belief-free
strategies can be interpreted as a standard folk theorem in models with costless mon-
itoring activities where almost perfect observations are available. Thus our theorem
is also an extension of those results to settings with costly information acquisition,
thereby establishing a robustness of that interpretation.

The rest of this paper is organized as follows. Section 2 introduces the model of
repeated prisoners’ dilemma with costly imperfect observations. Section 3 reports the
main result, a folk theorem for the repeated prisoners’ dilemma. Section 4 offers some
discussions on the result.

2 Model

The stage game is a simple two-player prisoners’ dilemma, and the only complication
is asymmetry. Let A1 = A2 = {C,D} be each player’s stage action set. Let Ωi be
player i’s signal space, which is assumed to be finite only for simplicity. The (costless)
monitoring structure is characterized by P (ω|a), the probability of a signal profile
ω = (ω1, ω2) under an action profile a = (a1, a2).

Player i’s realized stage-payoff (disregarding observation costs) depends only on his
action and signal, and is described by a function πi : Ai × Ωi → R. It is standard to
define each player i’s expected payoff function ui : Ai × Aj → R, which we assume is
represented as the following prisoners’ dilemma in Figure 1. We assume gi > 0, li > 0

Player 1

Player 2
C D

C 1, 1 −l1, 1 + g2

D 1 + g1,−l2 0, 0

Figure 1: The stage game

and gi − lj < 1 for each i and j 6= i. Hence D is a dominant action for each player,
and (C,C) is efficient.

The marginal distribution of P (ω|a) for each ωi is denoted by Pi(ωi|a).

Assumption 1 (individual full support)

p ≡ min
i

min
a

min
ωi∈Ωi

Pi(ωi | a) > 0.

Assumption 1 is standard under imperfect monitoring. No signal reveals that certain
action pairs have not been played.
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Players make observational decisions after they choose actions and receive private
signals.6 We assume that each player obtains additional information after his obser-
vational activity, and the observational decision affects quality of the information. We
call this additional information an “observation,” in order to distinguish it from the
costless signal ωi. The observational decision of player i consists of choosing from a set
of monitoring investments Mi. We assume each Mi is a subset of an interval [1/2, 1].
The set of observations for each player is {C,D}. We assume that if player i chooses
a certain monitoring investment mi ∈ Mi, then the probability that his observation
equals his opponent’s action is always mi. The observations are independent across
players, and are independent of any other information.

The monitoring investments are costly, and ci : Mi → R+ denotes each player i’s
cost function; it costs ci(mi) to player i choosing mi ∈ Mi. The costly monitoring
structure satisfies the following assumptions.

Assumption 2 For each i,

(i) 1/2 ∈ Mi and ci(1/2) = 0,

(ii) 1 belongs to the closure of Mi, and

(iii) there exist an increasing sequence on Mi, (ρn)∞n=1, and an increasing sequence of
positive numbers, (κn)∞n=1, such that:

lim
n→∞

ρn = 1, lim
n→∞

κn = ∞,

ci(mi) ≥ κn(mi − ρn) + ci(ρn) ∀n ∀mi ∈ Mi

Assumption 2(i) simply means that it is always possible to buy no information. Since
the observation is uninformative at all if mi = 1/2, this is equivalent to no information
acquisition. Assumption 2(ii) is our main assumption of almost perfect monitoring.
Each player can get as precise information as possible if he wishes. It is trivially sat-
isfied if 1 ∈ Mi; that is, perfect information is purchasable. Finally, Assumption 2(iii)
plays an important role in proving our folk theorem: it states that we can always find
an arbitrarily steep slope with which some point in the graph of the function ci is
tangent. Assumption 2 is satisfied if either Mi = [1/2, 1) or Mi = [1/2, 1], and if ci is
an increasing, convex function with limmi→1 c′i(mi) = ∞.7

Let us compare our formulation with existing ones. Ben-Porath and Kahneman (2003)
and Miyagawa, Miyahara and Sekiguchi (2008) consider the case of Mi = {1/2, 1}.
That is, the choice of monitoring investments is binary in those models, a choice

6This assumption on timing follows that of Miyagawa, Miyahara and Sekiguchi (2008). Ben-Porath
and Kahneman (2003) and Kandori and Obara (2004) rather assume that players choose a stage-action
and make an observational decision simultaneously.

7A restriction of such a function to Mi satisfying Assumption 2(i)(ii) also satisfies the assumption.

6



between no information acquisition and obtaining perfect information. Note that As-
sumption 2(iii) is satisfied, if we set ρn = 1 and κn arbitrarily large for each n.8

Kandori and Obara (2004) consider the case Mi = {1/2, 1 − ε}, and study the limit
case of making ε → 0.9 Clearly one advantage of our model is to allow more diversity in
monitoring decisions and to allow the case where one cannot buy perfect information.

The infinitely repeated game with the above stage game and a common discount
factor δ ∈ (0, 1) is denoted by G(δ). We assume availability of two types of sunspots
each period; the sunspot at the beginning of the period, and the sunspot in the middle
of the period. The latter realizes just before observational decisions, so that the players
can coordinate their decisions. The players’ payoff criteria are average discounted sums,
and the solution concept is sequential equilibrium.

3 Results

The purpose of this section is to prove a folk theorem for our repeated prisoners’
dilemma with observational decisions. Namely, any interior feasible and individually
rational payoff pair can be sustained by a sequential equilibrium if players are suffi-
ciently patient. Note that the feasible and individually rational payoff pairs are:

V ∗ ≡ convex hull of
{

(1, 1),
(g1 + l2 + 1

l2 + 1
, 0

)
,
(
0,

g2 + l1 + 1
l1 + 1

)
, (0, 0)

}
.

We prove the folk theorem, following the two-step argument in Ely and Vali-
maki (2002). In the first step, we prove that any interior point of the rectangle with
the vertices {(1, 1), (1, 0), (0, 1), (0, 0)} is sustained as an equilibrium if the players are
sufficiently patient. This in particular implies that two vertices of V ∗, (1, 1) and (0, 0),
are approximately sustained by an equilibrium. In the second step, we prove that a
payoff pair arbitrarily close to

(g1+l2+1
l2+1 , 0

)
is sustained by an equilibrium if the players

are sufficiently patient. Since a symmetric argument works for
(
0, g2+l1+1

l1+1

)
, we obtain

the folk theorem due to availability of the public randomization device.

Proposition 1 Fix ε > 0. Then there exists δ ∈ (0, 1) such that any payoff pair
(v1, v2) ∈ [ε, 1− ε]× [ε, 1− ε] is a sequential equilibrium payoff pair of G(δ) with any
δ ≥ δ.

Proof. First of all, for any fixed ai, ui(ai, aj) nontrivially depends on aj , because
gi > 0 and li > 0 for each i. Since a player’s realized stage-payoff depends only on his
action and signal, this particularly implies that

Pi( · | ai = D, aj = C) 6= Pi( · | ai = aj = D).

8More generally, in case of 1 ∈ Mi, then Assumption 2 is satisfied if there exists no sequence (ρn)∞n=1

such that limn→∞ ρn = 1 and limn→∞ ci(ρn) < ci(1).
9Thus precisely speaking, their model does not satisfy Assumption 2.
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Hence for each i, there exists a subset of Ωi, ΩC
i , such that

Pi

(
ΩC

i | ai = D, aj = C
)

> Pi

(
ΩC

i | ai = aj = D
)
. (1)

Let us define ΩD
i ≡ Ωi \ ΩC

i , and

PC
i ≡ Pi

(
ΩC

i | ai = D, aj = C
)
,

PD
i ≡ Pi

(
ΩD

i | ai = aj = D
)
.

Note that (1) is equivalent to PC
i + PD

i > 1.
Fix ε > 0. Choose a small η > 0 so that for each i and j 6= i,

ui(C,αS
j ) > 1− ε

2
, ui(D,αW

j ) <
ε

2
, (2)

where
αS

i = (1− η) · C + η ·D, αW
i = η · C + (1− η) ·D.

We then define
η̂ =

ηp

ηp + (1− η)(1− p)
.

By Assumption 1, we have η̂ > 0.
By Assumption 2(ii)(iii), there exist κ∗i > 0 and ρ∗i ∈ Mi such that:

2κ∗i > li, (3)

ρ∗i > 1− η̂, (4)
1− ρ∗i
2ρ∗i − 1

max{g1, l1, g2, l2} <
ε

2
, (5)

κ∗i ρ
∗
i − ci(ρ∗i ) > κ∗i (1− η̂), (6)

κ∗i ρ
∗
i − ci(ρ∗i ) ≥ κ∗i mi − ci(mi) ∀mi ∈ Mi (7)

To see that (6) can be satisfied, note that Assumption 2(ii) implies existence of m̂i ∈ Mi

such that m̂i > 1− (η/2). Therefore, we can choose κ∗i so large as to satisfy

κ∗i m̂i − ci(m̂i) ≥ κ∗i (1− η̂).

Then (7) applied for m̂i implies (6).
Next we choose a small µ > 0 and δ ∈ (0, 1) so that for any i, any j 6= i and any
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δ ≥ δ, all the following inequalities are satisfied.

V S
i ≡ 1

1 + δµ

[
ui(C,αS

j )− µci(ρ∗i )−
1− ρ∗j
2ρ∗j − 1

{
ui(D,αS

j )− ui(C,αS
j )

}
+

δµ

4

(
1 + gi − li +

PC
j − PD

j

PC
j + PD

j − 1
li

)

− µ
κ∗i

PC
j + PD

j − 1

{
ρ∗i

2− PC
j − PD

j

2
+ (1− ρ∗i )

PC
j + PD

j

2

}]
> 1− ε, (8)

V W
i ≡ 1

1 + δµ

[
ui(D,αW

j )− µci(ρ∗i ) +
1− ρ∗j
2ρ∗j − 1

{
ui(D,αW

j )− ui(C,αW
j )

}
+

δµ

4

(
1 + gi − li +

PC
j − PD

j

PC
j + PD

j − 1
li

)

+ µ
κ∗i

PC
j + PD

j − 1

{
ρ∗i

PC
j + PD

j

2
+ (1− ρ∗i )

2− PC
j − PD

j

2

}]
< ε, (9)

(1− δ)
2κ∗j + δlj

δ2(PC
i + PD

i − 1)(V S
j − V W

j )
∈ (0, 1), (10)

2(1− δ)
max{gj , lj}

µδ2(2ρ∗i − 1)(V S
j − V W

j )
∈ (0, 1). (11)

To see that such µ and δ indeed exist, note first that because of (2) and (5), (8) and
(9) evaluated at δ = 1 are satisfied if µ > 0 is sufficiently small. Hence under this µ,
there exists δ such that (8)–(11) are all satisfied if δ ≥ δ.

Fix a δ ≥ δ, and (v1, v2) ∈ [ε, 1 − ε] × [ε, 1 − ε]. We prove the claim by first
showing that there exists a Nash equilibrium of G(δ), denoted by σ̂ = (σ̂1, σ̂2), which
sustains the payoff pair (v1, v2). We then show that σ̂ has an outcome-equivalent
sequential equilibrium. Each σ̂i consists of the following three (private) states; Strong-
Cooperation (S), Weak-Cooperation (W ) and Examination (E). The play in each
state and the transition rule is as follows.

Cooperation States (S or W ). If player i is in the Z-Cooperation state (Z ∈
{S, W}), he plays αZ

i in that period. If the realization of the middle-of-the-period
sunspot is y ≥ µ, then he makes no monitoring investment; namely, he chooses mi =
1/2. In this case, the next period remains to be in the same Z-Cooperation state. If
y < µ, then he chooses ρ∗i , and the next period moves to the Examination state (E).

Examination States (E). This state always follows from a cooperation state in
which the sunspot prescribed the monitoring investment of ρ∗i (i.e., y < µ in the
previous period). In state E, the sunspot at the beginning of the period selects a
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number e ∈ {−2,−1, 1, 2} equiprobably, on which each player i’s behavior in this
period depends.

Let aobs
j be player i’s observation in the previous cooperation period. Then the

action player i should select, denoted by b∗i , depends on aobs
j and e in the following

way.

b∗i =

{
C if (aobs

j , e) ∈ {(C, i), (D,−i)},
D otherwise.

(12)

First, player i plays what he observed in the previous period if the sunspot selects
his number. Second, he plays what he did not observe in the previous period if the
sunspot selects the minus of his number. Third, if |e| = j, then he plays D.

The state in the next period is either S or W , which depends on the cooperation
state player i was in the previous period (Z), the pair of player i’s own action and
observation (aown

i , aobs
j ) in the previous period, the sunspot’s selection in the current

period (e), and i’s signal in the current period (ωi).

(i) Suppose player i was in Z-Cooperation in the previous period, where he played
aown

i , e ∈ {−j, j} was selected, and he observed ωi. Then he moves to Z-
Cooperation with probability 1− ζi(Z, aown

i , e, ωi), and moves to the other Coop-
eration state with probability ζi(Z, aown

i , e, ωi), where:

ζi(S, aown
i , e, ωi) =


qC
i if (aown

i , e) ∈ {(C, j), (D,−j)} and ωi ∈ ΩD
i ,

qD
i if (aown

i , e) ∈ {(C,−j), (D, j)} and ωi ∈ ΩC
i ,

0 otherwise,

ζi(W,aown
i , e, ωi) =


qC
i if (aown

i , e) ∈ {(C, j), (D,−j)} and ωi ∈ ΩC
i ,

qD
i if (aown

i , e) ∈ {(C,−j), (D, j)} and ωi ∈ ΩD
i ,

0 otherwise,

(13)

where qC
i and qD

i are defined as follows.

qC
i = qi + Λi, qD

i = qi − Λi, (14)

qi ≡
2(1− δ)κ∗j

δ2(PC
i + PD

i − 1)(V S
j − V W

j )
, (15)

Λi ≡
(1− δ)lj

δ(PC
i + PD

i − 1)(V S
j − V W

j )
. (16)

Note that qC
i and qD

i are a probability due to (3) and (10).

(ii) Suppose player i was in Z-Cooperation in the previous period, where he played
aown

i and observed aobs
j , and e ∈ {−i, i} was selected. Then irrespective of

the outcome of the current period, he moves to Z-Cooperation with probability
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1 − ξi(Z, aown
i , aobs

j ), and moves to the other Cooperation state with probability
ξi(Z, aown

i , aobs
j ), where:

ξi(S, C, D) = ξi(W,C,C) =
2(1− δ)gj

µδ2(2ρ∗i − 1)(V S
j − V W

j )
,

ξi(S, D, D) = ξi(W,D,C) =
2(1− δ)lj

µδ2(2ρ∗i − 1)(V S
j − V W

j )
,

ξi(Z, aown
i , aobs

j ) = 0 if (Z, aobs
j ) ∈ {(S, C), (W,D)}.

(17)

Note that because of (11), we always have ξi(Z, aown
i , aobs

j ) ∈ [0, 1).

Initial Play. For each i and j 6= i, let λi ∈ (0, 1) be such that

λiV
S
j + (1− λi)V W

j = vi. (18)

λi exists because of (8) and (9). Then each player i stochastically selects the initial
state, and chooses S-Cooperation state with probability λi and W -Cooperation state
with probability 1− λi.

We first compute the payoff of the strategy profile σ̂ = (σ̂1, σ̂2), as well as its
continuation payoffs. Note that whenever a player is in a Cooperation state, the other
player is also in a Cooperation state, given the strategy profile.10 Let V β,C

i be player i’s
payoff when:

(i) player i believes that player j is in S-Cooperation with probability β and in
W -Cooperation with probability 1− β,

(ii) player j follows σ̂j , and

(iii) player i follows the transition rule among states and follows σ̂i in any Examination
state and with respect to any observational decision, but he always plays C in
any Cooperation state.

Note that since player i always plays C in any cooperation state, it is irrelevant whether
he is in S or W in the current period. Similarly, we define V β,D

i , with the only difference
being that the action in (iii) is replaced with D.

Suppose that player i believes that player j is in S-Cooperation with probability
β and in W -Cooperation with probability 1 − β, and player i plays ai. Depending
on the sunspot in the middle of the period, player j’s state remains unchanged with
probability 1 − µ. So player i’s belief also remains to be β. With probability µ, in
contrast, the play moves to E. Given that, let β̂ai be the probability with which player i

10However, their cooperation states need not be the same.
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believes that player j is in S-cooperation in the next cooperation period. Using this
notation, we obtain the following value equations.

V β,C
i =(1− δ)

[
ui(C, βαS

j + (1− β)αW
j )− µci(ρ∗i )

]
+ δ

[
(1− µ)V β,C

i + µ
{

(1− δ)
1 + gi − li

4
+ δV β̂C ,C

i

}]
,

(19)

V β,D
i =(1− δ)

[
ui(D,βαS

j + (1− β)αW
j )− µci(ρ∗i )

]
+ δ

[
(1− µ)V β,D

i + µ
{

(1− δ)
1 + gi − li

4
+ δV β̂D,D

i

}]
.

(20)

(19) and (20) are functional equations for V ·,C
i and V ·,D

i , respectively.
If we define

ξj(S, αS
j , D) = (1− η)ξj(S, C, D) + ηξj(S, D, D),

ξj(W,αW
j , C) = ηξj(W,C,C) + (1− η)ξj(W,D,C),

we can compute β̂C and β̂D as follows, by using (13) and (14):

β̂C =β

[
1− 1

2
(1− ρ∗j )ξj(S, αS

j , D)− 1
2

{
ρ∗i

2− PC
j − PD

j

2
+ (1− ρ∗i )

PC
j + PD

j

2

}
qj

]

+ (1− β)

[
1
2
ρ∗jξj(W,αW

j , C) +
1
2

{
ρ∗i

PC
j + PD

j

2
+ (1− ρ∗i )

2− PC
j − PD

j

2

}
qj

]

+
PC

j − PD
j

4
Λj ,

β̂D =β

[
1− 1

2
ρ∗jξj(S, αS

j , D)− 1
2

{
ρ∗i

2− PC
j − PD

j

2
+ (1− ρ∗i )

PC
j + PD

j

2

}
qj

]

+ (1− β)

[
1
2
(1− ρ∗j )ξj(W,αW

j , C) +
1
2

{
ρ∗i

PC
j + PD

j

2
+ (1− ρ∗i )

2− PC
j − PD

j

2

}
qj

]

+
PC

j − PD
j

4
Λj .

Let us substitute (15)–(17) into β̂C and β̂D. Then we can solve (19) and (20), and
the solutions are:

V β,C
i = βV S

i + (1− β)V W
i , (21)

V β,D
i = βV S

i + (1− β)V W
i . (22)

(21) and (22) imply that at any Cooperation state with belief β about the other
player’s state, player i’s continuation payoff is independent of his action, as long as
he will not deviate in any Examination state and in any observational activity. This
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proves that, given the other player’s strategy, player i does not have an incentive to
deviate in terms of action in any Cooperation state. The argument also proves that
any player i’s continuation payoff given a Cooperation state depends solely on his belief
about the other player’s state, and has the form of

Vi = βV S
i + (1− β)V W

i . (23)

This implies that the payoff pair of the whole strategy profile is (v1, v2) by (18).
We have seen that each player i does not have an incentive to deviate in action

in any Cooperation state. Also player i has no incentive to choose a different action
in an Examination state with |e| = j, because he is prescribed to play a stage game
dominant action D, and his action will not affect future play.

We next consider player i’s incentive in an Examination state with |e| = i. Let γZ,aj

be the current belief with which player i believes that player j was in Z-Cooperation
state and played aj in the previous period. We also define γaj = γS,aj + γW,aj .

Suppose e = i. Let γ̂ai be the probability with which player i believes that player j

will be in the S-Cooperation state in the next period, when player i chooses ai in the
current period. Then we have:

γ̂C =γS,C{1− (1− PC
j )qC

j }+ γS,D(1− PC
j qD

j )

+ γW,CPC
j qC

j + γW,D(1− PC
j )qD

j ,
(24)

γ̂D =γS,C(1− PD
j qC

j ) + γS,D{1− (1− PD
j )qD

j }
+ γW,C(1− PD

j )qC
j + γW,DPD

j qD
j .

(25)

By (14)–(16) and (23), the necessary and sufficient condition that C is optimal in the
current period is:

−(1− δ)li + δ
(
γ̂C − γ̂D

)(
V S

i − V W
i

)
=

1− δ

δ
2κ∗i (2γC − 1) ≥ 0. (26)

Hence C is optimal if and only if γC ≥ 1/2.
Next, suppose e = −i. Again, let γ̂ai be the probability with which player i

believes that player j will be in the S-Cooperation state in the next period, when
player i chooses ai in the current period. This time we have:

γ̂C =γS,C(1− PC
j qD

j ) + γS,D{1− (1− PC
j )qC

j }
+ γW,C(1− PC

j )qD
j + γW,DPC

j qC
j ,

(27)

γ̂D =γS,C{1− (1− PD
j )qD

j }+ γS,D(1− PD
j qC

j )

+ γW,CPD
j qD

j + γW,D(1− PD
j )qC

j .
(28)

By (14)–(16) and (23), the necessary and sufficient condition that C is optimal in the

13



current period is:

−(1− δ)li + δ
(
γ̂C − γ̂D

)(
V S

i − V W
i

)
=

1− δ

δ
2κ∗i (1− 2γC) ≥ 0. (29)

Hence C is optimal if and only if γC ≤ 1/2.
Now we consider each player i’s incentive to choose ρ∗i and then play the subsequent

examination period according to (12), if prescribed in a Cooperation state. Suppose
that player i is at some Cooperation state and has selected some action, and monitoring
is prescribed (namely, the sunspot in the middle of that period is less than µ). As
before, let γZ,aj be the probability with which player i believes that player j is in Z-
Cooperation state and played aj in the current period. We also let γaj = γS,aj +γW,aj .
Suppose player i chooses mi ∈ Mi, and let γ̂

Z,aj
ai be the posterior probability with

which player i believes that player j is in Z-Cooperation state and played aj in the
current period, after observing ai. Then we have:

γ̂Z,C
C =

γZ,Cmi

γCmi + (1− γC)(1−mi)
, γ̂Z,D

C =
γZ,D(1−mi)

γCmi + (1− γC)(1−mi)
, (30)

γ̂Z,C
D =

γZ,C(1−mi)
γC(1−mi) + (1− γC)mi

, γ̂Z,D
D =

γZ,Dmi

γC(1−mi) + (1− γC)mi
. (31)

We also define γ̂
aj
ai = γ̂

S,aj
ai + γ̂

W,aj
ai .

We consider a continuation strategy where player i chooses mi and then follows σ̂i

in all subsequent periods, and examine how mi affects the continuation payoff. First,
it costs (1− δ)ci(mi) in the current period to choose mi. The monitoring decision does
not affect future payoffs if the next examination period has e ∈ {j,−j}. If e ∈ {i,−i},
however, mi affects the probability with which player j moves to S-Cooperation state
in the subsequent cooperation period. With probability {γCmi +(1− γC)(1−mi)}/4,
player i observes C and e = i. Thus σ̂i prescribes C in the examination period. Hence
(24) applies, and player i believes that player j will move to the S-Cooperation state
in the subsequent cooperation period with the probability

γ̂S,C
C {1− (1− PC

j )qC
j }+ γ̂S,D

C (1− PC
j qD

j ) + γ̂W,C
C PC

j qC
j + γ̂W,D

C (1− PC
j )qD

j .

With probability {γCmi+(1−γC)(1−mi)}/4, player i observes C and e = −i. Thus σ̂i

prescribes D in the examination period. Hence (28) applies, and player i believes that
player j will move to the S-Cooperation state in the subsequent cooperation period
with the probability

γ̂S,C
C {1− (1− PD

j )qD
j }+ γ̂S,D

C (1− PD
j qC

j ) + γ̂W,C
C PD

j qD
j + γ̂W,D

C (1− PD
j )qC

j .

Similarly, player i observes D and has either e = i or e = −i with probability {γC(1−
mi) + (1 − γC)mi}/4, respectively. In either case, (25) or (27) applies. Therefore
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player i believes that player j will move to the S-Cooperation state in the subsequent
cooperation period with the probability

γ̂S,C
D (1− PD

j qC
j ) + γ̂S,D

D {1− (1− PD
j )qD

j }+ γ̂W,C
D (1− PD

j )qC
j + γ̂W,D

D PD
j qD

j

or

γ̂S,C
D (1− PC

j qD
j ) + γ̂S,D

D {1− (1− PC
j )qC

j }+ γ̂W,C
D (1− PC

j )qD
j + γ̂W,D

D PC
j qC

j .

To sum up, by (30)–(31), the probability that the next Examination state has
e ∈ {i,−i} and player j moves to S-Cooperation state in the subsequent cooperation
period is

1
2
qj(PC

j + PD
j − 1)mi +

1
4
[
2(γW,C + γW,D)− (PC

j + PD
j )

]
qj +

1
4
(PC

j − PD
j )Λj .

Using (23) and considering the term depending on mi only, we conclude that choosing
mi has an effect on the continuation payoff by the amount

δ2 1
2
qj(PC

j + PD
j − 1)(V S

i − V W
i )mi = (1− δ)κ∗i mi,

where the equality follows from (15). Thus the continuation payoff of choosing mi and
then conforming to σ̂i is

(1− δ)
{
−ci(mi) + κ∗i mi

}
plus a constant, which is maximized at mi = ρ∗i by (7).

Since η̂ ≤ γC ≤ 1 − η̂ for any belief γZ,aj ’s, it follows from (30) and (31) that
γ̂C

C ≥ 1/2 and γ̂C
D ≤ 1/2 for any mi ≥ 1 − η̂. Hence (26) and (29) imply that once

player i chooses mi ≥ 1 − η̂, then it is optimal to follow σ̂i in all subsequent periods.
By (4), this implies that choosing ρ∗ and then conforming to σ̂i is optimal among all
continuation strategies where player i chooses mi ≥ 1− η̂.

It remains to consider a continuation strategy where player i chooses mi < 1 − η̂.
For such a strategy, it is possible that either γ̂C

C < 1/2 and γ̂C
D > 1/2 holds (however,

both cannot hold simultaneously, because we always have γ̂C
C ≥ γ̂C

D). If that happens,
it is not optimal to follow σ̂i in the next examination period.

Thus we have three cases to consider. First, consider mi such that both γ̂C
C ≥ 1/2

and γ̂C
D ≤ 1/2 hold. Then it is optimal to follow σ̂i in the subsequent examination

period. Therefore, the above argument applies, and mi is inferior to ρ∗i by (7).
Second, consider mi such that γ̂C

C < 1/2. Then conforming to σ̂i is not optimal if
player i observed C. With probability γCmi + (1− γC)(1−mi), player i observes C.
Then the play reaches to an Examination state with e ∈ {i,−i} with probability 1/2.
If e = i, then his optimal action is D, while σ̂i assigns C. The gain from optimally
choosing D is the minus of the value in (26), where γC is replaced with γ̂C

C . If e = −i,
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then his optimal action is C, while σ̂i assigns D. The gain from optimally choosing
C is the value in (29), where γC is replaced with γ̂C

C . Thus the additional gain from
optimally deviating from σ̂i in the Examination state is:

δ
1
2
{
γCmi + (1− γC)(1−mi)

}1− δ

δ
2κ∗i

(
1− 2γ̂C

C

)
= (1− δ)(1− γC −mi)κ∗i ,

where the equality is due to (30). However, this additional gain is smaller than the
difference in the continuation payoffs between ρ∗i and mi, if player i subsequently
follows σ̂i. Indeed, by γC ≥ η̂ and (6), we obtain

(1− δ)(1− γC −mi)κ∗i ≤ (1− δ)(1− η̂ −mi)κ∗i < (1− δ)
[
κ∗i ρ

∗
i − ci(ρ∗i )− κ∗i mi + ci(mi)

]
.

Hence it is not optimal to choose mi.
Finally, consider mi such that γ̂C

D > 1/2. Then conforming to σ̂i is not optimal if
player i observed D. With probability γC(1−mi) + (1− γC)mi, player i observes D.
Then the play reaches to an Examination state with e ∈ {i,−i} with probability 1/2.
If e = i, then his optimal action is C, while σ̂i assigns D. The gain from optimally
choosing C is the value in (26), where γC is replaced with γ̂C

D. If e = −i, then his
optimal action is D, while σ̂i assigns C. The gain from optimally choosing C is the
minus of the value in (29), where γC is replaced with γ̂C

D. Thus the additional gain
from optimally deviating from σ̂i in the Examination state is:

δ
1
2
{
γC(1−mi) + (1− γC)mi

}1− δ

δ
2κ∗i

(
2γ̂C

D − 1
)

= (1− δ)(γC −mi)κ∗i ,

where the equality is due to (31). Again by γC ≤ 1− η̂ and (6), we obtain

(1− δ)(γC −mi)κ∗i ≤ (1− δ)(1− η̂ −mi)κ∗i < (1− δ)
[
κ∗i ρ

∗
i − ci(ρ∗i )− κ∗i mi + ci(mi)

]
.

For the same reason as above, it is not optimal to choose mi. Hence player i has no
incentive to choose mi < 1− η̂, which completes the proof that σ̂ is a Nash equilibrium.

σ̂ is not a sequential equilibrium because the action in the Examination state after
selecting mi < 1− η̂ in the previous period may not be optimal. Therefore, in order to
obtain an outcome-equivalent sequential equilibrium, we modify each σ̂i to the follow-
ing new strategy σ∗i . σ∗i coincides with σ̂i at all histories except at the Examination
states. If player i is at an Examination state, then let γC be the probability with
which player i believes that player j played C in the previous cooperation state. Then
σ∗i assigns C if and only if (i) e = i and γC ≥ 1/2, or (ii) e = −i and γC ≤ 1/2. By
(26) and (29), this behavior is sequentially rational. Since σ∗i coincides with σ̂i at all
histories on the path, σ∗ = (σ∗1, σ

∗
2) has the same outcome as σ̂, and satisfies sequential

rationality. Q.E.D.

The equilibrium construction in the proof of Proposition 1 reveals that we have a
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family of Nash equilibria with simple structure, each of which sustains a payoff pair in
[ε, 1− ε]× [ε, 1− ε] for a fixed ε > 0, if the players are sufficiently patient.

Proposition 2 Fix ε > 0. Then there exists δ ∈ (0, 1) such that for any δ ≥ δ,
any i and any vj ∈ [ε, 1 − ε], there exists a strategy of player i, σ̂i(δ, vj), with the
following property: for any δ and any (v′1, v

′
2) ∈ [ε, 1− ε]× [ε, 1− ε], the strategy profile

(σ̂1(δ, v′2), σ̂2(δ, v′1)) is a Nash equilibrium of G(δ), with a payoff pair (v′1, v
′
2).

Proof. Fix ε > 0, and fix δ for which Proposition 1 holds. Recall that in the proof of
Proposition 1, the Nash equilibrium σ̂ sustaining some (v1, v2) ∈ [ε, 1 − ε] × [ε, 1 − ε]
is such that each σ̂i depends only on vj . That is, each vi affects the construction only
through λi in (18), and λi affects only σ̂j . Thus for δ ≥ δ and vj ∈ [ε, 1− ε], if we set
σ̂i(δ, vj) as a Nash equilibrium strategy sustaining some (v′i, vj), we are done. Q.E.D.

We point out that this interchangeability result is only for Nash equilibrium, and
does not extend to sequential equilibrium. The interchangeability requires that the
equilibrium property is independent of what equilibrium the other player plays. This
is true in our construction at all histories on the path. However, if we consider off-
the-path histories at an Examination state where the player deviated in monitoring
investment in the previous period, his sequentially rational behavior depends on his
belief about the other player’s action in the period, and the belief depends on the
initial play.

Proposition 1 implies that two vertices of the set of feasible and individually rational
payoff pairs, (1, 1) and (0, 0), can be approximated as an equilibrium. Therefore,
the proof of the folk theorem is complete if the remaining two vertices can also be
approximated as an equilibrium if players are sufficiently patient. It suffices to consider
the approximation of

(
g1+l2+1

l2+1 , 0
)
, because the same line of argument also works for(

0, g2+l1+1
l1+1

)
.

Proposition 3 For any ε > 0, there exists δ ∈ (0, 1) such that any G(δ) with δ ≥ δ

has a sequential equilibrium whose payoff for player 1, v1, satisfies

v1 >
g1 + l2 + 1

l2 + 1
− ε. (32)

Proof. Fix ε > 0. Note first that

1
l2 + 1

u1(D,C) +
l2

l2 + 1
u1(C,C) =

g1 + l2 + 1
l2 + 1

.

Therefore there exists r < 1/(l2 + 1) such that

ru1(D,C) + (1− r)u1(C,C) >
g1 + l2 + 1

l2 + 1
− ε

2
. (33)
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Next, we choose ν > 0 so that

u1(D, (1− ν)C + νD) > 1 + g1 −
ε

4
, (34)

(1− ν)p
(1− ν)p + ν(1− p)

>
1
2
. (35)

We also define
ν̂ ≡

νp

νp + (1− ν)(1− p)
.

By Assumption 2, there exist κ̂1 > l1, ρ̂1 ∈ M1 with ρ̂1 > 1 − ν̂, and ∆ < 1 such
that

κ̂1ρ̂1 − c1(ρ̂1) > κ̂1(1− ν̂), (36)

κ̂1ρ̂1 − c1(ρ̂1) ≥ κ̂1m1 − c1(m1) ∀m1 ∈ M1 (37)
rl2

1− r

1
(2ρ̂1 − 1)∆

< 1, (38)

1 + ∆
2

> 1− ε

2
. (39)

Note that (38) can be satisfied because r < 1/(l2 + 1) implies rl2/(1− r) < 1.
We then choose δ ∈ (0, 1) such that (i) it is greater than δ appearing in Proposition 2

if we set ε = (1−∆)/2, and (ii) the following inequalities are all satisfied if δ ≥ δ.

ξ̂1 ≡
rl2

1− r

1
δ(2ρ̂1 − 1)∆

< 1, (40)

(1− δ)(κ̂1 + δl1)
δ2

(
PC

2 + PD
2 − 1

)
∆

< 1, (41)

1− r

r

1− δ

δ
c1(ρ̂1) <

ε

4
, (42)

E1 ≡− (1− δ)
l1
2

+ δ
1 + ∆

2
+

1− δ

δ
κ̂1ρ̂1

− (1− δ)

(
PC

2 + PD
2

)
κ̂1 + δ

(
PD

2 − PC
2

)
l1

2δ
(
PC

2 + PD
2 − 1

) > 1− ε

2
.

(43)

Note that (40) can be satisfied by (38), and (43) can be satisfied by (39).
Now we are ready to define the following strategy profile, which is described by the

following two states, initial states and unilateral examination states.
Initial States (I). The play starts with this state. In this state, the players play

a mixed action profile (D, (1 − ν)C + νD). As for observational decisions, depending
on the sunspot in the middle of the period, they choose (m1,m2) = (1/2, 1/2) with
probability 1− µ̂, where

µ̂ =
1− r

r

1− δ

δ
.
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In this case, the next period is again in the initial state. With probability µ̂, player 1
chooses ρ̂1, while player 2 chooses 1/2. In this case, the play in the next period moves
to the unilateral examination state, where only player 1 will take a test.

Unilateral Examination States (E1). This state always follows an initial state where
player 1 is prescribed to choose ρ̂1 as a monitoring investment. In this state, the sunspot
at the beginning of the period selects a number e ∈ {−1, 1} with equal probabilities.
Let aobs

2 be player 1’s observation in the previous period. Then he is prescribed to play

b̂1 =

{
C if (aobs

2 , e) ∈ {(C, i), (D,−i)},
D otherwise.

(44)

Player 2 is prescribed to play D. In this state, each player always chooses mi = 1/2.
After the unilateral examination state, the play goes back to none of the two

states I or E1, and players’ continuation strategies are determined as follows. As
for player 1, his continuation strategy depends entirely on aobs

2 in the previous initial
state. If aobs

2 = C, then his continuation strategy is σ̂1(δ, (1 + ∆)/2), whose definition
is in Proposition 2. If aobs

2 = D, then his continuation strategy is σ̂1(δ, (1 + ∆)/2)
with probability 1 − ξ̂1, and σ̂1(δ, (1 −∆)/2) with probability ξ̂1, where ξ̂1 is defined
by (40). Player 2’s continuation strategy depends on his own action in the previous
initial period aown

2 , the sunspot’s selection e and his private signal in the current period
ω2. In any case, player 2 randomizes over σ̂2(δ, (1 + ∆)/2) and σ̂2(δ, (1−∆)/2). The
probability that σ̂2(δ, (1−∆)/2) is selected is

q̂C
2 if (aown

2 , e) ∈ {(C, 1), (D,−1)} and ω2 ∈ ΩD
2

q̂D
2 if (aown

2 , e) ∈ {(C,−1), (D, 1)} and ω2 ∈ ΩC
2 ,

0 otherwise,

where

q̂C
2 =

(1− δ)(κ̂1 + δl1)
δ2

(
PC

2 + PD
2 − 1

)
∆

,

q̂D
2 =

(1− δ)(κ̂1 − δl1)
δ2

(
PC

2 + PD
2 − 1

)
∆

.

Note that by (41) and κ̂1 > l1, both q̂C
2 and q̂D

2 are a probability.
We show that this strategy profile is a Nash equilibrium of G(δ). First, note that

if the current period is in E1, then each player i’s continuation strategy from the next
period on is either σ̂i(δ, (1 + ∆)/2) or σ̂i(δ, (1−∆)/2). By Proposition 2, the players
have no incentive to deviate at any history on the path after a unilateral examination
state.

Next we consider optimality of behavior at a unilateral examination state. Clearly
player 2 is willing to conform to the strategy, because his action has no influence on the
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future play. Player 1’s optimal action depends on his belief about the other player’s
action in the previous period. Let γC be the probability with which player 1 believes
that player 2 played C in the previous period. Then the same line of argument showing
(26) and (29) proves that under e = 1, it is optimal to play C if and only if γC ≥ 1/2,
and under e = −1 it is optimal to play C if and only if γC ≤ 1/2. Since ρ̂1 > 1 − ν̂,
it follows that at any history on the path in a unilateral examination period, γC after
observing C in the previous period is no less than 1/2, and γC after observing D in the
previous period is no greater than 1/2. Thus the prescribed action in any unilateral
examination state is optimal on the path.

Finally we consider incentives in initial states. As for player 2, if he plays D

instead of C, his payoff increases by (1 − δ)l2. It also increases the probability that
player 1’s observation is D by 2ρ̂1−1, if player 1 is prescribed to choose ρ̂1, which occurs
with probability µ̂. If player 1 observes D instead of C, the probability he chooses
σ̂1(δ, (1−∆)/2) instead of σ̂1(δ, (1+∆)/2) after the subsequent unilateral examination
period increases by ξ̂1. Hence player 2’s future loss from choosing D instead of C is

µ̂(2ρ̂1 − 1)ξ̂1δ
2∆,

which is equal to (1 − δ)l2 by the definitions of ξ̂1 and µ̂. Therefore, player 2 is
indifferent between C and D, and is willing to randomize as specified.

Player 1’s action in the initial state is optimal, because it does not change future
play. Next, suppose that player 1 is prescribed to choose ρ̂1. Suppose player 1 chooses
m1 ∈ M1 and then plays according to this strategy. By a similar argument to the one
in the proof of Proposition 1, player 1’s payoff of this continuation strategy is

(1− δ)
{
−c1(m1) + κ̂1m1

}
plus a constant, which is maximized at m1 = κ̂1 by (37).

Playing according to the strategy after choosing m1 is optimal if m1 ≥ 1 − ν̂. If
player 1 chooses m1 < 1 − ν̂, then it is possible that γC after observing D is greater
than 1/2 (by (35), γC after observing C is always greater than 1/2). If that is the case,
then the optimal action in the unilateral examination period is C if e = 1 and D if
e = −1. In either case, the additional gain from playing optimally is (1−δ)(γC−m1)κ̂1.
By γC ≤ 1− ν̂ and (36), we obtain

(1− δ)(γC −m1)κ̂1 ≤ (1− δ)(1− ν̂ −m1)κ̂1 < (1− δ)
[
κ̂1ρ̂1 − c1(ρ̂1)− κ̂1m1 + c1(m1)

]
.

Hence it is optimal to choose ρ̂1, and the strategy profile is a Nash equilibrium.
We compute player 1’s equilibrium payoff v1. Note that if the play moves to the

E1 state, player 1’s observation in the previous period is correct with probability ρ̂1.
Hence by the definition of q̂C

2 and q̂D
2 , the probability that player 2’s continuation
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strategy from the next period on is σ̂2(δ, (1−∆)/2) is

1
2
ρ̂1

{(
1− PC

2

)
q̂C
2 +

(
1− PD

2

)
q̂D
2

}
+

1
2
(
1− ρ̂1

)(
PC

2 q̂D
2 + PD

2 q̂C
2

)
=− 1− δ

δ2∆
κ̂1ρ̂1 + (1− δ)

(
PC

2 + PD
2

)
κ̂1 + δ

(
PD

2 − PC
2

)
l1

2δ2
(
PC

2 + PD
2 − 1

)
∆

.

Using this, we can show that the expected continuation payoff at E1 state is equal to
E1 defined by (43). Consequently, it follows that

v1 = (1− δ)
{
u1(D, (1− ν)C + νD)− µ̂c1(ρ̂1)

}
+ δ(1− µ̂)v1 + δµ̂E1.

Substituting the definition of µ̂ and rearranging, we obtain

v1 = r
{
u1(D, (1− ν)C + νD)− µ̂c1(ρ̂1)

}
+ (1− r1)E1.

By (33), (34), (42) and (43), we have

v1 >
g1 + l2 + 1

l2 + 1
− ε.

Consequently, we have shown (32).
So far we have proved existence of a Nash equilibrium satisfying (32). The Nash

equilibrium may not satisfy sequential rationality at histories in unilateral examina-
tion states, where player 1 deviated in terms of observational decision. However, the
same argument as that in Proposition 1 demonstrates that there exists an outcome-
equivalent sequential equilibrium. This completes the proof. Q.E.D.

We briefly explain basic ideas of our construction. For simplicity, we consider only
equilibria approximating the efficient payoff pair (1, 1).

In order to sustain efficient outcomes and provide incentives, the play must have
both a cooperation phase and a punishment phase. Also players must reduce a prob-
ability that inefficient punishment occurs when they are actually cooperative. This
requires that a shift from a cooperation phase to a punishment phase be based on a
very precise information about the other player’s action. That is why in our construc-
tion a player’s action in a Cooperation state affects future payoffs only after mutual
monitoring. Since the observation is very precise, inefficient punishment is avoided
quite surely.

It remains to provide incentives to choose a large monitoring investment when pre-
scribed to do so. This is done by a possibility that a player becomes an examinee in the
subsequent examination state, and a wrong answer is punished by a greater probability
that the other player is in the W -Cooperation state in the next period. A key fact is
that if a player chooses a sufficiently large investment level, then the optimal action
in the examination state as an examinee depends only on his observation. Namely,
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his private signal provides only coarse information about the other player’s action, so
it can never overturn what his observation suggests. Since the probability that his
observation is wrong is linear in mi, the effect on continuation payoffs when he chooses
a large mi is also linear in mi. If the players are sufficiently patient, the effect on the
continuation payoff can be made arbitrarily large. As a result, by Assumption 2(iii),
we can design future behavior so that it is optimal to choose a very large monitoring
investment level if the sunspot prescribes monitoring.

Finally, we point out that the equilibrium strategy can be described by an au-
tomaton. For player i’s strategy, the automaton has two cooperation states and eight
examination states, where each examination state is characterized by (Z, aown

i , aobs
j ) ∈

{S, W} × Ai × Aj . If player i is in Z-Cooperation state and then is prescribed to
choose ρ∗i , then in the next period he is in (Z, aown

i , aobs
j )-Examination state, where

(aown
i , aobs

j ) is the pair of his action and his observation in that period.

4 Discussions

One contribution of our folk theorem is to extend existing folk theorems under costly
perfect monitoring settings to the case with costly almost perfect monitoring. The
theorem also has some implications on existing folk theorems in repeated games with
imperfect private monitoring, where monitoring is given exogenously.

For understanding this implication, it is helpful to consider a variant of our model,
where players can select monitoring investments at no cost. That is, while we maintain
Assumption 2(i)(ii), we replace (iii) with ci(mi) = 0 for any i and mi ∈ Mi. In
this alternative framework, there is no incentive problem on acquisition of as precise
information as possible. Indeed, if perfect monitoring is available (namely, if 1 ∈ Mi

for each i), then any equilibrium outcome in a repeated game with exogenously given
perfect monitoring is sustained in this framework, too. Hence we would obtain a folk
theorem if the players are sufficiently patient. What happens if 1 /∈ Mi? Then we can
prove an analog of Proposition 1, by a direct application of the belief-free approach.

Proposition 4 Fix ε > 0. Then there exists δ ∈ (0, 1) such that any payoff pair
(v1, v2) ∈ [ε, 1− ε]× [ε, 1− ε] is a sequential equilibrium payoff pair of G(δ) with any
δ ≥ δ. Moreover, the equilibrium strategy can be described by a two-state automaton.

Proof. Fix ε ∈ (0, 1/2). For each i = 1, 2, choose ρ∗i ∈ Mi so that

V S
i ≡ 1−

1− ρ∗j
2ρ∗j − 1

gi ≥ 1− ε > ε ≥
1− ρ∗j
2ρ∗j − 1

li
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for each i and j 6= i. Also choose δ ∈ (0, 1) so that for any δ ≥ δ, both

qS
i ≡ (1− δ)gj

δ(2ρ∗i − 1)(V S
j − V W

j )
∈ (0, 1),

qW
i ≡ (1− δ)lj

δ(2ρ∗i − 1)(V S
j − V W

j )
∈ (0, 1)

hold.
Fix (v1, v2) ∈ [ε, 1− ε]× [ε, 1− ε]. Now we define the following strategy of player i,

σ∗i . It consists of two states, which we again call Strong-Cooperation (S) and Weak-
Cooperation (W ) states. This time, player i’s action in each state is pure; player i

plays C with probability 1 in state S, and plays D with probability 1 in state W .
Then he chooses mi = ρ∗i in each state. The state transition rule is as follows. If
player i is in state S and observed C, then he stays in the same state next period. If
he observed D, then he moves to state W with probability qS

i , and stays in state S

with probability 1− qS
i . If player i is in state W and observed D, then he stays in the

same state next period. If he observed C, then he moves to state S with probability
qW
i , and stays in state W with probability 1 − qW

i . The initial state is stochastically
selected, and player i starts with state S with probability λi and starts with state W

with probability 1− λi, where λi satisfies

λiV
S
j + (1− λi)V W

j = vj

for each i and j 6= i.
The standard argument for belief-free strategies shows that (i) the payoff pair of the

strategy profile σ∗ = (σ∗1, σ
∗
2) is (v1, v2), and (ii) player i is indifferent over all strategies

if player j plays σ∗j . Indeed, player i is indifferent over stage-actions because of the
belief-freeness. He is also indifferent over monitoring investments, because all moni-
toring investment levels now have the same cost, and quality of his observation never
affects quality of the other player’s observation, which is the sole element determining
i’s continuation payoff. Q.E.D.

Proposition 4 is concerned only with approximating the payoff pairs on the rectangle
[0, 1] × [0, 1]. We can also approximate other individually rational payoff pairs by
strategies which also have an initial state (but not a unilateral examination state).
The idea of the proof is similar to that of Proposition 3, we omit it.

Note that the line of argument in the proof of Proposition 4 is exactly the same as
Ely and Valimaki’s (2002) robust folk theorem. The only difference is that their folk
theorem is an approximate result. Ely and Valimaki (2002) fix expected stage payoffs
(namely, Figure 1) only, and then find a lower bound on discount factors and an upper
bound on the noise of private monitoring structure, in order to sustain a given target
payoff pair. Our argument therefore indicates that existing approximate folk theorems
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by belief-free strategies can be interpreted as a standard folk theorem in models with
costless monitoring activities where almost perfect observations are available. From
that perspective, our folk theorem can be regarded as an extension of those results to
environments with costly information acquisition, thereby establishing a robustness of
that interpretation.

There are some standard, non-approximate folk theorems in the literature on im-
perfect private monitoring. Matsushima (2004) and Yamamoto (2007) prove such folk
theorems for prisoners’ dilemma or its generalization, assuming that the players’ pri-
vate signals satisfy conditional independence or some similar property. Therefore our
model can be regarded as another class of stage games for which the standard folk
theorem obtains. Our model is similar to theirs in the sense that the observations
are conditionally independent, and that assumption is crucial.11 However, since free
private signals need not be conditionally independent, our formulation cannot be in-
terpreted as a special case or an extension of the models by Matsushima (2004) and
Yamamoto (2007). In addition, our stage game is an extensive-form game, and we can-
not replace it with its normal-form representation, because our construction depends
on use of interim sunspots observed in the course of playing the extensive-form game.
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