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Abstract
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1 Introduction

The folk theorem for repeated games teaches us that even though short run incentives may

lead to suboptimal outcomes, continued interaction can allow players to sustain efficient

cooperation when promises of future benefits are large enough. One notable property of

repeated games is that they admit a large set of equilibria. As a consequence, much of the

applied work using dynamic cooperation games focuses on Pareto optimal equilibria for the

purpose of deriving comparative statics. One may however worry that using Pareto efficiency

as a selection criterion overestimates the players’ ability to coordinate. Indeed, there exists a

substantial experimental literature on coordination failure in one-shot coordination games1

indicating that empirically, Pareto efficiency is not a fully satisfying selection criterion and

that risk-dominance, in the sense of Harsanyi and Selten (1988), is often a better predictor of

experimental outcomes. The work of Carlsson and van Damme (1993) sheds theoretical light

on these empirical findings by showing that the Pareto efficiency criterion relies heavily on

common knowledge and that for a natural family of small departures from full information,

the risk-dominant action will be the unique rationalizable outcome.

This paper uses the information structure of Carlsson and van Damme (1993) to model

miscoordination risk in a class of games with exit that replicates much of the intuition

underlying repeated games, while being simple enough to study the effects of small amounts

of private information. The exit games considered are two-player games with infinite horizon

and positive discount rate, in which players decide each period whether they want to stay

or exit. Under the global games information structure, in each period t, players’ payoffs are

affected by an i.i.d. state of the world wt, on which players make noisy observations.

The paper’s main result is a characterization of rationalizable strategies as players’ signals

become arbitrarily precise. Although the likelihood of miscoordination becomes vanishingly

small as signals get more precise, the ghost of miscoordination is enough to push players

away from the Pareto efficient frontier. The set of surviving equilibria – which are inter-

1See for instance Cooper, DeJong, Forsythe, and Ross (1990) or Battalio, Samuelson, and Van Huyck
(2001).
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preted as those equilibria that are robust to miscoordination risk – depends both on the

magnitude of miscoordination losses and on the distribution of states of the world wt. Un-

like the case of one-shot coordination games studied by Carlsson and van Damme (1993)

and Frankel, Morris and Pauzner (2003), the global games information structure does not

yield unique selection in infinite horizon games. However, the dominance solvability of static

global games does carry over in the weaker form of local dominance solvability. As play-

ers’ signals get arbitrarily precise it is possible to characterize local dominance solvability

explicitly for a focal class of equilibria. This allows us to identify equilibria that are robust

to strategic uncertainty in addition to being robust to miscoordination fear. Finally, the

paper provides a simple criterion for cooperation to be robust in games with approximately

constant payoffs, and shows how taking into account the impact of miscoordination fear on

cooperation can yield predictions that are qualitatively different from those obtained by fo-

cusing on full-information Pareto-efficient equilibria. This is illustrated in an applied model

which investigates the question of how wealth affects people’s ability to cooperate.

From a methodological perspective, the paper shows how the Abreu, Pearce, and Stac-

chetti (1990) approach to dynamic games can be used to study the impact of a global games

information structure in a broader set of circumstances than one-shot coordination games.

The approach has two steps: the first step is to recognize that one-shot action profiles in

a perfect Bayesian equilibrium must be Nash equilibria of an augmented one-shot game in-

corporating continuation values; the second step is to apply global games selection results

that hold uniformly over the family of possible augmented games, and derive a fixed point

equation for possible continuation values. This approach can accommodate the introduction

of an observable Markovian state variable and auto-correlated states of the world.

This paper contributes to the literature on the effect of private information in infinite

horizon cooperation games. Since Green and Porter (1984), Abreu, Pearce, and Stacchetti

(1986), and Radner, Myerson, and Maskin (1986), much of this literature2 has focused on

the issue of imperfect monitoring of other players’ actions and on the amount of inefficient

punishment that must occur on an equilibrium path. In this paper however, actions are

2See for instance Fudenberg, Levine, and Maskin (1994), Compte (1998), or Kandori (2003)
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observable. It is the players’ assessment of the state of the world that is private information.

Interestingly, this form of private information prevents the players from attaining the full-

information Pareto frontier even as the players’ assessments become arbitrarily precise.

This paper also fits in the growing literature on dynamic global games. Much of this

literature however avoids intertemporal incentives. Levin (2001) studies a global game with

overlapping generations. Chamley (1999), Morris and Shin (1999), and Angeletos, Hellwig

and Pavan (2006) consider various models of dynamic regime change, but assume a discount

rate equal to zero, and focus on the endogenous information dynamics that result from agents

observing others’ actions and new signals of the state of the world. In this sense, these

models are models of dynamic herds rather than models of repeated interaction. Closer to

the topic of this paper is Giannitsarou and Toxvaerd (2003), which extends results from

Frankel, Morris, and Pauzner (2003) and discusses equilibrium uniqueness in a family of

finite, dynamic, supermodular global games. From the perspective of the present paper,

which is concerned with infinite horizon games, their uniqueness result is akin to equilibrium

uniqueness in a finitely repeated dominance solvable game. Finally, in two papers that do

not rely on private noisy signals as the source of miscoordination, but carry a very similar

intuition, Burdzy, Frankel, and Pauzner (2001), and Frankel and Pauzner (2000) obtain full

selection for a model in which players’ actions have inertia and fundamentals follow a random

walk. However, their unique selection result hinges strongly on the random walk assumption

and does not rule out multiplicity in settings where fundamentals follow different processes.

The paper is organized as follows. Section 2 presents the setup. Section 3 is the core

of the paper and proves selection and local dominance solvability results. It illustrates how

tools developed for one-shot global games can be applied to study perfect Bayesian equilibria

in dynamic games. Section 4 applies the results of Section 3 and makes the case that the

model of miscoordination fear proposed in this paper is practical and can yield qualitatively

new comparative statics. Section 5 concludes. Proofs are contained in Appendix A, unless

mentioned otherwise. The results of Section 3 are extended to non-stationary games in

Appendix B.
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2 Stationary exit games

2.1 The setup

Consider an infinite-horizon game with discrete time t ∈ {1, . . . , +∞} and two players i ∈
{1, 2} with discount rate β. The two players act simultaneously and can take two actions:

A = {Stay, Exit}. Payoffs are indexed by a state of the world wt ∈ R, which is independently

drawn each period. Given the state of the world wt, player i expects flow payoffs,

S E

S gi(wt) W i
12(wt)

E W i
21(wt) W i

22(wt)

where i is the row player. States of the world {wt}t∈{1,...,∞} form an i.i.d. sequence of real

numbers drawn from a distribution with density f , c.d.f. F and convex support I ⊆ R. All

payoffs, gi,W i
12,W

i
21,W

i
22 are continuous in wt.

At time t, the state of the world wt is unknown, but each player gets a signal xi,t of the

form

xi,t = wt + σεi,t

where {εi,t}i∈{1,2} , t≥1 is an i.i.d. sequence of independent random variables taking values in

the interval [−1, 1]. For simplicity wt is ex-post observable3.

Whenever there is an exit, the game ends and players get a continuation value equal

to zero. This is without loss of generality since termination payoffs can be included in the

flow-payoffs upon exit W i
12,W

i
21 and W i

22. For all σ ≥ 0, let Γσ denote this dynamic game

with imperfect information. Note that Γ0 corresponds to the game with full information.

The paper is concerned with equilibria of Γσ with σ strictly positive but arbitrarily small.

3Note that the analysis that follows would hold if players’ final payoffs were shifted by some idiosyncratic
noise ηi,t independent of all other random variables and with zero expectation.
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2.2 Example: a partnership game

As a benchmark, consider the following – extremely simple – partnership game. Flow payoffs

are symmetric and given by,

S E

S wt wt − C + βVE

E b + VE VE

where payoffs are given for the row player only, and C > b ≥ 0. Parameter wt is the expected

return from putting effort in the partnership at time t; C represents the diminished value

of being in the partnership when the other player walks out; parameter b (which can be set

to 0) represents a potential benefit from cheating on a cooperating partner; and VE is the

present value of the players’ constant outside option. States of the world wt are drawn from

a distribution with density f and support R. We assume that E|wt| < ∞ and VE > 0.

As a benchmark, let us study subgame perfect equilibria under full information. When-

ever wt ≤ (1− β)VE + C, playing (E, E) is a possible equilibrium outcome. Similarly, there

exists a lowest value w of wt for which (S, S) can be an equilibrium play. This cooperation

threshold is associated with the greatest equilibrium continuation value V . The following

equations characterize V and w:

w + βV = b + VE(1)

V = E
[
(wt + βV )1wt>w

]
+ F (w)VE.(2)

Whenever wt belongs to [w, (1− β)VE + C], any symmetric pair of actions is an equilibrium

play and any pair of actions is rationalizable. In fact, within these bounds, any symmetric

pair of actions can be an outcome of a Markovian equilibrium, and hence, any action is

rationalizable by a Markovian strategy. When wt is greater than (1 − β)VE + C, staying is

the dominant action. When wt is smaller than w, exit is the dominant action.

Under full information, the criterion of Pareto efficiency would imply that players coor-
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dinate on using w as their threshold for cooperation, independently of C, which does not

enter equations (1) and (2). Is this prediction robust when players’ assessments of wt are

private? If not, what equilibria are robust to such a departure from common knowledge?

How do these robust equilibria move with respect to C? Section 3 develops tools to answer

such questions for a variety of games.

2.3 Assumptions

To exploit existing results on one-shot global games, we make a few assumptions which

essentially ensure that the assumptions of Carlsson and van Damme (1993) hold for the

family of one-shot stage games augmented with the players’ potential continuation values.

While it is possible to find weaker conditions under which the results of Section 3 will hold,

the assumptions given here have the advantage that they can be checked in a straightforward

way from primitives.

Assumption 1 (boundedness) Let mi and Mi respectively denote the min-max and max-

imum values of player i in the full information game Γ0. Both mi and Mi are finite.

This assumption is typically unrestrictive but is still important given that in many natural

examples, wt will have unbounded support. The min-max value mi will appear again in

Assumptions 4 and 5, while Mi will be used in Assumption 2.

In the partnership example of Section 2.2, we have mi = m−i = Emax{VE, wt−C+βVE}
and Mi = M−i = M where M satisfies M = Emax{wt + βM, b + VE}.

Assumption 2 (dominance) There exist w and w such that for all i ∈ {1, 2},

gi(w) + βMi −W i
21(w) < 0 and W i

12(w)−W i
22(w) < 0 (Exit dominant)

and W i
12(w)−W i

22(w) > 0 and gi(w) + βmi −W i
21(w) > 0 (Staying dominant).

Assumption 3 (increasing differences in the state of the world) For all i ∈ {1, 2},
gi(wt)−W i

21(wt) and W i
12(wt)−W i

22(wt) are strictly increasing over wt ∈ [w,w], with a slope
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greater than some real number r > 0.

Note that the assumption that W i
12 −W i

22 is strictly increasing in the state of the world

may rule out examples in which staying yields a constant zero payoff when the other player

exits.

Definition 1 For any functions Vi, V−i : R→ R, let G(Vi, V−i, wt) denote the full informa-

tion one-shot game

S E

S gi(wt) + βVi(wt) W i
12(wt)

E W i
21(wt) W i

22(wt)

where i is the row player. Let Ψσ(Vi, V−i) denote the corresponding one-shot global game in

which players observe signals xi,t = wt + σεi,t.

Assumption 4 (equilibrium symmetry) For all states of the world wt, G(mi,m−i, wt)

has a pure strategy Nash equilibrium and all pure equilibria belong to {(S, S), (E, E)}.

Recall that mi is player i’s min-max value in the game with full information Γ0. If Assumption

4 is satisfied, then for any function V = (Vi, V−i) taking values in [mi, +∞) × [m−i, +∞),

the game G(V, wt) also has a pure strategy equilibrium, and its pure equilibria also belong

to {(S, S), (E, E)}. Indeed, whether (E, E) is an equilibrium or not does not depend on

the value of (Vi, V−i), and if (S, S) is an equilibrium when V = (mi,m−i), then it is also an

equilibrium when the continuation values of player i and −i are respectively greater than mi

and m−i.

Note that when Assumptions 2 and 3 hold, Assumption 4 is equivalent to the condition

that for all i ∈ {1, 2}, at the state wi such that W i
12(wi)−W i

22(wi) = 0, we have gi(wi)+βmi−
W i

21(wi) > 0 and g−i(wi) + βm−i − W−i
21 (wi) > 0. Assumption 4 holds for the partnership

game since C > b.

Together, Assumptions 3 and 4 insure that at any state of the world w and for any pair

of individually rational continuation values V, either (S, S) or (E, E) is the risk-dominant

equilibrium of G(V, w), and that there is a unique risk-dominant threshold xRD(V) —
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(S, S) being risk-dominant above this threshold and (E, E) being risk-dominant below. In

conjunction with Assumption 2 this is in fact the unidimensional version of Carlsson and

van Damme’s assumption that states of the world should be connected to dominance regions

by a path that is entirely contained in the risk-dominance region of one of the equilibria.

Definition 2 For any function V : R→ R, and w ∈ R, define Ai(V,w) and Bi(w) by,

Ai(V, w) = gi(w) + βV (w)−W i
12(w) and Bi(w) = W i

21(w)−W i
22(w).

Assumption 5 (staying is good) For all players i ∈ {1, 2} and all states of the world

w ∈ [w, w], Ai(mi, w) ≥ 0 and Bi(w) ≥ 0.

Recall that [w,w] corresponds to states of the world where there need not be a dominant

action. Assumption 5 is restrictive but not unreasonable: it means that under full infor-

mation, at a state w ∈ [w,w] with no clearly dominant action, player i is weakly better off

whenever player −i stays, independently of her own action.

The partnership game of Section 2.2 satisfies this assumption since for all w ∈ R,

Ai(mi, w) = C + β(mi − VE) > 0 and Bi(w) = b ≥ 0.

2.4 Solution concepts

Because of exit, at any decision point, a history hi,t is characterized by a sequence of past

signals and past outcomes: hi,t ≡ {xi,1, . . . , xi,t ; wi,1, . . . , wi,t−1}. Let H denote the set of

all such sequences. A pure strategy is a mapping s : H 7→ {S, E}. Denote by Ω the set

of pure strategies. For any set of strategies S ⊂ Ω, let ∆(S) denote the set of probability

distributions over S that have a countable support. The two main solution concepts we will

be using are perfect Bayesian equilibrium and sequential rationalizability. To define these

concepts formally, it is convenient to denote by h0
i,t ≡ {xi,1, . . . , xi,t−1 ; wi,1, . . . , wi,t−1} the

histories before players receive period t’s signal but after actions of period t − 1 have been

taken. A strategy s−i of player −i, conditional on the history h0
−i,t having been observed, will

be denoted s−i|h0
−i,t

. A conditional strategy s−i|h0
−i,t

and player i’s conditional belief µ|h0
i,t

over
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h0
−i,t induce a mixed strategy denoted by (s−i|h0

−i,t
, µ|h0

i,t
). Player i’s sequential best-response

correspondence, denoted by BRi,σ, is defined as follows.

Definition 3 (sequential best-response) ∀ s−i ∈ Ω, si ∈ BRi,σ(s−i) if and only if:

(i) At any history h0
i,t that is attainable given s−i and si, the conditional strat-

egy si|h0
i,t

is a best-reply of player i to the mixed strategy (s−i|h0
−i,t

, µ|h0
i,t

), where

conditional beliefs µ|h0
i,t

over h0
−i,t are obtained by Bayesian updating;

(ii) At any history h0
i,t that is not attainable given s−i and si, si|h0

i,t
is a best-reply

of player i to a mixed strategy (s−i|h0
−i,t

, µ|h0
i,t

) for some (any) conditional beliefs

µ|h0
i,t

over h0
−i,t.

With this definition of sequential best-response, a strategy si of player i is associated

with a perfect Bayesian equilibrium of Γσ if and only if, si ∈ BRi,σ ◦BR−i,σ(si). Sequential

rationalizability is defined as follows.

Definition 4 (sequential rationalizability) A strategy si belongs to the set of sequen-

tially rationalizable strategies Ri of player i if and only if

si ∈
⋂

n∈N
(BR∆

i,σ ◦BR∆
−i,σ)n(Ω)

where BR∆
i,σ ≡ BRi,σ ◦∆.

Given strategies si, s−i and beliefs upon unattainable histories, let Vi(hi,t) denote the value

player i expects from playing the game at history hi,t. Pairs of value functions will be denoted

V ≡ (Vi, V−i).

3 Selection and local dominance solvability

The first class of results presented in this section aims at characterizing the extent to which

lack of common knowledge and the fear of miscoordination prevent players from achieving
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Pareto efficient levels of cooperation. It is shown that payoffs upon miscoordination influence

equilibrium selection, although in equilibrium, as σ goes to 0, miscoordination happens with

a vanishing probability. Theorem 2 characterizes the limit set of equilibrium values explicitly.

Section 4.1 applies these results to the partnership game introduced in Section 2.2 and derives

simple comparative statics that do not hold when focusing on Pareto efficient equilibria under

full information.

The second class of results given in this section explores how the dominance solvability

result of Carlsson and van Damme (1993) extends to dynamic games. Since dynamic global

games can admit multiple equilibria, it would seem that these results do not carry over.

However, Section 3.4 shows that the global games structure gives bite to the notion of local

dominance solvability, extensively discussed in Guesnerie (2002). Theorem 3 shows that for

the class of exit games defined in Section 2, local dominance solvability, which is a high

dimensional property of sets of strategies, is asymptotically characterized by the stability of

the fixed points of an easily computable, increasing mapping from R to R. This will allow

us to discuss the issue of robustness of equilibria to strategic uncertainty.

3.1 General methodology

A useful methodological insight of this paper is to recognize that tools from equilibrium

selection in one-shot global games can be exploited to study the impact of a global games

information structure in dynamic games. Using the dynamic programming approach to

dynamic games developed in Abreu, Pearce, and Stacchetti (1990), actions prescribed by a

perfect Bayesian equilibrium of a dynamic game must be outcomes of a Nash equilibrium

in the Bayesian one-shot game that incorporates the players’ continuation values. The idea

is to apply global games selection results to a family of such augmented games in order to

characterize the equilibrium continuation values of the dynamic game.

The main difficulty is that the selection results of Carlsson and van Damme (1993)

only hold pointwise – they take the payoff structure as given – while selection results will
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need to hold uniformly4 to apply dynamic programming techniques. For this reason, the

present paper draws on results from Chassang (2006) which show that selection does happen

uniformly over equicontinuous5 families of two-by-two games satisfying the assumptions of

Carlsson and van Damme (1993). Mostly, we will use the following implication of Theorems

2, 3 and 4 of Chassang (2006).

Lemma 1 (uniform selection) For any compact subset V ⊂ R2, consider the family of

one-shot global games Ψσ(V) indexed by V ∈ V. If for all V ∈ V the full information

one-shot game G(V, w) has pure equilibria which are all symmetric and admits dominance

regions with respect to w, then under Assumptions 2 and 3

(i) There exists σ such that for all σ ∈ (0, σ), all one-shot global games Ψσ(V),

indexed by values V ∈ V, have a unique rationalizable equilibrium;

(ii) This equilibrium takes a threshold form6 with thresholds denoted by x∗σ(V) ∈
R2. The mapping x∗σ(·) is continuous over V;

(iii) As σ goes to 0, each component of x∗σ(V) converges uniformly over V ∈ V
to the risk-dominance threshold of Ψ0(V), denoted by xRD(V).

The analysis will proceed as follows. Section 3.2 shows that for an appropriate order over

strategies, the game Γσ exhibits a restricted form of monotone best response which suffices

to show that the set of sequentially rationalizable strategies is bounded by extreme Marko-

vian equilibria. Section 3.3 characterizes the continuation values of Markovian equilibria by

iteratively applying selection results on one-shot global games to families of augmented stage

games. Section 3.4 shows how the dominance solvability of one-shot global games can be

used to characterize the local dominance solvability of equilibria of the dynamic game Γσ.

4The reason for this will become clear in Section 3.3.
5More precisely, families of games whose associated family of payoff functions is equicontinuous.
6A strategy si in game Ψσ(V) takes a threshold form if and only if there exists x ∈ R such that almost

surely, si(xi) = S if and only if xi ≥ x.
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3.2 Monotone best response and rationalizability

This section exploits assumptions of Section 2.3 and the exit game structure to prove sim-

plifying structural properties on Γσ. In particular, it shows that for σ small enough, the set

of rationalizable strategies of Γσ is bounded by extreme Markovian equilibria.

Definition 5 (Markovian strategies) A strategy si is said to be Markovian if si(hi,t) de-

pends only on player i’s current signal, xi,t.

A Markovian strategy si is said to take a threshold form if there exists a constant value

x such that for almost all xi,t ≥ x, si prescribes player i to stay, and for almost all xi,t < x,

si prescribes player i to exit. The threshold of a threshold form strategy s will be denoted xs

and a strategy of threshold x will be denoted sx.

Definition 6 We define a partial order ¹ on pure strategies by

s′ ¹ s ⇐⇒ {a.s. ∀h ∈ H, s′(h) = Stay ⇒ s(h) = Stay} .

In other words, a strategy s is greater than s′ with respect to ¹ if and only if players stay

more under strategy s. Consider a strategy s−i of player −i and a history hi,t observed by

player i. From the perspective of player i, the one period action profile of player −i is a

mapping from player −i’s current signal to lotteries over {stay, exit}, which we denote by

a−i|hi,t
: R → ∆{stay, exit}. The order ¹ on dynamic strategies extends to one-shot action

profiles as follows:

a′ ¹ a ⇐⇒ {a.s. ∀x ∈ R, P rob[a′(x) = Stay] ≤ Prob[a(x) = Stay]} .

Note that if s−i is Markovian, then a−i|hi,t
is effectively a mapping from R to {stay, exit}.

For any mapping Vi that maps player i’s current signal, xi,t ∈ R, to a continuation value

Vi(xi,t), and any mapping a−i : R→ ∆{stay, exit}, one can define BRi,σ(a−i, Vi), as the one

period best response correspondence of player i when she expects a continuation value Vi and

player −i uses an action profile a−i. Given a continuation value function Vi, the expected
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payoffs upon staying and exit – respectively denoted by Πi
S(Vi) and Πi

E – are

Πi
S(Vi) = E

[
W i

12(w) + {gi(w) + βVi(hi,t, w)−W i
12(w)}1s−i=S|hi,t, s−i

]
(3)

Πi
E = E

[
W i

22(w) + {W i
21(w)−W i

22(w)}1s−i=S|hi,t, s−i

]
.(4)

Lemma 2 For any one-shot action profile a−i and value function Vi, the one-shot best-

response correspondence BRi,σ(a−i, Vi) admits a lowest and a highest element with respect to

¹. These highest and lowest elements are respectively denoted BRH
i,σ(a−i, Vi) and BRL

i,σ(a−i, Vi).

Proof: An action profile ai belongs to the set of one-shot best-replies BRi,σ(a−i, Vi) if and

only if ai prescribes S when Πi
S(Vi) > Πi

E and prescribes E when Πi
S(Vi) < Πi

E. Because ties

are possible BRi,σ(a−i, Vi) need not be a singleton. However, by breaking the ties consistently

in favor of either S or E, one can construct strategies aH
i and aL

i that are respectively the

greatest and smallest elements of BRi,σ(a−i, Vi) with respect to ¹. ¥

Lemma 3 There exists σ > 0 and ν > 0 such that for all constant functions Vi taking value

in [mi−ν, Mi +ν], and all σ ∈ (0, σ), BRH
i,σ(a−i, Vi) and BRL

i,σ(a−i, Vi) are increasing in a−i

with respect to ¹.

The proof of this result exploits the fact that Assumption 4 implies a family of single-

crossing conditions already identified in Milgrom and Shannon (1994). Note that the results

of Athey (2002) do not apply directly since the conditions on distributions they require are

only satisfied at the limit where σ is equal to 0.

Lemma 4 Consider continuation value functions V and V ′ such that for all hi,t ∈ H,

V (hi,t) ≤ V ′(hi,t). Then, for any a−i,

BRH
i,σ(a−i, V ) ¹ BRH

i,σ(a−i, V
′) and BRL

i,σ(a−i, V ) ¹ BRL
i,σ(a−i, V

′).

Proof: The result is proven for the greatest one-shot best-reply BRH
i,σ. Player i chooses S

over E whenever Πi
S(Vi) ≥ Πi

E. As equation (3) shows, Πi
S(Vi) is increasing in Vi, while Πi

E
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does not depend on Vi. This yields that BRH
i,σ(a−i, V ) ¹ BRH

i,σ(a−i, V
′). The same proof

applies for the lowest one-shot best-reply. ¥

Lemma 5 Whenever s−i is a Markovian strategy, BRi,σ(s−i) admits a lowest and a highest

element with respect to ¹. These strategies are Markovian and are respectively denoted

BRL
i,σ(s−i) and BRH

i,σ(s−i).

Proof: Let V be the value player i obtains from best replying to s−i. Since s−i is Markovian,

at any history h0
−i,t the conditional strategy s−i|h0

−i,t
is identical to s−i, and the value player

i expects conditional on h0
i,t is always V . Hence, si ∈ BRi,σ(s−i) if and only if action profiles

prescribed by si at a history h0
i,t belong to BRi,σ(s−i, V ), where s−i is identified with its

one-shot action profile. Since BRi,σ(s−i, V ) admits highest and lowest elements aH
i and aL

i ,

the Markovian strategies sH
i and sL

i respectively associated with the one-shot profiles aH
i and

aL
i are the greatest and a smallest elements of BRi,σ(s−i) with respect to ¹. ¥

We now show that game Γσ exhibits monotone best response as long as there is a Marko-

vian strategy on one side of the inequality.

Proposition 1 (restricted monotone best response) There exists σ such that for all

σ ∈ (0, σ), whenever s−i is a Markovian strategy, then, for all strategies s′−i,

s′−i ¹ s−i ⇒
{∀s′′ ∈ BRi,σ(s′−i), s′′ ¹ BRH

i,σ(s−i)
}

and s−i ¹ s′−i ⇒
{∀s′′ ∈ BRi,σ(s′−i), BRL

i,σ(s−i) ¹ s′′
}

.

Proof: Let us show the first implication. Consider s−i a Markovian strategy and s′−i such

that s′−i ¹ s−i. Define Vi and V ′
i the continuation value functions respectively associated to

player i’s best response to s−i and s′−i. Note that since s−i is Markovian, Vi is a constant

function. Assumption 5, that “staying is good”, implies that at all histories hi,t, V ′
i (hi,t) ≤

Vi(hi,t). From Lemma 4, we have that

(5) BRH
i,σ(a′−i, V

′
i (hi,t)) ¹ BRH

i,σ(a′−i, Vi(hi,t)).
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Since Vi(hi,t) is constant we want to apply Lemma 3. For this, let us show that a′−i|hi,t
¹

a−i|hi,t
. This follows directly from s−i being Markovian, and the fact that s′−i ¹ s−i. Indeed,

whenever Prob{a′−i|hi,t
= stay} > 0, we must have Prob{a−i|hi,t

= stay} = 1. Applying

Lemma 3 yields that

(6) BRH
i,σ(a′−i, Vi(hi,t)) ¹ BRH

i,σ(a−i, Vi(hi,t)).

Combining equations (5) and (6) we obtain that indeed, for all s′′ ∈ BRi,σ(s′−i), s′′ ¹
BRH

i,σ(s−i). An identical proof holds for the other inequality. ¥
Proposition 1 will allow us to prove the existence of extreme threshold-form equilibria.

For this we will use the following lemma which shows that for σ small enough, the best

response to a threshold-form strategy is unique and takes a threshold form.

Lemma 6 There exists σ > 0 such that for all σ ∈ (0, σ) and any x ∈ R, there exists x′ ∈ R
such that BRi,σ(sx) = {sx′}, i.e. the best response to a threshold form Markovian strategy is

a unique threshold form Markovian strategy. Moreover, x′ is continuous in x.

Theorem 1 (extreme strategies) There exists σ > 0 such that for all σ < σ, sequentially

rationalizable strategies of Γσ are bounded by a highest and lowest Markovian Nash equilibria,

respectively denoted by sH
σ = (sH

i,σ, s
H
−i,σ) and sL

σ = (sL
i,σ, s

L
−i,σ).

Those equilibria take threshold forms : for all i ∈ {1, 2} and j ∈ {H,L}, there exists xj
i,σ

such that sj
i,σ prescribes player i to stay if and only if xi,t ≥ xj

i,σ.

Indeed, although Γσ is not supermodular, Proposition 1 is sufficient for the construction of

Milgrom and Roberts (1990) to hold. The first step is to note that the strategies corre-

sponding to staying always, and exiting always are threshold form Markovian strategies that

bound the set of possible strategies. The idea is then to apply the best response mappings

iteratively to these extreme strategies. A formal proof is given in Appendix A.

Let us denote by xH
σ and xL

σ the pairs of thresholds respectively associated with the

highest and lowest equilibria with respect to ¹. Note that sL
σ ¹ sH

σ , but xL
σ ≥ xH

σ . Let VH
σ

and VL
σ be the value pairs respectively associated with sH

σ and sL
σ .
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Lemma 7 sH
σ and sL

σ are respectively associated with the highest and lowest possible pairs of

rationalizable value functions, VH
σ and VL

σ . More precisely, if s−i is a rationalizable strategy,

the value function Vi,σ associated with player i’s best reply to s−i is such that at all histories

hi,t, V L
i,σ ≤ Vi,σ(hi,t) ≤ V H

i,σ.

Proposition 1 and Theorem 1 are the main benefits of using an exit game structure. They

also provide a first justification for why we are specifically interested in Markovian equilibria:

they provide tight bounds for rationalizable behavior. This focus will be further justified in

Section 3.4.

3.3 Dynamic selection

We can now state the first selection result of the paper. It shows that continuation values

associated with Markovian equilibria of Γσ must be fixed points of a mapping φσ(·) that

converges uniformly to an easily computable mapping Φ from R2 to R2. This provides explicit

bounds for the set of rationalizable value functions and shows that the set of Markovian

equilibria – which is a continuum under full information – typically shrinks to a finite number

of elements under a global games information structure.

Theorem 2 Under Assumptions 1, 2, 3, 4 and 5 there exists σ > 0 such that for all σ ∈
(0, σ), there exists a continuous mapping φσ(·) : R2 → R2, mapping value pairs to value pairs

such that,

(i) VL
σ and VH

σ are the lowest and highest fixed points of φσ(·);

(ii) A vector of continuation values is supported by a Markovian equilibrium if

and only if it is a fixed point of φσ(·);

(iii) As σ goes to 0, the family of functions φσ(·) converges uniformly over any

compact set of R2 to an increasing mapping Φ : R2 7→ R2 defined by

(7) Φ(Vi, V−i) =


 Ew

[
(gi + βVi)1w>xRD(Vi,V−i) + W i

22(w)1w<xRD(Vi,V−i)

]

Ew

[
(g−i + βV−i)1w>xRD(Vi,V−i) + W−i

22 (w)1w<xRD(Vi,V−i)

]




17



where xRD (Vi, V−i) is the risk-dominant threshold of the one-shot game Ψ0 (Vi, V−i).

Proof: For any fixed σ, any Markovian equilibrium of Γσ is associated with a vector of

constant continuation values Vσ = (Vi,σ, V−i,σ). By continuity of the min-max values, for

any ν > 0, there exists σ > 0, such that for all σ ∈ (0, σ), Vi,σ ∈ [mi − ν,Mi]. Stationarity

implies that equilibrium actions at any time t must form a Nash equilibrium of the one-shot

game

S E

S gi(wt) + βVi,σ W i
12(wt)

E W i
21(wt) W i

22(wt)

where i is the row player and players get signals xi,t = wt + σεi,t. All such one-shot games

Ψσ(V), indexed by V ∈ [mi−ν, Mi]× [m−i−ν, M−i] and σ > 0 have a global game structure

à la Carlsson and van Damme (1993).

Assumption 4 implies that there exists ν > 0 such that for all V ∈ [mi− ν, Mi]× [m−i−
ν, M−i] and all w ∈ I, the one-shot game G(V, w) admits pure equilibria and they are all

symmetric. Hence, Lemma 1 (uniform selection) implies that the following are true

1. There exists σ such that for all σ ∈ (0, σ) and V ∈ [mi − ν, Mi] × [m−i − ν, M−i],

the game Ψσ(V) has a unique pair of rationalizable strategy. These strategies take a

threshold-form and the associated pair of thresholds is denoted by x∗σ(V);

2. The pair of thresholds x∗σ(V) is continuous in V;

3. As σ goes to 0, x∗σ(V) converges to the risk dominant threshold xRD(V) uniformly

over V ∈ [mi − ν, Mi]× [m−i − ν, M−i].

The first result, joint selection, implies that there is a unique expected vector of values from

playing game Ψσ(V), which we denote φσ(V). The other two results imply that φσ(V) is

continuous in V, and that as σ goes to 0, φσ(V) converges uniformly over V ∈ ×i∈{1,2}[mi−
ν, Mi] to the vector of values Φ(V) players expect from using the risk-dominant strategy

under full information.
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Stationarity implies that the value vector V of any Markovian equilibrium of Γσ must

satisfy the fixed point equation V = φσ(V). Reciprocally, any vector of values V satisfying

V = φσ(V) is supported by the Markovian equilibrium in which players play the unique

equilibrium of game Ψσ(V) each period. This gives us (ii).

Furthermore, we know that the equilibrium strategies of game Ψσ(V) converge to the

risk-dominant strategy as σ goes to 0. This allows us to compute explicitly the limit function

Φ. Because the risk-dominance threshold is decreasing in the continuation value, and using

Assumption 5, it follows that Φ is increasing in V. This proves (iii).

Finally, (i) is a straightforward implication of (ii). Values associated with Markovian

equilibria of Γσ are the fixed points of φσ(·). Hence the highest and lowest values associated

with Markovian equilibria are also the highest and lowest fixed points of φσ(·). ¥
Theorem 2 states that extreme equilibria of games Γσ are characterized by the extreme

fixed points of an operator φσ(·) that converges uniformly to an explicit operator Φ as σ goes

to 0. To show that the mapping Φ gives us a precise description of Markovian equilibria of

Γσ however, we must show that the uniform convergence of the mapping φσ(·) implies the

convergence of its fixed points. This corresponds to the upper- and lower-hemicontinuity of

fixed points of φσ.

The first important property we consider is upper-hemicontinuity. The next lemma states

that fixed points of φσ(·) converge to a subset of fixed points of Φ as σ goes to 0. In that sense,

considering fixed points of Φ is sufficient: we do not need to worry about other equilibria.

Lemma 8 (upper-hemicontinuity) The set of fixed points of φσ(·) is upper-hemicontinuous

at σ = 0. That is, for any sequence of positive numbers {σn}n∈N converging to 0, whenever

{Vn}n∈N = {(Vi,σn , V−i,σn)}n∈N is a converging sequence of fixed points of φσn(·), the sequence

{Vn}n∈N converges to a fixed point V of Φ.

Theorem 2 and Lemma 8 imply that whenever Φ has a unique fixed point, the set of

rationalizable strategies of game Γσ converges to a single pair of strategies as σ goes to

0. Section 4.2 will exploit that property to define a robustness criterion for cooperation in

games with approximately constant payoffs.
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As another illustration, Lemma 9 shows that conditional on continuation values belong-

ing to some bounded set, whenever the states of the world have sufficient variance, then,

equilibrium is unique. Let || · ||1 denote the norm on R2 defined by ||V||1 = |Vi|+ |V−i|.

Lemma 9 (uniqueness) Let K be a bounded interval of R. Under the maintained con-

straint that individually rational values Vi belong to K, there exists a constant η > 0, that

depends only on payoff functions, such that whenever the distribution of states of the world f

satisfies max[w,w] f < η, then Φ is a contraction mapping with rate δ < 1 with respect to the

norm on vectors ||·||1. That is, for all Vi taking values in K, ||Φ(V)−Φ(V′)||1 ≤ δ||V−V′||1.

The question is now what happens when Φ has multiple fixed points (see Section 4.1 for

examples)? Does the game Γσ have multiple equilibria? This is not a trivial question. If

all fixed points of Φ are indeed associated to equilibria of Γσ for σ small, this shows that

while a global games information structure may yield uniqueness in static settings, this does

not hold anymore when players have an infinite horizon. This question is closely related to

the problem of lower-hemicontinuity: when is it that a fixed point of Φ is associated with a

sequence of fixed points of φσ(·) as σ goes to 0? This is the point of Proposition 2.

So far we have been characterizing Markovian equilibria by their continuation values. For

the remainder of this section, it becomes convenient to characterize Markovian equilibria by

their cooperation threshold. This is authorized by the following lemma.

Lemma 10 (threshold-form Markovian equilibria) There exists σ > 0 such that for

all σ ∈ (0, σ), all Markovian equilibria of Γσ take a threshold form.

Furthermore, if (xi,σ, x−i,σ) is a pair of equilibrium thresholds, then |xi,σ − x−i,σ| ≤ 2σ.

Proof: Consider a Markovian equilibrium of Γσ denoted by (si, s−i). This Markovian

equilibrium is associated to a pair of values (Vi, V−i). The one-shot action profile (ai, a−i)

associated with (si, s−i) has to be a Nash equilibrium of the global game Ψσ(Vi, V−i). Lemma

1 implies that there exists σ > 0 such that for all σ ∈ (0, σ), and all V ∈ [mi,Mi]×[m−i,M−i],

the game Ψσ(V) has a unique Nash equilibrium. Furthermore, this unique equilibrium takes

a threshold form. This proves the first part of the lemma: for σ small enough, all Markovian
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equilibria of Γσ take a threshold form. The second part of the lemma is a direct application

of Lemma 4 of Chassang (2006). ¥
Note that the second part of this lemma shows that as σ goes to 0, Markovian equilibria

of Γσ are asymptotically symmetric, so that the likelihood of actual miscoordination van-

ishes. This illustrates that the ghost of miscoordination, rather than miscoordination itself

is enough to drive players away from efficient behavior.

Definition 7 For all σ ≥ 0, let BRVi,σ(x) denote the value that player i gets in game Γσ

from best replying to a player −i using a threshold form strategy sx.

For σ small enough for Lemma 10 to hold, denote by x∗σ(V) the unique rationalizable

pair of strategies of game Ψσ(V). Note that x∗σ(V) belongs to R2, while the risk-dominant

threshold xRD(V) of game Ψ0(V) belongs to R.

For any pair of thresholds x ∈ R2, define ξσ(x) ≡ x∗σ(BRVi,σ(x−i), BRV−i,σ(xi)) and

ξ(x) ≡ xRD(BRVi,0(x−i), BRV−i,0(xi)). When x ∈ R, ξ(x) will be used to denote ξ(x, x).

Lemma 11 (properties of ξσ) There exists σ > 0 such that for all σ ∈ (0, σ), ξσ is a well

defined, continuous mapping from R2 to R2. Furthermore, the following properties hold:

(i) A pair of strategies (si, s−i) is a Markovian equilibrium of Γσ if and only if

it takes a threshold form and the associated pair of thresholds, x = (xi, x−i),

satisfies x = ξσ(x);

(ii) As σ goes to 0, ξσ(x) converges uniformly over x ∈ R2 to the symmetric pair

(ξ(x), ξ(x));

(iii) The mapping ξ : {R→ R, x 7→ ξ(x)} is weakly increasing.

Note that point (i) of Lemma 11 implies that there is a bijection between fixed points of

ξσ(·) and fixed points of φσ(·).

Definition 8 (non-singular fixed points) A fixed point x of ξ is non-singular if and only
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if there exists ε > 0 such that either

∀y ∈ [x− ε, x), ξ(y) < y and ∀y ∈ (x, x + ε], ξ(y) > y

or ∀y ∈ [x− ε, x), ξ(y) > y and ∀y ∈ (x, x + ε], ξ(y) < y.

In other terms x is non-singular whenever ξ cuts strictly through the 45o line at x.

Proposition 2 (lower hemicontinuity) Whenever x is a non-singular fixed point of ξ,

then, for any sequence of positive numbers {σn}n∈N converging to 0, there exists a sequence

of fixed points of ξσn, {xn}n∈N = {(xi,σn , x−i,σn)}n∈N, converging to (x, x) as n goes to infinity.

This shows that all non-singular fixed point of ξ are the limit of threshold-form equilibria

of the game Γσ as σ goes to 0. This shows that all equilibria (sx, sx) of Γ0, with x a non-

singular fixed point of ξ, are robust to miscoordination risk. Theorem 3 will enrich this result

by showing that robustness to miscoordination risk implies robustness to strategic risk only

if x is a stable non-singular fixed point of ξ. The next lemma shows that for an appropriate

distance on payoff structures, fixed points of ξ are generically non-singular.

Definition 9 (topology on C1 payoff structures) A C1 payoff structure π is a 9-tuple

of C1 functions π = ×i∈{1,2}(gi,W i
12,W

i
21,W

i
22)×F , that satisfies the assumptions of Section

2.3. Let Π1 denote the set of C1 payoff structures. The distance || · ||Π1 over payoff structures

is defined as,

||π − π̃||Π1 =
∑

l∈{1,...,9}
||πl − π̃l||∞ +

∣∣∣∣
∣∣∣∣
∂πl

∂w
− ∂π̃l

∂w

∣∣∣∣
∣∣∣∣
∞

where || · ||∞ denotes the supremum norm.

Lemma 12 (generic non-singularity) There exists a subset P of Π1 that is open and

dense in Π1 with respect to || · ||Π1 and such that whenever π ∈ P , the fixed points of ξ are

all non-singular.

Proposition 2 and Lemma 12 imply that typically, all fixed points of Φ are indeed as-

sociated with Markovian equilibria of Γσ as σ goes to 0. This shows that a global games
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information structure need not always yield full-fledged selection7. In that sense coordination

in dynamic games is qualitatively different from coordination in one-shot games.

Although dominance solvability is clearly an attractive feature of one-shot global games,

the possibility of multiplicity should not be considered a negative result in this context.

As the example of Section 4.4 shows, trigger equilibria in a fully repeated global game are

also equilibria of a related exit game in which payoffs upon exit are those obtained from

reverting to the one-shot Nash equilibrium. In that setting, one can show that the one-shot

Nash equilibrium is always an equilibrium of this exit game. If dynamic global games with

exit were always dominance solvable, this would imply that the one-shot Nash is the only

equilibrium in trigger strategies that is robust to private noisy assessments of the state of

the world. From that perspective, the fact that a global games information structure does

not always imply dominance solvability is reassuring.

Furthermore, Section 3.4 shows that the dominance solvability of one shot global games

does survive in dynamic exit games, albeit in a weaker form. While equilibria may not be

globally uniquely rationalizable, it is shown that the global games information structure can

make them locally uniquely rationalizable.

3.4 Local dominance solvability, stability, and strategic uncer-

tainty.

Local dominance solvability, discussed at length by Guesnerie (2002) in a macroeconomic

context, can be viewed as an intermediary notion between Nash equilibrium and dominance

solvability. For any two-player game, consider a set of strategies Z of player i and a strategy

s ∈ Z. The game is said to be locally dominance solvable at s with respect to Z whenever

the sequence8 {(BR∆
i ◦ BR∆

−i)
n(Z)}n∈N converges to {s} as n goes to infinity. In this case,

we say that s is locally strongly rationalizable with respect to Z. Equivalently, the game

is said to be locally dominance solvable at s with respect to Z if and only if s is the only

7See Section 4.1 for examples.
8Recall that BR∆

i = BRi ◦∆.
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rationalizable outcome when it is common knowledge among players that player i uses a

strategy that belongs to Z. From this perspective, s is a strict Nash equilibrium if and only

if it is locally strongly rationalizable with respect to itself, and s is the unique rationalizable

strategy of player i if and only if it is locally strongly rationalizable with respect to the set

of all possible strategies.

The purpose of local dominance solvability is to be a middle ground between Nash equi-

librium, which may not be demanding enough, and dominance solvability, which may be too

demanding. The approach of Guesnerie (2002) is to introduce a topology on strategies and

then define a strategy s as locally strongly rationalizable – without reference to any set –

whenever there exists a neighborhood N of s such that s is locally strongly rationalizable

with respect to N . This effectively defines a stability criterion with respect to iterated best

response. The object of this section is to characterize both the stability of Markovian equi-

libria of Γσ, and the size of their basin of attraction. We must first define a topology on

strategies.

Definition 10 (balls in the “noise” topology) Consider two histories ht and h′t. These

are vectors of real numbers of length 2t − 1. Hence, we can define the distance d(ht, h
′
t) =

||ht − h′t||∞ and the Lebesgue measure λ over histories of length t. For any strategy s and

any δ > 0, the ball Bδ(s) of center s and radius δ is defined as

Bδ(s) ≡ {s′ | a.s. ∀ht ∈ H, λ({h′t | d(h′t, ht) < δ and s(h′t) = s′(ht)}) > 0}.

A neighborhood N of a strategy s is a set that contains a ball of center s and radius δ > 0.

Note that the choice of topology is not innocuous. Depending on the topology, the same

equilibrium may be locally strongly rationalizable or not. In the topology defined above, a

ball Bδ(si) corresponds to the set of strategies an uninformed observer might deem possible

when observing perfectly the moves of player i but observing a version of player i’s signal that

is garbled by a noise term of maximum amplitude δ. Alternatively, one can view a ball Bδ(si)

as the set of strategies deemed possible by a player getting a description of si that potentially
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misclassifies histories that differ by less than δ. In this sense, this topology is appropriate

to discuss strategic uncertainty9. A strategy s will be locally strongly rationalizable with

respect to balls in this topology whenever it is robust to small amounts of doubt regarding

the players’ common understanding of s.

Under full information, exit games admit no locally strongly rationalizable strategies

because given any equilibrium, it is always possible to find another equilibrium that is

arbitrarily close. The rest of this section shows that as σ goes to 0, the dominance solvability

result of Carlsson and van Damme (1993) for one-shot two-by-two games translates into

local dominance solvability for exit games. Furthermore, it is shown that as σ goes to 0, the

local strong rationalizability of Markovian equilibria of Γσ – which is a stability property

in the space of strategies – is asymptotically characterized by the stability of the increasing

mapping ξ : R→ R introduced in Definition 7. Let us first define asymptotic local dominance

solvability formally.

Definition 11 (Asymptotic Local Dominance Solvability) Consider a pair of strate-

gies (si, s−i). We say that the family of games {Γσ}σ>0 is asymptotically locally dominance

solvable (ALDS) at (si, s−i) if there exist neighborhoods of si and s−i, denoted Ni and N−i

such that ∀i ∈ {1, 2},

lim
σ→0

lim
n→∞

(BR∆
i,σ ◦BR∆

−i,σ)n(Ni) = {si}(8)

and lim
σ→0

lim
n→∞

BR∆
−i,σ ◦ (BR∆

i,σ ◦BR∆
−i,σ)n(Ni) = {s−i}(9)

The basin of attraction of (si, s−i) is the greatest neighborhood Ni ×N−i of (si, s−i) such

that equations (8) and (9) hold.

The central result of this section is that the asymptotic local dominance solvability and

the basin of attraction of Markovian threshold form equilibria are largely characterized by

the stability and basins of attraction of fixed points of the mapping ξ : R 7→ R.

9In fact the size of the balls Bδ(s) for δ > 0 is a good measure of the strategic uncertainty inherent to a
strategy s. For instance, if s = sx then Bδ(s) = [sx+δ, sx−δ], while if s is defined by s(w) = Stay if and only
if int[w/δ] is an even number, then, Bδ(s) is the set of all possible strategies.
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Proposition 3 is the key step to characterize local dominance solvability. It shows that

whenever x is a stable fixed point of ξ, then for σ small enough, the first step of iterated

best-response shrinks neighborhoods of sx. Using the partial monotone best-response result

of Proposition 1 this will allow us to prove asymptotic local dominance solvability.

Proposition 3 Consider a stable fixed point x of ξ and y in the basin of attraction of x. If

y < x, then there exists x′ ≤ y and σ > 0 such that x′ belongs to the basin of attraction of x

and, for all σ ∈ (0, σ) and i ∈ {1, 2}, we have10 BRi,σ ◦BR−i,σ(sx′) ¹ sx′.

Similarly, if y > x, there exists x′′ ≥ y and σ such that x′′ belongs to the basin of

attraction of x and for all σ ∈ (0, σ) and i ∈ {1, 2}, sx′′ ¹ BRi,σ ◦BR−i,σ(sx′′).

Proposition 3 is a key step to understand the impact of a global games information structure

on local dominance solvability, which is why a proof in the case of symmetric games is given

here. It is instructive of how dominance solvability results for one-shot global games can be

exploited in dynamic games. The proof in the case of asymmetric games is more delicate

but follows the same intuition. It is given in Appendix A.

Proof (symmetric games): This proof applies to the case where players have the same

payoff functions. This implies that BRi,σ = BR−i,σ = BRσ. Let us show the first part of

the lemma.

Pick σ small enough such that Proposition 1 applies. Then, for all σ ∈ (0, σ), it is

sufficient to prove that there exists x′ ≤ y such that BRσ(sx′) ¹ sx′ . Let BRσ(a, V ) denote

the one-shot best response of a player expecting a continuation value V and facing a one-shot

action profile a. Pick any11 x′ ≤ y that belongs to the basin of attraction of x. It must be

that ξ(x′) > x′. Using the fact that for Markovian strategies, one-shot action profiles are

equivalent to full-fledged strategies, we can write, BRσ(sx′) = BRσ (sx′ , BRVσ(x′)).

The idea is to use this formulation to apply dominance solvability results from one-shot

global games. From Lemma 1, we know that for σ small enough, all games Ψσ(V), with

σ ∈ (0, σ) and V ∈ [mi − ν, Mi]× [m−i − ν, M−i], are dominance solvable. This and Lemma

10Recall that if a and b are thresholds such that a > b then the corresponding strategies satisfy sa ¹ sb.
11In the case of asymmetric payoffs the choice of an appropriate x′ becomes relevant, which is why the

proposition allows for this extra degree of freedom.
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3 implies that when n goes to infinity, the sequence {(BRσ(·, BRVσ(x′)))n(sx′)}n∈N con-

verges monotonously to the unique rationalizable equilibrium of the one-shot global game12

Ψσ(BRVσ(x′)). This equilibrium is associated to the threshold x∗σ(BRVσ(x′)) = ξσ(x′). We

know that ξσ converges uniformly to ξ and that ξ(x′) > x′. This implies that for σ small

enough, ξσ(x′) > x′. This implies that the sequence {(BRσ(·, BRVσ(x′)))n(sx′)}n∈N is de-

creasing with respect to ¹. Hence, we must have BRσ(sx′) ¹ sx′ . This proves the first part

of the lemma. The second part results from an entirely symmetric reasoning. ¥
We can now prove the main result of this section. It states that asymptotically, basins of

attraction of Markovian strategies are largely characterized by the basins of attraction of ξ.

Theorem 3 (Asymptotic Local Dominance Solvability) Consider any symmetric pair

of threshold form strategies (sx, sx). Whenever x is a stable fixed point of ξ, then the family

{Γσ}σ>0 is ALDS at (sx, sx).

More strongly, if an interval [y, z] is included in the basin of attraction of x with respect

to ξ, and x ∈ (y, z), then, [sz, sy]
2 is included in the basin of attraction of (sx, sx) with respect

to asymptotic local dominance.

Proof: The second part of the theorem implies the first one. We prove the second part

directly. Using Proposition 3, we know there exist σ, x− ≤ y and x+ ≥ z, with [x−, x+]

included in the basin of attraction of x, such that for all σ ∈ (0, σ), and i ∈ {1, 2},

BRi,σ ◦BR−i,σ(sx−) ¹ sx− and sx+ ¹ BRi,σ ◦BR−i,σ(sx+).

These inequalities and Proposition 1 imply by iteration that for all n ∈ N,

(
BR∆

i,σ ◦BR∆
−i,σ

)n
([sx+ , sx− ]) ⊂ [(BRi,σ ◦BR−i,σ)n (sx+), (BRi,σ ◦BR−i,σ)n (sx−)]

⊂ [(BRi,σ ◦BR−i,σ)n−1 (sx+), (BRi,σ ◦BR−i,σ)n−1 (sx−)]

⊂ · · · ⊂ [sx+ , sx− ]

12Given that we are considering symmetric games, the arguments of many previously defined functions
become redundant. Such redundant arguments are dropped in all relevant cases.
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Consider the decreasing sequence {(BRi,σ ◦BR−i,σ)n (sx−)}n∈N. As n goes to∞, it must con-

verge to a threshold form strategy with threshold x−i,σ ∈ [x−, x+]. Moreover (sx−i,σ
, BR−i,σ(sx−i,σ

))

must be a Markovian threshold form equilibrium of Γσ. Lemma 8 implies that as σ goes to

0, any converging subsequence of {(x−i,σ, x−−i,σ)}σ>0 must converge to a symmetric pair (x̃, x̃)

such that x̃ is a fixed point of ξ and x̃ ∈ [x−, x+]. The only fixed point of ξ in [x−, x+] is

x. This implies that as σ goes to 0, x−i,σ must converge to x. Similarly, as n goes to ∞,

the sequence (BRi,σ ◦BR−i,σ)n (sx+) converges to a threshold strategy with a threshold x+
i,σ

that converges to x as σ goes to 0. This concludes the proof. ¥
The value of this result lies in the fact that the stability of strategies with respect to a

complex iterated best response mapping is characterized by the stability of fixed points of a

simple13 mapping ξ from R to R.

It is also interesting to note that the closure of basins of attraction of an increasing

mapping is a partition of R. In other words, any value x ∈ R is either a fixed point of ξ,

or belongs to the basin of attraction of a fixed point of ξ. This implies that if a Markovian

equilibrium is associated to a threshold x that is an unstable fixed point of ξ, then sx is

asymptotically unstable with respect to iterated best response. As σ goes to 0, arbitrarily

small amounts of pessimism or optimism will push players’ behavior away from sx. Hence, a

Markovian equilibrium associated to a fixed point x of ξ will be robust to strategic uncertainty

if and only if x is a stable fixed point of ξ. The basin of attraction of x with respect to ξ

measures the amount of strategic uncertainty that can be introduced before the players’

behavior is perturbed away.

Finally, this result restricts possible non-Markovian strategies: asymptotically, there can

be no non-Markovian equilibrium that is strictly contained within two consecutive Markovian

equilibria with respect to ¹.

13Computations can be further simplified by considering the mapping ζ : R 7→ R defined by, ζ(x) =
xRD(NVi(x), NV−i(x)), where NVi(x) ≡ 1

1−βProb(w>x)E
[
gi + (W i

22 − gi)1x>w

]
. Computing ζ is simpler

than computing ξ and both functions coincide around their respective fixed points. See Lemma 17 in
Appendix A for more details.
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4 Applications

This section makes the case that the class of exit games introduced in Section 2 provides

a practical framework to model miscoordination risk, and yields predictions that are qual-

itatively different from those obtained by focusing on Pareto-efficient equilibria under full

information. Section 4.1 revisits the partnership game of Section 2.2 and shows how under

private information, miscoordination fear can drive players to immediate exit even though

the likelihood of miscoordination is vanishing. Section 4.2 shows how results from Section 3

can be used to define a simple criterion for the robustness of equilibria to miscoordination

fear in exit games with approximately constant payoffs. As an example, Section 4.3 explores

how wealth affects agents’ ability to cooperate and shows that taking into account miscoor-

dination fear yields predictions that are both intuitive and qualitatively distinct from those

obtained under full information. Finally, Section 4.4 uses the example of repeated Cournot

competition to show how exit games can be used to study the properties of trigger equilibria

in repeated games with noisily observed states.

4.1 Miscoordination fear in the partnership game

Consider the partnership game introduced in Section 2.2. Flow payoffs are symmetric and

given by

S E

S wt wt − C + βVE

E b + VE VE

where payoffs are given for the row player only and C > b ≥ 0. Under full information there

exists a Pareto dominant equilibrium, of value V , in which players stay whenever the state

wt is greater than a minimum threshold w defined by

w + βV = b + VE

V = E
[
(wt + βV )1wt>w

]
+ F (w)VE.
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If we use Pareto efficiency as a selection criterion in this full-information game, then the

magnitude of C has no impact on players’ behavior. Let us show this is not the case anymore

when players privately assess the state of the world.

From Theorem 2, we know that the extreme equilibria of Γσ are asymptotically charac-

terized by the fixed points of the mapping Φ. Hence, we are interested in the comparative

statics of extreme fixed points of Φ with respect to C. Because the game is symmetric, fixed

points of Φ will be symmetric and Φ can be restricted to a mapping from R to R. The risk

dominant threshold of the augmented game Ψ0(V ) is given by the equation

xRD(V ) + βV − b− VE = VE − xRD(V ) + C − βVE

so that xRD(V ) = (1− β)VE + b+C
2

+ β VE−V
2

. The mapping Φ is defined by,

(10) ∀ V ∈ [VE, +∞), Φ(V ) = VE +

∫

w∈R
(w + βV − VE)1w>xRD(V )f(w)dw.

Figure 1 summarizes simulations of Φ in which f is a Gaussian distribution of parameters

(µ, η2). In the cases represented in Figure 1, VE = 5, β = 0.7, C = 3, b = 1 and µ =

3. As Figure 1(a) shows in the case of η = 1, private assessments of the state of the

world can dramatically reduce the set of rationalizable strategies. The range of equilibrium

values shrinks from the interval [5.3, 9.9] under full-information to the singleton {7.4} once

players’ fear of miscoordination is taken into account. Interestingly, as the standard-error

η diminishes, the set of equilibria that are robust to miscoordination risk changes a lot

even though extreme equilibrium values under full-information vary very little. Figure 1(b)

corresponds to the case η = 0.2. Under full information, the set of equilibrium values is

[5.1, 9.8] and does not differ from the case η = 1 by much. However, unlike the case η = 1,

the game with private information now exhibits multiple asymptotic equilibria: one middle

equilibrium that is unstable with respect to iterated best-reply, and two extreme equilibria

associated with values 5.2 and 9.5, that are stable with respect to iterated best-reply. Note

that the two extreme equilibrium values under miscoordination risk are actually very close
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to the extreme equilibrium values under full information14.

One can also derive comparative statics with respect to C directly from expression (10).

Indeed, we have, ∂Φ(V )
∂C

= −f(xRD(V ))
(
xRD(V ) + βV − VE

)
. Since xRD(V ) is the risk-

dominant threshold of Ψ0(V ), it must be that for w = xRD(V ), staying is a strict Nash

equilibrium of the game G(V, w). Hence, we obtain that (xRD(V ) + βV − VE) > 0. This

shows that ∂Φ(V )
∂C

< 0. Since Φ is an increasing mapping, downward shifts of Φ also shift

its extreme fixed points downwards. Hence, we conclude that the extreme fixed points of

Φ are strictly decreasing in C. Under a global games information structure, worsening the

payoffs upon miscoordination diminishes the players’ ability to cooperate, even though the

probability of actual miscoordination is vanishingly small.

In fact, as C goes to +∞, x(V ) goes uniformly to −∞ over any compact. This im-

plies that over any compact, Φ(V ) converges uniformly to the constant VE. Since we know

that independently of C, fixed points of Φ must belong to [VE, V ], this implies that as

limC→∞ limσ→0 V H
σ (C) = VE, and immediate exit is asymptotically the only rationalizable

strategy that is robust to miscoordination fear. Given that having C go to +∞ does not

affect the Pareto efficient equilibrium of the full information game, this shows in a stark way

how modeling miscoordination fear can generate new predictions. Section 4.3 illustrates this

point in a richer economic context by using the robustness criterion developed in Section 4.2.

4.2 Robustness of cooperation in games with constant payoffs

This section considers the limit where the distribution f of states of the world w becomes

arbitrarily concentrated around a particular state w0. Interestingly, at the limit, the sensitiv-

ity of cooperation to miscoordination risk only depends on the payoffs at w0. This allows us

to define a simple explicit criterion for the robustness of cooperation in games with constant

payoffs. The example of Section 4.3 will exploit that criterion to investigate the effect of

wealth on agents’ ability to cooperate.

14This could potentially suggest that as the underlying distribution f becomes concentrated around a
particular state of the world w0 (here w0 = µ), miscoordination risk has no impact on the sustainability of
cooperation. Section 4.2 shows that this is not the case.

31



Definition 12 (global games extension) Consider a vector of payoff functions

γ = (gi,W i
12,W

i
21, W

i
22)× (g−i,W−i

12 ,W−i
21 ,W−i

22 )

and a sequence {fn}n∈N of density functions with convex support, converging weakly to a

Dirac mass at w0 when n goes to infinity. The sequence of game structures πn = (γ, fn) is

said to be a global games extension of the full information game with constant payoffs γ(w0)

whenever, for all n ∈ N, the payoff structure πn satisfies Assumptions 1, 2, 3, 4 and 5.

Note that a game with constant payoffs γ(w0) can admit multiple global game extensions,

which can have different payoff functions and different densities.

Assumptions 2 and 3 only make sense in a global game context, Assumptions 1, 4, and 5

however naturally extend to games with constant payoffs. Indeed Assumption 1 is trivially

satisfied, and Assumptions 4, 5 are required to hold only when the state of the world is w0.

Lemma 13 Any exit game with certain flow-payoffs γ(w0) satisfying Assumptions 4 and 5

admits a global game extension.

Consider a global game extension {πn}n∈N of some game with constant payoffs γ(w0),

and {Φn}n∈N the associated value mappings. Let VH
n and VL

n denote the highest and lowest

fixed points of Φn. Denote by VH the vector of values obtained by players if they stayed

every period in game γ(w0) and VL = (W i
22(w0),W

−i
22 (w0)) the values they would obtain

upon immediate exit.

The case of greatest interest - considered in the remainder of this section - is the one in

which staying is a Nash equilibrium whenever players expect continuation values VH , but

exit is the only Nash equilibrium when players expect continuation values VL. As before,

we denote by G(V, w) the full information augmented game

S E

S gi(wt) + βVi W i
12(wt)

E W i
21(wt) W i

22(wt)

where i is the row player.

32



The next proposition shows that in games with approximately constant payoffs, the robust-

ness of cooperation to miscoordination fear is entirely characterized by the payoffs at w0.

Proposition 4 (robustness to miscoordination fear) Whenever staying is the risk-dominant

equilibrium of game G(VH , w0), as n goes to infinity, VL
n converges to VL and VH

n converges

to VH .

Whenever exit is the risk-dominant equilibrium of game G(VH , w0), as n goes to infinity,

VL
n converges to VL and VH

n converges to VL.

Proof: Denote by Vn(x) the vector of values players would obtain by best replying to sx

under full information for the payoff structure πn.

Let us first prove that VL
n always converges to VL as n goes to ∞. Since VL is the value

of immediate exit, it is clear that lim inf VL
n ≥ VL. Since staying is not an equilibrium action

when players expect continuation values VL, it must be that there exists τ > 0 such that

xRD(VL) > w0 + τ . By continuity of xRD this implies that there exists δ > 0 such that for

all V satisfying ||V−VL||∞ < δ, we have xRD(V) > w0 + τ/2. Convergence of fn to a Dirac

mass at w0 implies that there exists N such that for all n ≥ N , ||Vn(w0 + τ/2)−VL||∞ < δ.

This implies that for all n ≥ N , ξn(w0 + τ/2) ≥ w0 + τ/2. Hence ξn must have a fixed point

above w0 + τ/2. Since fn converges to a Dirac mass at w0 the value pair associated with

such an equilibrium converges to VL as n goes to infinity. Hence, limVL
n = VL.

Assume that staying is risk-dominant in G(VH , w0). This means that there exists τ > 0

such that xRD(VH) < w0− τ . By continuity of xRD this implies that there exists δ > 0 such

that for all V satisfying ||V −VH ||∞ < δ, we have xRD(V) < w0 − τ/2. Convergence of fn

to a Dirac mass at w0 implies that there exists N such that for all n ≥ N , ||Vn(w0− τ/2)−
VH ||∞ < δ. This implies that for all n ≥ N , ξn(w0 − τ/2) ≤ w0 − τ/2. Hence ξn must have

a fixed point below w0 − τ/2. This and the convergence of fn to a Dirac mass at w0 implies

that as n goes to infinity, VH
n converges to VH .

Assume now that exit is risk-dominant in G(VH , w0). This means that there exists τ > 0

such that xRD(VH) > w0 + τ . By continuity of xRD this implies that there exists δ > 0 such

that for all V satisfying V < VH + δ, we have xRD(V) > w0 + τ/2. Convergence of fn to a
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Dirac mass at w0 implies that there exists N such that for all n ≥ N , Vn(+∞) < VH + δ.

This implies that for all n ≥ N , and all x ∈ R, ξn(x) > w0 + τ/2. Hence all fixed points of

ξn are above w0 + τ/2. This and the convergence of fn to a Dirac mass at w0 implies that

as n goes to infinity, VH
n converges to VL. ¥

Because this result does not depend on the particular global games extension of the

game with constant payoffs γ(w0), Proposition 4 can be used to define a simple robustness

criterion for cooperation in exit games with constant payoffs. According to this criterion,

whenever the continuation value associated with full cooperation is high enough for staying

to be risk-dominant in the augmented one-shot game, then full cooperation is robust to the

fear of miscoordination. However if exit is the risk-dominant equilibrium in the augmented

game, then immediate exit is the only robust equilibrium of the game with constant payoffs

γ(w0). Section 4.3 provides an illustration of how the robustness criterion of Proposition 4

can yield predictions that are qualitatively different from those obtained when focusing on

Pareto-efficient equilibria of the full-information game.

4.3 Wealth, miscoordination fear, and cooperation

This section investigates whether wealth facilitates cooperation or not. It is shown that

taking into account the players’ fear of miscoordination generates qualitatively new insights

about the forces that affect players’ ability to cooperate. In the exit game considered here,

two symmetric players can cooperate on a project which increases their regular income I

by an amount Π. Each player can either cooperate (Stay) or defect (Exit). When both

players stay, the life of the project is extended by one period, otherwise the project dies next

period and the players get their baseline stream of income. More precisely, we consider the

symmetric exit game with the following, constant, flow payoffs

S E

S u(I + Π) u(I − L) + β
1−β

u(I)

E u(I + G) + β
1−β

u(I) u(I) + β
1−β

u(I)
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where payoffs are given for the row player, G > Π > 0, L > 0, I ≥ L, and u is a concave

twice differentiable utility function defined over (0, +∞).

In this game, the value of full cooperation is V H = 1
1−β

u(I + Π) while the value of

immediate exit is V L = 1
1−β

u(I). Under full information, full cooperation will be sustainable

if and only if

(11)
β

1− β
[u(I + Π)− u(I)] ≥ u(I + G)− u(I + Π)

which is equivalent to g(I) ≡ u(I+G)−u(I+Π)
u(I+Π)−u(I)

≤ β
1−β

.

Proposition 5 (wealth makes cooperation harder under full information) Whenever

u exhibits (strictly) decreasing absolute risk aversion (r ≡ −u′′
u′ decreasing), then g is (strictly)

increasing in I.

Decreasing absolute risk aversion is a standard property of utility functions. For instance

it is satisfied for the class of CRRA functions u(x) = ρ(xρ − 1), with ρ ∈ (−∞, 1). Hence

Proposition 5 implies that for natural utility functions, focusing on the Pareto efficient

outcome of the game with full information yields the prediction that wealth makes it harder

to cooperate. While this prediction is not entirely counter-intuitive – it simply states that

the rich just cannot be bothered to cooperate – the fact that it holds for all feasible levels of

wealth is rather surprising. This result, however, does not hold anymore once we consider

the impact of miscoordination fear.

The game defined above satisfies the conditions of Lemma 13, hence, it admits a global

game extension, and we can use the robustness criterion of Proposition 4. Cooperation

is robust to miscoordination fear if and only if staying is the risk-dominant action in the

augmented symmetric one-shot game

S E

S u(I + Π) + βV H u(I − L) + β
1−β

u(I)

E u(w + G) + β
1−β

u(I) u(I) + β
1−β

u(I).
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Because the game is symmetric, staying will be risk-dominant if and only if

(12)
β

1− β
[u(I + Π)− u(I)]︸ ︷︷ ︸

value of coop.

≥ u(I + G)− u(I + Π)︸ ︷︷ ︸
dev. tempt.

+ u(I)− u(I − L)︸ ︷︷ ︸
miscoord. loss

which is equivalent to h(I) ≡ g(I) + u(I−D)−u(I−L)
u(I+Π)−u(I)

≤ β
1−β

.

Condition (12) has an intuitive interpretation: cooperation is robust to miscoordination

risk if and only if the value of continued cooperation is greater than the sum of the devia-

tion temptation and the miscoordination loss. For the same reason that g(I) is increasing

in I when u exhibits decreasing absolute risk aversion (DARA), the second term of h is

decreasing in I when u is DARA, and hence, the monotonicity of h is unclear. The forces

of deviation temptation and miscoordination fear push in opposite directions. The following

proposition shows that when the loss L upon miscoordination is large enough, the prediction

of Proposition 5 is entirely overturned: wealth facilitates cooperation at every income level.

Proposition 6 (wealth facilitates cooperation under miscoordination fear) Whenever

L ≥ G and the coefficient of absolute risk aversion r ≡ −u′′
u′ is decreasing and (strictly) con-

vex over (0,∞), then h is (strictly) decreasing for I ∈ (L, +∞).

For DARA utility functions, it is quite natural for r to be convex. It simply states that the

players’ risk tolerance is increasing, but at a diminishing rate. This property is satisfied, for

instance, for all CRRA functions. Proposition 6 implies that when strategic risk is significant

enough, the impact of wealth on miscoordination fear always dominates the impact of wealth

on the deviation temptation. Moreover, even when r is not convex, or L < G, the following

lemma shows that at least for the very poor, wealth facilitates cooperation once the players’

fear of miscoordination is taken into account.

Lemma 14 Consider any concave function u such that limx→0 u′(x) = +∞, then there exists

I∗ > L such that h is strictly decreasing over the range (L, I∗).

Because the miscoordination loss looms very large for the poor, they are particularly wary of

miscoordination risk and choose not to purse projects that require them to rely on a partner.
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This example shows how taking into account the robustness of cooperation to miscoor-

dination fear can yield new comparative statics that are qualitatively different from those

obtained by focusing on Pareto efficiency in the full-information game.

4.4 Trigger strategies in a game of repeated Cournot competition

This section uses the example of repeated Cournot competition to illustrate the point that

selection results from Section 3 can be used to study trigger strategy equilibria in two-by-two

repeated games with noisy assessments. In particular, the class of perfect Bayesian equilibria

supported by trigger strategies can be mapped into the class of subgame perfect equilibria

of the exit game in which players get the repeated Nash continuation value upon exit.

In each period, two firms i ∈ {1, 2} can produce a quantity of good Qi ∈ {Q, (1 + ρ)Q}.
The additional cost of producing ρQ units is C > 0. The unit price of the good is Pt =

Dt

Q1+Q2
, where Dt represents the strength of demand15. Parameters ρ, C, and Q are common

knowledge, positive, and fixed in time. The intensity of demand, {Dt}t∈N, is an i.i.d. sequence

of positive numbers drawn from some distribution fD with c.d.f. FD and support [0, +∞).

Each firm gets a signal of current demand strength, xi,t = Dt+σεi,t. Each player’s production

decision is ex-post observable. Firms are risk neutral.

We say that a firm cooperates when its production is Q and defects when its production

is (1 + ρ)Q. Under full information, one-shot payoffs (for the row player) are given by

Coop. Defect

Coop. 1
2
Dt

1
2+ρ

Dt

Defect 1+ρ
2+ρ

Dt − C 1
2
Dt − C.

Clearly, for any Dt, cooperation is the efficient outcome of this one-shot game. Define

DNE = 22+ρ
ρ

C. Whenever Dt > DNE, then defection is a dominant strategy. Inversely,

whenever Dt < DNE, then cooperation is a dominant strategy. Hence, this one shot game

is dominance solvable. Denote V NE the value of playing this one-shot Nash equilibrium

15Note that this particular functional form facilitates the analysis by making the total value of sales
constant.

37



repeatedly under full information. Because this game exhibits increasing differences with

respect to the state of the world wt ≡ −Dt, it satisfies the assumptions of Carlsson and

van Damme (1993). Hence, for σ small enough, this game is also dominance solvable under

a global games information structure. Denote by V NE
σ the value of repeatedly playing the

one-shot Nash equilibrium under a global games information structure. Note that as σ goes

to 0, V NE
σ converges to V NE.

The question is whether repeated interaction allows firms to sustain greater cooperation

under trigger equilibria. Under trigger strategies players revert to repeatedly playing the

one shot Nash equilibrium following any defection. In between periods, players also have

the option to return to the repeated one-shot equilibrium. This insures that players always

expect a continuation value weakly greater than V NE
σ . Any trigger strategy equilibrium must

be an equilibrium of the exit game Γσ with flow payoffs

S E

S 1
2
Dt

1
2+ρ

Dt + βV NE
σ

E 1+ρ
2+ρ

Dt − C + βV NE
σ

1
2
Dt − C + βV NE

σ .

Because in this game payoffs upon exit are indexed by σ, we are not exactly in the framework

of Section 2.3, the game, however, satisfies the more general assumptions of Appendix C:

since players have the option to exit in-between periods, rational players expect values V

greater than V NE
σ and the equilibrium symmetry assumption holds since the one-shot game

with common knowledge has only symmetric equilibria; increasing differences in the state

of the world holds with respect to −Dt; dominance holds since staying is dominant for Dt

close enough to 0, and exit is dominant for any Dt high enough; finally, the assumption that

“staying is good” holds because

Ai(Dt, V
NE
σ ) =

ρ

2(2 + ρ)
Dt = Bi(γt) ≥ 0.

As σ goes to 0, rationalizable strategies of game Γσ are bounded by extreme Markovian
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equilibria16 whose continuation values converge to the highest and lowest fixed points of

Φ(V ) =
1

2
E[Dt]− C + βV NE + (C + βV − βV NE)FD(xRD(V ))

Where xRD(V ) = 2+ρ
ρ

(2C+βV −βV NE). It is interesting to note that Φ(V NE) = V NE, hence

asymptotically, the one-shot Nash equilibrium is always an equilibrium of Γσ. Furthermore

ξ(DNE) = DNE, independently of the particular distribution of states of the world.

We are particularly interested in the case where there can be multiple equilibria, and

in their asymptotic stability properties. The asymptotic local strong rationalizability of

Markovian equilibria of Γσ is characterized by the stability properties of fixed points of the

mapping ξ. Because we are considering symmetric games, the stability of fixed points of ξ

is equivalent to the stability of fixed points of Φ.

Lemma 15 Define g = log fD. Then whenever ∂2g/∂D2 ≤ 0 and ∂3g/∂D3 ≤ 0, the map-

ping Φ is S-shaped.

Notably, this lemma covers the case of exponential distributions and truncated Gaussian

distributions. For such distributions, Φ will admit at most three fixed points.

Figure 2 presents various simulation in the case where fD follows a truncated Gaussian

of parameters (µ, η2). In all cases, C = 2, ρ = 1, η = 1, and β = 0.7. The different

cases correspond to different values of µ. Low values of µ put greater weight on states Dt

that make cooperation easier to sustain while high values of µ make cooperation typically

harder to sustain. For all simulations DNE = 12 is an equilibrium threshold. Note that

fixed points of ξ below DNE do not correspond to equilibria, since they are associated with

continuation values less than V NE which players can opt out of. For µ = 8, Figure 2(a)

shows there is a unique rationalizable strategy with threshold DNE. In this case, players

already cooperate most of the time in the one-shot Nash equilibrium. Hence incremental

16Note that in this example, because the game exhibits increasing differences in −Dt rather than Dt,
for a given cooperation threshold x, players cooperate when Dt is less than x rather than greater than x.
Hence the greatest equilibrium with respect to ¹ is the one which is associated to the greatest cooperation
threshold rather than the smallest cooperation threshold.
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amounts of cooperation bring only very little gain in utility and cannot be self-sustained.

Figure 2(b) corresponds to the case where µ = 12. It is particularly interesting because only

two of the fixed points of ξ correspond to Markovian equilibria. From Theorem 3, we know

that the lowest one – corresponding to the one-shot Nash equilibrium – is unstable with

respect to iterated best response, while the highest one is stable. This highest equilibrium

is the only stable equilibrium of the game. Hence this higher equilibrium can be viewed

as the natural outcome: any small amount of optimism will lead players to coordinate on

the high cooperation equilibrium. Finally, Figure 2(c) corresponds to the case where µ = 15

which puts greater weight on states of the world that make it difficult to sustain cooperation.

There are three equilibria, DNE being the lowest. In this case both extreme equilibria are

stable.

5 Conclusion

This paper provides a framework to model miscoordination fear in dynamic games. In par-

ticular it analyzes the robustness of cooperation to small amounts of observational noise in

a class of dynamic games with exit. In equilibrium, this departure from common knowledge

generates a fear of miscoordination that pushes players away from the full information Pareto

efficient frontier, even though actual miscoordination happens with a vanishing probability.

Payoffs upon miscoordination, which play no role when considering the Pareto efficient fron-

tier under full information, determine the extent of the efficiency loss. The greater the loss

upon miscoordination, the further will players be pushed away from the full information

Pareto frontier.

The first step of the analysis is to show that for cooperation games with exit, the set of

rationalizable strategies is bounded by extreme Markovian equilibria. The second step uses

the dynamic programming approach to subgame perfection of Abreu, Pearce, and Stacchetti

(1990) to recursively apply selection results in one-shot global games. As players’ signals

become increasingly correlated, this yields a fixed point equation for continuation values

associated with Markovian equilibria. Whenever this mapping has a unique fixed point,
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the set of rationalizable strategies of the game with perturbed information converges to

a singleton as signals become arbitrarily precise. However, unlike in one-shot two-by-two

games, infinite horizon exit games can still admit multiple equilibria under the global game

information structure.

The dominance solvability of one-shot global games carries over in the weaker form of

local dominance solvability, which can be interpreted both as a stability property and as a

form of robustness to strategic uncertainty. As noise vanishes, the local dominance solvability

and basins of attraction of Markovian equilibria are characterized by the stability of fixed

points of an explicitly computable increasing mapping from R to R. The greater the basin

of attraction of an equilibrium s, the more robust it is to strategic uncertainty.

Finally, by considering various examples, the paper makes the case that this framework

is simple and flexible enough to be used for applied purposes, and that it provides new

insights about cooperation that could not be obtained by focusing on Pareto efficiency under

full information. In particular, the model can be used to define a robustness criterion for

cooperation in exit games with constant payoffs: whenever staying is the risk-dominant

strategy of the one-shot game augmented with the players’ continuation values, cooperation

is robust to any global game extension; whenever defection is the risk-dominant strategy of

the one-shot augmented game, then for any global game extension, the set of rationalizable

strategies shrinks to immediate exit. This criterion can be readily used in applied games and

provides insights on the determinants of cooperation that are qualitatively different from

those obtained under full-information.
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(a) Unique fixed point: η = 1.
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(b) Multiple fixed points: η = 0.2.

Figure 1: Equilibria of the partnership game depending on η. VE = 5, β = 0.7, µ = 3, C = 3
and b = 1
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(a) Unique stable equilibrium: µ = 8.
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(b) One unstable and one stable equilibria: µ =
12.
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(c) One unstable and two stable equilibria: µ =
15.

Figure 2: Trigger equilibria in a game of repeated Cournot competition depending on µ.
C = 2, β = 0.7, ρ = 1, η = 1. Fixed points of ξ below x = 12 do not correspond to
equilibria.
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Appendix A: Proofs

Proof of Lemma 1: This is a direct application of Theorems 2, 3 and 4 of Chassang
(2006). ¥

Proof of Lemma 3: This is a direct application of Theorem 1 of Chassang (2006). ¥

Proof of Lemma 6: Consider s′ ∈ BRi,σ(sx), and denote V the value player i expects from
best-responding. The one-shot action profile a′ induced by s′ must belong to BRi,σ(sx, V ).
Lemma 3 of Chassang (2006) implies that there exists σ such that for all σ ∈ (0, σ), there
is a unique such one-shot best-reply. It takes a threshold form ax′ and the threshold x′ is
continuous in both x and V . This concludes the proof. ¥

Proof of Theorem 1: This is a corollary of Proposition 1. The methodology of Milgrom
and Roberts (1990) and Vives (1990) applies almost directly. Let Ri denote the set of
rationalizable strategies of player i , U the set of all possible strategies and, S and E the
strategies corresponding to “always staying” and “always exiting”. Define BR = BRi◦BR−i.
Ri is the largest set of strategies such that Ri ⊂ BR(Ri) and R−i = BR−i(Ri).

Noting that U = [E,S], since S and E are Markovian, Proposition 1 implies that
BR(U) ⊂ [BR(E), BR(S)]. Since the best response to a Markovian strategy is Markovian,
we know that BR(E) and BR(S) are Markovian. This implies we can iterate forward. For
all k ∈ N, we obtain that Ri ⊂ [BRk(E), BRk(S)]. Because {BRk(E)}k∈N and {BRk(S)}k∈N
are monotone sequences of Markovian strategies, they are equivalent to monotone sequences
of indicator functions specifying for all state of the world w ∈ R whether the player should
stay or exit. As k goes to infinity, these sequences converge in probability to limits BR∞(E)
and BR∞(S). We get that, Ri ⊂ [BR∞(E), BR∞(S)]. Denote by sL

i and sH
i these extreme

strategies (omitting the σ subscript for simplicity). By continuity of the best response map-
ping with respect to convergence in probability, we have sH

i = BR(sH
i ) and sL

i = BR(sL
i ),

so that the pairs of strategies (sH
i , BR−i(s

H
i )) and (sL

i , BR−i(s
L
i )) are Nash equilibria in

addition to being rationalizable.
It is easy to check that whenever s is a threshold form Markovian strategy, then As-

sumption 3 implies that BRi(s) is also Markovian and takes a threshold form. Since E and
S take threshold forms, then by induction, extreme strategies also take a threshold form. ¥

Proof of Lemma 7: Consider the highest equilibrium sH
σ . For any rationalizable strategy

s−i, s−i ¹ sH
−i. Assumption 5, implies that player i gets a higher value from best-replying

against sH
−i,σ than s−i. Thus Vi ≤ V H

i,σ in the functional sense. Identical reasoning yields the
other inequality. ¥

Proof of Lemma 8: Since Vn converges to V and Φ is continuous, for all τ > 0, there
exists N1 such that for all n ≥ N1

||Φ(V)−V||∞ ≤ ||Φ(Vn)−Vn||∞ + τ/2.
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Since φσn(·) converges uniformly to Φ and Vn is a fixed point of φσn , there exists N2 such
that for all n ≥ N2, ||Φ(Vn)−Vn||∞ ≤ τ/2. This yields that ||Φ(V)−V|| ≤ τ for all τ > 0.
Hence, V must be a fixed point of Φ. ¥

Proof of Lemma 9: Indeed, it results from expression (7) that

||Φ(V )−Φ(V ′)||1 ≤ β||V−V ′||1+||f ||∞
∑

i∈{1,2}
||gi

11+βVi−W i
22||∞

∣∣∣∣
∣∣∣∣
∂xRD

∂Vi

+
∂xRD

∂V−i

∣∣∣∣
∣∣∣∣
∞
||V−V ′||1

Since
∑

i∈{1,2} ||gi
11 + βVi −W i

22||∞ ||∂xRD

∂Vi
+ ∂xRD

∂V−i
||∞ is finite, for any δ > β, there exists ||f ||∞

small enough such that ||Φ(V )− Φ(V ′)||1 ≤ δ||V − V ′||1. ¥

Proof of Lemma 11: BRVi,σ(x) is continuous in x since it is the maximum of a bounded
function continuous in x. In conjunction with Theorems 2 and 4 of Chassang (2006), this
yields the first part of the lemma.

Lemma 10 implies that for σ small enough all Markovian equilibria must take a threshold
form. Such an equilibrium is associated with values (Vi, V−i) and thresholds x = (xi, x−i)
which must satisfy Vi = BRVi,σ(x−i) and (xi, x−i) = x∗σ(Vi, V−i). Hence, Markovian thresh-
olds must satisfy x = ξσ(x). Inversely, if a vector x satisfies x = ξσ(x), then the values
V = (Vi, V−i) defined by Vi = BRVi,σ(x−i) must satisfy, V = φ(σ,V) and hence, using
Theorem 2, values V support a Markovian equilibrium with thresholds x. This gives us the
second part of the lemma.

The third part of the lemma is an almost immediate consequence of Theorem 3 of Chas-
sang (2006). One only needs to show that BRVi,σ(·) converges uniformly to BRVi,0(·) as σ
goes to 0. Indeed, because states of the world have a bounded density and payoffs are Lips-
chitz, the best response when σ = 0 is almost optimal when σ > 0 and small and vice-versa.
Hence, there exists K > 0 such that for all x ∈ R, |BRVi,0(x)−BRVi,σ(x)| < Kσ.

The fourth part of the lemma is a consequence of the fact that xRD(V) is decreasing in
V and Assumption 5 which implies that BRVi,0(x) is decreasing in x. ¥

Proof of Proposition 2: A direct proof can be given but it is faster to use the local
dominance solvability property that will be proven in Theorem 3. For any x ∈ R, BRi,σ ◦
BR−i,σ(sx) takes a threshold form, sx′ . Define χσ(·) by χσ(x) = x′. For σ small enough,
Lemma 6 and Proposition 1 imply that χσ is continuous and increasing. By definition of χσ,
sx is a threshold form Markovian equilibrium of Γσ if and only if χσ(x) = x.

Consider a non singular fixed point of ξ denoted by x. Indeed, Assume that x is a stable
fixed point – that is ξ cuts the 45o line from below – then Theorem 3 implies that, for all
τ > 0, there exists σ > 0 and η ∈ (0, τ) such that for all σ ∈ (0, σ), the interval [x− η, x + η]
is stable by χσ. Since χσ is continuous and increasing, this implies that it has a fixed point
belonging to [x− η, x + η]. This proves the lower hemicontinuity of stable fixed points of ξ.

Assume that x is unstable. Then for any τ > 0, there exists η ∈ (0, τ) such that x − η
and x + η respectively belong to the basins of attraction of a lower and a higher fixed point.
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Proposition 3 implies that there exist η′ and η′′ in (0, η) such that χσ(x − η′) < x − η′ and
χσ(x + η′′) > x + η′′. Since χσ is continuous, this implies that it admits a fixed point within
[x−η′, x+η′′]. This proves the lower hemicontinuity of unstable non-singular points of ξ. ¥

Lemma 16 Consider x a fixed point of ξ. Then there exists η > 0 and σ > 0 such that for all
σ ∈ [0, σ), x′ ∈ [x− η, x + η], and i ∈ {1, 2} there exists x′′ ∈ R such that BRi,σ(s′x) = {sx′′}
and |x′′ − x′| < 2σ.

Proof of Lemma 16: Since, x is a fixed point of ξ, it must be that at w = x, both
(E, E) and (S, S) are strict Nash equilibria of the game G(BRVi,0(x), BRV−i,0(x), w). Since
BRVi,σ(x′) is continuous in σ and x′, and payoffs are continuous in w, there exist η > 0 and
σ < η/4 such that for all σ < σ and x′ ∈ [x− η, x + η], then for all w ∈ [x′ − σ, x′ + σ], both
(E, E) and (S, S) are strict Nash equilibria of G(BRVi,σ(x′), BRV−i,σ(x′), w).

Take σ < σ and x′ ∈ [x − η/2, x + η/2]. Assumption 3 implies that for any σ, the best
reply to a threshold form strategy is also a threshold for strategy. This implies that indeed
BRi,σ(x′) takes the form sx′′ . Let us show that|x′′ − x′| < 2σ. When she gets a signal
xi,t < x′ − 2σ, player i knows for sure that player −i will be playing E. From the definition
of η, we know that (E, E) is an equilibrium of G(BRVi,σ(x′), BRV−i,σ(x′), w) for all values
of w consistent with a signal value xi,t. Thus, it must be that player i’s best reply is to play
E as well. Inversely, when she gets a signal xi,t > x′ + 2σ, player i knows that player −i will
play S, and her best reply is to Stay as well. This implies that |x′′ − x′| < 2σ. ¥

Lemma 17 Define the function ζ : R 7→ R by, ζ(x) = xRD(NVi(x), NV−i(x)), where
NVi(x) ≡ 1

1−βProb(w>x)
E [gi + (W i

22 − gi)1x>w] is the value player i obtains when both players
naively follow the threshold strategy sx.

Then, x is a fixed point of ξ if and only if it is a fixed point of ζ. Furthermore, for any
fixed point x, there exists η > 0 such that for all x′ ∈ [x− η, x + η], ζ(x′) = ξ(x′).

Proof of Lemma 17: Lemma 16 implies that for σ = 0, whenever x is a fixed point of ξ,
then there exists η > 0 such that for all x′ ∈ [x − η, x + η], BRi(sx′) = sx′ . Hence, for all
x′ ∈ [x− η, x + η], BRVi(x

′) = NVi(x
′) and thus, ξ(x′) = ζ(x′).

Moreover whenever x satisfies ζ(x) = x, then sx is a threshold form Markovian equi-
librium of the full information game Γ0, which implies that BRVi(x) = NVi(x). Thus
ξ(x) = ζ(x) = x and x is also a fixed point of ζ. ¥

Proof of Lemma 12: Let us first show that the set P of payoff structures such that ξ
has a finite number of fixed points and has a derivative different from 1 at each of these
fixed points is open in Π1. From Lemma 17, we know that x is a non-singular fixed point
of ξ if and only if it is a non-singular fixed point of ζ. One can compute ζ explicitly :
ζ(x) = xRD(NVi(x), NV−i(x)), where NVi(x) ≡ 1

1−βProb(w>x)
E [gi + (W i

22 − gi)1x>w]. Since
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xRD(Vi, V−i) is defined as the locally unique solution of the C1 equation

Qπ(x, Vi, V−i) ≡
∏

i∈{1,2}
(gi + βVi −W i

21)−
∏

i∈{1,2}
(W i

22 −W i
12) = 0

the implicit function theorem implies that ∂xRD

∂Vi
exists and is a continuous expression of the

derivatives of the payoff functions (gi,W i
12,W

i
21,W

i
22)i∈{1,2}. Hence ζ admits a derivative,

∂ζ

∂x
=

∑
i∈{1,2}

∂xRD

∂Vi

(
1

1− βProb(w > x)
fw(xRD)

(
W i

22(x
RD)− gi(xRD)

)

− βf(x)

(1− βProb(w > x))2
E[gi + (W i

22 − gi)1x>w]

)
.

This derivative is continuous with respect to x and continuous in the payoff structure with
respect to || · ||Π1 . Assume that for a payoff structure π, the mapping ξ has a finite number
of fixed points and has a derivative that is different from 1 at all it’s fixed points. Then there
exists η > 0 such that for any fixed point x, ∂ξ

∂x
is either less than 1− η over [x− η, x + η] or

greater than 1 + η over [x− η, x + η]. A payoff structure π̃ close enough to π, is associated
with a mapping ξ̃ such that all fixed points x̃ of ξ̃ belong to [x − η, x + η] and such that
its derivative over [x − η, x + η] is either greater than 1 + η/2 or lower than 1 − η/2. This
implies that all payoff structures close enough to π are also associated with mappings ξ that
have a finite number of fixed points and have a derivative different from 1 at each of these
fixed points.

Let us now show that P is dense in Π1. Consider a payoff structure π and ν > 0. We
know from Assumption 2 that fixed points of ξ are restricted to a compact region [x, x]. By
Weierstrass’s Theorem, there exist uniform polynomial approximations of the derivative of
the vector of functions π over [x − 1, x + 1]. Hence, one can find a payoff structure π̃ such
that ||π − π̃||Π1 < ν/2, π, π̃ coincide over the complementary of [x, x], and π̃ is polynomial
over [x, x]. By Lemma 18, this implies that the mapping ζ is analytic over [x, x]. Let us now
define the family of payoffs π̃δ by,

∀w ∈ R, g̃i,δ(w) ≡ g̃i(w)

W̃ i,δ
22 (w) = W̃ i

22(w)

W̃ i,δ
12 (w) = W̃ i

12(w − δ) + g̃i(w)− g̃i(w − δ)

W̃ i,δ
21 (w) = W̃ i

21(w − δ) + W̃ i
22(w)− W̃ i

22(w − δ)

This new payoff structure is such that for any δ, and any x ∈ R, ζ̃δ(x) = ζ̃(x) + δ. Note
that for δ small enough, π̃δ is arbitrarily close to π̃. More over ζ̃δ is analytic in x. Whenever
δ1 6= δ2 then ζ̃δ1 and ζ̃δ2 have strictly different fixed points. Assume that for every δ ∈ (0, ν),
there exists a fixed point xδ of ζ̃δ such that ζ̃δ is singular at xδ. this implies that the deriva-
tive of ζ is equal to 1 an infinte number of times in a compact set. Since the derivative of ζ
is analytic, this would imply that it is identically equal to 1 over [x− 1, x + 1]. Since ζ has a
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fixed point in [x, x], this would imply that ζ is equal to the identity over [x− 1, x + 1] which
contradicts the fact that fixed points of ζ belong to [x, x]. ¥

Lemma 18 (Analyticity of ζ) Whenever functions of the payoff structure

π = ×i∈{1,2}(g
i,W i

12,W
i
21,W

i
22)× Fw

are polynomial over the range [w,w] then the mapping ζ is analytic.

Proof: We give the proof for the stationary case. First, note that xRD(Vi, V−i) is a simple
root of the polynomial Q(w) = Πi∈{1,2}(gi(w) + βVi−W i

21(w))−Πi∈{1,2}(W i
22(w)−W i

12(w)).
Indeed, Q(w) is strictly decreasing at xRD. A simple root of a polynomial is jointly analytic in
the polynomial’s coefficients. This implies that xRD(Vi, V−i) is analytic in (Vi, V−i). Further
more the functions Vi(x) and V−i(x) can be computed explicitly:

Vi(x) =
1

1− βP (w > x)
E[W i

22(x) + (gi −W i
22)1w>x].

Clearly, Vi(x) is analytic in x. Since the composition of analytic functions is analytic, this
implies that ζ is analytic in x. ¥

Proof of Proposition 3: Let us prove the first part of the proposition. Define ba−(x) =
inf{x̃ < x | ∀y ∈ [x̃, x], ξ(y) > y}. Because x is stable, ba−(x) is well defined. We distinguish
two cases, either ba−(x) = −∞ or ba−(x) ∈ R.

If ba−(x) = −∞, any x′ < x belongs to the basin of attraction of x. Assumption 2
implies that there exists x such that for all σ < 1, BRi,σ ◦ BR−i,σ(s−∞) ¹ sx. Pick any
x′ < min{x, x}. Using the monotonicity implied by Proposition 1, we conclude that there
exists σ > 0 such that for all σ < σ, BRi,σ ◦BR−i,σ(sx′) ¹ BRi,σ ◦BR−i,σ(s−∞) ¹ sx′ .

Consider now the case where ba−(x) ∈ R. Then by continuity of ξ, we have that
ξ(ba−(x)) = ba−x. From Lemma 16 we know that there exist η > 0 and σ such that
for all x′ ∈ [ba−(x) − η, ba−(x) + η], and i ∈ {1, 2}, BRi,σ(sx′) = sx′′i with |x′′i − x′| < 2σ.
By definition, we must have y > ba−(x). Thus we can pick x′ ∈ (ba−(x), ba−(x) + η) such
that x′ < min{x, y}. We have that ξ(x′) > x′. By continuity of ξ there exists x̃′ such that
x̃′ < x′ and ξ(x̃′) > x′. Using the notation BRi,σ(a, V ) to denote the best reply of player
i to a one shot action profile a and continuation value V , and using the fact that one-shot
action profile are identical to Markovian strategies, we obtain,

(13) BRi,σ ◦BR−i,σ(sx′) = BRi,σ (BR−i(sx′ , BRV−i,σ(x′)), BRVi,σ(BR−i,σ(sx′)))

We know that |x′′−i−x′| ≤ 2σ. Thus there exists σ small enough such that BR−i,σ(sx′) ¹ sx̃′ .
Joint with Assumption 5, this implies that, BRVi,σ(BR−i,σ(sx′)) ≤ BRVi,σ(x̃′). Furthermore,
x̃′ < x′ implies that BRVi,σ(x′) ≤ BRVi,σ(x̃′). Hence, using inequality (13), and the fact
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that for i ∈ {1, 2}, BRi(a, V ) is increasing in a and V with respect to ¹, we obtain

BRi,σ ◦BR−i,σ(sx′) ¹ BRi,σ (BR−i(sx′ , BRV−i,σ(x̃′)), BRVi,σ(x̃′))

¹ BRi,σ (·, BRVi,σ(x̃′)) ◦BR−i,σ (·, BRV−i,σ(x̃′)) (sx′)(14)

We know from Theorem 2 of Chassang (2006) that there exists σ small enough such that
for all σ ∈ (0, σ) and all (Vi, V−i) ∈ [mi,Mi]× [m−i,M−i], the game Ψσ(Vi, V−i) has a unique
rationalizable pair of strategies x∗σ(Vi, V−i).

We know from Theorem 3 of Chassang (2006) that x∗σ(Vi, V−i) converges uniformly to
xRD(Vi, V−i) as σ goes to 0. This implies that x∗σ(BRVi,σ(x̃′), BRV−i,σ(x̃′)) converges to
(ξ(x′), ξ(x′)) as σ goes to 0. Since x′ < ξ(x̃′), it implies there exists σ such that for all σ < σ,
x′ < x∗σ(BRVi,σ(x̃′), BRV−i,σ(x̃′)).

The fact that Ψσ(BRVi,σ(x̃′), BRV−i,σ(x̃′)) has a unique rationalizable strategy and the
monotonicity of Lemma 3 imply that the sequence of threshold form strategies

(BRi,σ (·, BRVi,σ(x̃′)) ◦BR−i (·, BRV−i,σ(x̃′)))n
(sx′), for n ∈ N,

converges monotonously to the Markovian strategy of threshold x∗σ(BRVi,σ(x′), BRV−i,σ(x′)).
Since x′ < x∗σ(BRVi,σ(x̃′), BRV−i,σ(x̃′)), the sequence must be decreasing with respect to ¹.
Thus BRi,σ (·, BRVi,σ(x̃′)) ◦ BR−i,σ (·, BRV−i,σ(x̃′)) (sx′) ¹ sx′ . Using inequality (14), this
yields that indeed BRi,σ ◦BR−i,σ(s′x) ¹ sx′ .

The second part of the lemma results from a symmetric reasoning, switching all inequal-
ities. ¥

Proof of Lemma 13: Set w0 = 0. Denote mi and Mi the bounds on value implied by

Assumption 1. For i ∈ {1, 2}, define λi = min{1, γi
22(0)−γi

12(0)

γi
21(0)−mi−γi

11(0)
}. Note that λi > 0. For

any w ∈ R and ı ∈ {1, 2}, define γi(w) by,

γi
21(w) = γi

21(0) ; γi
22(w) = γi

22(0) ; γi
11(w) = γi

11(0) + w

γi
12(w) =

{
γi

12(0) + λiw when w > 0
γi

12(0) + λ−1
i w when w < 0

Assume that Assumption 5 holds strictly, more precisely, that, A(0,mi) > 0. Then whenever,
fn is close enough to a Dirac mass at 0, there exists a lower bound mn

i arbitrarily close to
mi. Pick any sequence {fn}n∈N with support R and weakly converging to a Dirac mass at
0 as n goes to ∞. Then there exists N such that for all n > N , A(0,mn

i ) > 0. Since for
all w, A(w, mn

i ) ≥ A(0,mn
i ), this implies that for all n, πn = (γ, fn) satisfies Assumption 5.

Assumptions 1, 4, 3 and 2 are easily checked. Hence {(γ, fn)}n>N is a global game extension
of γ(0).

When A(0,mi) = 0, then the sequence fn has to be chosen appropriately skewed to the
right so that mn

i ≥ mi. This can clearly be done, since by skewing fn to the right, we can
give value to staying by guaranteeing future cooperation in dominant states. This essentially
puts us in the former case, and for such a sequence {fn}n∈N, {(γ, fn)}n>N is a global game
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extension of γ(0). ¥

Proof of Proposition 5: We have that,

∂ log g(I)

∂I
=

u′(I + G)− u′(I + Π)

u(I + G)− u(I + Π)
− u′(I + Π)− u′(I)

u(I + Π)− u(I)
(15)

=

∫ I+G

I+Π
u′′(x)dx

∫ I+G

I+Π
u′(x)dx

−
∫ I+Π

I
u′′(x)dx∫ I+Π

I
u′(x)dx

Consider the following lemma.

Lemma 19 For any n ∈ {1, . . . , +∞}, consider sequences {a1, b1, . . . , an, bn} and {a′1, b′1, . . . , a′n, b′n}
such that for all k ∈ {1, . . . , n}, bk > 0, b′k > 0, and

a1

b1

≤ a2

b2

≤ · · · an

bn

≤ a′1
b′1
≤ a′2

b′2
≤ · · · ≤ a′n

b′n

then we have that
a1 + · · ·+ an

b1 + · · ·+ bn

≤ a′1 + · · ·+ a′n
b′1 + · · ·+ b′n

.

For any n ≥ 1, and k ∈ {0, . . . , n}, consider the wealth levels xn
k = I +Π+ k

n
(G−Π) and

yn
k = I + k

n
Π. Lemma 19 applies to the numbers ak = u′′(yn

k ), bk = u′(yn
k , a′k = u′′(xn

k), and
b′k = u′(xn

k). This yields that,

G−Π
n

∑n
k=0 u′′(xn

k)
G−Π

n

∑n
k=0 u′(xn

k)
≥

Π
n

∑n
k=0 u′′(yn

k )
Π
n

∑n
k=0 u′(yn

k )
.

Letting n go to infinity and using equation (15) yields that ∂ log g(I)
∂I

≥ 0. The proof can be
easily adapted to show that the inequality holds strictly whenever u exhibits strictly dimin-
ishing absolute risk aversion. ¥

Proof of Lemma 19: The property obviously holds for n = 1. Let us show it holds for n =

2. a1

b1
≤ a2

b2
≤ a′1

b′1
≤ a′2

b′2
implies the four inequalitites akb

′
l ≤ a′kbl for (k, l) ∈ {1, 2}2. Summing

these inequalities and dividing both sides of the resulting inequality by (b1 + b2)(b
′
1 + b′2)

yields the result.
We prove by induction the property for n ≥ 2. Assume it holds for n − 1, then by

applying it to the subsequences (a1, b1, . . . , an−1, bn−1) and (a′2, b
′
1, . . . , a

′
n, b

′
n) yields that

a1 + · · ·+ an−1

b1 + · · ·+ bn−1

≤ an

bn

≤ a′1
b′1
≤ a′1 + · · ·+ a′n

b′1 + · · ·+ b′n
.
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We can again apply the property for n = 2 to this last inequality. It yields that

a1 + · · ·+ an

b1 + · · ·+ bn

≤ a′1 + · · ·+ a′n
b′1 + · · ·+ b′n

which concludes the proof. ¥

Proof of Proposition 6: We have,

∂ log h(I)

∂I
=

u′(I + G)− u′(I − L)

u(I + G)− u(I − L)
− u′(I + Π)− u′(I)

u(I + Π)− u(I)
.

Define

d(I) ≡ u′(I + G)− u′(I − L)

u(I + G)− u(I − L)
=

A1 + A2 + A3

B1 + B2 + B3

where
A1 = u′(I + G)− u′(I + Π) B1 = u(I + G)− u(I + Π)
A2 = u′(I + Π)− u′(I) B2 = u(I + Π)− u(I)
A3 = u′(I)− u′(I − L) B3 = u(I)− u(I − L)

Proving that ∂ log h(I)
∂I

< 0 boils down to showing that A1+A2+A3

B1+B2+B3
< A2

B2
. We have

(16)
A1 + A2 + A3

B1 + B2 + B3

=
A1

B1

B1

B1 + B2 + B3

+
A2

B2

B2

B1 + B2 + B3

+
A3

B3

B3

B1 + B2 + B3

.

We know from the proof of Proposition 5, that A1

B1
≥ A2

B2
≥ A3

B3
. Since by assumption

L ≥ G, we have B3 ≥ B1. These last two inequalities and equation (16) imply that to prove
A1+A2+A3

B1+B2+B3
≤ A2

B2
, it is sufficient to show that 1

2

(
A1

B1
+ A3

B3

)
< 2A2

B2
. We know from the proof of

Proposition 5 that

(17)
A2

B2

≥ u′′(I)

u′(I)
.

Consider the following lemma.

Lemma 20 For any n ∈ N, consider a sequence of numbers {a1, b1, a2, b2, . . . , a2n+1, b2n+1}
such that b1 ≥ b2 ≥ · · · ≥ b2n+1 > 0,

a1

b1

≤ · · · ≤ a2n+1

b2n+1

and for all i ∈ {1, . . . , k} then, we have that

a1 + a2 + · · ·+ a2n+1

b1 + b2 + · · ·+ b2n+1

≤ an

bn

.
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By considering integrals as the limit of sums as in the proof of Proposition 5, this lemma
and the concavity of u′′

u′ imply that

A1

B1

=
u′(I + G)− u′(I + Π)

u(I + G)− u(I + Π)
≤ u′′

(
I + G−Π

2

)

u′
(
I + G−Π

2

)(18)

A3

B3

=
u′(I)− u′(I − L)

u(I)− u(I − L)
≤ u′′

(
I − L

2

)

u′
(
I − L

2

) .(19)

Hence, by using inequalities (17), (18), and (19), we obtain that,

A1

B1

+
A3

B3

− 2
A2

B2

≤ 2r(I)− r (I + (G− Π)/2)− r (I − L/2) .

Since L ≥ G > G− Π, and r is strictly convex, this implies that indeed

A1

B1

+
A3

B3

− 2
A2

B2

< 0.

This implies that ∂ log h(I)
∂I

< 0, and concludes the proof. ¥

Proof of Lemma 20: We can write,

(20)
a1 + a2 + · · ·+ a2n+1

b1 + b2 + · · ·+ b2n+1

=
n∑

i=1

bn−i + bn+i∑n
j=1 bn−j + bn+j

[
an−i

bn−i

bn−i

bn−i + bn+i

+
an+i

bn+i

bn−i

bn−i + bn+i

]
.

By assumption, we know that an−i

bn−i
≤ an+i

bn+i
, and bn−i ≥ bn+i > 0. This yields that

an−i

bn−i

bn−i

bn−i + bn+i

+
an+i

bn+i

bn−i

bn−i + bn+i

≤ 1

2

(
an−i

bn−i

+
an+i

bn+i

)
.

Using the assumption that 1
2

(
an−i

bn−i
+ an+i

bn+i

)
≤ an

bn
and reinjecting in expression (20) yields

that indeed,
a1 + a2 + · · ·+ a2n+1

b1 + b2 + · · ·+ b2n+1

≤ an

bn

which concludes the proof. ¥

Appendix B: Extension to non-stationary games

From a methodological perspective, this paper shows how selection results holding for one-
shot global games can be exploited to derive insights on the impact of a global game infor-
mation structure in dynamic games. Because the key step of the approach is to recognize
that actions in dynamic subgame perfect equilibria must be Nash equilibria in a one shot
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global game with augmented payoffs, there is hope that this methodology can be scaled –
at least in part – to study the impact of a global game information structure on a variety of
other games. This appendix extends the results of Section 3 to non-stationary exit games.

B.1 The setup

There are two players i ∈ {1, 2}, time is discrete t ∈ {1, . . . ,∞}, players have discount rate
β and there are two actions A = {Stay, Exit}. In addition, payoffs are indexed by a state
of the world wt ∈ R, which is independently drawn each period, and by a state variable
kt ∈ K ⊂ Rd. We will discuss different processes for kt. Given the state of the world, player
i expects flow payoffs,

S E
S gi(wt, kt) W i

12(wt, kt)
E W i

21(wt, kt) W i
22(wt, kt)

where i is the row player. States of the world {wt}t∈{1,...,∞} form an i.i.d. sequence of real
numbers drawn from a distribution with density fw, c.d.f. F and convex support I ⊂ R. All
payoffs, gi,W i

12,W
i
21,W

i
22 are continuous in wt and kt.

The state variable kt is perfectly observable at the beginning of period t and common
knowledge. The state of the world wt is unknown but players get signals xi,t = wt + σεi,t,
where {εi,t}i,t is a sequence of independent random variables lying in the interval [−1, 1].

We allow for the possibility of players’ final payoffs to be shifted by some idiosyncratic
noise ηi,t independent of everything else. That makes the true state of the world unobservable
ex-post, but it is also more realistic and adds no difficulty. Let us denote ri,t = g(wi,t) + ηi,t

the realized payoff obtained when both players stay.
Whenever there is an exit, the game stops and we assume without loss of generality that

players get a zero continuation value. Because of exit, any history hi,t is characterized by a
sequence of past signals and past outcomes: hi,t ≡ {xi,1, . . . , xi,t ; ri,1, . . . , ri,t−1 , k1, . . . , kt}.
Let us denote H the set of all such sequences. We will denote Vi(hi,t) the value of playing the
game starting at history hi,t from the perspective of player i. Note that these continuation
values are endogenously determined and will depend on players strategies.

Assumption 6 (control) There are finite bounds on the value of continuation Vi ∈ [mi,Mi].

For instance one could take the max-min and maximum values. Those bounds have to
be proven for each particular case. In the partnership game of Section 2, we had mi = 0 and
Mi = 1

1−β
Emax{VE, wt}. The tighter bounds, the easier it will be to show that the selection

results of Section 4 apply, however these bounds are mainly needed to insure compactness.

Definition 13 For any pair of functions (Vi, V−i) : R×Rd 7→ R2, we denote G(Vi, V−i, wt, kt)
the full information one-shot game,

S E
S gi(wt, kt) + βVi(wt, kt) W i

12(wt, kt)
E W i

21(wt, kt) W i
22(wt, kt)
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We denote Ψσ(Vi, V−i) the corresponding global game in which players get signals xi,t =
wt + σεi,t.

Assumption 7 (symmetry) For all states of the world wt, and capital stock kt, G(mi,m−i, wt, kt)
has a pure strategy equilibrium. All pure strategy equilibria belong to {(S, S), (E, E)}.
Note that if Assumption 7 is satisfied, then for any V taking values in [mi,Mi]× [m−i,M−i],
the game G(Vi, V−i, wt, kt) also has a pure strategy equilibrium, and its pure strategy equi-
libria also belong to {(S, S), (E,E)}.

Assumption 8 (increasing differences in the state of the world) For all k ∈ Rd and
i ∈ {1, 2}, gi(wt, k) − W i

21(wt, k) and W i
12(wt, k) − W i

22(wt, k) are strictly increasing in wt

with a rate greater than some r > 0 independent of k.

Together, Assumptions 7 and 8 respectively insure that at any state of the world, either
(S, S) or (E, E) is a risk-dominant equilibrium and that there is a unique risk-dominant
threshold xRD – (S, S) being risk-dominant above this threshold and (E, E) being risk-
dominant below. This is the unidimensional version of Carlsson and van Damme’s assump-
tion that states of the world should be connected to dominance regions by a path that is
entirely contained in the risk-dominance region of either of the equilibria.

Assumption 9 (dominance) There exists w such that for all k, gi(w, k)+βMi−W i
21(w, k) <

0 and w such that W i
12(w, k)−W i

22(w, k) > 0

Definition 14 For any function V : R × Rd 7→ R and w ∈ R, we define Ai(V,w, k) and
Bi(w, k) by,

Ai(Vi, w, k) = gi(w, k) + βVi(w, k)−W i
12(w, k) and Bi(w, k) = W i

21(w, k)−W i
22(w, k)

Take as given the strategy s−i of player −i and let Vi be some continuation value for
player i. When choosing to stay or exit, player i expects payoffs,

Πi
S(Vi, k) = E

[
W i

12(w, k) + {gi(w, k) + βVi(hi,t, w, k)−W i
12(w, k)︸ ︷︷ ︸

≡Ai(Vi,w,k)

}1s−i=S|hi,t, s−i

]

Πi
E(k) = E

[
W i

22(w, k) + {W i
21(w, k)−W i

22(w, k)︸ ︷︷ ︸
≡Bi(w,k)

}1s−i=S|hi,t, s−i

]

Player i’s best response is to choose S if and only if ΠS > ΠE.

Assumption 10 (staying is good) For all players i ∈ {1, 2}, all states of the world w
and all capital stocks k, we have, Ai(mi, w, k) ≥ 0 and Bi(w, k) ≥ 0.

Finally we make a compactness assumptions for technical reasons.
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Assumption 11 All exogenously given payoffs, gi(w, k),W i
12(w, k),W i

21(w, k) and W i
22(w, k)

are Lipschitz in w with a rate r independent of k.

By the Azrelà-Ascoli theorem, this assumption guarantees that the set of payoff functions
indexed by k and mapping w to real numbers is compact. Such compactness is required for
global game selection to occur at a speed that is independent of the state variable kt.

B.2 Markovian state variables

In this section we consider the case where kt follows a Markov chain over a countable set
of states S ⊂ K ⊂ Rd, where K is compact. Denote by h(·, kt) the distribution of kt+1

conditional on kt. We assume that for all k ∈ K, h(·, k) is bounded and continuous in k with
respect to the supremum norm over functions || · ||∞.

B.2.1 General results

Lemma 21 There exists σ such that for all σ < σ, whenever s−i is a Markovian strategy,
then, for all strategies s′−i,

s′−i ¹ s−i ⇒ BRi(s
′
−i) ¹ BRi(s−i) and s−i ¹ s′−i ⇒ BRi(s−i) ¹ BRi(s

′
−i)

Lemma 22 (extreme strategies) Under Assumptions 6, 7, 8 and 10, there exists σ > 0
small enough such that for all σ < σ, rationalizable strategies of Γσ are bounded by extreme
Markovian Nash equilibria. Those equilibria take threshold forms : for any state variable k,
there exists threshold {xi,k}k∈S such that player i chooses to stay at when the state variable
is k if and only if her signal is above {xi,k}.
Let us denote by xH

σ and xL
σ the thresholds associated with the highest and lowest equilibria

of Γσ. From Assumption 10 we obtain that xH
σ and xL

σ are respectively associated with
the highest and lowest possible pairs of rationalizable value functions, V H

σ and V L
σ . More

precisely, if s−i is a rationalizable strategy, the value function Vi associated with player i’s
best reply is such that at all histories hi,t, V L

i (hi,t) < Vi(hi,t) < V H
i (hi,t).

Theorem 4 Under Assumptions 6, 7, 8, 9, 10, and 11 there exists σ > 0 such that for
all σ ∈ (0, σ), there exists a continuous operator φσ(·) mapping value functions onto value
functions such that,

(i) VL
σ (·) and VH

σ (·) are the lowest and highest fixed points of φσ(·).
(ii) A vector of continuation value functions is supported by a Markovian equi-
librium if and only if it is a fixed point of φσ(·).

(iii) As σ goes to 0, the family of operators φσ(·) converges uniformly over any
bounded family of functions to an increasing operator Φ defined by

Φ(Vi, V−i)(kt) =

(
E

[
W i

22(w) + (gi
11 + βVi(kt+1 −W i

22(w)))1w>xRD(Vi(kt+1,V−i(kt+1)) | kt

]
E

[
W−i

22 (w) +
(
g−i
11 + βV−i(kt+1 − V −i

22 (w))
)
1w>xRD(Vi(kt+1),V−i(kt+1)) | kt

]
)
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Where xRD (Vi(kt+1), V−i(kt+1), kt) is the risk dominant threshold of the 2 × 2
global game Ψ (Vi(kt+1), V−i(kt+1, kt)).

Lemma 23 (upper hemicontinuity) Denote VH and VL the highest and lowest fixed
points of Φ. Consider any family {Vσ}σ>0 of fixed points of φ(σ, ·). Then,

lim sup
σ→0

Vσ ¿ VH and lim inf
σ→0

Vσ À VL.

Where the lim sup and lim inf are taken component by component.

The definition of ξ and ζ for real numbers is extended to mappings x : K 7→ R.

Definition 15 For any mapping x : K 7→ R we define the mappings ξ and ζ by,

∀kt ∈ K, ξ(x)(kt) = xRD(BRVi(x, kt+1), BRV−i(x, kt+1), kt)

ζ(x)(kt) = xRD(NVi(x, kt+1), NV−i(x, kt+1), kt).

Definition 16 (non-singular extreme fixed points) An extreme fixed point x of an in-
creasing mapping g : RS 7→ RS is said to be non-singular if and only if,

1. It is strongly isolated among fixed points of g in the sense that there exists δ > 0 such
that whenever, for all n ∈ N, yn ∈ Bδ,||·||∞(x) and limn→∞ ||g(yn) − yn||∞ = 0, then
limn→∞ ||yn − x||∞ = 0

2. For all δ > 0 there exists η ∈ (0, δ), and v ∈ RS such that for all k ∈ S, v(k) ∈ (η, δ)
and for all k ∈ S, we have:

g(x + v)(k) < x + v − η/2 and g(x− v)(k) > x− v + η/2

Lemma 24 (lower hemicontinuity) Assume the extreme fixed points of ξ, xH and xL (by
convention xH ¿ xL), are non-singular. Denote by xH

σ (resp. xL
σ ) the threshold function

associated to the highest (resp. lowest ) equilibrium of Γσ. Then, we have,

lim
σ→0

||xH
σ − (xH , xH)||∞ = 0 and lim

σ→0
||xL

σ − (xL, xL)||∞ = 0.

Theorem 5 (ALSR of extreme equilibria) Whenever the extreme fixed points xH and
xL of ξ are non-singular, the strategies (sxH , sxH ) and (sxL , sxL) are ALSR.

Lemma 25 Assume that S is finite and consider a C1 payoff structure π. Then at an
extreme fixed point x of ξ, the greatest eigenvalue λmax of dξ is weakly less than one.

Whenever λmax is strictly less than one, then x is non-singular.

Lemma 26 (generic non-singularity) Whenever S is finite, there exists a subset P of
C1 payoff structures that is open and dense in Π1 with respect to || · ||Π1, and such that for
any π ∈ P , the extreme fixed points of the associated mapping ξ are non-sigular.
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B.3 Auto-correlation

Because we might want to introduce autocorrelation in the states of the world, we may want
to consider state variables following a recurrence equation of the form kt+1 = f(kt, wt), where
f is a deterministic function. In this formulation, wt is the innovation and kt is an observable
sufficient statistic for past innovations.

Compared with the previous section, the main difficulty comes from the fact that be-
cause next period’s capital stock depends on the realization of the state of the world, the
continuation values at time t will now depend on the state of the world wt. Because the
uniform global games selection results we use require that all payoff functions be continu-
ous and share a common modulus of continuity (see Chassang (2006) for more details), we
must prove that equilibrium value functions indexed by the current capital stock are equi-
continuous in wt. More precisely we will to show they are increasing in wt and Lipschitz
with a rate independent of k. Let us denote by Ψσ(Vi, V−i, kt) the global game,

S E
S gi(wt, kt) + βVi(kt+1) W i

12(wt, kt)
E W i

21(wt, kt) W i
22(wt, kt)

where i is the row player. In addition to the assumptions of Section B.1, we need to
make a few more technical assumptions. These assumptions make the statement of theorems
somewhat tedious, but they are fairly general so that our selection result will in fact be easily
applicable.

Assumption 12 (increasing differences in capital stock) For all wt ∈ R and i ∈ {1, 2},
gi(wt, k)−W i

21(wt, k) and W i
12(wt, k)−W i

22(wt, k) are increasing in k.

Assumption 13 (capital is good) For i ∈ {1, 2}, and w ∈ R we assume that gi, V i
12, V i

21

and V i
22 are weakly increasing in k.

Definition 17 (iterated capital stock) For all n ∈ N and w = (w1, . . . , wn) ∈ Rn, we
define by induction the iterated capital stock fn(k,w) as follows,

f1(k, w1) = f(k, w1) and fn(k,w) = f (fn−1 (k, (w1, . . . , wn−1)) , wn)

In other words, fn(kt,w) = kt+n | w.

Assumption 14 We make four assumptions on the process of kt and how it affects payoffs.

1. f is increasing in both arguments.

2. there exists H ∈ R such that
∣∣∣∣∣

∂f
∂k
∂f
∂w

∣∣∣∣∣ < H ,

∣∣∣∣∣
∂(gi−W i

21)

∂k

∂(gi−W i
21)

∂w

∣∣∣∣∣ < H and

∣∣∣∣∣
∂(W i

12−W i
22)

∂k

∂(W i
12−W i

22)

∂w

∣∣∣∣∣ < H
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3. There exists n∗ ∈ N and µ < 1
β

such that,

∀k ∈ Rd, Ew

[
∂fn∗
∂k

]
< µn∗

4.

∀n ∈ N, k ∈ Rd, Ew

[
∂fn

∂k

]
< +∞

Lemma 27 (joint selection) Define VR the set of functions mapping Rd into R that are
weakly increasing and Lipschitz continuous with rate R. For all R, there exists σ > 0 such
that for all σ < σ, for any V = (Vi, V−i) ∈ V2

R, the global game Ψσ(Vi, V−i, kt) has a unique
pair of rationalizable strategies (xi(V, kt), x−i(V, kt)).

Proof: This result is a direct application of Theorem 2 of Chassang (2005). ¥
Given a class VR, for σ small enough, Lemma 27 allows us to define a mapping φ(V, σ)

which maps any vector of value functions from VR into the value of playing game Ψσ(Vi, V−i, ·)
for each player. Function φ maps value functions into value functions. In order to combine
the Abreu, Pearce and Stacchetti (1990) approach and a global games selection argument,
we need to find a class VR stable by φ. Lemmas 28 and 29 show that φσ(·) maps VR into
VR# for some R# independent of σ. Finally Lemma 30 shows that for some R big enough,
all iterated images of VR by φσ(·) are subsets of some fixed VR# with R# independent of σ.

Lemma 28 (Lipschitz continuity in k of the selected equilibrium) Pick V ∈ V2
R and

σ such that Lemma 27 applies. Then there exists ρ > 0, independent of R, such that for
all σ < σ, the uniquely selected equilibrium of Ψσ(V), (xi(V, k), x−i(V, k)) is Lipschitz in k
with rate ρ.

Lemma 29 (stability of Lipschitz continuity) If V belongs to VR for some R > 0, then
V#, defined by V#(k) = φ(V, k, σ), belongs to VR# for some R# > 0.

Lemma 29 allows us to define iterations of φ(·, σ) as follows:

Definition 18 Pick n ∈ N. For V and σ small enough, we define by induction φn(V, k, σ)
by,

φ1(V, k, σ) = φ(V, k, σ) and φn(V, kt, σ) = φ(Eφn−1(V, kt+1, σ), kt, σ)

Using Lemmas 27 and 29 we know that for any R > 0 and n ∈ N there exists σn,R such that
for all σ < σn,R, φn(V, k, σ) is well defined for all V ∈ V2

R and all k ∈ Rd.

Lemma 30 (stable Lipschitz class) Take the integer n∗ defined in Assumption 14. There
exists σ > 0 and R such that for all σ < σ, φn∗(V2

R, σ) ⊂ V2
R

Moreover, for all n ∈ N and σ < σ, φn(V, k, σ) is well defined for V ∈ VR and that there
exists R# > 0 such that for all n ∈ N, φn(V2

R, k, σ) ⊂ V2
R#
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The last tricky step is to prove that to obtain tight bounds on the set of rationalizable
strategies, it is enough to study strategies corresponding to value functions in VR. To prove
this, we prove that the set of rationalizable strategies is bounded by extreme Markovian
Nash equilibria that can be obtained by iteratively applying the mapping φσ(·) to vectors of
constant value functions.

Lemma 31 Pick σ and R such that Lemma 30 holds. Denote V = Vi × V−i the set of
rationalizable continuation values of Γσ. Pick any vectors of value functions VL and VH in
VR, then for all σ < σ,

{V ⊂ [VL,VH ]
} ⇒ {V ⊂ [φ(VL, σ), φ(VH , σ)]

}

Theorem 6 Under Assumptions 6, 7, 8, 9, 10, 11, 12, 13 and 14, there exists σ > 0 such
that for all σ < σ, the rationalizable strategies of game Γσ are bounded by extreme Nash
equilibria associated with extreme value functions VH

σ (·) and VL
σ (·). Moreover, there exists

a continuously increasing operator φσ(·) mapping value functions into value functions, such
that,

1. VL
σ (·) and VH

σ (·) are the lowest and highest fixed points of φσ(·).
2. As σ goes to 0, the family of operators φσ(·) converges uniformly over any class VR to

a function Φ defined by

Φ(Vi, V−i)(kt) =

(
E

[
W i

22(w) + (gi
11 + βVi(kt+1)−W i

22(w))1w>xRD(Vi(f(k,w),V−i(f(k,w)))

]
E

[
W−i

22 (w) +
(
g−i
11 + βV−i(kt+1)−W−i

22 (w)
)
1w>xRD(Vi(kt+1),V−i(kt+1))

]
)

Where xRD (Vi(kt+1), V−i(kt+1)) is the risk-dominant threshold of the 2× 2 global game
Ψ (Vi(kt+1), V−i(kt+1)).

Whenever the fixed points of Φ are isolated with respect to the uniform norm, then as σ goes
to 0, uniform convergence of φσ(·) implies that VH

σ (·) and VL
σ (·) converge to the highest and

lowest fixed points of Φ with respect to the uniform norm.

B.4 Proofs for Appendix B

Proof of Lemma 21: Consider s−i a Markovian strategy and s′−i such that s′−i ¹ s−i.
Define Vi and V ′

i the continuation value functions respectively associated to player i’s best
response to s−i and s′−i. Assumption 5, that “staying is good”, implies that at all histories
hi,t , V ′

i (hi,t) < Vi(hi,t). At any history hi,t, the best-reply action profiles of player i are
BRi(a−i, Vi(hi,t), σ) and BRi(a

′
−i, V

′
i (hi,t), σ). From Lemma 4, we have that

(21) BRi(a
′
−i, V

′
i (hi,t), σ) ¹ BRi(a

′
−i, Vi(hi,t), σ)

Since s−i is Markovian, Vi(hi,t) is constant. Thus Lemma 3 implies that

(22) BRi(a
′
−i, Vi(hi,t), σ) ¹ BRi(a−i, Vi(hi,t), σ)
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Combining equations (21) and (22) we obtain that indeed, BRi(s
′
−i) ¹ BRi(s−i). An iden-

tical proof holds for the other inequality. ¥

Proof of Lemma 22: This a corollary of Lemma 21. The proof, again drawing on the
methodology of Milgrom and Roberts (1990) and Vives (1990) is identical to that of Theo-
rem 1. ¥

Proof of Theorem 4: The proof is almost identical to that of Theorem 2. Selection in
one-shot global games is applied to the augmented game associated with each capital stock.
See the proof of Theorem 2 for more details. ¥

Proof of Lemma 23: There exists a sequence {σn}n∈N going to 0, such that {Vσn}n∈N
converges weakly to lim supσ→0 Vσ ≡ V∗. Let us show that V ∗ is a fixed point of Φ. Indeed
for every kt, Vσ satisfies Vσ(kt) = φ(kt,Vσ(kt+1), σ). Since φσ(·) converges to Φ, and Φ is
continuous in V, the equation must hold at the limit. This implies that indeed V∗ is a fixed
point of Φ which proves the right side of the inequality. An symmetric proof gives the left
side. ¥

Proof of Lemma 24: This is a direct implication of Theorem 5. Indeed a ball centered
on a threshold form strategy and of radius ρ with respect to the topology on strategies cor-
responds to a ball centered on the threshold x and radius ρ with respect to the supremum
distance. ¥

Proof of Theorem 5: The proof is very similar to that of Proposition 3 and Theorem 3.
Let x denote an extreme fixed point of ξ. By assumption, for any δ > 0, there exists η > 0 and
x′′ ∈ Bδ(x) such that for all k ∈ S, x′′(k) > x(k)+2η and ξ(x′′)(k) ¿ x′′(k)−η′′. This implies
there exists x′ ∈ [ξ(x′′), x′′] such that for all k ∈ S, ξ(x′′)(k) + η/2 < ξ(x′)(k) < x′′(k)− η/2.
Let us now show that for σ small enough, for all k ∈ S, BRi,σ ◦BR−i,σ(sx′)(k) ≺ sx′(k). We
have,

BRi,σ ◦BR−i,σ(sx′)(k) = BRi,σ(·, BRVi,σ(BR−i,σ(x′), k), k) ◦BRi,σ(·, BRV−i,σ(x′), k)(x′).

For η small enough, we know that |BR−i,σ(x′)(k)− x′(k)| < 2σ. Hence, for σ small enough,
∀k ∈ S, BR−i,σ(x′)(k) ≺ x′′(k). This implies that,

BRi,σ ◦BR−i,σ(sx′)(k) ≺ BRi,σ(·, BRVi,σ(x′′, k), k) ◦BRi,σ(·, BRV−i,σ(x′′, k), k)(x′).

From Theorem 3 of Chassang (2006), we know that x∗σ(BRVi,σ(x′′, k), BRV−i,σ(x′′, k), k)
converges uniformly to ξ(x′′)(k), hence for σ small enough,

(23) x∗σ(BRVi,σ(x′′, k), BRV−i,σ(x′′, k), k) > x′(k).

From Theorem 2 of Chassang (2006), we know that for σ small enough and for all k ∈ S, the
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sequence [BRi,σ(·, BRVi,σ(x′′, k), k) ◦BRi,σ(·, BRV−i,σ(x′′, k), k)]p (x′)(k) converges monotonously
to x∗σ(BRVi,σ(x′′, k), BRV−i,σ(x′′, k), k) as p goes to infinity. Using 23, this implies that

(24) ∀k ∈ S, BRi,σ ◦BR−i,σ(sx′)(k) ≺ sx′(k).

Since BRi,σ ◦BR−i,σ is monotonous, this implies that as q goes to infinity, the sequence
{BRi,σ ◦ BR−i,σ}q(sx′) converges weakly to a strategy of threshold x∗i,σ such that x∗i,σ ∈
Bδ,||·||∞(x). Note that (x∗i,σ, BR−i,σ(x∗i,σ)) is a fixed point of ξσ. Let us now show that x∗i,σ
converges to x as σ goes to 0.

We know that ξσ converges uniformly to (ξ, ξ). Indeed, BRVi,σ(y, k) converges uniformly
over (y, k) ∈ RS×S to BRV (y, k) as σ goes to 0, and Theorem 4 of Chassang (2006) implies
that x∗σ(Vi, V−i, k) is Lipschitz-continuous in V with a rate independent of k. This implies
that for any ν > 0 , there exists σ such that for all σ ∈ (0, σ),

||ξ(x∗σ)− x∗σ||∞ ≤ ||ξ(x∗σ)− ξσ(x∗σ) + ξσ(x∗σ)− x∗σ||∞ ≤ ||ξ(x∗σ)− ξσ(x∗σ)||∞ ≤ ν.

Since x is an isolated fixed point of x, this implies that limσ→0 ||x∗σ − x||∞ = 0.
To prove ALSR, note that one can construct x̃ with the same properties as x′, but strictly

below x rather than strictly above. Then [sx′ , sx̃] is a neighborhood of sx for which

lim
σ→0

lim
n→∞

[BRi,σ ◦BR−i,σ]n([sx′ , sx̃]) = sx.

This shows that indeed, (sx, sx) is ALSR. ¥

Proof of Lemma 25: ξ and ζ coincide around their fixed points. Since S is finite, ζ is
really a mapping from Rp to Rp with p ∈ N. Whenever π ∈ Π1, ζ will be differentiable.
Because ξ and ζ coincide around their fixed points, this implies that ξ is differentiable around
its fixed points. Denote by x the highest fixed point of ξ. Since ξ is strictly increasing
around its fixed points, the Perron-Frobenius theorem applies to dξ|x. It states that dξ|x
admits a greatest eigenvalue λmax > 0 associated with an eigenvector v with strictly positive
components. Assume that λmax > 1. Then, for some δ > 0 small enough, we will get that
ξ(x + δv) À x + δv. This implies that ξ admits a fixed point x′ À x + δv, which contradicts
the fact that x is the highest fixed point of ξ. Hence, it must be that λmax ≤ 1.

For the second part of the lemma, λmax < 1 implies that, there exists δ > 0 such that for
all η ∈ (0, δ), ξ(x+ηv) ¿ x+ηv− 1−λmax

2
ηv and ξ(x−ηv) À x−ηv+ 1−λmax

2
ηv. Now consider

any y such that y ∈ [x− δv, x + δv]. There exists η ∈ (−δ, δ) such that y is weakly less than
x + ηv, and y and x + ηv share one strictly positive coordinate y(k). Assume without loss of
generality that η > 0. Since ξ(x + ηv) ¿ x + ηv− 1−λmax

2
ηv, and ξ is increasing, this implies

that ξ(y)(k) < y(k). Hence, y cannot be a fixed point of ξ, proving that x is isolated. This
concludes the proof. ¥

Proof of Lemma 26: Let us consider the set off payoff functions such that at its extreme
fixed points, ζ admits an eigenvalue ρ ∈ (0, 1) associated with an eigenvector with strictly
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positive coordinates. Note that since ζ is increasing around its fixed points, this property
clearly implies that ζ is contracting around its extreme fixed points. Denote P the set of
payoff structures satisfying this property.

Denote x the highest fixed point of ζ. From Lemma 25, we already know that the
Jacobian of ζ at x admits a largest eigenvalue λmax ∈ (0, 1], associated with an eigenvector
v whose components are strictly positive.

Let us show that P is open. Pick π ∈ P . At x∗, det(dζ(x∗)−Id) is strictly different from
0. By continuity of dζ, this implies that there exists a ball of center x∗ and radius η > 0 and
ν > 0 such that for all x ∈ Bη(x

∗), | det(dζ − Id)| > ν. There exists µ > 0 such that for all
payoff structures π̃ within distance µ of π, the extreme fixed points of ζ̃ are within distance
η of x∗ and | det(dζ − Id)| > ν/2 over Bη(x

∗). We already know that the greatest eigenvalue
of ζ̃ is weakly less than 1. This implies it is strictly less than one and proves that P is open.

We now show that P is dense. Since the intersection of dense open sets is dense and open,
we proceed separately for the highest and lowest fixed points. The set of C2 payoff structures
in Π1 that strictly satisfy Assumption 10 is dense in Π1. Pick such a payoff structure π, and
denote by x the highest fixed point of the associated mapping ζ. For any vector u ∈ RS ,
consider the payoff structure πu defined by,

∀(w, k) ∈ R×K, g̃i,u(w, k) ≡ gi(w, k)

W i,u
22 (w, k) = W i

22(w, k)

W i,u
12 (w, k) = W i

12(w − u(k), k) + gi(w, k)− gi(w − u(k), k)

W i,u
21 (w) = W i

21(w − u(k), k) + W i
22(w, k)−W i

22(w − u(k), k)

There exists δ > 0 such that for all u satisfying ||u||∞ < δ, πu satisfies Assumptions 6, 7,
8, 9, and 10. Moreover, for ||u||∞ small enough, πu is arbitrarily close to π in the sense of
|| · ||Π1 . Also, for any u, ζu = ζ + u. Assume that there exists η > 0 such that for all u
satisfying ||u||∞ < η, at the highest fixed point of ζu, dζ has a largest eigenvalue equal to
1. We will show it leads to a contradiction. More precisely, let us show that if this is true,
then x cannot be the highest fixed point of ζ. First note that ζ is C2 and that Assumption
2 implies potential fixed points of ζu belong to a compact L. Hence, there exists H > 0 such
that for all u ∈ RS , and y ∈ L, | < u, d2ζu > | ≤ H < u, u >. For all n ∈ N, define the
sequences {xn

m}m∈{0,...,n} and {un
m}m∈{0,...,n} such that for all m, xn

m is the highest fixed point
of ζun

m and ||un
m||∞ < η, as follows:

1. xn
0 ≡ x and un

0 = 0

2. For all m ∈ {0, . . . , n−1}, by assumption, at xn
m, dζ has a largest eigenvalue equal to 1.

By the Perron-Frobenius theorem, this largest eigenvalue is associated to an eigenvector
v with strictly positive coordinates. Pick a representant such that ||v||∞ = 1 and define
un

m+1 = ζun
m(xn

m + ηv/n)− xn
m − ηv/n + un

m.

3. Define xn
m+1 as the highest fixed point of ζun

m+1 .

First note that xn
m + ηv/n is a fixed point of ζun

m+1 , hence, xn
m+1 À xn

m + ηv/n. Second, since
v was picked as an eigenvector associated to 1 at each stage, we have that ||un

m+1− un
m||∞ =
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||ζun
m(xn

m + ηv/n)− xn
m − ηv/n||∞ ≤ Hη2/n2. Hence we obtain,

ζ(xn
n)− ζ(x) =

∑

m∈{0,...,n−1}
ζ(xn

m+1)− ζ(xn
m)

=
∑

m∈{0,...,n−1}
ζun

m+1(xn
m+1)− ζun

m(xn
m) +

∑

m∈{0,...,n−1}
un

m − un
m+1

= xn
n − x +

∑

m∈{0,...,n−1}
un

m − un
m+1

which yields

||ζ(xn
n)− xn

n||∞ ≤ ||
∑

m∈{0,...,n−1}
un

m − un
m+1||∞ ≤ Hη2/n.

Consider e ∈ RS the vector whose components are all equal to 1. By construction, xn
n ∈

[x, x+ ηe]\ [x, x+ ηe
|S| ]. Extract a converging sequence from {xn

n}n∈N. Its limit x′ is such that

x′ À x + ηe
2|S| and satisfies ζ(x′) = x′. This contradicts the fact that x is the greatest fixed

point of ζ. Hence for any δ > 0, there exists u satisfying ||u||∞ < δ such that at the highest
fixed point of ζu, dζu has a largest eigenvalue strictly less than 1. ¥

Proof of Lemma 28: This is a direct application of Theorem 5 from Chassang (2006). We
refer to that paper for details. This theorem holds under conditions which, in this particular
case, boil down to showing there exists a constant C such that for all k, w, k′, w′,

∆k,k′Vi(f(k, w))

∆w,w′Vi(f(k, w))
< C

Where for any function u, ∆s,s′u(s) ≡ ||u(s′)−u(s)||
||s′−s|| .

Assumption 14 was specifically introduced to prove this inequality. Assume temporarily
that Vi is differentiable. Then using the fact that (V ◦ f)′ = V ′ ◦ f × f ′, we get that

(25)

∣∣∣∣∣
∂Vi(f(k,w))

∂k
∂Vi(f(k,w))

∂w

∣∣∣∣∣ < H

Noting that we have ∂Vi(f(k,w))
∂w

> 0 and using the inequality

∀a, b, c, d > 0,
a

b
< m ,

c

d
< m ⇒ a + c

b + d
< m

we get by integration of the numerator and denominator of equation (25) that,

∆k,k′Vi(f(k, w))

∆w,w′Vi(f(k, w))
< H
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This result does not depend on the smoothness of Vi. Thus using the density of differ-
entiable functions, we know it holds for any Vi in VR. Thus Theorem 5 of Chassang (2005)
applies. The uniquely selected equilibrium (xi(V, k), x−i(V, k)) is Lipschitz in k with a rate
ρ independent of R. ¥

Proof of Lemma 29: V#(k) = (V #
i (k), V #

−i(k)). Assume – temporarily – that V #
i and Vi

are differentiable, denoting xi and x−i the equilibrium strategies, we have

∂V #
i

∂k
= E

[(
∂gi

11

∂k
+β

∂Vi

∂k

∂f

∂k

)
1si>xi1s−i>x−i +

∂W i
12

∂k
1si>xi1s−i<x−i +

∂W i
21

∂k
1si<xi1s−i>x−i +

∂W i
22

∂k
1si<xi1s−i<x−i

]

+ E
[
∂xi

∂k
fsi(xi)

(
(W i

22 −W i
12)1s−i>x−i + (W i

21 − gi
11 − βWi)1s−i>x−i

)]

+ E
[
∂x−i

∂k
fs−i

(x−i)
(
(W i

22 −W i
12)1si>xi + (W i

21 − gi
11 − βVi)1si>xi

)]

Using Assumption 11, Lemma 28 and the fact that Vi ∈ VR, we conclude there exist absolute
constants C1, C2 such that, ∣∣∣∣∣

∂V #
i

∂k

∣∣∣∣∣ ≤ C1 + C2R

This inequality doesn’t depend on the smoothness of either Vi or V #
i . Using the density of

smooth functions we conclude it holds generally.
Finally, note that V #

i is increasing in k. This results directly from Assumptions 12 and
13. Increasing k increases cooperation directly because of Assumption 12, and indirectly
because Assumption 13 implies that more capital increases continuation values. ¥

Proof of Lemma 30: We know that weak monotonicity is maintained, the difficulty is
to show that Lipschitz continuity is maintained with a stable rate. Pick V ∈ VR. We can
express φn∗ explicitly.

φi
n∗(V, k, σ) = E

[ n∗−1∑
t=1

βt

t−1∏
q=1

1si,q>xi,q
1s−i,q>x−i,q

(
gi1si,t>xi,t

1s−i,t>x−i,t

+ W i
121si,q>xi,q

1s−i,q<x−i,q
+ W i

211si,q<xi,q
1s−i,q>x−i,q

+ W i
121si,q<xi,q

1s−i,q<x−i,q

)]
(26)

+ E

[
βn∗

n∗∏
q=1

1si,q>xi,q
1s−i,q>x−i,q

V (fn∗(k,w))

]

Assume temporarily, that all functions involved are differentiable with respect to k. Using
Assumptions 11, 14, Lemma 28, and the fact that V ∈ V2

R, equation (26) yields after some
manipulation an inequality of the form,

∣∣∣∣
∂φn∗
∂k

∣∣∣∣ ≤ C + βn∗E
[
∂fn∗
∂k

]
R ≤ C + (βµ)n∗R
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Therefore, if we pick R ≥ C
1−(βµ)n∗ , then VR is stable via φn∗. The second part of the lemma

follows directly using this result and Lemma 29. ¥

Proof of Lemma 31: Consider a maximal rationalizable action profile ai
m,1. It is a best re-

sponse to some action profile a−i and some rationalizable continuation value Vi. This implies
that ai

m,1 ¹ BRi(a
−i, V H

i ). Moreover, since V H
i ∈ VR, we know from Lemma 3 of Chassang

(2005) that BRi(·, V H
i ) is monotone in strategies. Thus there exists a maximal rationalizable

action a−i
m,1 such that ai

m,1 ¹ BRi(a
−i
m,1, V

H
i ). For i ∈ {1, 2}, we define BRi(·) ≡ BRi(·, V H

i ).
By iterating the former reasoning, we get a sequence of maximal actions {ai

m,q}q∈N, such that

ai
m,1 ¹ (BRi ◦BR−i)

q(ai
m,q). Taking q to infinity, this implies that rationalizable actions are

smaller than the unique rationalizable strategy of Ψσ(VH). Because of Assumption 10, this
also implies that the value associated with any rationalizable action is less than the value
of playing the unique equilibrium of Ψσ(VH). This shows that V ¹ φ(VH , σ). An identical
proof holds for the lower bound. ¥

Proof of Theorem 6: To prove the existence of extreme equilibria, we use Lemma 31
iteratively. Pick R and σ such that Lemma 30 holds. Denote V the set of rationalizable
value functions. Begin by setting VH

σ,0 = (Mi, M−i) and VL
σ,0 = (mi,m−i). We must have

V ⊂ [VL
σ,0,V

H
σ,0]. Since VH

σ,0 and VL
σ,0 belong to V2

R, Lemma 31 implies that

V ⊂ [φ(VL
σ,0, σ), φ(VH

σ,0, σ)] ⊂ [VL
σ,0,V

H
σ,0]

From Lemma 30, we know that all functions φn(VL
σ,0, σ) and φn(VH

σ,0, σ) are Lipschitz with
rate R# so that we can keep applying φσ(·) iteratively. Using Lemma 31 and the monotonicity
of φ(·, σ) at each step, we get, that for all q ∈ N,

V ⊂ [φq(V
L
σ,0, σ), φq(V

H
σ,0, σ)] ⊂ [φq−1(V

L
σ,0, σ), φq−1(V

H
σ,0, σ)] ⊂ · · · ⊂ [VL

σ,0,V
H
σ,0]

The sequences
{
φq(V

L
σ,0, σ)

}
q∈N and

{
φq(V

H
σ,0, σ)

}
q∈N are respectively increasing and de-

creasing. Moreover these are sequences of bounded functions with a fixed Lipschitz rate R#.
Thus, by Ascoli’s Theorem, they converge uniformly to value functions VL

σ,∞ and VH
σ,∞ with

Lipschitz rate R#. Using Theorem 4 of Chassang (2005), we know that φσ(·) is continuous
over VR# endowed with the uniform norm. This implies that VH

σ,∞ and VL
σ,∞ satisfy,

VH
σ,∞ = φ(VH

σ,∞, σ) and VL
σ,∞ = φ(VL

σ,∞, σ)

This implies that VL
σ,∞ and VH

σ,∞ sustain extreme Markovian Nash equilibria in which players
respectively play the unique equilibria of Ψσ(VL

σ,∞) and Ψσ(VH
σ,∞). Finally, we know from

Theorem 3 of Chassang (2005) that φσ(·) converges uniformly towards Φ over VR# . ¥
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Appendix C: Alternative assumptions

This section describes assumptions generalizing those of Section 2.3, and under which the
analysis of Section 3 still holds step by step. The analysis is not repeated here. Note that
these assumptions accommodate the possibility of exit payoffs also being indexed by σ as in
Section 4.4.

Consider an exit game with flow payoffs γσ (now indexed by σ)

S E
S gi

σ(wt) W i
12,σ(wt)

E W i
21,σ(wt) W i

22,σ(wt).

Denote by G(V, w, σ) the associated one-shot full-information game augmented with
continuation V, and by Γσ the exit game with payoffs indexed by σ and information xi,t =
wt + σεi,t.

Assumption 0’ (Compactness of payoff structures) There exists σ > 0 such that for
all σ ∈ [0, σ] all payoff structures γσ share a common modulus of continuity in w and converge
to γ0 with respect to the supremum norm || · ||∞ as σ goes to 0.

Assumption 1’ (Bounded values) Denote by mi,σ and Mi,σ the min-max and maximum
values of player i in game Γσ. There exist finite bounds m and M such that for all σ,
m ≤ mi,σ, and Mi,σ ≤ M .

Assumption 2’ (Dominance) There exist σ > 0, w and w such that for all σ ∈ [0, σ] and
all i ∈ {1, 2},

gi
σ(w) + βMi,σ −W i

21,σ(w) < 0 and W i
12,σ(w)−W i

22,σ(w) < 0

and W i
12,σ(w)−W i

22,σ(w) > 0 and gi
σ(w) + βmi,σ −W i

21,σ(w) > 0.

Assumption 3’ (Increasing differences in the state of the world) There exists σ such
that for all σ ∈ [0, σ] and all i ∈ {1, 2}, gi

σ(wt) −W i
21,σ(wt) and W i

12,σ(wt) −W i
22,σ(wt) are

strictly increasing over wt ∈ [w, w], with a slope greater than some real number r > 0

Assumption 4’ (Equilibrium symmetry) For all states of the world wt, G(mi,σ, m−i,σ, wt, σ)
has a pure strategy equilibrium. All pure equilibria belong to {(S, S), (E,E)}.

Assumption 5’ (Staying is good) For all players i ∈ {1, 2} and all states of the world
w ∈ [w, w], Ai(mi,σ, w, σ) ≥ 0 and Bi(w, σ) ≥ 0.

Under these assumptions, the analysis of Section 3 goes through step by step.
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