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Abstract

Recent literature has shown that all-pay auctions raise more money for charity than winner-
pay auctions. We demonstrate that the first and second-price winner-pay auctions outper-
form first-price all-pay auctions when bidders are sufficiently asymmetric. To prove it, we
consider a framework with complete information.
This analysis is relevant for two main reasons. On the one hand, complete information is
more realistic and corresponds to events which occur for instance in a local service club
(like in a voluntary organization) or in a show business dinner. Potential bidders are ac-
quaintances or know one another well. On the other hand, our model keeps the qualitative
predictions of a private value model under incomplete information in which bidders are ex
ante asymmetric that is to say different bidders’ values are drawn from different distribu-
tions. Furthermore, we also analyze second-price all-pay auction. Finally, we show that
individual minimum bids could improve the relative revenue performance of first-price all-
pay compared to first-price winner-pay auction.
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1 Introduction

More and more voluntary organizations wish to raise money for charity purposes through a
partnership with firms. Charity auctions have been held in the United States for many years
now. However, in China this phenomenon has emerged recently and is in strong progress1. In
this kind of auction, an object (for example a key case with a zero value or an item given by
a luxury brand) is sold. The proceeds then go to charity. Most of these auctions are planned
and organized in charity dinners where only wealthy or famous people can participate. Beyond
the item value, the valuations of potential bidders depend on their interest for this voluntary
organization (their altruism or philanthropy) and also show some kind of conformism ”to be
seen as the most wealthy and generous“. For instance, in China’s traditional society, charity
auctions were not put forward. The participants preferred to keep a low profile about their
bids. However, time has changed: the rich and famous now show their wealth through their
involvement in charity auctions. According to the Beijing Review :

With the development of society, more rich people are emerging. They have
their own lifestyle [...] Some day, behind the rich lifestyle, people will find that
it is only by offering their love and generosity that they can realize their true
class.

Thus, through charity auctions, potential bidders can build their position in their social class.
Everybody wishes, independently of the winner’s identity, to raise the highest revenue. Potential
bidders make a trade-off between giving money for the fund-raising and keeping it for another
personal use. Contrary to non-charity auctions, here the amount paid is ”never lost“. A wealthy
investor, who bought a Dior perfume for 60 000 yuans (about 6 000 euros or 7 700 dollars) –
with a reserve price of 20 000 yuans – recently said in the Beijing Review :

I would never buy perfume for this amount normally, but this time it is for
charity. I feel very happy.

In fact, the money raised will be used to finance a public good. Every participant of the charity
auction may take advantage of it, independently of the winner’s identity. More precisely, the
money raised by each potential bidder impacts the utility of all participants as they take ad-
vantage of an externality on the amount of the money raised for the public good or the charity
purpose.

Under complete information, these kinds of auctions can be compared to the work of Et-
tinger (2002) who analyzed a general winner-pay auction framework with two kinds of non-linear
externalities. One of them does not depend on the winner’s identity and can be applied to char-
ity auctions where only the winner pays. Moreover, he shows there is no ”revenue equivalence“
with these externalities. Maasland & Onderstal (2006) investigate winner-pay auctions with this
kind of linear externalities in an independent private signals model. Their paper can also be
applied to charity. They find similar qualitative predictions as Ettinger (2002): the second-price
can outperform the first-price winner-pay auction. In their recent paper, Goeree et al. (2005)
analyze charity auctions in the symmetric independent-private-value-model. They show, given
the externality, that all-pay auctions raise more money for charity than winner-pay auctions and
lotteries. In particular, they determine that the optimal fund-raising mechanism is given by an

1For example, in 2004, at the Formula One Grand Prix opening dinner party in Shanghai (China), an auction
was held of racing suits and crash helmets used by famous racing drivers (Beijing Review, 2005).
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all-pay auction: the lowest-price all-pay auction with an entry fee and a reserve price. Their
paper completes and generalizes the work of Engers & McManus (2006), who find similar results
for a sufficiently high number of bidders. Contrary to Goeree et al. (2005), a psychological effect
comes into play: the winner benefits from a higher externality with his own bid, the others’ bids
having a lower effect on him. Moreover they show that an English (button) auction yields the
same outcome as the sealed-bid second-price winner-pay auction.
The predictions of Goeree et al. (2005) and Engers & McManus (2006) have been tested ex-
perimentally with contradictory results. Onderstal & Schram (2006) have experimented the
Goeree et al. (2005)’s result in a laboratory with 180 students. They are the first to conduct
a lab experiment for charity auctions in an independent private value setting. Their results
are close to the theoretical predictions: in charity auction, the revenue raised with all-pay auc-
tions is higher than with other mechanisms. Carpenter et al. (2004) have tested the predictions
of Engers & McManus (2006) in a field experiment. Similar objects are sold in four Ameri-
can pre-schools through three different mechanisms which are all-pay auctions, first-price and
second-price winner-pay auctions. They study the determinants of the bidders’ behavior and the
revenue raised. Contrary to the theoretical predictions, all-pay auctions do not produce higher
revenues than the winner-pay auctions. Therefore, if auction theory about charity is confirmed
in the laboratory, it is not the case in the field. The main explanation for the gap between the-
ory and field experiment can be a non-participation effect, due to the unfamiliarity with these
mechanisms and their complexity: the participants didn’t know the all-pay design and few took
part in second-price auctions on the Internet.

This paper has two main goals. First of all, the paper of Goeree et al. (2005) is revisited with
the introduction of asymmetric valuations under complete information. Although an incomplete
information setting is more realistic, this model keeps the qualitative predictions of a private
values model under incomplete information and suppose that the bidders are ex ante asymmetric,
that is to say different bidders’ values are drawn from different distributions. Moreover, as we saw
before, a lot of charity auctions are conducted among rich people during charity dinners. These
events could occur in a local service club (like the Rotary club2 or another type of voluntary
organization) or during a show business dinner. Potential bidders are acquaintances or know one
another well. Consequently, a complete information environment is well suited for these kinds
of situation. The purpose of this paper is to determine whether or not winner-pay auctions can
raise higher revenue for charity when the asymmetry between bidders is strong.

In his recent paper, Konrad (2006) introduces externalities in all-pay auctions in a complete
information setting. He analyzes the competition between firms with this framework when a
firm owns a large part of one of its rivals. The equilibrium properties change particularly if
these two firms are the strongest on the market. Indeed, the strongest firm takes advantage of
his ownership.

There is a wide literature about all-pay auctions. The seminal paper is the famous auction
dollar game paper of Shubik (1971). These auctions may be used to illustrate many economic,
social and political issues as they have the same structure as a contest or a tournament. Hill-
man & Samet (1987) and Hillman (1988) were the first one to apply them to lobbying models

2The Rotary club is a worldwide organization of business and professional leaders that provides humanitarian
services, encourages high ethical standards in all vocations, and helps build goodwill and peace in the world. There
are about 32 000 clubs in 200 countries and geographical areas and 1,000 clubs in France like Paris, but also in
small town like Niort. http://www.rotary.org/
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in which some groups of interest give a bribe to the decision maker in order to obtain a market
or a political favor under complete information. Baye et al. (1993) studied the case where the
decision maker excludes the lobbyists with the highest value in the lobbying process to maximize
the rents. Daguspta (1986) has applied them to R&D competition, Konrad (2004), Che & Gale
(1998) and Sahuguet & Persico (2006) to political campaigns. In these papers, the contests
take place in an all-pay auction in effort framework. The agent with the highest effort wins the
competition while the others are not awarded for their efforts.

Two cases have been distinguished in the literature under complete information. On the one
hand, bidders have homogeneous valuations and give identical values to the objects. Hillman &
Samet (1987) have first characterized a unique symmetric Nash equilibrium for this framework.
However, later on, Baye et al. (1996) have defined the set of Nash equilibria. According to their
study, there exists a continuum of asymmetric Nash equilibria. In each equilibrium, at least two
agents bid on the same support with mixed strategies while others bid on a subset of the support
of these two agents and have an atom at zero. All these equilibria lead to the same revenue. On
the other hand, Hillman & Riley (1989) determine a unique equilibrium when bidders have het-
erogeneous values. Nevertheless, the result also holds if at least the three highest valuations are
heterogeneous. The two bidders with the highest valuations bid a positive amount on the same
support and one of them has an atome at zero. Others do not participate. Alternatively, Baye
et al. (1996) show if the second and the third highest valuations are the same, there is a unique
symmetric equilibrium but also a continuum asymmetric equilibrium. More recently, Vartiainen
(2006) characterized all-pay auctions for bidders with linear and nonlinear cost functions. The
bidders’ valuations are normalized to 1 while the cost functions are asymmetric and depend on
their abilities (similar to Moldovanu & Sela (2001)).

All-pay auctions have also been characterized under incomplete information. Weber (1985)
was the first one to study independent private value all-pay auctions with this framework.
Amann & Leininger (1996) characterize the equilibria for two asymmetric bidders. They demon-
strate that when the degree of uncertainty on the values decreases, pure strategies tend to the
Nash equilibrium found under complete information. Krishna & Morgan (1997) consider the
general framework of affiliated values. They determine the equilibria for all-pay auctions and a
new linkage principle for mechanisms in which the winner is not the only one to pay. This per-
mits them to compare the revenues of all-pay and winner-pay auctions. Lizzeri & Persico (2000)
study the existence and uniqueness of the equilibrium in all-pay auctions with two bidders and
affiliate values when there is a reserve price.

Other papers characterize equilibrium with caps under complete information (Che & Gale
(1998), Kapplan & Wettstein (2006) and Che & Gale (2006)), and with constrained budget or
caps under incomplete information (Che & Gale (1996), Gavious et al. (2002), and Sahuguet
(2006)). One of them considers risk aversion in all-pay auction: Fibich et al. (2006).

Amann & Leininger (1996), Krishna & Morgan (1997) and Lizzeri & Persico (2000) do not
consider only first-price all-pay auctions but also second-price all-pay auctions (or wars of at-
trition). A war of attrition is the oral or dynamic version of the second-price all-pay auction.
Smith (1974) was the first one to work on the equilibrium in a war of attrition framework with
two bidders under complete information. The war of attrition under complete information has
also been studied by Hendricks et al. (1988) and incomplete information by Bulow & Klemperer
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(1999), among others. Vartiainen (2006) have characterized the second-price all-pay auction
with abilities under complete information when there are more than two bidders.

Following the work of Vartiainen (2006), we analyze all-pay auctions for charity as a mech-
anism. This approach relies on a general model which can be applied to both first and second-
price all-pay auctions. In our setting, every bidder takes as much advantage of his own bid as
of his rival’s bid thanks to the externalities. Additionally, we assume that the altruism and
the valuations of the bidders are ranked in the same order. We discuss this assumption and its
consequences.

First-price all-pay auction equilibrium is characterized and the expected revenue computed;
but there is no pure strategy Nash equilibrium. As in a case without externality, only the two
bidders with the highest valuations are active. In order to raise money for charity, we set up
an optimal lobbying policy based on two steps. The first step consists in making the active
bidder with the lowest valuation aware of the charity auction. Once the updated-valuation of
the bidder with the lowest initial valuation is equal to the highest valuation, the goal is to make
both agents sensitive to the auction so as to keep their valuations equal. Indeed, it is important
not to work only on the sensitiveness of the bidder with the highest valuation so as to avoid
disastrous consequences in terms of revenue. We also show the existence of a Nash equilibrium
with non-linear externality.

The equilibrium is also characterized and the expected revenue computed for the second-
price all-pay auction. In that case, the pure strategy Nash equilibria are degenerated. That is
why we find the mixed strategy Nash equilibrium. We discuss our results by comparing them to
Ettinger (2002) who analyzes winner-pay auctions with externalities that do not depend on the
identity of the winner and which could be applied to charity auctions. Even if the second-price
all-pay auction raises more money than the other designs, the revenue of the first-price all-pay
auction can be dominated by the winner-pay auctions contrary to the results of Goeree et al.
(2005). Indeed, beyond a certain threshold of asymmetry in the bidders’ valuations, winner-pay
auctions raise more money for charity than the first-price all-pay auctions. We can also revisit
this result by an analysis of the bidders’ altruism.

In the last section, we evaluate the impact of individual minimum bids on first-price all-pay
and first-price winner-pay auctions. We assume the auctioneer knows the bidders’ valuations.
This assumption is relevant in a charity dinner which takes place in an isolated environment or
in a local service club. The auctioneer gets informations through the board of directors of the
service club as he does not belong to this environment. Minimal bids could improve the relative
revenue performance of first-price all-pay auction compared to winner-pay auction. Indeed,
minimal bids can offset the effects of asymmetry in the bidders’ valuations.

2 The model

Following the work of Vartiainen (2006) with linear cost functions, we analyze all-pay auctions
for charity as a mechanism. This approach relies on a general model which can be applied to
both first and second-price all-pay auctions. Yet, our approach is different. Moreover, in our
case, every bidder takes as much advantage of his own bid as of his rival’s bid thanks to intro-
duction of the externalities.

In a charity dinner, an indivisible object (or prize) is sold through an all-pay auction. This
prize is allocated to one of the potential bidders N = {1, ..., n} contingents upon their bids
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x = (x1, ..., xn) ∈ Rn
+. As the bidders usually meet each other in these kinds of events, the

willingness to pay and the valuation ranking of each bidder, v1 > v2 > ... > vn, are common
knowledge. An all-pay auction is a pairwise (a, t), a being the allocation rule and t the payment
rule.

Allocation Rule. The allocation rule a = (a1, ..., an) : Rn
+ −→ [0, 1]n is such that the winner

i gets the object if and only if ai(x) = 1 given the bids and
∑n

i=1 ai(x) = 1 for all x. The object
is allocated to the highest bidder such that

{
ai(x) = 1

#Q(x) if i ∈ Q(x)
ai(x) = 0 otherwise

where Q(x) := {j|j = arg max{xk, k ∈ N}} is the collection of the highest bids.

Payment Rule. The payment rule t = (t1, ..., tn) : Rn
+ −→ Rn

+ represents for each bidder i his
transfer ti(x) to the charity organization for all of the bids x. This payment rule is contingent
upon the all-pay design. In fact, in a first-price all-pay auction, each bidder pays his own bid

ti(x) = xi ∀i ∈ N

while in the second-price all-pay auction the winner pays the second highest bid and the losers
their own bid

ti(x) = x(2) if i ∈ Q(x)
ti(x) = xi otherwise

with x(2) the second order statistic of sample (x1, ..., xn).
The bidders wish to raise the maximum of money for charity. Every bidder takes advantage

of his own participation in the charity auction and of the others’ participations as well. In other
words, the money raised by each potential bidder impacts the utility of all of the participants
including himself. Thus, the bidder’s utility function includes an externality which depends on
the amount of money raised for the public good or the charity purpose. Denote hi(t(x)) the
externality that the bidder i takes advantage of. This is a function with only one argument

n∑

j=1

tj(x). Indeed, the externality is independent of the winner’s identity and only takes into

account the amount raised. Like Goeree et al. (2005) and other papers about charity auctions,
we make a linearity assumption on the form of the externality price:

hi(t(x)) = hi(t1(x), ..., tn(x)) = αi

n∑

j=1

tj(x)

where αi ≥ 0 is the threshold of the bidder i’s altruism for the charity purpose. Thus, the bidder
i’s utility is given by

Ui(x) = viai(x)− ti(x) + αi

n∑

j=1

tj(x)

Assumption 1 (A1). Ui(x) is a continuous and differentiable function in all of his arguments.

Thus, hi(t(x)) is also continuous and differentiable in all of his arguments.

Assumption 2 (A2). ∀xi ≥ 0
∂Ui

∂ti(x)
(x) < 0 equivalent to αi

n∑

j=1

dtj(x)
dti(x)

< 1.
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This assumption reminds that the bidder has a strict preference to keep one euro for his own
use rather than to give it to the charity auction. This is the limit to the bidders’ altruism to
give money for charity3. The altruism threshold changes with the payment rule. Indeed, the
bidder i’s transfer can be a function of his opponents’ bid. Thus, a change in the payment rule
leads to a new altruism threshold: in first-price it is αi < 1 while in second-price αi < 1/2.

Assumption 3 (A3). α1 ≥ α2 ≥ ... ≥ αn

This assumption suggests that the altruism level and the value of the bidders are ranked in
the same order. Thus, we assume the bidder with the highest valuation is also the bidder who
is the most concerned by the charity purpose. As a consequence, he is the one who takes the
most advantage of the money raised for charity because of the externality effect. Assumption
A3 allows us to select the equilibrium for the first-price auction. This assumption does not have
necessarily important consequences on the results but if it does, this would be discussed.

Denote Fi(x) ≡ P(Xi ≤ x) the cumulative distribution functions such as the bidder i decides
to take a bid inferior to x. We denote fi(x) the density associated and Fi(0) the probability
that bidder i bids 0. When Fi(0) 6= 0, bidder i bids zero with a probability strictly positive.
When Fi(0) = 1, bidder i always bids zero which means that he does not participate to the
auction. F1, ..., Fn can be interpreted as the bidding strategies where the support is R+. Thus,
the expected utility of bidder i is given by:

EUi(xi, X−i) =
∫

Rn−1
+

(
viai(x)− (1− αi)ti(x) + αi

n∑

j=1
j 6=i

tj(x)
)∏

j 6=i

dFj(xj) (1)

= vi

∏

j 6=i

Fj(xj)− (1− αi)
∫

Rn−1
+

ti(x)
∏

j 6=i

dFj(xj)

+ αi

∫

Rn−1
+

n∑

j=1
j 6=i

tj(x)
∏

j 6=i

dFj(xj)
(2)

with X−i = (X1, ..., Xi−1, Xi+1, ..., Xn). To go from (1) to (2) we can notice that #Q(x) = 1
and #Q(x) > 1 are disjoints. Thus, when #Q(x) > 1 the value of the integral is zero: at least
one of the support is an atom.

3 First-price All-Pay Auction

In this section, we study the most popular all-pay auction design, i.e. the first-price all-pay
auction. Every bidder pays his own bid, but only the one with the highest bid wins the object.
We first analyze the auction with two bidders, and then we extend the model to n bidders.

3.1 Two Bidders

Given assumption A2, there is no pure strategy Nash equilibrium. This is a well known result
when there is no externality.

3If αi

nX
j=1

dtj(x)

dti(x)
= 1 then the bidder is indifferent between giving one euro for charity or investing it in an

another activity.
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Let us assume that xi ≥ xj and consider some general externality (not necessarily linear) given by
hi(xi, xj). This externality need not verify A3. In such a framework, two cases can occur. First,
if bidder j can overbid, then his best reply is xi+ε, for ε > 0 such that vj−(xi+ε)+hj(xi, xi+ε) ≥
−xj + hj(xi, xj). Hence, it is impossible that xi ≥ xj . Second, if j cannot overbid, then his
best reply consists in offering zero since, given assumption A2, hj(xi, 0) > −xj + hj(xi, xj).
Consequently, i’s best reply is to offer ε > 0. As a result, the equilibrium is unstable and there
is no pure strategy Nash equilibrium.

As we noticed in the last section, assumption A2 implies that αi < 1.

Lemma 1. There is no pure strategy Nash equilibrium. The equilibrium (or equilibria) is (are)
in mixed strategies and with no mass point.

If bidder i offers xi, then j will offer less with probability Fj(xi) and will offer more with
probability 1 − Fj(xi). Whatever the outcome, bidder i benefits from the sum of all bids,
including his. This is what we call an externality. When computing his expected utility, he
takes the amount payed by his opponent into account. Indeed, he considers it as a mean. The
bidders’ expected utilities when 1 offers x1 and 2 offers x2 are given by,

{
EU1(x,X2) = F2(x)v1 − (1− α1)x + α1EX2

EU2(x,X1) = F1(x)v2 − (1− α2)x + α2EX1

A potential bidder takes part to the auction if his expected utility is equal to or higher than
the externality he enjoys when his bid is zero. Otherwise, he could benefit his own externality
without taking part to the auction. Formally, a bidder takes part to the auction if

EUi(x,Xj) ≥ αiEXj

with αiEXj bidder i’s expected reservation utility when he takes part to the auction.

Lemma 2. Bidders have the same maximum and minimum bids at the equilibrium. In particular,
the minimum bid is zero.

Lemma 1 and 2 are the same as Hillman & Riley (1989)’s proposition 1 for the case without
externality. Thus, we do not write the proof for lemma 1 and leave out most of the proof for
lemma 2. Now, we must define the maximum bid. In order to do so, we must prove that bidders
have the same maximum at the equilibrium.
Let us assume that, on the contrary, maxxi > maxxj = x̃j . For all bid xj < x̃j made by bidder
j, bidder i will offer x̃j + ε, with ε > 0, with probability 1. Then, bidder j will decide to offer
zero. Thus, there is no Nash equilibrium. It follows that maxxi = maxxj = x̃j .

It is the lowest price at which one of the bidders is indifferent between taking part to the
auction or not. We call the lowest price at which a given bidder is ready to take part to the
auction his indifference pricing. i’s indifference pricing is noted x̃i and satisfies EUi(x̃i) =
αiEXj . We know from assumption A3 that x̃1 > x̃2.

Remark 1. If assumption A3 had not been made, there would exist a variety of values for v1,
v2, α1 and α2 at which the maximum bid would have been x̃2. Indeed, in that case, we would
have x̃1 > x̃2 if and only if v1−v2 > α2v1−α1v2. Thus, we would have to consider two different
equilibria.
Through the proof of proposition 1, we display a more general outcome than with the result of
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this proposition. In fact, to obtain the result of proposition 1 we need to impose assumption
A3, which is not the case for the proof. In this proof, we assume that bidder i determines the
maximum offer, noted x̃i. Then, bidder j will take part to the auction for sure.
Furthermore, assumption A3 affects the expected revenue. Indeed, with A3, the revenue that is
raised is always higher in an auction with externalities than in an auction with no externality,
which would not always be the case without assumption A3.

Proposition 1. Let x̃i =
vi

1− αi
bidder i’s adjusted-value. There is a unique Nash equilibrium

and the mixed strategies are given by

F1(x) =
1− α2

v2
x ∀x ∈

[
0,

v2

1− α2

]
and F2(x) = 1− 1− α1

1− α2

v2

v1
+

1− α1

v1
x ∀x ∈

(
0,

v2

1− α2

]

The expected revenue is given by ER =
1
2

v2

1− α2

(
1− α1

1− α2

v2

v1
+ 1

)
.

In the appendix we prove this result using the proof for the case without externality (propo-
sition 2 of Hillman & Riley (1989)). i’s indifference pricing defines his adjusted-value. From
lemma 2, the lowest adjusted-value specifies the bidders’ maximum bid. Moreover, the bidder
with the highest adjusted-value (i.e. bidder 1) offers a bid in the interval [0, v2

1−α2
] and his

competitor bids in the interval (0, v2
1−α2

]. We know from Lemma 1 that the cumulative distribu-
tion functions are continuous (with no mass point). The bidders’ mixed strategies are uniform
distributions and are supported on [0, v2

1−α2
] given that bidder 2 (the bidder with the lowest

adjusted-value) takes part to the auction with probability

1− F2(0) =
1− α1

1− α2

v2

v1

Corollary 1. The bidder with the highest adjusted-value obtains a payoff U?
1 = v1 − 1−α1

1−α2
v2 +

α1
2

1−α1
v1

(
v2

1−α2

)2
and his competitor gets U?

2 = v2
2

α2
1−α2

.

Contrary to the case with no externality, the low bidder gets a positive payoff. That is a
consequence of externalities: bidders take an advantage of the competitors’ behavior.

Remark 2. Let us assume that assumption A3 is not satisfied and that the difference between
α1 and α2 is high enough for bidder 1’s adjusted-value to be ranked second. Then bidder 1 can
get a lower payoff than in the case with no externality if and only if his altruism level is lower
than α̃ ≡ 2 v1−v2

3v1−2v2
. We notice that this threshold does not depend on his rival’s altruism level,

while the changes in the ranking of the adjusted-values is only due to the difference between the
players’ altruism levels.

We can notice here that there are two opposite effects. Because of the externalities, the
value of one euro that is invested in the auction is less than one euro. Thus, it is possible that
the bidders choose more aggressive offers. However, every bidder knows that his competitor is
more agressive and that this will affect one’s probability of winning.Given an increasing of his
competitor’s aggressiveness, the bidder’s best reply can be increasing or decreasing.

Example 1. Let us consider two bidders with external effects α1 = α2 = 1
2min x̃i

. We note that
A1−A3 are satisfied. Furthermore, x̃1 > x̃2, x̃1 = v1

v2

(
v2 + 1

2

)
et x̃2 = v2 + 1

2 .
Thus, we can determine

F1(x) =
2

2v2 + 1
x, F2(x) = 1− v2

v1
+

2v2

(2v2 + 1)v1
x,ER =

2v2 + 1
4

(
v2

v1
+ 1

)

The bidders’ payoffs are U?
1 = v1 − v2 + 1

2
v2
v1

and U?
2 = 1

4
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3.2 n Bidders

Bidder i’s expected utility with n potential competitors is given by

EUi(xi, X−i) = Πn
j 6=iFj(xj)vi − (1− αi)xi + αi

∑

j 6=i

EXj

As in the two bidders case, the bidder with the greatest indifference pricing does not offer a
higher bid than the second adjusted-value4. Given A1 − A3, only two bidders take part to the
auction.

Proposition 2. If v1 > v2 > v3 ≥ vi ∀i > 2 and A1− A3 are satisfied, there is a unique Nash
equilibrium and the bidders’ strategies are mixed. In this equilibrium, only the two bidders with
the highest adjusted-values participate actively i.e. do not bid zero for sure.

Note that all the results with two bidders remain true.

Proof. Let us assume that a third bidder takes part to the auction. His expected utility is
equal to or higher than α3EX1 + α3EX2. Given his two rivals’ mixed strategies, it follows that
F1(x3)F2(x3)v3 ≥ (1 − α3)x3, which is equivalent to x̃1(x̃3 − x̃2) ≥ x̃3(x̃2 − x3). As x̃2 > x̃3

and x̃3 ≥ x3, there is a contradiction. This result can be generalized to a game with n bidders.
However, it does not lead to a unique solution. To show that there is a unique solution, here we
could apply5 Baye et al. (1990)’s lemma 14’: x̃i = 0 ∀i > 2. ¥

In order to raise money for a charity auction, a good lobbying policy consists in inducing
bidders to equal their adjusted-values. In other words, one should make the low6 bidder increase
his adjusted-value or the high bidder decrease his. It is well known reducing the asymmetry
that exists between bidders tends to increase competition, and thus leads to a higher rent for
the auction.

Corollary 2. Inducing the highest bidder only to care about charity leads to a lower rent.
An optimal lobbying policy consists in making the low bidder aware of the charity auction and

increases his adjusted-value. Once the updated-value of the low bidder is equal to the adjusted-
value of the high bidder, the second step is to make both agents sensitive to the auction so as to
keep their adjusted-values equal.

Proof. Computations. ¥

It is important not to work only on the sensitiveness of the bidder with the highest valuation
in order to avoid disastrous consequences in terms of revenue. Indeed, it could make the low
bidder less sensitive to the auction and thus the rent might be low. On the opposite, inducing
the low bidder only to care about the auction could increase his adjusted-value and his maximum
bid.

When the bidders have the same adjusted-value, they get an identical probability to win
F (x) =

x

v
for x ∈ [0, v]. Finally, the optimal level of altruism (α1, α2) that gives the maximum

revenue for the auction is given by α2 = 1− v2

v1
(1− α1).

4The third bidder is the one whose indifference pricing (or adjusted-value) is ranked third. Given the values’
ranking and assumption A3, this is consistent with the choice of indexes.

5Actually, the proof of this lemma has to be slightly changed and be adapted to our setting. As the modifi-
cations are of minor importance, we do not give the details of the proof.

6The low and high bidders are respectively the bidders with the second and the first highest values.
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Thus, as opposed to Baye et al. (1993), in charity auctions it is not conceivable to exclude bidders
with higher values. Furthermore, caps à la Che & Gale (1998) would have a similar impact as
the lobbying policy we suggested.

3.3 Non-linear Externalities

We extend our result to non-linear externalities. We consider two bidders only, such that the
expected utility is given by,

EU1(x1, X2) = F2(x1) (v1 + EX2(h1(x1, X2)\X2 ≤ x1)− x1) + (1− F2(x1))(EX2(h1(x1, X2)\X2 ≥ x1)− x1)

EU2(x2, X1) = F1(x2) (v2 + EX1(h2(X1, x2)\X1 ≤ x2)− x2) + (1− F1(x2))(EX1(h2(X1, x2)\X1 ≥ x2)− x2)

with EX2(h1(x1, X2)\X2 ≤ x1) =
1

F2(x1)

∫ x1

0
h1(x1, x2)dF2(x2)

It can also be written as
{
EU1(x1, X2) = F2(x1)v1 − x1 + EX2h1(x1, X2)
EU2(x2, X1) = F1(x2)v2 − x2 + EX1h2(X1, x2)

Bidder i takes part to the auction if his expected utility is higher than his reservation utility:

EUi(xi, Xj) ≥ EXjhi(0, Xj)

Proposition 3. Given A1 − A2 and given that the two bidders have a common support [0, b],
the mixed strategy equilibrium exists.

The expected utility’s derivative is a Fredholm equation of the second type. The existence
of a solution depends on a condition made on the kernel (the kernel being the externality here).
Nonetheless, given that the solution is a distribution function defined on a closed and convex
set of continuous distribution functions, we are able to show its existence by using the second
Schauder’s theorem without this standard condition. The sketch of this proof is similar to the
one used by Anderson et al. (1998) (proposition 2). The solution seems to be unique only in
very specific cases, as said in the literature about Fredholm equations7.

4 Second-price All-Pay Auction

In a second-price all-pay auction, the payement rule is the following: the winner pays the second
highest bid and others pay their own bid. Our purpose is now to determine bidders’ strategies
and revenues. In the next section, we will compare the rents obtained in first-price and second-
price auctions, as well as winner-pay and all-pay auctions. As a result, we will know which of
these designs is the best to raise money for charity.

As before, we first analyze the two bidders case. It is not necessary to find each agent’s
probability distribution’s support in order to determine the mixed strategy Nash equilibrium.
Actually, we only need to assume that each bidder i’s offer, xi belongs to a strategy space
Xi ⊆ [0,+∞). For the same reasons as in lemma 2, the bidders’ minimum valuations is zero.
As noticed before, assumption A2 allows us to write that αi < 1/2.

7Kanwal (1971) has written a very complete book about these questions while Ledder (1996) gives a simple
method and finds another condition to prove the solution’s uniqueness.
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4.1 Two Bidders

The strategies’ supports are no mass points and are continuous. If two bidders have a mass
point, a deviation increases their probability to win. Furthermore, if one bidder has a mass
point, his rival will never choose an action below this point. Thus, this bidder’s mass point can
only be zero. The expected utility given by (2) is

EUi(xi, X−i) =
∫ xi

0
(vi − (1− 2αi)x)dFj(x)− (1− 2αi)xi(1− Fj(xi))

In the second-price all-pay auction with two bidders, the payment rule leads to t1(x) = t2(x).
Thus, when a bidder wins he pays his rival’s bid. Additionally, each bidder benefits from two
externalities, one of which is associated to his own bid, and this other one of which is associated
to his rival’s bid.

Proposition 4. There is a unique mixed strategy Nash equilibrium. Bidder i’s strategy is given
by an exponential distribution defined as follows,

Fi ∼ E
(

1− 2αj

vj

)
and ER =

v1

1− 2α1
+

v2

1− 2α2

Example 2. We use example 1’s hypotheses. Two bidders have the same externality such that
h(x) =

x1 + x2

2min x̃
with min x̃ = min

i=1,2
x̃i. Thus,

Fi(x) = 1− exp

(
min x̃− 2x

vj min x̃

)
ER = (v1 + v2)

min x̃

min x̃− 1

Remark 3. As for now, we have exclusively studied mixed strategy equilibria. Yet, there are also
pure strategy Nash equilibria. In the two bidders case, we find two equivalent equilibria. Note
that these equilibria are degenerated as in the situations without externalities.

As before, we note x̃i bidder i’s maximum bid, such that x̃1 > x̃2.
Bidder i’s expected utility is given by

Ui(x) =





vi + (2αi − 1)xj if xi > xj
vi

2
+ (2αi − 1)xi if xi = xj

(2αi − 1)xi if xi < xj

Let xi be bidder i’s offer.
First case : x2 ≥ x1

If x̃1 ≥ x2, bidder 2 wins the auction and his competitor earns a payoff U1 = (2α1 − 1)x1 < 0.
Thus, bidder 1 deviates and offers x2 + ε in order to win the auction, which is contradictory to
the initial hypothesis.
If x2 > x̃1, offering more than bidder 2’s bid is a dominated strategy for the bidder 1. Then his
best reply is to bid zero. Thus, (0, β) with β ∈ (x̃1; +∞) is an equilibrium.

Second case : x1 > x2

It is completely symmetric to the former analysis. As a result, there exists a second equilibrium
(β, 0) with β ∈ (x̃2; +∞)
Finally, there are two pure strategy Nash equilibria,

(0, β1) with β1 ∈ (x̃1, +∞)
(β2, 0) with β2 ∈ (x̃2, +∞)

The revenue earned for the auction is zero.
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4.2 n Bidders

It is more difficult to find the equilibrium with n bidders. We note Gi(x) =
∏

j 6=i Fj(x). It
follows that the expected utility (2) can be written

EUi(xi, X−i) =
∫ xi

0
(vi − (1− αi)x)dGi(x)− (1− αi)xi(1−Gi(xi))

+ αi

∑

l 6=i

∫

R+

xl

(
1− 1xi≤xl

∏

k 6=l,i

Fk(xl)
)

dFl(xl) (3)

+ αi

∑

l 6=i

(∫

R+

∫ xl

xi

∑

k 6=l,i

xk

∏

m6=i,k,l
k 6=l

Fm(xk)dFk(xk)dFl(xl) + xi

∏

m6=i,l

Fm(xi)(1− Fl(xi))
)

(3) comes from (2). The transition from one to the other is explained in proposition 5’s
proof, in appendix page 13. The first line’s two terms represent bidder i’s payoff condition to his
winning or losing the auction, given the externality that arises from his own action. The other
lines represent the externalities that come from his competitors’ actions (whether they lose or
win).
The first of those two lines describes the situation when bidder l (l 6= i) loses the auction. In
the last line bidder l wins the auction; on this line, we distinguish situations where bidder i’s
offer is the second highest offer from situations in which it is not. Each bidder’s offer can be
the second highest bid and we hold account of it (sign sum under the integral). The bidder who
makes an offer between bidder i and bidder l’s offers puts forward the second highest bid. The
other part gives the amount of money that bidder l will have to paid when i offers the second
highest bid. Indeed,

∏

m6=i,l

Fm(xi)(1−Fl(xi)) is the probability that every bidder except l makes

a lower bid than i . This probability is multiplied by the sum offered by the bidder i.
Note that this expression of expected utility is not valid unless there are at least four bidders.
In order to study the three bidders case, it is necessary to (slightly) change the third line. To do
this, we must stop computations to the second line of term BI in the appendix. Thus, this term

is writing αi

∑

l 6=i

( ∫

R+

∫ xl

xi

xkdFk(xk)dFl(xl) + xiFk(xi)(1− Fl(xi))
)
, where k is not i, neither

l. We do not explain this calcul more.

Proposition 5. If v1 > v2 > vi ∀i > 2 and A1 − A3 are verified, only two bidders among n

participate actively to the auction.

The bidders’ mixed strategies are given by the proposition 4. The weakness of this result is
we do not know which bidders are going to participate. Thus, it could happen that the two
bidders with the highest values participate or the ones with the lowest values8. There are some
consequences on the expected revenue.

8Other equilibria could also exist with two more bidders. However, as we will see later, they cannot have more
implications than the equilibria discussed before regarding the revenue comparisons. Indeed, the second-price
all-pay auction outperforms the other auction designs as long as the bidder with the highest adjusted-value takes
part to the auction with another bidder. On the contrary, when this bidder does not take part to the auction, the
ranking of the expected revenue raised in the second-price all-pay auction can be lower than the other auction
designs.
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5 Revenue Comparisons

In this section, we investigate the performance of the revenues and the expected revenues ob-
tained with the different designs.

We consider here that the two bidders have the same altruism level i.e. α1 = α2 = α. Hence,
the bidder with the highest value is also the one with the highest adjusted-value. The expected
revenue becomes

ERAP1 =
1
2

v2

1− α

(
v2

v1
+ 1

)
et ERAP2 =

vi + vj

1− 2α
i, j ∈ N

Indexes APi and WPi correspond to ist-price all-pay and winner-pay auctions. If bidders are
complete altruists, i.e. αAP1 −→ 1 and αAP2 −→ 1/2, the expected revenues diverge as Goeree
et al. (2005) predicted. Thus, the altruism level is an essential element to determine the expected
revenue. When bidders’ altruism levels are the same, the rent for the auction is at least equal
to the rent one would obtain with non-altruistic bidders.

We can notice that the second-price all-pay auction gives a higher rent than other auction
designs as long as the bidder with the highest adjusted-value takes part to the auction. To
show that, we use Ettinger (2002)’s results about winner-pay auctions with externality. On
the contrary, when this bidder does not take part to the auction, the ranking of the expected
revenue raised in the second-price all-pay auction depends on the asymmetry between bidders’
valuations.

As a consequence, the second price all-pay auction seems more adapted than others to raise
money for charity. Yet, if our setting is suited to charity dinners in complete information (for
example dinners organized by a local Rotary Club) first-price all-pay auction contradicts Goeree
et al. (2005)’s results. We sum up our results9 in this table:

v1 > v2 > v3 > vi ∀i > 3 RWP1 RWP2 ERAP1 ERAP2

α > 0 v2 v1
1

2

v2

1− α

„
v2

v1
+ 1

«
v1 + vi

1− 2α
, i 6= 1

α = 0 v2 v2
v2

2

„
v2

v1
+ 1

«
v1 + vi, i 6= 1

Table 1: Revenues and expected revenues for every design

We notice that with homogeneous values, we find the same results as Goeree et al. (2005)
does. In particular, the first-price all-pay auction rent dominates the winner-pay auction rent.
In order to analyze the impact of asymmetry on rents, we use the following definition.

Definition. The level of asymmetry between bidders’ valuations will be considered ”high“ if
v1 − v2 > 2αv1, ”medium“ if 2αv1 > v1 − v2 > 2αv1 − v1 + v2

v2
v1

and ”low“ if v1 − v2 <

2αv1 − v1 + v2
v2
v1
.

Proposition 6. We assume that αi = α ∀i and that the bidder with the highest adjusted-value
takes part to the second-price all-pay auction. Then, this design gives the highest revenues:

ERAP2 > RWP2 ≥ RWP1 and ERAP2 > ERAP1

All other things being equal, ERAP1 > RWP2 if and only if the level of asymmetry between
valuations is ”low“, RWP2 > ERAP1 > RWP1 if and only if this level is ”medium“, and RWP1 >

ERAP1 if and only if it is ”high“.
9Here, in the second-price all-pay auction without externality, we consider only equilibria where only two

bidders take part to the auction.
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Proof. Computations. ¥

The second part of this proposition can be interpreted in two independent ways.

• First of all, given α, the (first-price) all-pay auction is dominated by the first-price winner-
pay auction when asymmetry is ”high“. Furthermore, this all-pay auction raises more
money than the second-price winner-pay auction when asymmetry is ”low“.

• Given v1 and v2, first-price all-pay auction is dominated by first and second-price winner-
pay auctions when the bidders’ altruism level is less than 1

2(1− v2
v1

) and 1− 1
2

v2
v1

(v2
v1

+ 1).
In particular, the threshold above which this all-pay auction raises more money than the
first-price winner-pay auction is less than 1

2 .

The more asymmetry increases, the more the level of the altruism must also increase for
the first-price all-pay auction to give a higher rent than winner-pay auctions. The two graphs
below show the limits (in terms of rent domination) for the first-price all-pay auction. We use
two parameters: altruism level and the asymmetry among bidders’ values (from left to right,

v2

v1
varies from 0.9 to its limit in zero with a 0.1 step).
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Figure 1: ERAP1 > RWP2
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Figure 2: ERAP1 > RWP1

6 Minimum Bids Imposed

In this section, we determine the impact of minimum bids imposed on rent for two auction
designs: first-price all-pay and winner-pay auction. In the rest of the paper, we will note
ti(x) = xi for all i ∈ N . Moreover, we analyze only the two bidders case (who have the highest
valuations). Indeed, only these two bidders participate in all-pay auction as in the second section.

The value rankings and externality parameters (given by A3) are kept. While the bidders
know the values and these rankings, the charity auction organizer imposes an individual bid on
everybody: bidder i has to offer a bid at least equal to tvi so as to take part to the auction.
This implies that the auctioneer also knows the bidders’ value, so that he can impose a rate t on
them. This assumption is not unrealistic. This phenomenon could occur in a local service club
(like a local Rotary club) or during a show business dinner. Indeed, the auctioneer could obtain
this kind of informations through the staff of the local community or because he is himself a
member or a friend of the participants.

15



As expected, there is no pure strategy Nash equilibrium10. In order to find the strategies
and the probability of entry, we focus on the situation where every bidder wants to participate.
As in section 2, we first define the distribution functions’ supports.

Lemma 3. At equilibrium, the bidders’ minimum bids are asymmetric. They are tv1 for bidder
1 and tv2 for bidder 2. In fact, the latter’s density is equal to zero on the support (tv2, tv1].

With probability one, bidder i’s offer will be at least equal to tvi. We conclude that minxi ≥
tvi. Now, let us assume that minx1 = x > tv1. Then P(X1 < {x}) = 0, because bidder 1 never
makes any offer in the interval (tv1, x). His competitor offers either tv2 or x + ε for ε > 0, a bid
between these two values being strictly dominated. Then, if bidder 1 bids x− ε his probability
of winning is not affected. Thus, his minimum bid is tv1. Moreover, bidding in the interval
(tv2, tv1] is strictly dominated for bidder 2. Hence, P(tv2 < X2 ≤ tv1) = 0 and if he bids
tv2 < x ≤ tv1 he loses for sure. When he offers x = tv2 he does not affect his probability of
winning but increases his payoff by A2. Furthermore, he increases his probability of winning by
bidding x = tv1 + ε for ε > 0. Bidder 2’s density function is zero on the interval (tv2; tv1].

Lemma 4. At equilibrium, bidders offer the same maximum bid x̄ = (1− α2t)x̃2. Every bidder
has a mass point for his minimum bid and a mass point can never be on (tv1, x̄].

For similar reasons as the ones pointed out in section 3, all bidders’ maximum bids are equal.
Additionally, even if the payoff functions are the same, that is to say

EU1(x,X2) = F2(x)v1 − (1− α1)x + α1EX2, EU2(x,X1) = F1(x)v2 − (1− α2)x + α2EX1

the expected level of the bidders’ reservation utilities are changed. Indeed, as the minimum bids
are positive, bidder i’s reservation utility is αiEXj + αitvi: he participates to the auction if he
gets at least αiEXj (as before) plus the reward of his own minimum bid. Hence, the maximum
bid is equal to the lowest of the two bidders’ indifference pricing. At his indifference pricing,
bidder i is indifferent between taking part to the auction or not, that is to say to offer tvi. Thus,
the maximum bid is x̄ = (1− α2t)x̃2.
Given the former analysis, bidder 2 has a mass point on tv2. Bidder 2’s strategy space is
{tv2} ∪ (tv1; x̄]. For similar reasons as in section 3 and for the case without externality, having
a mass point on the bidders’ common strategy set is dominated for every bidder11 (since they
deviate).

For now, we only consider the bidders’ common strategy set, that is to say (tv1; x̄]. A bidder’s
equilibrium payoff is a constant function on his whole strategy set. Hence,

F2(x)v1 − (1− α1)x + α1EX2 = v1 − (1− α1)x̄ + α1EX2 (4)

for all x ∈ (tv1; x̄]. The left member of this equation is the bidder 1’s expected utility for all
bids in (tv1; x̄], while the right member is bidder 1’s payoff when he bids x̄. In the same way,
bidder 2’s bid is such that

F1(x)v2 − (1− α2)x + α2EX1 = v2 − (1− α2)x̄ + α2EX1 (5)
10To see this, let us assume that x1 ≥ x2. As before, we have to consider two situations. First, bidder 2 can

overbid. It contradicts the initial assumption. If he cannot overbid, given A2, his best reply is to offer tv2. Hence,
bidder 1 bids tv1. The equilibrium is unstable.

11We give here a well-known argument (see for instance Che & Gale (1998)) to support this idea. If only one
bidder has a mass point on the support that is common to both bidders, his competitor’s density function below
this mass point is equal to zero. Hence, he is going to move and his mass point will be the support’s lower bound.
This action does not affect his probability of winning, but it increases his payoff if he wins. In a similar way, if
bidders have a mass point, deviating increases their probability of winning. Consequently, the result follows.
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and thus belongs to the interval {tv2} ∪ (tv1; x̄].
In particular, for all bids in the interval (tv1, x̄] and for α1 = α2, we find that

v2(1− F1(x)) = v1(1− F2(x))

As bidder 2 has a mass point on tv2, the limit in tv1 gives us the following result12

F1(tv1) = 1− v1

v2
+

v1

v2
F2(tv1)

Using (4) and (5), it is easy to determine the bidders’s distribution functions. We specify
them in proposition 7 below. As F2(tv1) is not equal to 1 − v2

v1
(the value in zero without any

externality and minimum bids imposed) bidder 1 has indeed a mass point on tv1. The bidders’
distribution functions are drawn below.

6

-
x̄tv2 tv1

1

x

F2(x)

F1(x)

distribution
function

c

c

Figure 3: Cumulative distribution functions at the equilibrium

Proposition 7. Given the bidders’ adjusted-values, (1 − α1t)x̃1 and (1 − α2t)x̃2, there is a
unique Nash equilibrium. The bidders’ strategies for all x ∈ (tv1; x̄] are

F1(x) = α2t +
x

x̃2
and F2(x) = 1 +

x− x̄

x̃1
.

Every bidder has one point mass: it is tv1 for bidder 1 and tv2 for bidder 2.

A bidder’s decision is given by his probability to participate,

1− F1(tv1) = 1− α2t +
tv1

x̃2
and 1− F2(tv2) =

tv1 − x̄

x̃1

Additionally, if the maximum bid x̄ is inferior to bidder 1’s minimum bid x̄ ≤ tv1, offering a
higher bid than their minimum bid is dominated for all bidders. Hence, ER = t(v1 + v2) for all

t ≥ t̄ where t̄ ≡ x̃2

v1 + α2x̃2
.

Here, we consider the case where 0 ≤ t < 1 only13.
12As P(tv2 < X2 ≤ tv1) = 0 it follows that lim

x→tv1
F2(x) = F2(tv1) = F2(tv2).

13t > 1 is not appropriate here. Indeed, the minimum bid of one bidder could be higher than the maximum
bid.
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Proposition 8. Given the distribution functions F1(.), F2(.) at equilibrium, the expected revenue
raised for charity is

ER =





x̄2 x̃1 + x̃2

2x̃1x̃2
+ (tv1)2

x̃1 − x̃2

2x̃1x̃2
+ t2v1α2 + tv2

(
1 +

tv1 − x̄

x̃1

)
if t < t̄

t(v1 + v2) otherwise

Proof. We only have to compute the expected revenue associated to every bidder when t < t̄:

ERi =
∫ x̄

tv1

xfi(x)dx + tviFi(tv1)

= x̄

∫ x̄

tv1

fi(y)dy −
∫ x̄

tv1

∫ x

tv1

fi(y)dydx + tviFi(tv1)

= x̄(Fi(x̄)− Fi(tv1))−
∫ x̄

tv1

Fi(x)− Fi(tv1)dx + tviFi(tv1)

= x̄−
∫ x̄

tv1

Fi(x)dx + (tvi − tv1)Fi(tv1)

Hence, ER1 =
x̄2 + (tv1)2

2x̃2
+ t2v1α2 and ER2 =

x̄2 − (tv1)2

2x̃1
+ tv2

(
1 +

tv1 − x̄

x̃1

)
¥

We must analyze the impact of all t values on the rent. This will allow us to determine
whether imposing a minimal bid to every bidder permits to improve the first-price all-pay auc-
tion’s efficiency compared to the first-price winner-pay auction or not. In order to do so, we
assume that bidders have the same altruism attitude, such that α = α1 = α2. We analyze only
the revenue achievement for t ≤ t̄. After an increase in t, there are two contradictory effects. The
bidders’ support’s lower bound increases while its upper bound decreases. As a consequence,
the expected revenue can increase or decrease. The result depends on which effect dominates
the other.

First of all, let us assume that the asymmetry between the bidders’ values is considered ”high“
such that v1−v2 > 2αv1. As a consequence, the all-pay auction expected revenue is increasing in
t. The low altruism level of the bidders offsets the impact of t on the bidders’ maximum bid, so
that the effect on the lower bound dominates. As was pointed out before, when t = 0 the all-pay
auction expected revenue is strictly dominated by the first-price winner-pay auction revenue14.
Given this result, the all-pay auction gives a higher revenue than the winner-pay auction for
a value of t that offsets the impacts of asymmetry. The graph below illustrates this result for
v1 = 20 and v2 = 5. Each curve is the expected revenue when asymmetry is considered ”high“
and for a specific value of t. The lower envelope curve is given by t(v1 + v2). The first-price
winner-pay auction revenue is given by the dashed curve.

14The first-price auction gives revenue v2 with a rate t inferior to v2
v1

< t̄. For higher rates, the revenue becomes
tv1 < t(v1 + v2).
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Figure 4: Expected revenue with a ”high“ asymmetry

It is obvious that situations where asymmetry is ”medium“ or ”low“ give the same result:
winner-pay auction raise more money than all-pay auction. Yet, it is interesting to draw the
expected revenues associated to those asymmetry levels. Here, the decreasing effect of the
support’s upper bound is higher than the increasing effect of the lower bound below a given
value of t, where dynamics is reversed.

6

-
t̄ t

ERt=0

ERt=t̄

ER

Figure 5: ER for α > max{ v1
v1+v2

, v1−v2
2v1

}

6

-
t̄ t

ERt=0

ERt=t̄

ER

Figure 6: ER for v1
v1+v2

> α > v1−v2
2v1

Proposition 9. Imposing a minimal bid to every bidder permits to improve the first-price all-
pay auction’s efficiency compared to the first-price winner-pay auction. There is a threshold t

above which the all-pay auction dominates the winner-pay auction when the values’ asymmetry
is considered ”high“.

Example 3. We focus again on the example 1: two bidders benefit the same externality α1 =
α2 = 1

2min x̃i
. Hence, the two bidders’ maximum bid is x̄ = v2 + 1−t

2 and the bidders’ mixed
strategies are

F1(x) =
2x + t

2v2 + 1
and F2(x) = 1 +

v2(2x− 2v2 + t− 1)
v1(2v2 + 1)

Furthermore, the expected revenue when t < 2v2+1
2v1+1 is

ER =
1

2v1(2v2 + 1

[
(v2+

1− t

2
)2(v1+v2)+(tv1)2(v1−v2)+2(tv1)2+1tv1v1(2v2+1)+4tv2

2(tv1−v2−1− t

2
)
]
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The graphic below gives all the charts of expected revenue with t < t̄, v2 = 5 and v1 increasing15

from 7 to 20 with a 0.5 step. Example 1 (without minimum bids imposed) is equivalent to the
situation when t = 0. Thus, when the values of t are high enough, we can notice that all-pay
auction is better than winner-pay auction with ”high“ asymmetry.

0.1 0.2 0.3 0.4 0.5 0.6 0.7
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7 Conclusion

All-pay auctions with externalities that are independent of the winner’s identity but functions
of the amount raised have other applications in economy.
Here, we focused on the team theory. The next illustration could be connected to other forms
of team works (particularly in firms) leading to social promotion. Let’s consider, a team sport
like basket-ball. Every year during the American championship of basket-ball (the NBA) or
the all-stars game finals, the most valuable player (MVP) is elected. During such games, every
player makes the highest effort to win the event but also to be elected the MVP of the game.
Each player takes advantage of the team’s effort to win the game and thus can be elected MVP
thanks to the externality of the total amount of the efforts made. vi represents the player’s value
for the MVP title. Therefore, his effort xi has two gaols: to win the game and be elected MVP.
When a player is not elected MVP, he takes advantage of the externality by winning the game.
As a player tries to win the game by making the highest effort, he helps also his team mates to
be elected MVP .

This work could be completed by an experiment. In fact, only two experiments have been
implemented until now with opposite results. We have already cited them in the introduction:
Onderstal & Schram (2006) and Carpenter et al. (2004). Onderstal & Schram (2006) find similar
results to Goeree et al. (2005). However, our results are quite different from Goeree et al. (2005)’s
because of the introduction of asymmetric valuations. That is why, it would be interesting to
test our prediction with the introduction of asymmetry between the bidders’ valuations: all-pay
auction can be dominated by winner-pay auction. That could also be the occasion to test the
impact of altruism on agents behavior. Finally, theoritical and experimental works should be
lead about the form of the externalities that we considered here linear.

In a recent paper, Edlin (2005) displays a tax credit method to incite people to give more
for charity purposes. He suggests to deduce the agents’ donations to charity organizations from
their income tax (limited to a certain percent of their income). The agents are free to choose

15v1 ≥ 7 ensures that the asymmetry between values is high.
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the organization they want to help. This method should improve all-pay auctions for charity
and lets an open question for futur researches.

Appendix

proof of proposition 1. If we divide the bidders’ expected utility by 1 − αi, we almost obtain
the same bidders’ expected utility as in the case without externality given by Hillman & Riley
(1989). However, after this operation has been made, there remains an important difference
between the bidder’s expected utility we find and the one Hillman & Riley (1989) find in the
case without externality. Indeed, there is a constant in their function while our function has an

externality αj
EXj

1− αi
. Thus, we only have a constant in our function at the equilibrium. By this

division the result follows as in Hillman & Riley (1989):

Fj(x) =
1− αi

vi
x ∀x ∈

[
0,

vi

1− αi

]

Fi(x) = 1− 1− αj

1− αi

vi

vj
+

1− αj

vj
x ∀x ∈

(
0, vi

1−αi

]

Participant k’s expected payoff (k = i, j) is given by

ERk =
∫ x̃i

0
xdFk(x) + 0.Fk(0)1k=i

= x̃i

∫ x̃i

0
dFk(y)dy −

∫ x̃i

0

∫ x

0
dFk(x)

= x̃i −
∫ x̃i

0
Fj(x)dx

that is to say ERj =
1
2

vi

1− αi
and ERi =

1
2

1− αj

vj

(
vi

1− αi

)2

Hence
ER =

1
2

vi

1− αi

(
1− αj

1− αi

vi

vj
+ 1

)

¥

Proof of proposition 3. By lemma 2, the two players make their bids on the common support
[0, b]. The set of equilibria in mixed strategies is completely characterized by a Nash equilibria
where only pure strategies which are better responses to the others strategies are played with a
strictly positive probability. All of these strategies lead to the same expected utility. Next, we
denote λ = 1

vi
and ignore the suffix.

Let T be an operator such as T : F (x) 7−→ TF (x) and

TF (x) ≡ λx− λ

∫ b

0
h(x, y)f(y)dy + constant (6)

As F is a continuous function, we restrict our study to the set of continuous functions on [0, b]
denoted C[0, b]. Especially, we consider D = {F ∈ C[0, b]\||F || ≤ 1} with ||.|| the supremum
norm. The set D, which includes all of the continuous distribution functions, is closed and
convex but not bounded. Indeed, it’s an infinite-dimensional unit ball. Thus, to prove that (6)
has a solution, we apply the following Schauder’s second theorem:
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Theorem (Schauder, 1930). If D is a closed convex subset of a normed space and E is a
relatively compact subset of D, then every continuous mapping of D to E has a fixed-point.

To apply this theorem, we need to prove two parts. First, that T (D) ≡ E = {TF\F ∈ D}
is relatively compact16. Second, T is a continuous mapping from D to E.

Showing that E is relatively compact is equivalent to showing that E is equicontinuous (As-
coli’s theorem) on [0, b]. Let’s show that E is equicontinuous. We need to show that∀ε,∃η, ∀F ∈
E such that |TF (x1)− TF (x2)| < ε when |x1 − x2| < η.

|TF (x1)− TF (x2)| =
∣∣∣∣λ(x1 − x2)− λ

∫ b

0
[h(x1, y)− h(x2, y)]f(y)dy

∣∣∣∣

≤ λ

[
|x1 − x2|+

∣∣∣∣
∫ b

0
[h(x1, y)− h(x2, y)]f(y)dy

∣∣∣∣
]

≤ λ|x1 − x2|
[
1 +

| supy∈[0,b][h(x1, y)− h(x2, y)]|
|x1 − x2|

]

< λη

[
1 +

| supy∈[0,b][h(x1, y)− h(x2, y)]|
|x1 − x2|

]

The function h is continuous and bounded on [0, b]. [0, b]is a compact which explains the result
of the last line. Denoted κ ≡ | supy∈[0,b][h(x1, y)− h(x2, y)]|. Thus, |TF (x1)− TF (x2)| < ε for
η = ε |x1−x2|

λ(|x1−x2|+κ) .

Now, let’s prove the continuity of T . The operator T is continuous if, for all F1, F2 and for
all ε > 0, there exists a η > 0 such that |TF1(x)−TF2(x)| < ε when |F1−F2| < η. Let us write
F1(x) = F2(x) + g(x) with −η < g(x) < η ∀x ∈ [0, b]. Henceforth

|TF1(x)− TF2(x)| =
∣∣∣∣− λ

∫ b

0
h(x, y)(f1(y)− f2(y))dy

∣∣∣∣

≤ λ

∫ b

0
|h(x, y)||g′(y)|dy

≤ h(b, b)λ
∫ b

0
|g′(y)|dy

< h(b, b)λη

To go from the first to the second line, notice that F ′
1(x)− F ′

2(x) = g′(x). We use the fact that
h is a continuous function on [0, b] bounded by a maximum h(b, b) to go to the third line.
Hence, the difference between TF1 and TF2 is inferior to ε > 0 when η = ε

λh(b,b) . ¥

Proof of proposition 4. All mixed strategies at the equilibrium lead to the same expected utility.
Thus, we can completely characterize the set of equilibrium in mixed strategies. In particular,
the expected utility is zero for xi = 0:

EUi(xi, X−i) =
∫ xi

0
(vi − (1− 2αi)x)dFj(x)− (1− 2αi)xi(1− Fj(xi)) = 0

Hence the Volterra integral equation

fj(x)vi = (1− 2αi)(1− Fj(x)) (7)
16A space is relatively compact when his closed span is compact.
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The solution is given by

Fj(x) = 1− kjexp

(
−(1− 2αi)x

vi

)
x ∈ Xj kj ∈ R

Fj is a distribution function defined on Xj where the minima is zero and the maxima noted

x̃. As the distribution functions must verify Fj(0) = 0, Fj(x̃) = 1 and
∫ x̃

0
fj(x)dx = 1, we know

that Xj and [0;+∞) are merged but also that kj = 1. Henceforth,

Fj(x) = 1− exp

(
−(1− 2αi)x

vi

)
x ∈ [0;+∞)

¥

Proof of proposition 5. By (2) we have the expected utility:

EUi(xi, X−i) = vi

∏

j 6=i

dFj(xj)− (1− αi)
∫

Rn−1
+

ti(x)
∏

j 6=i

dFj(xj)

︸ ︷︷ ︸
A

+αi

∫

Rn−1
+

∑

j 6=i

tj(x)
∏

j 6=i

dFj(xj)

︸ ︷︷ ︸
B

A represents bidder i’s expected payment when we take into account its own external effect.
The term B is the expected payment of bidder i’s rivals. αiB is the sum of the externalities of
bidder i’s rivals that i takes advantage of.

We can write A again as follow
∫

Rn−1
+

x(2)1xi≥xj

∀j 6=i

∏

j 6=i

dFj(xj)

︸ ︷︷ ︸
AI

+
∫

Rn−1
+

xi1∃k/xk>xi
k 6=i

∏

j 6=i

dFj(xj)

︸ ︷︷ ︸
AII

The term AI is i’s expected payment when he wins i.e. he pays the second highest bid. AII

is i’s expected payment when he loses. He could then either be the second highest bidder or a
lower bidder.

AI =
∫

Rn−1
+

∑

j 6=i

xj1 xk≤xj≤xi

∀k 6={j,i},j 6=i

∏

j 6=i

dFj(xj)

=
∫

R+

∑

j 6=i

xj1xj≤xi

{ ∫

Rn−2
+

∏

k 6=i,j

1xk≤xj≤xi

∏

k 6=i,j

dFk(xk)
}

dFj(xj)

=
∫

R+

∑

j 6=i

xj1xj≤xi

{ ∏

k 6=i,j

∫

R

1xk≤xj≤xidFk(xk)
}

dFj(xj)

=
∫

R+

∑

j 6=i

xj1xj≤xi

∏

k 6=i,j

Fk(xj)dFj(xj)

=
∫ xi

0
xdGi(x)

We get the first line from the fact that x(2)1xi≥xj =
∑

j 6=i

xj1 xk≤xj≤xi

∀k 6={j,i},j 6=i

. The independence of

the distribution functions explains how we go from the second to the third line. By denoting
dGi(x) =

∑

j 6=i

∏

k 6=i,j

Fk(x)dFj(x), we obtain the final result.
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AII =
∫

Rn−1
+

xi(1− 1i∈Q(x))
∏

j 6=i

dFj(xj)

= xi − xi

∏

j 6=i

∫

R+

1i∈Q(x)dFj(xj)

= xi − xi

∏

j 6=i

Fj(xi)

= xi(1−Gi(xi))

The independence of the distribution functions, explains how we go from the first line to the
second.
B can be written also like

B =
∑

l 6=i

∫

Rn−1
+

tl(x)
∏

j 6=i

dFj(xj)

=
∑

l 6=i

{ ∫

Rn−1
+

x(2)1xl≥xk∀k 6=l

∏

j 6=i

dFj(xj)

︸ ︷︷ ︸
BI

+
∫

Rn−1
+

xl1∃k/xl<xk
k 6=l

∏

j 6=i

dFj(xj)

︸ ︷︷ ︸
BII

}

We add all of the expected external effects. The case where player l 6= i takes the second higher
bid is distinguished from the others.

BI =
∫

Rn−1
+

∑

k 6=l

xk1xm≤xk≤xl
∀m6={k,l}

∏

j 6=i

dFj(xj)

=
∫

Rn−1
+

∑

k 6=l

xk

∏

m6={k,l},k 6=l

1xm≤xk≤xl

∏

j 6=i

dFj(xj)

=
∫

Rn−1
+

∑

k 6=i,l

xk

∏

m6=i,k,l
k 6=l

1xm≤xk≤xl
dFm(xm)1xi≤xk≤xl

dFk(xk)dFl(xl)

+
∫

Rn−1
+

xi

∏

m6=i,l

1xm≤xi≤xl

∏

j 6=i

dFj(xj)

=
∫

R2
+

∑

k 6=i,l

xk

∫

Rn−3
+

∏

m6=i,k,l
k 6=l

1xm≤xk
dFm(xm)1xi≤xk≤xl

dFk(xk)dFl(xl)

+ xi

∫

R+

∏

m6=i,l

{∫ xi

0
dFm(xm)

}
1xi≤xl

dFl(xl)

=
∫

R2
+

∑

k 6=i,l

xk

∏

m6=i,k,l
k 6=l

Fm(xk)1xi≤xk≤xl
dFk(xk)dFl(xl) + xi

∏

m6=i,l

Fm(xi)(1− Fl(xi))

=
∫

R+

∫ xl

xi

∑

k 6=i,l

xk

∏

m6=i,k,l
k 6=l

Fm(xk)dFk(xk)dFl(xl) + xi

( ∏

m6=i,l

Fm(xi)−Gi(xi)
)
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BII =
∫

Rn−1
+

xl(1− 1l∈Q(x))
∏

j 6=i

dFj(xj)

=
∫

Rn−1
+

xl

∏

j 6=i

dFj(xj)−
∫

Rn−1
+

xl1 xk≤xl∀k 6=l,l 6=i

∏

j 6=i

dFj(xj)

=
∫

Rn−1
+

xl

∏

j 6=i

dFj(xj)−
∫

Rn−1
+

xl

∏

k 6=i,l

(
1xk≤xl

dFk(xk)
)
1xi≤xl

dFl(xl)

=
∫

Rn−1
+

xl

∏

j 6=i

dFj(xj)−
∫

R+

xl1xi≤xl

{ ∫

Rn−2
+

∏

k 6=i,l

1xk≤xl
dFk(xk)

}
dFl(xl)

=
∫

R+

xldFl(xl)−
∫

R+

xl1xi≤xl

∏

k 6=i,l

Fk(xl)dFl(xl)

=
∫

R+

xl(1− 1xi≤xl

∏

k 6=i,l

Fk(xl))dFl(xl)

Hence

EUi(xi, X−i) =
∫ xi

0
(vi − (1− αi)x)dGi(x)− (1− αi)xi(1−Gi(xi))

+ αi

∑

l 6=i

∫

R+

xl(1− 1xi≤xl

∏

k 6=i,l

Fk(xl))dFl(xl)

+ αi

∑

l 6=i

(∫

R+

∫ xl

xi

∑

k 6=i,l

xk

∏

m6=i,k,l
k 6=l

Fm(xk)dFk(xk)dFl(xl) + xi

∏

m6=i,l

Fm(xi)(1− Fl(xi))
)

Next, we will note

Gil(x) =
∏

k 6=i,l

Fk(x) et G′
il(x) =

∑

j 6=i,l

∏

k 6=i,l,j

Fk(x)dFj(x)

As the expected utility is constant at the equilibrium, the FPO lead to

viG
′
i(x)− (1− αi)(1−Gi(x)) + αi

∑

l 6=i

Gil(x)− αi

∑

l 6=i

Gil(x)Fl(x)− αix
∑

l 6=i

G′
il(x)Fl(x) = 0

Notice that (n− 1)Gi(x) =
∑

l 6=i

Gil(x)Fl(x) and (n− 2)G′
i(x) =

∑

l 6=i

G′
il(x)Fl(x) henceforth

viG
′
i(x)−(1−αi)(1−Gi(x))+αi

∑

l 6=i

Gil(x)−αi(n−1)Gi(x)−αix(n−2)G′
i(x) = 0 ∀i ∈ {1, ..., n}

Hence

(vi − αix(n− 2))G′
i(x) + (1− αin)Gi(x) = (1− αi)− αi

∑

l 6=i

Gil(x) ∀i ∈ {1, ..., n} (A1)

This result is true for all n > 3. The closed characterization of the solution is very difficult.
Yet, we can deduce the solution by an alternative way. Indeed, let Fi and Fj be the mixed
strategies of the two bidders i and j. We can notice that the derivative of the expected utility of
a third bidder k Hk(x) = ∂EUk

∂x (xi, X1, X2) is a monotonous increasing function. Furthermore,
Hk(0) = −(1− αk) and limx→+∞Hk(x) = 0. Thus, given the mixed strategies of i and j, k do
not participate.
This result can easily be extended to a number n of bidders. For that, we should use recurrence.

¥
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