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Abstract

This paper quantifies the “granular”hypothesis in a firm dynamics framework.

To do so, we analyze a standard firm dynamics setting (hopenhayn, 1992)

with a finite number of firms, each subject to a persistent idiosyncratic pro-

ductivity shocks. We show, theoretically, that the size distribution having the

fattest tail among incumbents and entrants governs the output volatility rate

of decay. The model, calibrated for the US economy with more than 5 million

firms, generates fluctuations of aggregate TFP (respectively output) of 0.8%

(respectively 2.5%). The entry rate (resp. exit rate) is procyclical (resp. a-

cyclical), as in the data. Finally, the structure of the model allows to study

the micro and macro impact of a shock on the biggest firm. Such a shock

is contractionary at the aggregate level and expansionary at the idiosyncratic

level.
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1 Introduction

In modern macroeconomics, the source of aggregate fluctuations relies on fluctuations

of a common component or a disturbance that affects all the agents of the economy in

the same way. Even in economies with heterogeneous agents subject to idiosyncratic

disturbances, the aggregate fluctuations come from a common component and the

micro-level shocks average out because of a limit argument.

The micro-origins of aggregate fluctuations is left on the side. However, the question

that micro-level disturbances - at the level of firms or individual technologies- account

for business cycle fluctuations is worth asking. A recent literature shows that these

micro-shocks can generate sizable fluctuations. Indeed, a fat-tailed size distribution

of firms or a high network centrality of sectors may render local shocks into aggregate

fluctuations. Yet, this literature focuses mostly on possibility results in static settings

and there is little evidence to date in terms of quantitative results in dynamic settings.

The aim of this paper is to inspect the “granular” hypothesis (Gabaix 2011) in a

standard quantitative firm dynamics setting. The “granular” hypothesis states that

if the distribution of firms is fat tailed, then shocks to big firms do not average out

and could generate sizable fluctuations. The intuition is that the small number of

big firms does not allow the central limit theorem to apply and since the share of big

firms in the economy is large, these deviations from the limit cannot be neglected.

In order to do this, we explore the business cycle properties of a standard firm

dynamics model with no aggregate shocks (Hopenhayn 1992) and extend the Gabaix

2011 theorem to this setting. The model is calibrated so that the firm size distribution

features a power-law tail as in the data. We first quantify aggregate fluctuations

in this setting, we then produce impulse response functions of this economy to an

idiosyncratic shock to the largest firm, and we finally inspect the cross-sectional and

entry/exit properties of this model1.

The contribution of this paper is twofold. First, we contribute to the literature on

micro-origins of aggregate fluctuations by quantifying these fluctuations in a dynamic

setting. Second, this framework also shows that using a continuum of firms or using

the “law of large number convention” might lead to neglect sizable uncertainty.

The paper relates to two literatures: the micro-origins of aggregate fluctuations lit-

erature and the firm dynamics literature. Gabaix 2011 describes the “granular hy-

pothesis” and shows the possibility results that we extend to our framework. Other

papers studying the micro-origins of aggregate fluctuations are Acemoglu et al 2012,

di Giovanni and Levchenko 2012, Carvalho 2010 and Carvalho and Gabaix 2013. This

literature builds on the seminal work of Jovanovic 1987, Bak et al 1993, Scheinkman

and Woodford 1994 and Horvath 1998. Some empirical evidence can be found in di

1This part is not yet completed.
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Giovanni, Levchenko and Mejean 2012. This paper is also related to the firm dynam-

ics literature: Hopenhayn 1992, Campbell 1998, Veracierto 2002, Khan and Thomas

2003, 2008, Bachman and Bayer 2009. Some papers studied aggregate fluctuations

in an entry/exit framework as Lee and Mukoyama 2008, Clementi and Palazzo 2010

and Bilbiie et al. 2012 however they restrict their analysis to common aggregate

shocks.

The paper is organized as follows. Section 2 derives the model. Section 3 defines the

equilibrium and describes an algorithm to solve it numerically. Section 4 extends the

result of Gabaix 2011 to our framework. Section 5 shows the result of the simulation

of the numerical solution of this model. Finally, section 6 concludes.

2 Model Environement

We extend the Hopenyan 1992 economy to allow for a finite (but large) number of

firms. There is a finite number of heterogeneous firms that differ in their produc-

tivity level, which follows a discrete Markovian process. Incumbents have access to

a decreasing return to scale technology using labor as the only input. They face an

operating cost at each period which leads to endogenous exit.

Although the productivity process is discrete, the number of states is large (401 in the

baseline calibration) and it is a discretization of an AR(1) process using the method

described in Tauchen 1986. One can think of the law of motion of the idiosyncratic

(log) productivity as being:

ϕi
t+1 = ρϕi

t + eit, e
i
t  N (0, σe)

There is a finite (but large) number of heterogeneous potential entrants, which differ

in their signal about their next period productivity. To enter, potential entrants have

to suffer a fixed cost.

The demand side of the economy is simplified to an exogenous labor supply which is

increasing with the wage.
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2.1 The incumbent’s problem

As stated above, the level of idiosyncratic productivity is discrete on a grid and

follows a Markov chain with a transition matrix P. The productivity space is thus

described by a ns-uple {ϕ1, . . . , ϕns} such that ϕ1 < . . . < ϕns. We will say that a

firm is in state (or productivity state) k when its idiosyncratic productivity is equal

to ϕk. We denote F (.|ϕ) the conditional distribution of the next period idiosyncratic

productivity ϕ′ given the current period idiosyncratic productivity ϕ.2

Given an aggregate state λ, and an idiosyncratic productivity level ϕ, the incumbent

solves the following intra period problem3:

π∗(λ, ϕ) = Max {exp(ϕ)nα − wn− cf}

where n is the labor input, w is the wage which depends on the current aggregate

state and cf is the operating cost that a firm should pay every period to operate.

One can see that π∗ is increasing in ϕ and decreasing in w for a given aggregate state

λ. The output level is then y(λ, ϕ) = exp(ϕ)
1

1−α

(

α
w

)
α

1−α
. In what follows the size of

a firm it will refer to its output if not otherwise specified.

The incumbent timing is the following: she draws its idiosyncratic productivity ϕ

at the beginning of the period, pays the operating cost cf , hires labor, produces

and decides to exit or not. The next period starts by drawing a new idiosyncratic

productivity. The associate Bellman equation is thus:

V (λ, ϕ) = π∗(λ, ϕ) + βMax

{

0,

∫

λ′∈Λ

∫

ϕ′∈Φ

V (λ′, ϕ′)F (dϕ′|ϕ)Γ(dλ′|λ)
}

where Γ(.|λ) is the conditional distribution of λ′ (the aggregate state at the next

period) given λ the aggregate state at the current period and where F (.|ϕ) is the

conditional distribution of the next period idiosyncratic productivity ϕ′ given the

current period idiosyncratic productivity ϕ.

We assume that the conditional distribution F (.|ϕ) is decreasing in ϕ which is true

for an AR(1) process. Let us define:

F(ϕ, λ) :=

∫

λ′∈Λ

∫

ϕ′∈Φ

V (λ′, ϕ′)F (dϕ′|ϕ)Γ(dλ′|λ)

For each aggregate state λ, since the instantaneous profit is increasing in the idiosyn-

cratic productivity level, there is a unique index s∗(λ) such that:

F(ϕs∗(λ), λ) ≥ 0 > F(ϕs∗(λ)−1, λ)

2Given a productivity level ϕs the distribution F (.|ϕs) is given by the sth-row vector of the

matrix P .
3Latter it will be shown that this aggregate state is exactly the productivity distribution.

4



Thus for ϕ ≥ ϕs∗(λ)
4 the firm continues to operate during the next period and for

ϕ < ϕs∗(λ) the firm exits5.

2.2 Entry

There is a constant and finite number of prospective entrants M . A share M.Gq of

them are of type (or signal) q, where q lies within the idiosyncratic productivity level

set. The number of entrants of type q is deterministic.

If potential entrants decide to pay the cost of entry ce, then they produce in the next

period with a productivity level drawn from F (.|q). The value of a successful entrant

in the aggregate state λ with a type q is thus:

V e(λ, q) = Max

{

0, β

∫

λ′∈Λ

∫

ϕ′∈Φ

V (λ′, ϕ′)F (dϕ′|q)Γ(dλ′|λ)
}

= Max {0, βF(q, λ)}

A prospective entrant will enter if and only if V e(λ, q) ≥ ce. Since F(q, λ) is in-

creasing in the signal q, for any aggregate state λ there is a unique index e∗(λ) such

that:

F(ϕe∗(λ), λ) ≥
ce
β

> F(ϕe∗(λ)−1, λ)

Thus for q < ϕe∗(λ), we have V e(λ, q) < ce and thus the q-potential entrant does not

enter. Conversely, for q ≥ ϕe∗(λ), the q-potential entrant enters. One can show that

as soon as ce ≥ 0 we have ϕe∗(λ) ≥ ϕs∗(λ) with equality for ce = 0. To keep simple

the computation, we assume ce = 0 in the rest of this paper.

2.3 Law of Motion of the Productivity Distribution

The distribution of firms across the discrete state space {ϕ1, . . . , ϕns} is a vector that

we call µt. It is a (ns × 1) vector equal to (µ1
t , . . . , µ

ns
t ) such that µs

t is equal to the

number of operating firms in state s at date t.

In this section we seek to find the law of motion of the productivity distribution, i.e.

what would be the next productivity distribution µt+1 given the current one µt. The

next period distribution is the sum of the evolution of incumbents and successful

entrants. To establish that, we need to define two kinds of conditional distribution.

4We will use ϕ∗(λ) and ϕs∗(λ) indifferently.
5Given the state, the increasing instantaneous profit implies an increasing value function in ϕ

and then an exit threshold. This result is similar to what is shown in Hopenyan 1992 and Clementi

and Palazzo 2010.
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The distribution of the date t + 1 incumbent conditional on the fact that they were

in state s at date t is noted f .,s
t+1. This (ns × 1) vector is such that for each state k

in {1, . . . , ns}:

fk,s
t+1 = the kth element of f .,s

t+1

:= number of incumbent in state k at t+ 1 which were in state s at t

In the same way, let us define g.,st+1 the distribution of successful entrants at date t+1

given that they had signal s at date t. This vector is a (ns × 1) vector such that for

each state k in {1, . . . , ns}:

gk,st+1 = the kth element of gk,st+1

:= number of successful entrant in state k at t + 1 which receive a signal s at t

The period t+1 productivity distribution is the sum of all this conditional distribu-

tions and thus the vector µt+1 satisfies:

µt+1 =

ns
∑

s=s∗(λt)

f .,s
t+1 +

ns
∑

s=s∗(λt)

g.,st+1

It is important to emphasize the fact that the f .,s
t+1 and g.,st+1 are stochastic which

implies, that µt+1 also is. At date t + 1 for s ≥ s∗(λt), f
.,s
t+1 follows a multinomial

distribution with parameters the integer µs
t and the (ns × 1) vector P ′

s,. where Ps,.

is the sth row vector of the matrix P (we note this Multi(µs
t , P

′
s,.)). For s < s∗(λ),

f .,s
t+1 is equal to zero. Similarly, at date t + 1 for s > s∗(λt), g

.,s
t+1 follow a multino-

mial distribution with parameters the integer MGq and the (ns × 1) vector P ′
q,. i.e

Multi(MGq , P ′
q,.).

To understand the above statement, let us assume that there are only three levels

of productivity (ns = 3) and 4 firms. These firms are distributed according to the

top panel of figure 1. Let us assume that the firms have a probability to go up

(respectively down) on the productivity ladder with a probability 1/2 and to stay in

the middle level with a probability 1/4. If instead of 4 firms we had a continuum of

firms, the next period we would have exactly 1/4 of the firms at the first level, 1/2 at

the middle level and 1/4 at the top level. This is not the case here, since the number

of firms in each node is finite and thus the distribution of firms in the bottom panel

of figure 1 is possible with a positive probability. In this particular, in this case the

vector (f 1,2
t+1, f

2,2
t+1, f

3,2
t+1)

′ follows a multinomial distribution with a number of trials of

4 and an event probability vector (1/2, 1/4, 1/2)′.

It turns out that after an approximation of the multinomial distribution, the date

t + 1 period productivity distribution vector given the current distribution follows
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Figure 1: Why the vector f .,s
t+1 follows a multinomial distribution.

a multivariate Gaussian distribution with a mean and a covariance-variance matrix

function of the date t productivity distribution vector.

Using the Central Limit Theorem, one can show that for a big enough n and for

a probability vector p, Multi(n, p) ≈ N (np, nM) where M = diag(p) − p′p. The

following lemma states this formally:

Lemma 1 Let Y be a m-random vector following a multinomial distribution with

parameters n ∈ N and p ∈ (0, 1)m i.e Y  Multi(n, p). Let M be the (m,m) matrix

diag(p)− p′p. Then:
Y − np√

n
−→D Z

as n goes to infinity and where Z has a m-dimensional multivariate normal distri-

bution with mean vector 0 and covariance matrix M . The convergence is here in

distribution.

Proof: See Severini 2005 p377 Example 12.7. �

This lemma applies to the vectors f .,s
t+1 and g.,st+1. We define Ms = diag(Ps,.) −

P ′
s,..Ps,.. Since the number µs

t+1 is supposed to be large (i.e. there are many firms)6,

then f .,s
t+1 is approximatively distributed according N (µs

tP
′
s,., µ

s
tMs) the multivariate

normal distribution with means µs
tP

′
s,. and variance-covariance matrix µs

tMs. The

same reasoning applies for g.,st+1 which is assumed to follow a multivariate normal

6diag(V ), where V is a vector, is a diagonal matrix with elements of V on the diagonal.
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distribution N (MGsP ′
s,.,MGsMs). Since the f

.,s
t+1 and the g.,st+1 are independent from

each other, it can easily be shown after some computation that:

µt+1 = (P ∗

t )
′(µt +MG) + εt+1 (1)

where εt+1 follows a multivariate normal distribution with a covariance-variance ma-

trix Σ(µt), and P ∗
t is the transition matrix P where the first s∗(µt) − 1 rows are

replaced by zeros. Let us define the mean m(µt) and the covariance-variance matrix

Σ(µt) of the productivity distribution given the previous productivity distribution:

m(µt) =

ns
∑

s=s∗(µt)

µs
t .P

′

s,. +MGsP ′

s,. = (P ∗

t )
′(µt +MG)

Σ(µt) =

ns
∑

s=s∗(µt)

(µs
t +MGs).Ms

In the rest of this paper, we will show that the aggregate state is the productivity

distribution. Writing the law of motion in this fashion allows to switch from a discrete

to a continuous state space Rns
+ . This representation allows to show theoretical results

on the aggregate fluctuations and to build an algorithm to solve this model.

2.4 Market Clearing and Aggregation

If Yt is the aggregate output, i.e. the sum of all individual firms’ output, then

Yt = At(L
d
t )

α where Ld
t is the aggregate labor demand and At the aggregate total

factor productivity, which is equal to:

At =

(

Nt
∑

i=1

exp(ϕi
t)

1
1−α

)1−α

where ϕi
t is the productivity level at date t of the ith firm among the Nt operating

firms at date t. This can be rewritten by aggregating the firms which have the same

productivity level:

At =

(

ns
∑

s=1

µs
t exp(ϕs)

1
1−α

)1−α

= (B′.µt)
1−α

where B is the (ns×1) vector of parameters (exp(ϕ1)
1

1−α , . . . , exp(ϕns)
1

1−α ) and where

. is the matrix product.

The labor demand is Ld(wt) =
(

αAt

wt

)
1

1−α
. The model is like a one factor model

with aggregate TFP At. The only market we clear is the labor market. In a partial

equilibrium fashion, we assume that the supply of labor at a given wage w is Ls(w) =

Lwγ with γ > 0. The market clearing condition is then that labor supply equals

8



labor demand, i.e. Ls(wt) = Ld
t . Solving for the wage given the date t productivity

distribution µt yields:

wt =

(

α
1

1−α
B′.µt

L

)
1−α

γ(1−α)+1

From this expression, one can see that the wage is fully pinned down by the distri-

bution µt. Also, the distribution of productivity at t+1 depends only on the current

distribution µt. The aggregate state at date t is thus λt = µt.

3 Equilibrium

In this section, we define a deterministic stationary equilibrium which is similar to a

deterministic steady state equilibrium. We also define the equilibrium of the model

presented above.

3.1 Stationary Equilibrium

We define a stationary equilibrium as an equilibrium without aggregate uncertainty

and thus where all variables are constant, that is to say with a deterministic aggregate

state µ. The only source of uncertainty of µ is due to the fact that the f .,s and g.,s

are random vectors. In a stationary equilibrium, we will assume that this variables

are equal to their means µsP ′
s,. and MGqP ′

q,. respectively. This equilibrium is as if

instead of considering a finite number of firms, we considered a continuum of firms.

In the latter case, the f .,s and g.,q are not stochastic and are equal to their mean.

Let us define the matrix P ∗ as the matrix P where the first s∗ − 1 rows are replaced

by zeros, and the vector G∗ as the vector G where the first s∗−1 rows are replaced by

zeros. The law of motion of µ implies µ = P ∗′.µ+MP ′G∗. Solving for this vectorial

equation yields:

µ = M(I − P ∗′)−1P ∗′G

We assume that this stationary distribution is fat tailed, like is the case in the data

as shown by Gabaix 2011. In the rest of the paper, we calibrate this distribution to

be fat tailed. From this, all other variables follow: the wage w, the aggregate output

Y , etc...

3.2 Definition of equilibrium

[TO BE COMPLETED]

9



3.3 Numerical Solution Algorithm

This section describes the algorithm used to solve numerically for the equilibrium

defined in section 3.2.

The state variable of this model is only the distribution of productivity µ ∈ R
ns
+ .

Since ns should be large, following the evolution of the distribution µ across time

is not computationally feasible. To solve this model we use an algorithm similar to

Krusell and Smith 1998, where we follow the evolution of the factor that matters for

all the aggregate variables, namely Tt defined as:

Tt =
ns
∑

s=1

µs
t exp(ϕs)

1
1−α = B′.µt

where B is the (ns × 1) vector (exp(ϕ1)
1

1−α , . . . , exp(ϕns)
1

1−α ).

The true evolution of Tt is:

Tt+1 = B′.m(µt) +B′.εt+1

or

Tt+1 = B′.m(µt) +
√

B′.Σ(µt).Bǫt+1

where ǫt+1 is drawn from a standard univariate normal distribution. The process

followed by log(Tt) is at the first order:

log(Tt+1) = log(B′.m(µt)) +

√

B′.Σ(µt).B

B′.m(µt)
.ǫt+1

Assuming the following approximation

log(B′.m(µt)) = α0 + α1 log(Tt) + wt
√

B′.Σ(µt).B

B′.m(µt)
= β0 + β1 log(Tt) + vt

leads to the following approximate law of motion

log(Tt+1) = α0 + α1 log(Tt) + β0.ǫt+1 + β1.ǫt+1 log(Tt) + ut (2)

where ut,vt and wt are error terms.

This approximate law of motion is used to compute expectations as in Krusell and

Smith 1998. The coefficient are updated using estimation of this equation for a

simulated series. We iterate until convergence. The algorithm is formally described

bellow:

1. Guess some parameters α0
0, α

0
1, α

0
2, β

0
0 and β0

1 .
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2. Solve jointly for the value function of an individual firm and the exit rule for all

(ϕ, T ) using the approximation law of motion 2 to compute the expectation.

3. Simulate a series of {Tt, ǫt}t=0...T as follows:

(a) Given a µ0, compute s∗(T0) from the solution of step 2

(b) Draw a multivariate Gaussian vector and use it to compute a µ1, T1 and

ǫ1, and using the law of motion of the productivity distribution described

in equation (1).

(c) Iterate from step 3a

4. Using the above simulated series, estimate the approximating rule 2.

5. Iterate from step 2 until convergence.

4 Aggregate Fluctuations

Result of Gabaix 2011 applies because µt is not too far from the stationary distribu-

tion µ∗ and in a Gaussian way which will not affect the tail. One can expect that µt

will also be “fat tailed” and thus, since the factor that matter is

Tt =

Nt
∑

i=1

exp(
1

1− α
ϕi
t) (3)

the rate of decay at which Tt converges to its mean will be lower than
√
Nt. Theorem

1 formulates this idea assuming that there is no entry and exit.

Theorem 1 Let us assume that there is no entry and exit. Let ξ be the tail parameter

of firm size distribution and assume that ξ/ρ < 2 and ξ > 1, then7

σ(
∆Yt

Yt
) =

(

1− α

γ(1− α) + 1

)

σ(
∆Tt

Tt
)

σ(
∆Tt

Tt
) 

1

N
1−ρ/ξ
t

σu1/2

Z̄t

where Z̄t is a time-dependent constant, u is a random variable with finite variance, σ

is the standard deviation of exp(eti/(1− α)) and Nt is the number of firms in period

t.

Proof See appendix A.1. �

This result extends to the case of entry and exit:

7ξ is matched to be 1.03 in the calibration described below. In the calibration, ρ turns out to

be 0.9796 and thus ξ/2ρ is around 0.5257.
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Theorem 2 Let ξ be the tail parameter of firm size distribution and ζ ′ = ζ(1 − α)

be the tail parameter of potential entrant size distribution. Assuming that ξ/ρ < 2

and ζ ′/ρ < 2 then

σ(
∆Tt

Tt

) ∼ σ

N
1−ρ/ξ
t

(

N l
t

Nt

)ρ/ξ

u1/2

Īt
if ζ ′ > ξ

σ(
∆Tt

Tt
) ∼ σ

N
1−ρ/ζ′

t

(

NE
t

Nt

)ρ/ζ′

w1/2

Īt
if ζ ′ < ξ

where Īt is a time dependent constant proportional to the incumbent’s average size at

t, u and w are random variables with finite variance, σ is the standard deviation of

exp(eti/(1−α)) and Nt, N
l
t , N

E
t are the number of incumbents, successful incumbents

and successful entrants in period t respectively.

Proof See appendix A.2. �

It is worth emphasizing that in the case of entry and exit, the distribution that

matters is the fattest distribution between potential entrant size distribution and

incumbent size distribution. In the following calibration the relevant case is the

one in which ζ ′ < ξ and thus the rate of decay of aggregate fluctuations is driven

by potential entrant size distribution. The latter has a fatter tail than firm size

distribution (ζ ′ = 0, 345 and ξ = 1.03).

5 Simulations

5.1 Calibration

Calibrated parameters are summarized in table 1. The parameter α governs the

return to scale and is fixed at 0.8. The value is chosen to be on the lower end of

recent estimates, such as Basu and Fernald 1997 and Lee 2005. The annual gross

interest rate implied by the discount rate β is 4%, which is in line with most macroe-

conomic studies. The model is calibrated at the annual frequency. The distribution

of potential entrants G is such that the distribution of exp(φ) for entrants is a Pareto

ditribution with a tail parameter ζ . The entry cost ce is fixed equal to zero as assumed

above.

We follow Tauchen 1986 to compute the matrix of transition P with ns = 401

and with [−13 ∗ σe, 26 ∗ σe] as the set for ϕ, a standard deviation of σe and an

auto-covariance coefficient of ρ. Thus the process described by P is as if the (log)

productivity of a firm followed:

ϕi
t+1 = ρϕi

t + eit, e
i
t  N (0, σe)
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Parameters Value Description

ρ 0.9796 Autocorrelation of firm level shocks

σe 0.1596 Std of idio. shocks

ns 401 Number of productivity level

γ 5 Labor elasticity

α 0.8 Production function

cf 0.0041 Operating cost

ce 0 Entry cost

β 0.95 Discount rate

M 107 Number of potential entrants

L 100 Parameter of the labor supply function

G Pareto(ζ ) Distribution of exp(ϕ)

ζ 1.7263 Tail parameter of entrant distr. G

Table 1: Calibration Parameters

The number of potential entrants M is set to have a number of incumbent firms

Nt =
∑ns

s=1 µ
s
t equal to 1.6 × 107. L is chosen to have a wage equal to 7. The value

of the labor supply elasticity γ is fixed at 5 as in Clementi and Palazzo 2010.

After the choice of the above deep parameters, we are left with 4 parameters to

calibrate. These parameters are chosen to match the entry rate, the size of entrants

and exiters relative to survivors and the tail estimate of firm size distribution in the

US. These targets and the corresponding references are summarized in table 2.

Statistic Model Data Reference

Entry rate 0.015 0.062 Lee and Mukoyama 2008

Entrants’ relative size 0.58 0.60 Lee and Mukoyama 2008

Exiters’ relative size 0.00 0.49 Lee and Mukoyama 2008

Tail index of firm size dist. 1.03 1.03 Gabaix 2011

Table 2: Calibration Targets

5.2 Numerical solution

This section describes the solution given by running the algorithm presented in sec-

tion 3.3 for the calibration in table 1. The approximate law of motion for state Tt

turns out to be

log(Tt+1) = 5.2507 + 0.7882 log(Tt)− 0.5764ǫt+1 + 0.0242ǫt+1 × log(Tt) + ut (4)

The R2 of the last step of the algorithm for this approximate law of motion is 0.99.

However, it has been shown in Den Haan 2010 that this is not enough to assert the

13



quality of the approximate law of motion. figure 2 reproduces both the simulated

path of log Tt and the one using the approximate law of motion (4).Despite some

minor differences, one can see that the two paths coincide.
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Figure 2: Simulated paths of the true and approximate evolution of Tt

After solving the model using the algorithm described in section 3.3, we compute the

business cycle statistics. We simulate time series for output, hours and aggregate

TFP using the law of motion (1) of the productivity distribution. These statistics

are presented in table 3. First, the standard deviation of output is 2.5% which is in

line with a real business cycle framework. It is slightly higher because the elasticity

of labor supply in the baseline calibration is chosen to be high. This allows to match

the ratio of hour volatility over output volatility (0.8), close to the value in the data.

To assess the performance of the model in producing aggregate fluctuations without

any aggregate shock, a better statistic is the volatility of aggregate TFP. For the

baseline calibration, the standard deviation of aggregate productivity is 0.8%, which

is non-negligible.

Model

σ(x) σ(x)
σ(y)

ρ(x, y)

Output 2.5 1.0 1.0

Hours 2.1 0.8 1.0

Agg. Productivity 0.8 0.3 1.0

Table 3: Business Cycle Statistics
Note: These statistics are computed for the baseline calibration (cf. Table 1) for an economy

simulated during 20,000 periods
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The numerical solution is such that the exit/entry threshold s∗t is constant on the

relevant portion of the state space. This implies that the number of entrants does

not fluctuate since the potential entrant distribution is exogenous. As shown in table

4, the exit rate fluctuates with a standard deviation of 0.2% which represents only

8.3% of output volatility. Even if the exit threshold is constant the wage, which is

the only variable cost that a firm faces, moves. In this framework only small firms

choose to exit and thus the wage affects their choice of exiting.

However, the number of exiters is a-cyclical as indicated by the non-significant posi-

tive correlation of exit rate and output. The intuition is as follows. In this framework

booms are generally good shocks to big firms. During booms, the wage is high since

labor demand is high, but small firms are not necessarily more productive. Since

small firms have the same productivity but higher costs, their profitability is reduced

and they exit more. However, it is also true that in some booms small firms might be

more productive and thus less subject to exit. In turn, the number of exiters might

go both ways during booms, depending on which firms are affected by good or bad

shocks. The number of incumbents is negatively correlated with output, and thus

the entry rate is pro-cyclical. At the end of the day, the entry rate is pro-cyclical and

the exit rate is a-cyclical as in the data (see for example Lee and Mukoyama 2008).

x σ(x) σ(x)
σ(Y )

ρ(x, Y ) ρ( x
Nt
, Y )

# Incumbents (Nt) 0.02 0.009 -0.031 na

(<0.001) na

# Entrants 0 0 0 0.031

(0.000) (<0.001)

# Exiters 0.20 0.083 0.006 0.010

(0.381) (0.181)

Table 4: Cyclicality of entry and exit
Note: The standard deviation are computed over a simulated path of 20,000 periods. The p-value

are indicated in parenthesis.

5.3 Rate of Decay of Volatility

The natural question that arises is how much these fluctuations depend on the num-

ber of active firms? Table 5 presents a response. To compute this table, we increase

the equilibrium number of active firms by rasing the number of potential entrants

M . However, to be able to compare results we also increase the constant L such that

the wage is the same across all rows.

As the number of incumbents increases, the standard deviation of both output and

TFP decreases. For 100,000 incumbents the volatility of TFP is 7.7% whereas for
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M L Nt σ(A) σ(Y )

105 1 1.6× 105 7.67 23.90

106 10 1.6× 106 2.65 8.04

107 100 1.6× 107 0.86 2.57

108 1000 1.6× 108 0.28 0.85

Table 5: Aggregate fluctuations and the number of firms.
Note: The standard deviation are computed over a simulated path of 20,000 periods and are

indicated in percentage.

100 millions active firms this number drops to 0.3%. In the US economy there are

about 5 millions firms, so the TFP volatility implied by this model without aggregate

shocks will be between 0.9% and 2.7%.

5.4 Shock to the Biggest Firms: Impulse Response

In this section, we study the aggregate and idiosyncratic impact of a one standard

deviation negative shock to the biggest firm. The left panel of figure 3 shows the

long-term productivity distribution (red dashed line) along with the one where the

biggest firm suffers a one standard deviation negative shock (blue line). Since the

difference between these two distributions is not very large, we plot on the right panel

the difference8. In terms of the productivity distribution, this negative shock on the

biggest firm means that the mass on the highest level is moved towards the left.

Figure 4 displays the impulse response function of the aggregate variables. The

impact is small: output decreases by about 0.14%, the aggregate TFP by 0.05%

and hours by 0.12% compared to their long run value. The reason for that drop of

aggregate variables is simple: the biggest and most productive firm suffers a drop

of productivity and thus reduces its output and hours. Since this firm was big the

effect on the aggregate is sizable. Note that by reducing the hours, the shock induces

a drop in wage that benefits all the other firms. The aggregate variables return to

their long-run values as the entry-exit process makes the productivity distribution

converge back to its stationary value.

To understand what is the effect of this negative shock on all the other firms, we

plot in figure 5 the response of the output of the second biggest firm9. The output

of this firm benefits from the negative shock suffered by the biggest firm because

the wage drops. The cost of the second biggest firm is reduced, and thus it can hire

8Note that the right panel x-axis scale is different.
9This is the response of the second biggest firm output as if it kept its productivity level constant.

However, the plot will be exactly the same if we plot the output of the second biggest compared to

the case where wage was set constant.
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Figure 4: Aggregate response to a negative shock to the biggest firm.

more and produce more. The competition on input between firms creates a negative

externality. In this case, the second biggest firm increases its output by 0.1%.

Finally, we study the impact of this negative shock on the biggest firm on the cross-

sectional moments. Figure 6 displays the response of the cross-sectional standard

deviation of output, output growth and TFP shocks on the left, center and right

panel respectively. The cross-sectional standard deviation of output drops after this

negative shock because the highest idiosyncratic output drops. This drop is about

1.4%, a sizable number. On the contrary the responses of the cross-sectional standard

deviation of TFP shocks and output growth are much smaller but positive. The

intuition is that the shock induces a drop in wage but does not affect the productivity
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Figure 5: Idiosyncratic response to a negative shock on the biggest firm.

of small firms that are subject to exit. These small firms are thus more profitable and

can suffer larger negative TFP shocks without choosing to exit. The same reasoning

applies to the cross-sectional standard deviation of output growth. For this negative

shocks, cross-sectional standard deviation of output is pro-cyclical whereas the same

moment for TFP shocks and output growth is counter-cyclical.
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Figure 6: Cross-section moments response to a negative shock on the biggest firm.

6 Conclusion

[TO BE COMPLETED]

18



References

[1] Daron Acemoglu, Vasco M. Carvalho, Asuman Ozdaglar, and Alireza Tahbaz-

Salehi. The network origins of aggregate fluctuations. Econometrica, 80(5):1977–

2016, 09 2012.

[2] Ruediger Bachmann and Christian Bayer. Firm-specific productivity risk over

the business cycle: Facts and aggregate implications. CESifo Working Paper

Series 2844, CESifo Group Munich, 2009.

[3] Per Bak, Kan Chen, Jose Scheinkman, and Michael Woodford. Aggregate fluc-

tuations from independent sectoral shocks: self-organized criticality in a model

of production and inventory dynamics. Ricerche Economiche, 47(1):3–30, March

1993.

[4] Susanto Basu and John G Fernald. Returns to scale in u.s. production: Es-

timates and implications. Journal of Political Economy, 105(2):249–83, April

1997.

[5] Florin O. Bilbiie, Fabio Ghironi, and Marc J. Melitz. Endogenous entry, product

variety, and business cycles. Journal of Political Economy, 120(2):304 – 345,

2012.

[6] Jeffrey Campbell. Entry, exit, embodied technology, and business cycles. Review

of Economic Dynamics, 1(2):371–408, April 1998.

[7] Vasco M Carvalho. Aggregate fluctuations and the network structure of inter-

sectoral trade. mimeo, 2010.

[8] Vasco M. Carvalho and Xavier Gabaix. The great diversification and its undoing.

American Economic Review, Forthcoming, 2013.

[9] Gian Luca Clementi and Dino Palazzo. Entry, exit, firm dynamics, and aggregate

fluctuations. Working Paper Series 27 10, The Rimini Centre for Economic

Analysis, January 2010.

[10] Wouter J. Den Haan. Assessing the accuracy of the aggregate law of motion in

models with heterogeneous agents. Journal of Economic Dynamics and Control,

34(1):79–99, January 2010.

[11] Julian di Giovanni and Andrei A. Levchenko. Country size, international trade,

and aggregate fluctuations in granular economies. Journal of Political Economy,

120(6):1083 – 1132, 2012.

19



[12] Julian di Giovanni, Andrei A. Levchenko, and Isabelle Mejean. Firms, desti-

nations, and aggregate fluctuations. CEPR Discussion Papers 9168, C.E.P.R.

Discussion Papers, October 2012.

[13] Xavier Gabaix. The granular origins of aggregate fluctuations. Econometrica,

79(3):733–772, 05 2011.

[14] Hugo A Hopenhayn. Entry, exit, and firm dynamics in long run equilibrium.

Econometrica, 60(5):1127–50, September 1992.

[15] Michael Horvath. Cyclicality and sectoral linkages: Aggregate fluctuations from

independent sectoral shocks. Review of Economic Dynamics, 1(4):781–808, Oc-

tober 1998.

[16] Boyan Jovanovic. Micro shocks and aggregate risk. The Quarterly Journal of

Economics, 102(2):395–409, May 1987.

[17] Aubhik Khan and Julia K. Thomas. Nonconvex factor adjustments in equilib-

rium business cycle models: do nonlinearities matter? Journal of Monetary

Economics, 50(2):331–360, March 2003.

[18] Aubhik Khan and Julia K. Thomas. Idiosyncratic shocks and the role of noncon-

vexities in plant and aggregate investment dynamics. Econometrica, 76(2):395–

436, 03 2008.

[19] Per Krusell and Anthony A. Smith. Income and wealth heterogeneity in the

macroeconomy. Journal of Political Economy, 106(5):867–896, October 1998.

[20] Yoonsoo Lee. The importance of reallocations in cyclical productivity and re-

turns to scale: evidence from plant-level data. Working Paper 0509, Federal

Reserve Bank of Cleveland, 2005.

[21] Yoonsoo Lee and Toshihiko Mukoyama. Entry, exit and plant-level dynamics

over the business cycle. Working Paper 0718, Federal Reserve Bank of Cleveland,

2008.

[22] Jose A Scheinkman and Michael Woodford. Self-organized criticality and eco-

nomic fluctuations. American Economic Review, 84(2):417–21, May 1994.

[23] Thomas A. Severini. Elements of Distribution Theory. Cambridge University

Press, 2005.

[24] George Tauchen. Finite state markov-chain approximations to univariate and

vector autoregressions. Economics Letters, 20(2):177–181, 1986.

[25] Marcelo L. Veracierto. Plant-level irreversible investment and equilibrium busi-

ness cycles. American Economic Review, 92(1):181–197, March 2002.

20



A Proof

A.1 Proof of Theorem 1

Theorem 3 Let us assume that there is no entry and exit. Let ξ be the tail parameter

of firm size distribution and assume that ξ/ρ < 2 and ξ > 1, then10

σ(
∆Yt

Yt
) =

(

1− α

γ(1− α) + 1

)

σ(
∆Tt

Tt
)

σ(
∆Tt

Tt

) 
1

N
1−ρ/ξ
t

σu1/2

Z̄t

where Z̄t is a time-dependent constant, u is a random variable with finite variance, σ

is the standard deviation of exp(eti/(1− α)) and Nt is the number of firms in period

t.

Proof: This proof follows closely Gabaix 2011.

Let us first compute the aggregate output Yt as a function of only Tt:

Yt =

Nt
∑

i=1

yit =

Nt
∑

i=1

exp(ϕi
t)

1
1−α

( α

wt

)
α

1−α

=
( α

wt

)
α

1−α

Tt

Recall that:

wt =
(

α
1

1−αTt

)
1−α

γ(1−α)+1

Substituting this expression of the wage in the latter equation and taking the growth

rate yields:

Yt = α
αγ

γ(1−α)+1 (Tt)
1− α

γ(1−α)+1

∆Yt

Yt
=

(

1− α

γ(1− α) + 1

)

∆Tt

Tt

Since we have assumed that there is no entry and exit, an incumbent firm indexed

by i in period t is still incumbent in period t + 1. We still index it by i.

∆Tt

Tt

=

∑Nt

i=1 exp(
ϕi
t+1

1−α
)− exp(

ϕi
t

1−α
)

∑Nt

i=1 exp(
ϕi
t

1−α
)

but

exp(
ϕi
t+1

1− α
)− exp(

ϕi
t

1− α
) = exp(

ϕi
t

1− α
)ρ exp(

eit
1− α

)− exp(
ϕi
t

1− α
)

10ξ is matched to be 1.03 in the calibration described below. In the calibration, ρ turns out to

be 0.9796 and thus ξ/2ρ is around 0.5257.
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where eit is drawn from a normal distribution with mean zero and variance σe. Fur-

thermore the eit are iid across firms and time. Let us define σ =

√

Var
(

exp(
eit

1−α
)
)

and Z i
t = exp(

ϕi
t

1−α
).

Var

(

∆exp(
ϕi
t

1− α
)

)

= (Z i
t)

2ρσ2

Let us drop the time subscript. Using the fact that productivity is independent

across firms, we have σ
(

∆Tt

Tt

)

= σh with h =
N−1(

∑N
i=1(Zi)2ρ)

1/2

N−1
∑N

i=1(Zi)
.

It is clear that Zi is drawn from the same distribution as firm size and is iid across

firms, thus the distribution of Zi has a tail distributed as a power law with a tail

parameter ξ which is assumed to be greater than one. It follows from the law of large

numbers that N−1
∑N

i=1(Zi) −→ E(Zi) := Z̄ almost surely. Thus we can say that:

h 
N−1

(

∑N
i=1(Zi)

2ρ
)1/2

Z̄

Since Z2ρ
i has a power law distributed tail with parameter ξ/ρ < 2, using the Lévy

theorem in the appendix of Gabaix 2011, we have

N−2ρ/ξ

(

N
∑

i=1

(Zi)
2ρ

)

−→D u

where u is a standard Lévy distribution with parameter 2ρ/ξ and the convergence is

in distribution. It follows that

N1−ρ/ξh 
u1/2

Z̄

from which follow the results. �

A.2 Proof of Theorem 2

Theorem 4 Let ξ be the tail parameter of firm size distribution and ζ ′ = ζ(1 − α)

be the tail parameter of potential entrant size distribution. Assuming that ξ/ρ < 2

and ζ ′/ρ < 2 then

σ(
∆Tt

Tt
) ∼ σ

N
1−ρ/ξ
t

(

N l
t

Nt

)ρ/ξ

u1/2

Īt
if ζ ′ > ξ

σ(
∆Tt

Tt

) ∼ σ

N
1−ρ/ζ′

t

(

NE
t

Nt

)ρ/ζ′

w1/2

Īt
if ζ ′ < ξ

where Īt is a time dependent constant proportional to the incumbent’s average size at

t, u and w are random variables with finite variance, σ is the standard deviation of

exp(eti/(1−α)) and Nt, N
l
t , N

E
t are the number of incumbents, successful incumbents

and successful entrants in period t respectively.
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Proof:

Note that

Tt+1 =
∑

l successful incumbent at t

exp(
ϕl
t+1

1− α
) +

∑

e successful entrant at t

exp(
ϕe
t+1

1− α
)

and

Tt =
∑

l successful incumbent at t

exp(
ϕl
t

1− α
) +

∑

x exiters at t

exp(
ϕx
t

1− α
)

Let us define Z l
t = exp(

ϕl
t

1−α
) for l-successful incumbent at t, Ee

t+1 = exp(
ϕe
t+1

1−α
) for e

successful entrant at t and Xx
t = exp(

ϕx
t

1−α
) for x exiters at t.

The growth rate of Tt is:

∆Tt

Tt
=

1

Tt

(

∑

l

∆Z l
t +
∑

e

Ee
t+1 −

∑

x

Xx
t

)

Note that

Var
(

∆Z l
t

)

= (Z l
t)

2ρσ2

and

Var
(

Ee
t+1

)

= (Ee
t )

2ρσ2

where Ee
t = exp(

qet
1−α

) with qet the signal at t of the successful entrant e.

This leads to

Var
∆Tt

Tt

=
σ2

(Tt)2

(

∑

l

(Z l
t)

2ρ +
∑

e

(Ee
t )

2ρ

)

since the variance conditional on date t of Xx
t is equal to zero.

Denoting N l
t , N

E
t and NX

t the number of successful incumbents, successful entrants

and exiters at date t respectively. According to the law of large number, we have:

(N l)−1
∑

l

Z l
t → EZ l

t := Z̄t

(NX)−1
∑

l

Xx
t → EXx

t := X̄t

It is straightforward that

N−1Tt ∼
N l

t

Nt
Z̄t +

NX
t

Nt
X̄t := Īt

the average of incumbent size at date t (both successful and exiters).

The distribution of the random variable Z l
t as a power law tail with parameters ξ, the

tail parameter of firm size distribution (since only small firms exit). The distribution
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of the random variable Z l
t as a power law tail with parameters ζ ′ = ζ(1− α) the tail

parameter of entrant size distribution (since only big entrants are successful).

Since ξ/ρ < 2 and ζ ′/ρ < 2 and using the Lévy theorem of the appendix of Gabaix

2011, we have

(N l
t )

−2ρ/ξ
∑

l

(Z l
t)

2ρ →d u

(NX
t )−2ρ/ζ′

∑

x

(Xx
t )

2ρ →d w

where u and w are standard Lévy distribution with parameters ξ/2ρ and ζ ′/2ρ re-

spectively.

Computing the two above results yields

Var
∆Tt

Tt
∼ N−2

∑

l(Z
l
t)

2ρ +
∑

x(X
x
t )

2ρ

(Īt)2

Note the numerator of the right hand side is equivalent to

N−2+2ρ/ξ

(

(

N l
t

Nt

)2ρ/ξ

u

)

if ζ ′ > ξ

since N2ρ(1/ζ−1/ξ) → 0 in this case.

Similarly:

N−2+2ρ/ζ′

(

(

NE
t

Nt

)2ρ/ζ′

u

)

if ζ ′ < ξ

This gives the results:

σ(
∆Tt

Tt

) ∼ σ

N
1−ρ/ξ
t

(

N l
t

Nt

)ρ/ξ

u1/2

Īt
if ζ ′ > ξ

σ(
∆Tt

Tt
) ∼ σ

N
1−ρ/ζ′

t

(

NE
t

Nt

)ρ/ζ′

w1/2

Īt
if ζ ′ < ξ

�
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