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What Do We Know About Risk Preferences?

Not that much:

intuition drawn from theory + casual observation (Arrow 65):

ARA(x) = −u′′(x)/u′(x) should be decreasing, since richer
people buy more risk;
RRA(x) = −xu′′(x)/u′(x) should be close to constant, as the
proportion of wealth invested in risky assets is fairly constant
across wealth levels (?).

but this completely neglects composition effects, inter alia.

financial and insurance evidence: points (or used to point) to
very high risk-aversion, RRA ' 30.
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Experimental evidence

Points to violations of expected utility, since Allais 1953,
at least “close to the edges of the triangle” (where some
probabilities are small).
Also suggests that (generalized) risk aversions are very
heterogeneous:
Barsky et al (QJE 1997) use survey questions, linked to actual
behavior;
they report D1=2 and D9=25 for RRA, poorly explained by
demographics.
Guiso-Paiella (2003) report similar findings (“massive unexplained
heterogeneity”).
Yet much of economics does not take this heterogeneity very
seriously.
Can we document this heterogeneity on “actual” data?
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Using Horse Bets: The Pros

very simple set up: a “win bet” at odds R on horse i buys an
Arrow-Debreu asset for state “i wins” with net return R;

lots of data is available (more than 100,000 races every year)

Cf Jullien-Salanié (JPE 2000): the representative bettor violates
expected utility as (s)he overweighs small probabilities of losses.
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Using Horse Bets: The Cons

only weirdoes bet on horses (or at least gamblers); (but
Gandhi (2006) shows that risk-averse agents may find it
profitable to bet “against” risk-lovers)

odds are only known ex ante on bookmaker markets (the UK),
but then market shares are hard to get—which is why
Jullien-Salanié (2000) could only estimate a representative risk
preference;

market shares are known (since they determine odds) on
parimutuel markets, but then odds are imperfectly known ex
ante—although estimates are published;

we “must” assume that state probabilities are perfectly
anticipated;

we do not observe the size of the bets, so we estimate
“reduced” utility functions.
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The Identification Question

Assume a population of bettors, stable in time (given some
observed characteristics)—participation is for future work
Take one of them: (s)he values a $1 bet that

wins (net) $R with probability p

loses $1 with probability (1− p)

as V (p,R).
e.g., with expected utility theory (EUT), u rebased at current
wealth:

V (p,R) = pu(R) + (1− p)u(−1).

or, for Cumulative Prospect Theory (CPT)

V (p,R) = G (p)pu+(R) + H(1− p)u−(−1).

Can we recover uniquely the distribution of V in the population?
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The Data

Our data is a large number of races m = 1, . . . ,M
A race m consists of

a number of horses nm

a vector of odds Rm
i for i = 1, . . . , nm

the index f m of the horse that won race m.
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Identification

The data gives us directly market shares: in race m for each horse i

sm
i (Rm

i + 1) = 1− t

where si is market share of i and t is “track take”
so

sm
i =

1
Rm

i +1∑nm

j=1
1

Rm
j +1

.

which we denote Si (R
m).

But we also know that

sm
i = Pr(V (pm

i ,R
m
i ) ≥ V (pm

j ,R
m
j ) ∀j = 1, . . . , nm),

where the probability is over V in the population of bettors
(at this stage, behavioral errors also enter V )
We also have one realization of a draw in (pm

1 , . . . , p
m
nm), since we

know that f m won.
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Intuitive Identification

Suppose all races have exactly n horses
and we observe an infinity of races, so that
for every possible vector of odds R = (R1, . . . ,Rn−1)

we can estimate pi (R) for i = 1, . . . , n − 1 by the proportion
of such races won by horse i

pi (R) '
∑

Rm=R(f m = i)∑
Rm=R 1

.

we know that by definition,

Si (R) = Pr(V (pi (R),Ri ) ≥ V (pj(R),Rj) ∀j). (E )
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Counting Equations

We have (n − 1) functions pi (R)
“Therefore” we can identify the distribution of V in an
(n − 1)-dimensional space:
assume that there exists a parameterization V (p,R) = W (p,R, θ)
where

the “master function” W is known to us

θ is a vector of parameters in some subset Θ of IRn−1 that
describes preferences + behavioral errors

then barring misspecification (i.e. if no bettor has preferences
outside of W (., .,Θ))
we can recover the true distribution of preferences uniquely.
Not so obvious: e.g., in fact pi (R) = P(Ri , (R−i )) must be
symmetric in the Rj , j 6= i .
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A Digression on Equilibrium

A tangential question: is there an equilibrium, is it unique? I.e.
what is the set of solutions to (E)?
Theorem: fix any (p1, . . . , pn−1) (all positive) and any
distribution of preferences V that

is atomless

only contains increasing preferences

is such that any horse that may win is desirable: if its odds go
to infinity its market share eventually will be positive

Then the system Si (R) = Pr(V (pi ,Ri ) ≥ V (pj ,Rj) ∀j) has a
unique solution (R1, . . . ,Rn) = R(p).
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Where We Are Stuck

For any R = (R1, . . . ,Rn), denote Θ(i ,R) the subset of Θ such
that

∀j = 1, . . . , n, V (pi (R),Ri , θ) ≥ V (pj(R),Rj , θ).

Then in fact Θ(i ,R) is a function of Ri and symmetrically of (R−i ):

Θ(Ri , (R−i )).

and we know the probability of all such sets when Ri and (R−i )
vary freely
Is it enough? I.e. is this a probability-determining family for Θ so
that it identifies the distribution of θ?
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Conjecture

Yes, it is “usually” enough to insure that the following two
condition holds:
The Many-Races Assumption: for any subset A of Θ, there
exists a race R and a horse i such that Θi (R) ⊂ A.
Then assume two candidate probabilities on Θ with pdfs f and g .
Say they differ on a subset A, with f (θ) > g(θ) on A.
By MRA, take Θi (R) ⊂ A; then f puts greater probability than g
on Θi (R), which contradicts∫

Θi (R)
f (θ)dθ =

∫
Θi (R)

g(θ)dθ = Si (R).
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The Curse of Dimensionality

Note that MRA implies separability: for any θ 6= θ′, there exists a
race R and horse i such that θ ∈ Θi (R) but not θ′.

And separability cannot hold if Θ is more than (n− 1)-dimensional.
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A Simpler Case: One-dimensional Heterogeneity

Assume that Θ is a subset of IR, and that n ≥ 4. We need a
single-crossing condition:
Condition (SC): each W (., ., θ) is increasing in p and R, and the
marginal rate of substitution W ′

R/W
′
p increases in θ.

(SC) means that larger θ’s prefer longer odds; e.g. if all preferences
are EUT-CARA, we need the ARA index to decrease in θ.
It more or less excludes behavioral errors not perfectly correlated
with heterogeneity.
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What We Can Prove

Theorem: let F0 be the true cdf of θ on an interval Θ of IR; then

the data uniquely identify F0;

the assumption that all preferences belong to W (., .,Θ) is
testable.

From now on, look at the equivalent problem: F0 known (we take
it to be uniform on [0, 1]), we look for the master function W .
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Intuition

Given (SC), if we order odds as R1 ≤ . . . ≤ Rn then the set of θ’s
who bet on horse i is some interval

Θ(Ri , (R−i )) = [θi−1(R), θi (R)]

where θ0(R) = 0, θn(R) = 1 and for i = 1, . . . , n − 1,

W (pi (R),Ri , θi (R)) = W (pi+1(R),Ri+1, θi (R)) (Ii ).

With F0 uniform on [0, 1], we can estimate the θi (R)’s using

Si (R) = θi (R)− θi−1(R)

But intervals are probability-determining sets on IR. . . so we are
done and there is nothing to test?
Not quite: symmetry + our assumptions on derivatives have
consequences.
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Some Notation

First define Γ(v ,R, θ) by

Γ(W (p,R, θ),R, θ) ≡ p :

Γ increases in v , decreases in R, and Γ′′Rθ < 0 by (SC).
Then use change of variables:

φ1 = pi (R); φ2 = θi (R); φ3 = Ri ; φ4 = Ri+1;

complete with R1, . . . ,Ri−3andRi+2, . . . ,Rn if non-empty

and define πi+1(φ) = pi+1(R).
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The New Indifference Condition

W (pi (R),Ri , θi (R)) = W (pi+1(R),Ri+1, θi (R)) (Ii ).

becomes

πi+1(φ) = Γ(W (φ1, φ3, φ2), φ4, φ2) (Ji ).

Immediate consequence:

πi+1 does not depend on i, and
∂πi+1

∂φk
= 0 for k > 4. (IC )

Testable by “regressing” pi+1(R) on

pi (R), θi (R),Ri ,Ri+1 and R1, . . . ,Ri−3,Ri+2, . . . ,Rn, and i ,

and testing that “the coefficients in the second group are all zero”.
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Another Equality Condition

The “marginal rate of substitution” between φ1 and φ3, i.e.

∂πi+1

∂φ1

∂πi+1

∂φ3

does not depend on φ4; call it (MRS).
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Sufficiency?

If (IC ) and (MRS) hold then we can write

πi+1(φ) = G (H(φ1, φ3, φ2), φ4, φ2)

for some functions G and H.
We would like to identify H to W and G to Γ;
But we also need to check that

H ′
p > 0, H ′

R > 0, H ′
R/H

′
p increases in θ,

and
G increases in H and decreases in φ4.
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Sufficiency!

These additional conditions turn out to boil down to:

πi+1 increases in φ1 and in φ3; (V1)

πi+1 decreases in φ4; (V2)

and the MRS of πi+1 in (φ1, φ3), i.e.

∂πi+1

∂φ3

∂πi+1

∂φ1

increases in φ2 (call this (V3)).
Adding these conditions (V1), (V2), (V3) to (IC ) and (MRS) yields
a set of necessary and sufficient conditions for identification
(up to an increasing transformation w(p,R, θ) = F (W (p,R, θ), θ))
If the model is well-specified.
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Constructing the Indifference Curves

Back

Given the estimated πi+1(φ1, φ2, φ3, φ4) function, we fix φ2 = θ;
for any point in the (φ1, φ3) = (p,R) plane we know that the
indifference curve of any representation of W (p,R, θ) has slope

∂πi+1

∂φ1

∂πi+1

∂φ3

(φ1, φ2, φ3, φ4)

(for any value of φ4).
This gives the last condition, a test for misspecification:
Once the indifference curve for θ that goes through (p,R) is
constructed, choose some odds R ′ and compute
p′ = πi+1(p, θ,R,R

′);
then (p′,R ′) should lie on that same indifference curve.
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Going Further: CPT

CPT is equivalent to
∂2 log ∂W

∂R

∂p∂R
= 0

for one representation of W .
Not straightforward to test (nonparametrically). Expected utility is
easier:
Assume W (p,R, θ) = F (pu(R, θ), θ); then we get

πi+1(φ) = φ1
u(φ3, φ2)

u(φ4, φ2)
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Going Further: Expected Utility

Thus EUT yields three additional conditions; define
ψi+1(φ) = log (πi+1(φ)/φ1):

ψi+1(φ) only depends on φ2, φ3 and φ4 (EU1)

∂2ψi+1

∂φ3∂φ4
= 0 (EU2)

and

ψi+1(φ) = 1 if φ3 = φ4. (EU3)

(EU1), (EU2), (EU3) complete the set of necessary and sufficient
conditions under expected utility
(Visually: fix θ and R and plot p −→W (p,R, θ)).
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Testing Homogeneous Risk Preferences

An easy one: just add

∂πi+1(φ)

∂φ2
= 0.

(Visually: just plot the indifference curves through some (p,R) for
various θ’s).
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Empirical Strategy: Estimating Probabilities

First specify a flexible functional form for pi (R) = P(Ri , (R−i )):

pi =
eqi∑n
j=1 eqj

with, e.g.

qi (R) =
K∑

k=1

ak(Ri , α)Tk(R−i )

and the Tk ’s are symmetric polynomials
Then maximize over α the log-likelihood

M∑
m=1

log pf m(Rm, α).

Let α̂ be the estimate; at this stage we take it to be the true
parameter vector (we do not use its estimated variance in the
tests.)
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Empirical Strategy: Testing

For any race m we plug the p̂i (R) = P(Ri , (R−i ), α
or, better, the corresponding odds ratio

Ôi (R) = log
pi (R)

1− pi (R)

in the identification conditions.
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Testing Equality Conditions

E.g. for the equality condition ∂π4
∂R5

(φ) = 0:
take all races m ∈ M5 with at least 5 horses; on this subsample

1 we regress (flexibly) Ô4(R
m) on

p̂3(R
m), θ3(R

m),Rm
3 and Rm

4

2 we add Rm
5 to the regression

3 we evaluate the increase in (generalized) R2.

If this R2 is (economically!) significantly positive, it signals a
violation.
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Testing Inequality Conditions

E.g. for the inequality condition ∂π6
∂φ1

(φ) > 0:
take all races m with at least 6 horses; on this subsample

1 we regress (flexibly) Ô6(R
m) on

p̂5(R
m), θ5(R

m),Rm
5 and Rm

6

2 for each such race m we evaluate the derivative wrt p̂5(R
m),

call it Am.

A large enough percentage of negative Am’s signals a violation.
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Empirical Strategy: Estimation

(At least) three possible methods:

1 given the estimated P(Ri , (R−i ), α̂), use the nonparametric
construction of indifference curves as above

2 given the estimated P(Ri , (R−i ), α̂) and a flexible functional
form for W (p,R, θ, β),
for any β generate the pj(β), j ≥ 2 from P(R1, (R−1), α̂)
using the recursive conditions

W (pi ,Ri , θi , β) = W (pi+1,Ri+1, θi , β)

then match them to the P(Rj , (R−j), α̂)
3 define Pm

i (α) = P(Rm
i , (R

m
−i ), α); use GMM to estimate

jointly α and β, using the moment conditions
E (h(Rm, α0, β0)|Rm) = 0 where h can be

(i = f m)− Pm
i (α)

for i = 1, . . . , nm and

W (Pm
i (α),Rm

i , θi (R
m), β)−W (Pm

i+1(α),Rm
i+1, θi (R

m), β)
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