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Abstract

We consider the implementation of an economic outcome under
complete information when the principal cannot commit to a simul-
taneous participation game. From a class of sequential participation
games, we introduce the concept of implementability under order in-
dependent individual rationality. We characterize the set of imple-
mentable mechanisms, which is possibly a non-convex set, and we solve
the optimal design program: the principal raises a lower revenue but
economic e�ciency is not damaged.
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1 Introduction

The mechanism design paradigm considers that agents are taking their
participation decisions simultaneously despite the fact that the principal in
many transactions often lacks the ability to commit to close the participation
at an exact deadline. In corporate acquisitions and procurement auctions, it
is common that the seller violates the announced rules to accept a subsequent
better deal. McAdams and Schwarz [14] and Vartiainen [19] consider auction
models where the seller is unable to commit not to solicit another round of
o�ers after having publicly disclosed the previous o�ers. Similarly, in the
corruption literature, e.g. Compte et al. [4], the auctioneer may also provide
an opportunity for bid readjustments in exchange for a bribe.

We consider the implementation of an economic outcome under complete
information when the principal cannot commit to a simultaneous participa-
tion game. On the contrary we consider that feasible participation games are
such that, sequentially, agents are asked either to accept to participate in the
mechanism or to delay their participation decisions. After each acceptation
of a given agent, the seller cannot refrain himself from giving a new chance
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to participate to all the remaining agents which are still eligible for partic-
ipation. As in the aforementioned positive literature, we consider that par-
ticipation decisions are publicly observable. A mechanism is implementable
if full participation is the only equilibrium of any participation game. In
the same spirit as Moldovanu and Winter [16], we require implementation
to be independent of the speci�c structure of the participation game. Fol-
lowing their terminology, the traditional individual rationality constraints
are strengthened by requiring order independent individual rationality. Thus
implementation requires more than the traditional condition that participa-
tion is a best-response for agent i given that all the other agents participate.
Proposition 5.1 states that order independent individual rationality requires
that there is no set of agents S ⊂ N such that all agents in S prefer the
outcome where only agents in N \ S participate to the outcome where all
agents accept the mechanism. Those new constraints are non-linear and the
set of implementable mechanisms is thus in general not convex. Neverthe-
less, the optimal design program can be simpli�ed as done in Proposition 5.3,
our main result: it allows us to separate the choice of the �nal allocation to
the structure of the optimal threats. As under a simultaneous participation
game, we obtain that the optimal mechanism is e�cient.1

Our sequential participation game can be also interpreted as a minimal
collusive device for the agents. The main contributions on collusion-proof im-
plementation [12, 13, 3] preclude any collusion on the participation decisions
themselves and restrict the collusive activity to the reports. In this litera-
ture, the collusion technologies allow agents to fully contract (with monetary
transfers) their reports to the principal. Surprisingly, Che and Kim [3] show
that optimal noncollusive mechanism can be made collusion-proof in a broad
class of circumstances including economic environment with (allocative) ex-
ternalities. Here our collusive device is much weaker: neither monetary
transfers nor binding agreements on the reports are available. Nevertheless,
it consists in a form of collusion that includes the participation decisions.
We show that in general, except when the framework is negative-externality
free, the principal raises a lower revenue at the optimal design under this
device. It contrasts with the insights of Pavlov [17] and Che and Kim [2],
where the collusion mechanism proposed by a third party takes place before
the participation decisions, and where the second best is still implementable
with collusion.2 Those papers consider the auction of a single item in the
independent private value framework and thus exclude any kind of external-

1Under a simultaneous participation game and complete information, Jehiel et al. [10]
shows that there is no loss of generality to consider the stronger dominant strategy im-
plementation concept.

2In this line, Dequiedt [6] is an exception: in a binary type environment, he shows that
asymmetric information do not prevent bidders to collude e�ciently, i.e. to act as a single
agent when the third party can manipule the participation decisions.
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ity. We thus shed some light on the impact of collusion on participation -any
stronger collusive device as the ones in [6, 17, 2] above would only strengthen
our results- independently of any informational asymmetry.

The paper is organized as follows. In section 2 we introduce the general
allocation problem. Using a simple example, a single item with identity-
dependent externalities, section 3 illustrates the main idea of our critic of
the traditional mechanism design approach. In section 4 we describe a gen-
eral class of noncooperative sequential participation games. In section 5 we
de�ne our main concept- order independent individual rationality -and prove
the main results. In section 6 we provide two general examples where our
alternative mechanism design approach may be relevant and change some
insights. Concluding remarks are gathered in section 7.

2 The Model

Let N = {1, 2, . . . , n} be a set of agents and A = {a1, a2, . . . , aK} be a
�nite set of possible outcomes. Denote by Σ(N) the set of the permutations
over the set N . For a given permutation σ : N → N , denote by T σ

i the subset
{σ(1), σ(2), . . . , σ(i− 1)}, i.e. the i− 1 �rst smallest agents according to the
implicit order de�ned by σ. We assume that the agents and the principal,
characterized by the subscript 0, have quasilinear preferences over outcomes
and (divisible) money. Preferences are assumed to be common knowledge.
The utility of a player i over outcome a ∈ A and the money transfer ti is:

Ui(a, ti) = V a
i − ti.

We �rst describe the class of procedures among which the principal
chooses an optimal mechanism. In step 1, the principal designs a mecha-
nism. In a complete information setting, a mechanism, denoted by (a, t),
speci�es a �nal outcome a(S) and a vector of monetary transfers t(S) for
each possible set of participants S ⊂ N . In step 2, the agents are playing
a sequential participation game described in next section. In the previous
mechanism design literature, the decisions whether to participate or not in
the proposed mechanism are assumed to be taken simultaneously. Here we
consider that the principal cannot commit to such a simultaneous participa-
tion game: an agent will always have at least one opportunity to participate
in the mechanism after each decision to accept the mechanism by an agent.
In step 3, the mechanism is implemented according to the participation set
S ⊂ N . A mechanism is said to be feasible if:

• For each set of participants S, the �nal outcome belongs to A(S), the
subset of A of accessible or feasible outcome with the consent of agents
in S.
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• If agent i decides not to participate the principal cannot extract a
positive payement from that agent: ti(S) ≤ 0, if i ∈ N \ S.

• Transfers are budget-balanced:
∑n

i=0 ti(S) = 0, for any S ⊂ N

The second and third restrictions are standard. The �rst restriction
means that some outcome in A may not be feasible if some agents refuse
to participate. For example, in the case of the sale of an indivisible good,
Jehiel et al. [10] considers that one cannot `dump' the object on a non-
participating agent. We do not impose any speci�c structure to the feasibility
sets {A(S)}S⊂N except that:

Assumption 1 A(S) ⊂ A(T ), whenever S ⊂ T .

Assumption 1 states that if the consent of the agents in S is enough to
implement a given �nal outcome a, then the extra consent of some agents
outside S cannot make this outcome unfeasible. Then, there is no loss of
generality to consider that A(N) = A. To simplify the exposition, we assume
that, for a given utility level, an agent strictly prefers to participate in the
mechanism. With this trick, the set of implementable mechanisms - which
is de�ned in section 5 -is a closed set and has thus an optimal element.

For an agent i and a set of participant S ⊂ N \ {i}, denote by a∗i (S) the
harsher feasible threat that the principal can in�ict on i given that the agents
in S have accepted the mechanism: a∗i (S) ∈ Arg mina∈A(S) V a

i . Denote

by V ∗
i (S) = V

a∗i (S)
i the corresponding utility level. In mechanism design

under simultaneous participation, only the threats a∗i (N \{i}) do matter. In
the optimal design, if one agent refuses the mechanism, the remaining ones
commit to this harsher threat also called `minmax punishment' as in Jehiel
et al. [10] or Dequiedt [6]. On the other hand, in mechanism design under
order independent individual rationality, the whole set of the feasible threats
a∗i (S) will play an active role in the design of the optimal mechanism.

Finally, our framework is characterized by the 4-uple: (N,A, {V a
i }i∈N,a∈A, {A(S)}S⊂N ).

Let us de�ne two special subsets among those frameworks: externality-free
and negative-externality-free frameworks.

De�nition 1 • A framework is said to be externality-free if for any
agent i, the map a → V a

i is constant over the set A(N \ {i}).

• A framework is said to be negative-externality-free if the optimal threat
V ∗

i (S) for any agent i is independent of the set of participant S ⊂
N \ {i}: V ∗

i (S) = V ∗
i (∅) for any i.

A framework is said to be externality-free if the agents do not care about
the �nal outcome in the event where they do not participate in the mech-
anism. For the sale of some goods and under the assumption that a non-
participant does not receive any good, it corresponds to the standard case
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where agents care only on the set of goods they obtain and in particular are
indi�erent to the �nal allocation when they are non-purchaser. Negative-
externality-free is less restrictive: it only requires that the principal can
credibly threat any agent with the minmax punishment independently to
the other participants, i.e. by retaining all goods in the above example.

3 A Simple Example

The following example formalizes the starting examples of Jehiel and
Moldovanu [9] and Das Varma [5] where two potential buyers su�ering from
important reciprocal negative externalities prefer not to participate in the
bidding process for a single item and let a third buyer win at a low price.

Let n = 3 and A = {0, 1, 2, 3} where allocation i corresponds to the
allocation of the item to player i. We consider that the seller is able to
allocate the item only to participating agents: A(S) = {i|i ∈ S ∪ {0}}. Let
V i

i be equal respectively to V , v and 0 for i ∈ {1, 2}, i = 3 and i = 0. Let

V j
i be equal to −α if i, j ∈ {1, 2}, i 6= j and 0 otherwise. Assume that

V > v > V − α > 0. Thus the e�cient allocation consists in allocating the
item to agent 3. Nevertheless, agents 1 and 2 are valuing the item more than
agent 3. They are also chosen symmetric only to simplify the exposition. The
same kind of results holds in the neighborhood of the parameter values or
with huge asymmetries between agents 1 and 2 provided that the reciprocal
negative-externalities between them are big enough.

Standard Auctions Consider �rst a simultaneous participation game as
in [9]: the buyers have �rst the opportunity to decide whether or not they
want to participate in the auction. Those decisions are made simultaneously
and are publicly revealed before the auction takes place. We consider the
�rst price auction, but the results are similar for any other standard auction
as the English button auction considered in [5]. In any equilibrium, the item
is sold either to agent 1 or to agent 2. In the unique symmetric equilibrium,
agents 1 and 2 both participate with probability 1 and are submitting the
bid V +α. They are both su�ering from a loss of α compared to their pro�t
in the case where they could jointly coordinate themselves not to participate.
In our example, non-participation from agent 1 is vain and cannot prevent
the purchase by agent 2 in the auction because V > v.3

Now consider a sequential participation game with agents 1 and 2 such that
potential buyers are always proposed to participate after one has decided
to participate (the proper formalization is done in section 4). Now it is a
subgame perfect equilibrium for agents 1 and 2 not to participate if and only
if his `feared' opponent did so. Under sequential participation, we obtain
the paradox that seems to correspond to the stories reported in [9, 5] and

3Strategic non-participation as in [9] emerges only if v > V and thus not here.
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that cannot emerge in previous models with simultaneous participation: an
agent may prefer not to submit a bid though his intrinsic value for the good,
i.e. excluding the motivations to outbid resulting from the fear of negative
externalities, is greater than the �nal bid.

The Optimal Mechanism Under a simultaneous participation game, Je-
hiel et al. [10] presents an optimal mechanism where participation is a strictly
dominant strategy. The optimal mechanism is e�cient and the seller can ex-
tract surplus from agents who do not obtain the object by using the optimal
threats a∗i (N \{i}) for each agent i. Here the e�cient allocation is to allocate
the object to agent 3 and the optimal mechanism raises the revenue v+2 ·α:
each non-purchaser has to pay α in order to avoid that the seller gives the
object to his most feared opponent. But what can be implemented if agents
1 and 2 can coordinate their participation decision thanks to a sequential
participation process? Then the seller can not allocate the object to agent 3
and extract a strictly positive surplus from both agents 1 and 2. In partic-
ular, she cannot threat simultaneously agents 1 and 2 with their respective
tougher threat. Otherwise, they could jointly not participate and obtain a
null payo� since the seller is assumed to be unable to `dump' the object. To
maximize her revenue, the seller should use a divide and conquer strategy:
it consists in giving the incentive to participate for one agent, say 1, inde-
pendently of the participation decision of agent 2. Then given that agent 1
participates, she could really threat agent 2 to allocate the object to agent 1
in case of non-participation. Indeed we will show that it is the optimal mech-
anism and it raises the revenue v + α. It illustrates several features that are
generalized in section 5: �rst, the optimal selling procedure is still e�cient
under the order independent individual rationality constraints; second, those
constraints reduce the revenue. Finally, we �nd surprisingly that although
agents 1 and 2 are symmetric, they should not be treated in a symmetric
way in an optimal mechanism. That is the reason why standard auctions
that are intrinsically symmetric were leading to joint non-participation.

4 A Participation Game

We describe a simple sequential participation procedure based on a given
mechanism (a, t). Suppose that the agents in S have already accepted the
mechanism, then the remaining agents are playing a participation game
where each agent has a least once the possibility to accept the mechanism
or to delay his decision. If all those agents do not accept the mechanism,
then the participation game stops and the outcome (a(S), t(S)) is imple-
mented. Otherwise, if at least one agent i accepts the mechanism, then his
acceptance is followed by a participation game given the consent of S ∪ {i}.
Observe that, in this informal described situation, the order according to
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which agents are approached to accept or not the mechanism has not been
speci�ed. Indeed, each order generates a di�erent extensive form game. We
wish to compare �nal outcomes in these di�erent games, and therefore we
proceed to a formal description of the participation games.

l1 (NO)

(YES)

l2 (NO)

(YES)

l3

(YES)

(NO) lm (NO)

g1 g2 g3 gm

(YES)

-intermediate nodegi

-terminal node: (a(S), t(S))

-responder node

Figure 1

For a given mechanism (a, t), we de�ne recursively the set of participa-
tion games as a function of the cardinality of the set of the agents that have
already accepted the mechanism. We denote by G(a, t, S) the set of partic-
ipation games if the agents in S have accepted the mechanism. If S = N ,
this set corresponds to the (unique) degenerate game where agents make no
choice and the �nal outcome (a(N), t(N)) is implemented. If S ( N , we
consider a participation game g = ((a, t), S, {li}i=1,...,m, {gi}i=1,...,m) where
(a, t) is a feasible mechanism, S is the set of the agents that have previously
accepted the mechanism, {li}1,...,m is an ordered list of agents such that for
any j ∈ N \ S, there exists i∗ ∈ {i = 1, . . . ,m} such that j = li∗ and gi

is a participation game in G(a, t, S ∪ {li}) which is properly de�ned by the
induction hypothesis. See Figure 1.

There are three kinds of positions in g ∈ G(a, t, S):

1. Responder nodes of the form (li, S), where S ⊂ N is the set of the
agents that have previously accepted the mechanism and li ∈ N \ S is
the identity of the agent with the initiative.

If S ( N , {li}i=1,...,m and {gi}i=1,...,m are not empty and the responder
node (l1, S) is called the initiator of the participation game.

2. Intermediate nodes of the form gi, where gi is a participation game in
G(a, t, S ∪ {li}).

3. Terminal nodes of the form (a, t, S) where S is the set of the agents
that have previously accepted the mechanism (a, t).
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At an intermediate node gi, agents have no choice and the game moves
to the initiator of the game gi or moves to the terminal node (a, t, N) if all
agents give their consent. At a terminal node (a, t, S), the game ends and
the outcome (a(S), t(S)) is implemented.

At any responder position (li, S) there is the choice:

1. (li+1, S) if i < m which means that agent li delays participation and
li+1 becomes the new responder. It corresponds to the two �rst arrays
(NO) at the left of Fig. 1.

2. (a, t, S) if i = m which means that agent li refuses participation and
the game ends at this terminal node. It corresponds to the array (NO)
at the extreme right of Fig. 1.

3. gi which means that agent li accepts the mechanism and the game
moves to the intermediate node gi. It corresponds to the arrays (YES)
in Fig. 1.

The closure of the participation game after a �nite number of delays
may seem incoherent with our paradigm that agents do not decide whether
they accept or reject the mechanism but rather that they have to decide
either to accept or to delay their acceptance decision. Indeed it is left to
reader to check that our following analysis is unchanged with the related
in�nite participation games, i.e. if {li}i=1,...,m with m = ∞ is an in�nite
ordered list of agents, where an in�nite delay for the agents in N \ S, given
that agents in S gave their consent, results in the implementation of the
outcome (a(S), t(S)). Contrary to Moldovanu and Winter [16]'s analysis
which is con�ned to pure stationary equilibria, such an analysis would rely
on subgame perfect equilibria in its whole degree of generality. Participation
games with a �nite number of nodes have been chosen to ease the backward
induction argument and the presentation.

5 Optimal Design under Order Independent Indi-

vidual Rationality

We now de�ne a rationality constraint that removes, in our framework,
the dependence of the participation decision on the exact structure of the
participation game.

De�nition 2 • A mechanism (a, t) is order independent individually
rational if (a(N), t(N)) is the �nal outcome in any subgame perfect
equilibrium of any participation game g ∈ G(a, t, S).

• A mechanism is implementable if it is feasible and order independent
individually rational.
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• A mechanism (a, t) is implementable under simultaneous participa-
tion if it is feasible and if (a(N), t(N)) is the �nal outcome in any
equilibrium under simultaneous participation.

Note the di�erence of our order independent concept with the `order
independent equilibrium' concept of Moldovanu and Winter [16]. In a nut-
shell, [16] considers strategy pro�les that are an equilibrium independently
of the speci�c structure of their coalition formation game. Here we consider
�nal outcomes, more precisely the outcome (a(N), t(N)) derived from full
participation, that are the equilibrium outcome of any equilibrium indepen-
dently of the speci�c structure of the participation game. We are indeed
more demanding by requiring that this �nal outcome (a(N), t(N)) is the
only equilibrium outcome for any participation game after that some agents
give their consent.

Proposition 5.1 A mechanism (a, t) is implementable if and only if it is
feasible and for any S ⊂ N

max
i∈N\S

{V a(N)
i − ti(N)− V

a(S)
i } ≥ 0 (1)

Proof 1 We �rst prove the `Only if ' part. Suppose that (a, t) is imple-

mentable and that there exists a subset S such that V
a(N)
i −ti(N)−V

a(S)
i < 0

for any agent i ∈ N \ S. Then consider a subgame g ∈ G(a, t, S). At the
node (lm, S), the responder's best response is to refuse the mechanism (if
he accepts, the only equilibrium outcome is full participation since we have
assumed that (a, t) is implementable). By backward induction, each respon-
der's best response at the nodes (li, S) is to delay and move to (li+1, S).
Consequently, any subgame perfect equilibrium of the game g leads to the
non-participation of the agents in N \ S which raises a contradiction.

The su�ciency part is proved by induction on the cardinality of the set of
the agents that have already accepted the mechanism. The initial step where
this set has the cardinality n is immediate. Now consider that all agents in

S ( N have accepted the mechanism and suppose that maxi∈N\S {V
a(N)
i − ti(N)− V

a(S)
i } ≥

0. By the induction hypothesis, we obtain that every agents accept the mech-
anism in any subgame perfect equilibrium of any subgame {gi}i=1,...,m of the
participation game g ∈ G(a, t, S). It remains to show that, for any game
g ∈ G(a, t, S), it cannot belong to any equilibrium path that all agents refuse
the mechanism at the responder nodes {li}i=1,...,m. In such a case, the agent

i such that V
a(N)
i − ti(N) − V

a(S)
i ≥ 0 has a pro�table deviation: he ac-

cepts (with probability one) the mechanism when he is the responder, i.e. for
a responder node such that lk = i, which exists from the structure of the
participation game.
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The inequality (1) with S = N \ {i} corresponds to the standard in-
dividual rationality constraint of agent i in the standard mechanism de-
sign approach under a simultaneous participation game. Thus the lack of
commitment in the participation game results -as expected- in a limita-
tion of the set of implementable mechanisms. On the other hand, in an
externaltity-free framework, the standard individual rationality constraints

V
a(N)
i + ti(N) ≥ V

a(N\{i})
i imply that V

a(N)
i + ti(N)− V

a(S)
i ≥ 0 for any S

and any i ∈ N \ S, the inequalities (1) are thus satis�ed. Those points are
summed up in the following corollary.

Corollary 5.2 Any implementable mechanism is implementable under si-
multaneous participation. In an externaltity-free framework, the converse
holds: a mechanism that is implementable under simultaneous participation
is implementable.

In the previous literature on mechanism design (with possibly incom-
plete information), the set of constraints that makes a mechanism imple-
mentable, i.e. feasibility, incentive compatibility and individual rationality
constraints, results from inequalities that are linear according to the mech-
anisms (a, t).4 Thus the set of the mechanisms that are implementable is
a convex set. Moreover, the payo� of the principal depends linearly on the
mechanism. From an optimal design perspective, there is thus no loss of gen-
erality to consider mechanisms that are symmetric if agents are symmetric.
Suppose that a given asymmetric mechanism m is optimal. Then consider
the permutations mσ of this mechanism where σ ∈ Σ(N). By symmetry,
those mechanisms implement the same revenue for the principal. Finally,
the mechanism 1

n!

∑
σ∈Σ(N) mσ implements the same revenue in a symmetric

way. On the contrary, the order independent individual rationality con-
straint results from inequalities involving the maximum of some linear maps
and is thus not linear. Let us reconsider our simple example to illustrate the
possible non-convexity of the set of implementable mechanisms.

Example 5.1 A simple example (suite) Let a(S) = 1, t1(S) = V and
ti(S) = 0 if i 6= 1 in the event where 1 ∈ S and 2 /∈ S. Let a(S) = 0,
ti(S) = 0 for any i ∈ N in the event where 1 /∈ S. Let a(S) = 3, t1(S) = α,
t2(S) = 0 and let t3(S) = v, if S = {1, 2, 3} and a(S) = 0, t1(S) = α,
ti(S) = 0 for any i ∈ N in the event where S = {1, 2}. It is easily checked
that this mechanism is feasible. Agents 1 and 3 obtain the same utility level
independently of the �nal set of participants. Thus the inequalities (1) are
satis�ed if either 1 or 3 belongs to N \ S. Thus, it remains to check that

4The implicit space structure according to which linearity applies is the following. For
two mechanisms, (a, t) and (a′, t′) and a real number λ ∈ [0, 1], the mechanism λ · (a, t)+
(1 − λ) · (a′, t′) is the mechanism that implements the mechanism (a, t) (respectively
(a′, t′)) with probability λ (resp. (1− λ)).
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the inequality (1) is satis�ed if S = {1, 3}. Finally, the mechanism (a, t) is
implementable. The mechanism (a′, t′) where the roles of 1 and 2 have been
switched is implementable by symmetry. Now consider the mechanism where,
at a terminal node, each mechanisms (a, t) and (a′, t′) are implemented with
probability one half. This mechanism is of course feasible. Nevertheless, it is
not order independent individually rational. The constraint (1) with S = {3}
is violated. If agents 1 and 2 do not jointly participate, they obtain a null
payo�. On the contrary, under full participation, their expected payo� is −α

2 .
Indeed the (e�cient) mechanism (a, t) is the optimal design as an application
of proposition 5.3.

There is no loss of generality to invite all agents to the mechanism since
the set of feasible allocations does not shrink when some participants are
added (Assumption 1). The optimal design program is thus:

max
(a,t)

V
a(N)
0 +

n∑
i=1

ti(N)

subject to

∀S ⊂ N, max
i∈N\S

{V a(N)
i − ti(N)− V

a(S)
i } ≥ 0,

where (a, t) is a feasible mechanism.
Nevertheless, in this form, the program is hardly tractable and it is un-

clear whether the optimal design is e�cient. We simplify the program by
showing that there is no loss of generality to restrict the maximisation to
a subclass of implementable mechanisms which are fully characterized by
a couple (α, σ) ∈ A × Σ(N). Let us introduce a last useful notation: for
a given set S ⊂ N and a permutation σ ∈ Σ(N), denote by j(S, σ) the
smallest agent according to the order σ that is not belonging to S. For-
mally, j(S, σ) = max {j ∈ N |T σ

j ⊂ S}. This agent plays a key role in the
subclass that we de�ne below and such that if the set of participants is S,
the principal will in�ict the minmax punishment to the agent j(S, σ).

De�nition 3 For (α, σ) ∈ A × σ(N), we de�ne the (α, σ)- optimal threat
mechanism as the mechanism (a, t) de�ned in the following way:

• a(N) = α

• a(S) = a∗j(S,σ)(S), if S ( N

• ti(N) = V α
i − V ∗

i (T σ
σ−1(i))

• ti(S) = 0, if S ( N
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Those mechanisms can be interpreted in the following way: take one
agent, σ(1), and give him the incentive to participate independently to the
participation decision of the other agents by using the optimal threat among
A(∅) ; then take another agent, σ(2), and give him the incentive to partic-
ipate taken as given that σ(1) surely participates and independently to the
participation decisions of the other agents in N \{σ(1)} by using the optimal
threat among A({σ(1)}) ; and so on. In particular, for the last agent, σ(N),
in this new order σ, the principal uses the optimal threat in A(N \ {σ(N)})
as in the standard literature with simultaneous participation.

We �rst show that this restricted class of mechanisms is a subset of the
implementable mechanisms.

Lemma 5.1 Any (α, σ)- optimal threat mechanism is implementable.

Proof 2 It is immediately feasible by de�nition of a∗j(S,σ)(S) which is the

minmax punishment for agent j(S, σ) given the participation set S. Consider
S ⊂ N and the agent j(S, σ) who does not belong to S. We have:

V
a(N)
j(S,σ) − tj(S,σ)(N)− V

a(S)
j(S,σ) = V ∗

j(S,σ)(T
σ
σ−1(j(S,σ)))− V ∗

j(S,σ)(S) ≥ 0

The equality comes from the de�nition of tj(S,σ)(N) and because a(S) =
a∗j(S,σ)(S). The inequality is satis�ed because T σ

σ−1(j(S,σ)) = {σ(1), . . . , σ(j(S, σ)−
1)} ⊂ S (the inclusion comes from the de�nition of j(S, σ)). Thus we have
proved that the inequality (1) holds for any S ⊂ N .

Then we show that there is no loss of generality to look for an (α, σ)-
optimal threat mechanism to solve the optimal design program.

Proposition 5.3 For any implementable mechanism (a, t), there exists an
implementable mechanism that belongs to the class of (α, σ)- optimal threat
mechanisms and that raises at least the same utility level for the principal.
The optimal design program becomes:

max
(α,σ)∈A×σ(N)

{
n∑

i=0

V α
i −

n∑
i=1

V ∗
i ({σ(1), . . . , σ(σ−1(i)− 1)})

}
(2)

Proof 3 For a given mechanism (a, t), we de�ne a corresponding (α, σ)- op-
timal threat mechanism in the following way: α = a(N), σ is de�ned by in-

duction such that σ(1) = Arg maxi∈N {V a(N)
i − ti(N)− V

a(∅)
i } (initial step)

and σ(i) = Arg maxi∈N\{σ(1),...,σ(i−1)} {V
a(N)
i − ti(N)− V

a({σ(1),...,σ(i−1)})
i }

(inductive step). The map σ is by de�nition a permutation. From lemma
5.1, the (α, σ)- optimal threat mechanism is implementable. It remains to
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show that it raises a greater utility for the principal than the original mech-
anism (a, t). More precisely, the principal implements the same economic

outcome and extracts more surplus from each agent. Let t(α,σ)
i (N) be the

transfer for agent i in the (α, σ)- optimal threat mechanism at equilibrium.
We have:

t(α,σ)
i (N) = V

a(N)
i − V ∗

i (T σ
σ−1(i)) ≥ V

a(N)
i − V

a(T σ
σ−1(i)

)

i ≥ ti(N)

The �rst equality results from the de�nition of t(α,σ)
i (N) and that α = a(N).

The �rst inequality comes from the de�nition of the map V ∗
i (.) and since

a(T σ
σ−1(i)) ∈ A(T σ

σ−1(i)). The last inequality results from our subtle construc-

tion of σ and the inequality (1) for the set T σ
σ−1(i). This latter inequality states

that maxj∈N\{σ(1),...,σ(σ−1(i)−1)} {V
a(N)
j − tj(N)− V

a({σ(1),...,σ(σ−1(i)−1)})
j } ≥

0 if (a, t) is implementable. The construction of σ(i) guarantees that the

expression in the `max' is positive for j = σ(i), i.e. V
a(N)
σ(i) − V

a(T σ
σ−1(i)

)

σ(i) ≥

tσ(i)(N). To sum up, we have proved that α = a(N) and t(α,σ)
i (N) ≥ ti(N)

for all agents. The utility level of the principal is thus higher in the (α, σ)-
optimal threat mechanism we have constructed than in (a, t).

The optimal program (2) allows us to separate the choice of the �nal
outcome α to the choice of the optimal threat structure, which is indeed
reduced to the choice of a permutation that speci�es the order according to
which agents will be threat taken as given the participation decision of the
agents that are lower in this order. The optimal choice of α thus coincides
with the maximisation of the allocative e�ciency.

Corollary 5.4 Optimal order independent individually rational feasible mech-
anisms are e�cient.

The expression (2) of the utility level of the principal should be compared
with the standard expression under simultaneous participation:

max
α∈A

{
n∑

i=0

V α
i

}
−

n∑
i=1

V ∗
i (N \ {i}) (3)

In general, the possibility to commit to a simultaneous participation
game leads to a greater payo� for the principal since V ∗

i (S) is decreas-
ing in S. Under order independent individual rationality and in an (α, σ)-
optimal threat mechanism, the set of implementable threats is reduced to
V ∗

σ(i)({σ(1), . . . , σ(i − 1)}) for the agent σ(i) . Nevertheless, in a negative-

externality-free framework, the optimal threat V ∗
i (N \{i}) against agent i re-

quires economic an outcome a that is always feasible independently to the set
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of participant, i.e. a ∈ A(∅), and is thus always equal to V ∗
i ({σ(1), . . . , σ(σ−1(i)−

1)}). We obtain the following corollary:

Corollary 5.5 In a negative-externality-free framework, the optimal rev-
enue under simultaneous participation can be implemented under order in-
dependent individually rationality.

6 Examples

As illustrated by our starting example, an important class of applications
where our new rationality constraints are binding is auctions with negative
externalities as in [9, 10, 11, 5, 7]. The scope of application may seem
relatively restricted since the optimal design is unchanged in a negative-
externality-free framework. Our two following general examples show how
order independent individual rationality may be fruitful �rst to model general
collusion mechanisms and second contracting in dynamic environments when
long-term contracts are not available.

6.1 Example 1: General collusion mechanisms

To avoid confusion with the collusive interpretation of the order indepen-
dent individual rationality concept, we emphasize that, in this example, we
consider the relevance of applying it in the design of the collusive mechanism
itself. In most of the aforementioned literature on collusion, a third party
proposes a mechanism that can be vetoed by each agent. When an agent
breaks the collusion process, the game is played in a non-cooperative way
under passive-beliefs. Thus contrary to the mainstream mechanism design
literature, the principal is signi�cantly limited in the way she can punish non-
participants. In an auction framework, Caillaud and Jehiel [1] relax slightly
this veto power assumption by also considering the case where a defection
leads to a collusive report from the agents that are remaining in the collu-
sion process. Dequiedt [6] considers that the remaining agent can commit to
the harsher punishment if the other agent refuses the collusion mechanism.
The reluctance to adopt the standard mechanism design approach to model
collusion may come from the seemingly excessive commitment power that it
requires and which is slightly softened under our approach.

Let us discuss those di�erences in a simple example under complete in-
formation: a symmetric triopoly under Cournot competition. Each �rm has
a constant null marginal cost and a maximum capacity qmax = 0.5. Inverse
demand is given by P = 1−Q, where Q denotes the total quantity supplied.
Without collusion, the quantity supplied by each �rm in equilibrium is equal
to 1/4 and the corresponding total pro�t of the triopoly is Πnc = 3/16.
The collusive outcome corresponds to the total production Q = 1/2 and the
joint pro�t Πcol = 1/4. Suppose that a general collusion mechanism (which

14



speci�es the quantities produced by each participant and balanced monetary
transfers among participants) is proposed by one �rm, say 1. Under com-
plete information, all the di�erent models, leads to the collusive outcome
in the optimal mechanism. Nevertheless, the repartition of the pro�ts from
collusion are very di�erent according to the model for collusion. Under veto
power, each �rm is guaranteed to obtain her non-cooperative pro�t 1/16.
The proposer manages to capture all the pro�ts from collusion Πcol − Πnc.
At the other extreme as in [6], a non-participant can be punished by the
minmax punishment which leads here to a null payo�: the two remaining
participants commit to produce q = 0.5 which leads to a null price. Never-
theless, this mechanism may seem poorly convincing since �rm 1 manages to
extract all surplus from both �rms by threatening each to �ood the market
with the help of the other one. With our model, in the optimal mechanism,
�rm 1 can extract full surplus only to one �rm and has to leave the surplus
1/36 to the other one, the pro�t corresponding to the Cournot outcome after
the commitment to produce q = 0.5 by �rm 1. Thus she should use a divide
and conquer strategy.

6.2 Example 2: Dynamic processes of social and economic

interactions

Gomes and Jehiel [8] consider a model of dynamic interactions in com-
plete information where, at each period, an agent is selected to make an
o�er to a subset of the other agents to move the state of the economy. They
do not only assume that long-term contracts are not available but also re-
strict the analysis to simple-o�er contracts where each approached agent can
veto the proposed move. Indeed, as they emphasize, this restriction is with
no loss of generality if a third party can coordinate the approached agents
by means of a `strong' collusion contract with transfers. With general con-
tracts -i.e. without any form of collusion- the economy moves immediately
to the e�cient state. On the contrary, with simple-o�er contracts, e�ciency
is no longer guaranteed. This last (negative) result depends critically on the
model for collusion. If collusion is modeled by order independent individual
rationality, then the transposition of corollary 5.4 in their framework restau-
res e�ciency: all Markov Perfect Equilibria of the economy with general
spot contract that are order independent individually rational are e�cient,
entailing an immediate move to the e�cient state, where it remains forever.
Note however that, under our milder collusion device, the expected payo�
of the selected proposer is lower than with general contracts. At the other
extreme, under a mildly stronger form of collusion where the third party can
also contract with non-approached agents and where collusion is not observ-
able by the proposer, the economy also moves immediately to the e�cient
state.
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7 Concluding Remarks

We relax the commitment ability of the principal in some minimal way
and give some theoretical fondations for such a re�nement of the standard
mechanism design approach. The scope of application may seem relatively
restricted since the optimal design is unchanged in a negative-externality-
free framework. Nevertheless, jointed with other commitment failures as the
unability to commit not to propose a new mechanism if the �rst one fails
to work, e.g. the unability to commit never to attempt to resell the good
if she fails to sell it as in McAfee and Vincent [15] and Skreta [18], order
independent individual rationality may have some bite even in pure private
value framework that are externality-free. For example, in a procurement
auction, the designer may be unable to set a high reserve price since this
would trigger a joint boycott of the main market participants that will force
the designer to propose a new mechanism.

Finally, we have restricted attention to a complete information setup. It
is left for further research how to extend the notion of implementation under
order independent rationality constraints in incomplete information, analyse
the interactions with the incentive compatibility constraints and ask whether
this constraint is bene�cial or not to the welfare.
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