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Abstract

I investigate whether a community can sustain cooperation in the
repeated prisoner’s dilemma by having cheaters sanctioned not by
their victims but by third parties. Motivated by systems of credit his-
tory recording, online feedback systems, and some experimental set-
tings, I assume that players can access information about their part-
ners’ past play for free, but that acquiring information about their
partners’ past partners’ past play is prohibitively costly. In this set-
ting, even though players cannot distinguish cheaters from those who
punish cheaters, I show that any level of cooperation can be sustained
by an equilibrium. The equilibrium I construct has the following two
properties: every player chooses his actions independently of his own
record of play, and he is indifferent between cooperation and defection
at all histories. This equilibrium carries over to the finite-population
setting and is robust to noise in the process of choosing actions or
of recording past play. The technique of equilibrium construction is
applied to more general stage games. I also analyze the possibility of
cooperation either when players are required to have strict incentives
to follow equilibrium strategies or when only summary statistics of
records are stored in the community.
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1 Introduction

Cooperation can be sustained through long-term relationship. One way to
sustain cooperation is by personal enforcement: A cooperator is rewarded by
the recipient, and a cheater is revenged by the victim. Personal enforcement
is a powerful mechanism especially in a small community where each person
interacts with the same partner frequently. In a large community where peo-
ple meet various partners over time, however, punishment by victims may
not create an enough incentive to cooperate. In such a case, personal en-
forcement is replaced by another mechanism called community enforcement,
which prescribes third parties to reward cooperators and punish cheaters.
Since third parties are usually informationally inferior to parties concerned,
community enforcement becomes effective only with extra information trans-
mission within the community.

In the context of the infinitely repeated prisoner’s dilemma in a continuum
of population, I investigate whether first-order information is sufficient for
sustaining cooperation by community enforcement. In this paper, first-order
information means information about current partners’ past play, whereas
second-order information means information about current partners’ past
partners’ past play, third-order information means information about current
partners’ past partners’ past partners’ past play, and so on. Without higher-
order information, one cannot distinguish cheaters from those who punished
cheaters. This makes it difficult to keep punishers’ incentives. Indeed, the
literature of community enforcement began with a negative result. Rosenthal
(1979) provided an example of prisoner’s dilemma in which, if each player
only observes his partner’s action at the previous period, then cooperation
can be sustained by a pure-strategy equilibrium only when the discount factor
takes a specific value.

Despite this difficulty, in Section 3, I show that first-order information
is sufficient for sustaining cooperation if the discount factor is large enough.
The equilibrium I construct satisfies two properties: players choose actions in-
dependently of their own records of play, and they are indifferent between co-
operation and defection at all histories.1 Due to the first property, a player’s
continuation payoff does not depend on who he meets or what record of play
his partner has. This simplifies the analysis since I do not need to track
distributions of records in the population. Moreover, since each player is
indifferent between cooperation and defection, he has a weak incentive to re-
ward or punish his partner based on the partner’s record of play. I choose the

1These properties are closely related to the idea of “belief-free” equilibria in the lit-
erature on repeated games with private monitoring. See Subsections 3.2, 3,5, 3,6, and
5.3.

2



amount of reward/punishment so that the partner actually becomes indiffer-
ent between cooperation and defection. I do so by controlling the probability
of cooperation carefully. In contrast, a pure strategy with bounded records
as in Rosenthal (1979) can make players indifferent only under non-generic
parameter values.

I analyze the robustness of this equilibrium in several ways. Subsec-
tion 3.3 introduces a one-time shock to the model, and investigates whether
the community eventually goes back to the cooperation phase even after
the shock. Subsection 3.4 checks the robustness to noise in the process of
choosing actions or of recording past play. Subsection 3.5 shows that the
equilibrium strategy, combined with any consistent belief system, forms a se-
quential equilibrium in the corresponding finite-population model. Moreover,
the threshold of the discount factor sufficient for sustaining cooperation does
not vary with the size of the population. This is in a clear contrast with Kan-
dori (1992) and Ellison (1994). They analyzed the finite-population model
when each player only observes the outcomes of matches in which he directly
engaged before. As Kandori showed first and Ellison extended later, even in
this minimum level of information transmission, there exist so-called “conta-
gious” equilibria that sustain cooperation. See also Harrington (1995). For
contagious equilibria to exist, the discount factor needs to be above a thresh-
old. The threshold depends on the population size, and converges to 1 as
the population size goes to the infinity. In the limit where the population is
a continuum, there is no equilibrium that sustains cooperation. Thus my re-
sults show that an institution that transmits first-order information improves
the possibility of cooperation even in a large finite population. Subsection
3.6 applies the technique of equilibrium construction to more general stage
games.

The equilibrium I propose makes use of two somewhat extreme proper-
ties: heavy use of indifference conditions and dependency on the details of
records. These issues are discussed in the following sections. Section 4 re-
quires players to have strict incentives to follow equilibrium strategies. Then
I show that, depending on payoff parameters, cooperation may or may not be
sustained. However, if mixed strategies are allowed as long as mixing proba-
bilities do not depend on payoff-irrelevant histories, then approximately full
cooperation can be sustained for generic parameter values. Section 5 as-
sumes that the community stores only summary statistics of records. Either
when players observe the number of cooperation in their partners’ records
or when a finite bound is imposed on the length of records, I show that,
under a restriction on payoff parameters, there exists an equilibrium that
sustains cooperation. This parameter restriction can be dropped if not only
first-order information but also second-order information is available. I also

3



show that Rosenthal’s (1979) non-genericity result is resolved if either mixed
strategies or unboundedly long records are allowed.

Section 6 considers a version of the repeated prisoner’s dilemma game
with the possibility of exit. If the reservation payoff is low and the discount
factor is high enough, then I can construct an equilibrium that uses the
outside option as punishment.

There are many systems in the real world that rely only on first-order
information. An example is credit histories of consumers recorded by credit
bureaus (Klein (1992)). Online feedback systems are another example. At
eBay, for example, after each transaction, both the seller and the buyer can
post a rating (positive, negative, or neutral) and a short comment (Dellarocas
(2003)). Customers are asked “to leave only fair and factual comments and
ratings that relate to a specific transaction you have with your trading part-
ner.”2 If customers actually follow this instruction, feedback scores contain
only first-order information.3 These systems use only first-order information
partly because it is costly for a community to store and transmit higher-order
information, and partly because it is cognitively demanding for community
members to process such information. Milinski et al. (2001) reported that, in
their experiment, subjects who were given first- and second-order information
needed significantly more time to respond than those who were given only
first-order information. Moreover, subjects with higher-order information
often failed to distinguish simple cheating from punishment.4

My results are consistent with experimental findings. In many exper-
iments on community enforcement, overall cooperation rates are higher in
sessions with first-order information than in sessions with no information.
Moreover, if first-order information is available, then subjects tend to use
this information to discriminate between cooperators and defectors. See the
survey article by Nowak and Sigmund (2005).

Related Literature

Belief-Free Equilibria In two-player repeated prisoner’s dilemma games
with perfect monitoring, Piccione (2002) and Ely and Välimäki (2002) con-

2http://pages.ebay.com/help/feedback/questions/feedback.html
3Higher-order information is, however, available through feedback comments.
4But see Panchanathan and Boyd (2003) and Bolton et al. (2005). Panchanathan and

Boyd (2003) argued that people do not directly use higher-order information (sequences
of actions) as in Milinski et al. (2001), but rely on its summary statistics such as “good”
or “bad.” Conducting an experiment similar to Milinski et al. (2001), Bolton et al. (2005)
found that second-order information promoted cooperation more than first-order informa-
tion did.
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structed equilibria in which each player is indifferent between cooperation and
defection at every history no matter what private signals the other player has
received about his opponent’s actions. Such equilibria are called belief-free
equilibria. Due to their robustness to small noise in private signals, belief-free
equilibria have played an important role in the literature of repeated games
with private monitoring. See also Ely et al. (2004, 2005), Kandori and Obara
(2006), Hörner and Olszewski (2006), and Yamamoto (2006).

In this paper, I argue that belief-free equilibria have another useful appli-
cation in the literature on community enforcement. From the viewpoint of
private-monitoring repeated games, what I do in this paper is to explain that
a belief-free equilibrium can be interpreted as an equilibrium strategy in a
community enforcement model (a repeated game with anonymous and ran-
dom matching) if sufficiently rich information is transmitted among players.
Specifically, my main result shows that first-order information is rich enough
to re-interpret Piccione-type equilibria in the context of community enforce-
ment. See Subsections 3.1, 3.2, 3.5, 3.6, and 5.3 for further discussions.

Community Enforcement Most of the theoretical studies on commu-
nity enforcement are divided into four categories in terms of the level of
information transmission available to the community. The first category is
an extreme case in which every player knows the details of all matches in
the population. In this situation, since sanction can be implemented by any
member in the society, playing with varying partners is not an obstacle to en-
forcing cooperation (Kandori (1992)). Rather, community enforcement can
expand the set of asymmetric equilibrium payoff profiles (Dal Bó (2004)).

The second category is the other extreme case: players are informed only
about the outcomes of the matches in which they have been directly involved.
As I explained before, in this setting, cooperation can be sustained only if
the population is finite, and the threshold for the discount factor depends on
the population size (Kandori (1992), Ellison (1994), and Harrington (1995)).

The third category assumes that each player is labeled with a status,
which is observable to his partner, and that a player can condition his action
on his partner’s status. Also, the transition of a player’s status over time
depends not only on the realized action profile of the stage game and his
own status at the previous period, but also on his partner’s status. For
example, each player in the population is labeled “good” or “bad”. A good
player remains being good either if he cooperates when his partner has a
good status or if he defects when his partner has a bad status (Example 1
in Okuno-Fujiwara and Postlewaite (1995)). Since a player’s status at the
next period depends on his current partner’s status, which, in turn, depends
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on the partner’s previous partner’s status, and so on, a status is a summary
statistics that contains higher-order information. In this setting, the folk
theorem is proved in many games including the prisoner’s dilemma (Kandori
(1992) and Okuno-Fujiwara and Postlewaite (1995)). See also Dixit (2003a)
for his analyses on self-governance and on information intermediaries.

The last category is to use only first-order information. My model and
Rosenthal (1979) fall into this category. Rosenthal and Landau (1979) stud-
ied the effect of reputation in bargaining. In their model, a player’s reputation
is a summary statistic of his past play. Unlike in my model, the major role
of the reputation is not sanction of deviators, but a coordination device that
determines which party should obtain the larger proportion of a pie. Klein
(1992) studied the role of credit bureaus in the setting of repeated games
between consumers and firms. A credit bureau is an institute that records
whether each consumer has ever defaulted or not. Klein analyzed a one-sided
incentive problem, whereas the prisoner’s dilemma is a two-sided incentive
problem. Greif (1993, 1994) and Tirole (1996) also analyzed one-sided incen-
tive problems. Dixit (2003b) investigated the effect of trade expansion in a
model where the geographic, economic, or social distance affects the proba-
bility of matching, gain from trade, and information transmission. The basic
part of his model is the twice repeated prisoner’s dilemma with the option
to exit. I will discuss the effect of the exit option in details in Section 6.

Besides these papers, Milgrom et al. (1990) assumed the existence of a
judge (law merchant). A judge in their model plays two roles. One is to
store information. The other is to ask a cheater to pay a certain amount of
money to the partner. The payment is voluntary, but the information about
remaining unpaid judgments is recorded and available to other players. See
also Dixit (2003a) for his analysis on enforcement intermediaries.

Evolutionary biologists have built a model of indirect reciprocity based on
“image scoring” (Nowak and Sigmund (1998a, b)). A person’s image score is
a publicly observable number that counts how many times he has cooperated
minus how many times he has defected. Thus image scores are a summary
statistics of first-order information. Since many works by evolutionary biol-
ogists, including these papers, use evolutionarily stable strategies (ESS) or
dynamical stability as an equilibrium refinement, their analysis differs from
economists’ analysis that emphasizes credibility of threat and sequential ra-
tionality.
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2 Repeated Prisoner’s Dilemma

Random matching I consider a continuum of players who repeatedly play
a stage game with varying partners.5 A matching in this population is a
function m : [0, 1] → [0, 1] such that m(m(i)) = i �= m(i) for all i ∈ [0, 1].
At each period t = 1, 2, . . . , matching mt is randomly drawn independently
across time, and every player i ∈ [0, 1] plays a stage game with his partner
at this period, mt(i).

6

Stage game This paper uses prisoner’s dilemma as a stage game except in
Subsection 3.6 and Section 6. Subsection 3.6 analyzes a general stage game;
Section 6 allows players to opt out of prisoner’s dilemma. In the prisoner’s
dilemma game, players can cooperate (C) or defect (D). Payoffs are given
by

C D
C 1, 1 −l, 1 + g
D 1 + g,−l 0, 0

g, l > 0.

5Although this paper uses a single-population model, it is straightforward to modify
it to a setting where a player and his partner at each period are chosen from different
populations.

6There have been well-known difficulties (so-called “measurability problem”) in pro-
viding a probability-theoretic foundation to the idea of the “law of large numbers” for
a continuum of random variables (Judd (1985) and Feldman and Gilles (1985)). As a
consequence of the measurability problem, in their footnote 4, McLennan and Sonnen-
schein (1991) proved an impossibility theorem for the existence of random matching if the
population is [0, 1] with the Borel σ-algebra and the Lebesgue measure. These difficulties
were recently resolved by Sun (2006) and Duffie and Sun (2004, 2006). More specifically,
Duffie and Sun (2004, 2006) showed the existence of random matching m on an atomless
probability space ([0, 1], I, λ) such that

(1) (i) for any realization of m, λ(m(E)) = λ(E) holds for any E ∈ I, (ii) Prob(m(i) ∈
E) = λ(E) holds for any i ∈ [0, 1] and E ∈ I, and (iii) for any E, F ∈ I,
λ(E ∩ m−1(F )) = λ(E)λ(F ) holds almost surely, and

(2) for any I-measurable type function α from [0, 1] to a finite set of types, for λ-almost
every i ∈ [0, 1], α(m(i)) and α(m(j)) are stochastically independent for λ-almost
every j ∈ [0, 1].

Especially, a player is matched with a specific partner with probability 0. See also Alós-
Ferrer (1999) for another construction of random matching. His construction is simpler
but depends on type functions.

In this paper, I do not use a population with countably many players since there is no
atomless probability distribution on a countably infinite set.
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In the case of g > l, the more likely a player is to cooperate, the more willing
his partner is to defect, and vise versa for g < l.7

Let A = {C, D} denote the action set, and u : A2 → R denote the payoff
function, where u(a, ā) is the payoff of a player who chooses action a ∈ A
when his partner chooses action ā ∈ A. For a finite set X, let ∆(X) be the
set of probability distributions on X. With a slight abuse of notation, a point
x ∈ X is identified with the distribution with unit mass on the point x. The
domain of u is extended to (∆(A))2 by the expected utility hypothesis.

Payoffs Player i’s action at period t is denoted by ait. For any realization
{mt} of a sequence of random matchings, player i’s payoff in the repeated
game is given by

(1 − δ)
∞∑

t=1

δt−1u(ait, amt(i),t)

with a common discount factor δ ∈ (0, 1).

Information Except in Subsection 5.3, information about past play is
transmitted through two channels: by direct observation and through a
“criminal history repository.” The former channel means that each player i
observes the outcomes of matches in which he directly engaged before period
t, (ais, ams(i),s) for s ≤ t− 1. The latter channel means that the criminal his-
tory repository honestly keeps track of players’ actions, and that each player
can access his current partner’s record of play for free.8 More precisely, let
at

i = (ai1, ai2, . . . , ait) denote the sequence of player i’s actions up to period t.
After the matching mt for period t is determined and before the stage game
is played, player i receives a report about his current partner’s record of play
up to period t−1, at−1

mt(i)
, from the criminal history repository. I assume that

a player’s record does not contain information about his identity.9

7Dixit (2003a) called g > l the offensive case and g < l the defensive case. The case of
g = l is non-generic, but this case arises naturally as a superposition of two “gift-giving
games.” In a gift-giving game, one player decides to give a gift to the other player or not.
If the gift is transferred, the donor pays cost c > 0, and the recipient receives benefit b > c.
The gift-giving game has been used in many experiments. If two players simultaneously
decide whether to give a gift or not, the payoff structure of this game is equivalent to
prisoner’s dilemma with g = l = c/(b − c).

8It would be difficult to analyze my model if players had to pay subscription fees or the
criminal history repository could cheat. These issues were investigated in other models
such as Klein (1992), Milgrom et al. (1990), and Dixit (2003a).

9Even if a player’s record contained his identity, it would not affect my analysis since
I will soon assume ex ante symmetry of strategies.
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Subsection 5.3 assumes that, at period t ≥ 2, each player i receives a re-
port about the outcome of his current partner’s previous match, (amt(i),t−1, amt−1(mt(i)),t−1),
from the criminal history repository.

Strategies Now I can define strategies. In general, player i’s action at
period t can depend on all information that he has gathered so far. This
information includes his own record of play, at−1

i , his current partner’s record
of play, at−1

mt(i)
, and his past partners’ records of play, as

ms(i) for s ≤ t − 1.

(Record as
ms(i)

consists of two parts: report as−1
ms(i) from the criminal history

repository and direct observation ams(i),s.) However, I argue that, in the
continuum-population model, player i uses only his and his current partner’s
records of play, (at−1

i , at−1
mt(i)

), without loss of generality. The other aspects
of the information are player i’s private information that is not shared by
his current or future partners. Although such private information can be
correlated with other players’ information if they have been matched with
player i directly or indirectly (e.g., being matched with a player who was
matched with player i before), the number of such players is finite and hence
negligible when the population is a continuum. Even if a player chooses
actions based on his private information about his past partners’ records of
play, such information is, from all but finitely many players’ points of view,
no more than an independent and private randomization device.10

Given the above simplification, I define player i’s behavior strategy by
sequence σi = {σit} with σit : A2t−2 → ∆(A), where σit(a

t−1
i , at−1

mt(i)
) denotes

player i’s mixed action at period t. In this paper, I focus on ex ante symmetric
strategies for simplicity: σit(a

t−1
i , at−1

mt(i)
) = σjt(a

t−1
j , at−1

mt(j)
) whenever at−1

i =

at−1
j and at−1

mt(i)
= at−1

mt(j)
.11 Thus I write σt(a

t−1, āt−1) for a player’s mixed

action at period t when his own record of play is at−1 = (a1, . . . , at−1) and
his current partner’s record of play is āt−1 = (ā1, . . . , āt−1).

Distributions of records If I followed Kreps and Wilson (1982) to define
sequential equilibria, the next step would be to define beliefs. A player’s
belief is a probability distribution about who met whom and who played

10Thus my continuum-population model cannot explain the tendency that people whose
recent partners cooperated are more likely to cooperate than those whose recent partners
defected. This tendency was reported in several experimental studies (Engelmann and
Fischbacher (2004) and Bolton et al. (2005)).

11If different players adopted different strategies, then a player could make inferences
about his current partner’s identity from the record of play. This information would
change the former player’s expectation about the partner’s action at this period. In this
case, unlike in footnote 9, it would affect analysis whether reports from the criminal history
repository are anonymous or not.
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which action in the past conditional on what he knows. This is a complicated
mathematical object. What is relevant in my setting is, however, only the
aggregate data: the distribution of records of play in the population. For
t ≥ 1 and at ∈ At, let µt(a

t) be the fraction of players in the population
whose record of play up to period t is at, and µt ∈ ∆(At) be the distribution
of records of play up to period t in the population.

The sequence of such distributions, µ = {µt}, is determined as follows.
At period 1, all players choose action a1 with probability σ1(∅)(a1) indepen-
dently. Since there are a continuum of players, by the “law of large numbers,”
the fraction of players who choose action a1 at the first period is σ1(∅)(a1).
Thus I have

µ1(a1) = σ1(∅)(a1). (1)

For t ≥ 2, µt can be computed from σt and µt−1. At the beginning of period t,
there are µt−1(a

t−1) mass of players with record at−1. Among them, the frac-
tion of players who meet players with record āt−1 is µt−1(ā

t−1), and such play-
ers choose action at with probability σt(a

t−1, āt−1)(at) independently. Thus
I have

µt(a
t) = µt−1(a

t−1)
∑

āt−1∈At−1

µt−1(ā
t−1)σt(a

t−1, āt−1)(at), (2)

where at = (at−1, at). I say that µ is generated by σ if (1) and (2) are satisfied.
By the “law of large numbers”, players believe with certainty that the

distribution of records of play at the end of period t is equal to µt. I assume
that this is true even after an off-path history. In other words, no infor-
mation with finitely many observations is convincing enough for a player to
change his belief about the distribution of records of play in the population.
This assumption follows the spirit of sequential equilibria for finite games,
although my model is not a finite game. For example, consider an equilib-
rium that sustains cooperation. If a player is matched with another player
whose record of play shows defection in the past, the former player resorts to
the “trembling-hand theory” to explain his observation. Since trembles by
finitely many players are infinitely more likely than trembles by a positive
mass of players, he concludes that this off-path history was caused by finitely
many players’ mistakes, which will not affect his future matches with positive
probability.

Since each player’s partner is chosen uniformly from the population, he
believes that his partner at period t has record of play at−1 with probability
µt−1(a

t−1).
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Continuation payoffs Let Ut(σ, σ̄ | at−1, āt−1, µ) be the continuation pay-
off of a player who follows strategy σ when all other players follow strategy
σ̄, given that the former player has record at−1, his partner at period t has
record āt−1, and the distributions of records in the population are given by
µ. By definition, it holds that

Ut(σ, σ̄ | at−1, āt−1, µ)

= (1 − δ)
∑
at∈A

σt(a
t−1, āt−1)(at)

(
u(at, σ̄t(ā

t−1, at−1))

+ δ
∑

at+1∈A,b̄t∈At

σt+1(a
t, b̄t)(at+1)

(
u(at+1, σ̄t+1(b̄

t, at))µt(b̄
t)

+ δ
∑

at+2∈A,c̄t+1∈At+1

σt+2(a
t+1, c̄t+1)(at+2)

(
u(at+2, σ̄t+2(c̄

t+1, at+1))µt+1(c̄
t+1) + · · ·

)))

=
∑
at∈A

σt(a
t−1, āt−1)(at)

⎛
⎝(1 − δ)u(at, σ̄t(ā

t−1, at−1)) + δ
∑
b̄t∈At

Ut+1(σ, σ̄ | at, b̄t, µ)µt(b̄
t)

⎞
⎠ .

The last line is a recursive representation. Consider a player with record at−1

who faces his partner with record āt−1 at period t. He chooses action at with
probability σt(a

t−1, āt−1)(at) and obtains short-run payoff u(at, σ̄t(ā
t−1, at−1)).

At the end of period t, his record is updated to at = (at−1, at). Since his next
partner is randomly chosen from the population, his continuation payoff is
given by the expectation of Ut+1(σ, σ̄ | at, b̄t, µ), where b̄t is distributed ac-
cording to µt.

Equilibria Now I define the equilibrium concept.

Definition 1. A strategy σ∗ is a continuum-population perfect equilibrium
(or equilibrium) if, for every t ≥ 1, every at−1, āt−1 ∈ At−1, and every strategy
σ, it holds that

Ut(σ
∗, σ∗ | at−1, āt−1, µ∗) ≥ Ut(σ, σ∗ | at−1, āt−1, µ∗), (3)

where µ∗ is generated by σ∗.

In this definition, the same µ∗ is used in both sides of (3). It means that
each player recognizes that he is negligible in the continuum of population
and believes that no change in his own strategy can affect the distribution
of records of play in the population.
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Note that my definition requires sequential rationality. If I required opti-
mizing behavior only at the initial period, which would correspond to Nash
equilibria rather than perfect equilibria, I could easily construct an equi-
librium that sustains cooperation on the equilibrium path. For example,
consider the pairwise grim-trigger strategy defined as follows.

Definition 2. The pairwise grim-trigger strategy is a strategy σ that pre-
scribes each player to cooperate if neither he nor his current partner has ever
defected, and to defect otherwise, i.e., σt(a

t−1, āt−1) = C if t = 1 or (t ≥ 2
and at−1 = āt−1 = (C, . . . , C)); σt(a

t−1, āt−1) = D otherwise.

I add the adjective pairwise because a player’s action depends only on
his and his current partner’s records of play.12 The pairwise grim-trigger
strategy forms a Nash equilibrium (not necessarily perfect) if and only if
δ ≥ g/(1 + g). In Subsection 4.1, I will check under what condition the
pairwise grim-trigger strategy forms a perfect equilibrium.

It follows from the standard argument in dynamic programming that se-
quential rationality is equivalent to the nonexistence of one-shot profitable de-
viations in pure actions at any history. Namely, σ∗ is a continuum-population
perfect equilibrium if and only if, for every t ≥ 1, every at−1, āt−1 ∈ At−1,
and every at ∈ A, it holds that

Ut(σ
∗, σ∗ | at−1, āt−1, µ∗)

≥ (1 − δ)u(at, σ
∗
t (a

t−1, āt−1)) + δ
∑
b̄t∈At

Ut+1(σ
∗, σ∗ | at, b̄t, µ∗)µ∗

t (b̄
t), (4)

where µ∗ is generated by σ∗.
Unlike the previous literature such as Rosenthal (1979), Rosenthal and

Landau (1979), and Okuno-Fujiwara and Postlewaite (1995), I do not impose
stationarity on σ∗ or µ∗ in the definition of equilibria.

3 Independent and Indifferent Equilibria

This section studies a class of equilibria with a simple structure, and shows
that this class is large enough to sustain cooperation on the equilibrium path.

12The pairwise grim-trigger strategy is different from the “full” grim-trigger strategy,
which prescribes players to defect if and only if some player in the population has ever
defected. The full grim-trigger strategy is not feasible under the restriction on information
transmission in my setting.
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3.1 Definitions

I consider equilibrium σ∗ with the following properties

independence of own play Strategy σ∗ prescribes each player to choose
actions with probability independent of his own record of play, i.e.,
σ∗

t (a
t−1, āt−1) = σ∗

t (b
t−1, āt−1) for all t ≥ 1 and at−1, bt−1, āt−1 ∈ At−1.

indifference at all histories Each player is indifferent between actions C
and D at all histories if the other players follow σ∗, i.e., (4) is satisfied
with equality for all t ≥ 1, at−1, āt−1 ∈ At−1, and at ∈ A, where µ∗ is
generated by σ∗.

Note that any strategy that satisfies indifference at all histories is an equi-
librium.

Independence of own play simplifies analysis. Under this assumption, if a
player has record of play at−1, his partner chooses an action based only on at−1

no matter what record of play the partner has. Therefore, a player’s belief
about other players’ records of play does not affect his payoffs, i.e., Ut(σ, σ∗ |
at−1, āt−1, µ) is independent of āt−1 and µ. Thus equilibrium conditions can
be verified without computing distributions of records in the population.

Independence of own play, however, restricts players’ behavior. Since a
player does not meet the same partner twice or more, he does not have a
strict incentive to vary his action non-trivially in response to the information
about his current partner’s record of play when the partner himself does not
use this information. Thus, in order to construct any equilibrium other than
the repetition of D, players have to be indifferent between C and D at some
histories. Here I simply assume indifference at all histories. Since players are
indifferent between two actions, they have weak incentives to change their
mixing probabilities to punish partners. This is how flexibility of players’
behavior is restored under the restriction of independence of own play.

A similar technique has been used in the literature of repeated games
with private monitoring. In the repeated prisoner’s dilemma with private
monitoring, Piccione (2002) and Ely and Välimäki (2002) constructed equi-
libria in which each player is indifferent between cooperation and defection
at all histories no matter what private signals the other player has received.
As in my case, this simplifies the analysis since there is no need to compute a
player’s belief about the other player’s private histories. Such equilibria are
called belief-free equilibria (Ely et al. (2005)).

In my setting, indifference at all histories implies independence of own
play if g �= l. The reason is simple: if g �= l, then any change in a player’s
mixed action based on his own record of play causes a non-zero influence on
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his partner’s trade-off between C and D, which violates at least one of the
two indifference conditions.

Proposition 1. If g �= l, then any strategy with indifference at all histories
satisfies independence of own play.

Proof. See Appendix A.1.

Definition 3. A strategy σ∗ is called an independent and indifferent equi-
librium if it satisfies both independence of own play and indifference at all
histories.

By Proposition 1, requiring independence of own play is redundant in the
above definition if g �= l.

3.2 Equilibrium Construction

I will show that independent and indifferent equilibria can sustain any level
of cooperation for a sufficiently large discount factor.

Proposition 2. Suppose that δ ≥ max(g/(1 + g), l/(1 + l)). Then there is
an independent and indifferent equilibrium with symmetric payoff x if and
only if x ∈ [0, 1].

If g − l ≤ 1, then [0, 1] is the set of feasible payoffs under symmetric
strategies. Thus, in this case, Proposition 2 characterizes the set of symmetric
(not necessarily independent and indifferent) equilibrium payoffs for any large
discount factor. For the case that g − l > 1, I leave it open whether there
exists a symmetric equilibrium that achieves a payoff higher than 1 by using
ex post asymmetric outcomes (C, D) and (D,C).

For any x ∈ [0, 1], I will construct an independent and indifferent equi-
librium with symmetric payoff x as follows:

• At period t, players with record at−1 are assigned with “target payoff”
Vt(a

t−1). Set V1(∅) = x. I will construct an equilibrium under which
all players obtain their target payoffs as their continuation payoffs.

• A player who meets another player with record āt−1 chooses action C
with probability pt(ā

t−1) and action D with probability 1 − pt(ā
t−1).

• The target payoff in the next period, Vt+1(a
t), is computed recursively

from the current target payoff Vt(a
t−1) and the current action at.

14



To accomplish the construction, I need to specify parameters {pt} and the
transition rule of target payoffs.

Suppose that a player has record at−1 at the beginning of period t. His
partner at period t cooperates with probability pt(a

t−1) and defects with
probability 1 − pt(a

t−1). If he cooperates at period t, then he obtains con-
tinuation payoff Vt+1(a

t−1, C) from period t + 1 on. Thus his total payoff
is

(1 − δ)[pt(a
t−1) − (1 − pt(a

t−1))l] + δVt+1(a
t−1, C).

Similarly, if he defects at period t, then his total payoff is

(1 − δ)pt(a
t−1)(1 + g) + δVt+1(a

t−1, D).

Since the equilibrium satisfies indifference at all histories, the total payoffs
in the two situations are the same and equal to Vt(a

t−1). Thus I obtain

Vt(a
t−1) = (1 − δ)[pt(a

t−1) − (1 − pt(a
t−1))l] + δVt+1(a

t−1, C)

= (1 − δ)pt(a
t−1)(1 + g) + δVt+1(a

t−1, D). (5)

The next lemma shows that, given any target payoff at each period, I can
find a mixing probability at this period and target payoffs at the next period
such that (5) is satisfied.

Lemma 1. If δ ≥ max(g/(1 + g), l/(1 + l)), then, for every t ≥ 1, every
at−1 ∈ At−1, and every Vt(a

t−1) ∈ [0, 1], there exist a probability pt(a
t−1) ∈

[0, 1] and target payoffs Vt+1(a
t−1, C), Vt+1(a

t−1, D) ∈ [0, 1] such that (5) is
satisfied.

Proof. Let

pt(a
t−1) = Vt(a

t−1),

Vt+1(a
t−1, C) =

Vt(a
t−1)

δ
− 1 − δ

δ
[pt(a

t−1) − (1 − pt(a
t−1))l],

Vt+1(a
t−1, D) =

Vt(a
t−1)

δ
− 1 − δ

δ
pt(a

t−1)(1 + g).

By the construction, (5) is satisfied. Since Vt(a
t−1) ∈ [0, 1], I have pt(a

t−1) ∈
[0, 1]. Also, by the assumption on δ, I have Vt+1(a

t−1, C), Vt+1(a
t−1, D) ∈

[0, 1].

Proof of Proposition 2. “If” part: Repeatedly applying Lemma 1, I can con-
struct {pt} and {Vt} that satisfy (5) with initial condition V1(∅) = x. Now
I define strategy σ∗ by σ∗

t (a
t−1, āt−1)(C) = pt(ā

t−1), which satisfies indepen-
dence of own play. Since target payoffs {Vt} are uniformly bounded, {Vt} are
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equal to the value functions under σ∗. By (5), σ∗ satisfies indifference at all
histories.

“Only if” part: For any independent and indifferent equilibrium σ∗, let
pt(a

t−1) = σ∗
t (ā

t−1, at−1) for an arbitrary āt−1. Since σ∗ satisfies independence
of own play, this definition does not depend on the choice of āt−1. Similarly,
let Vt(a

t−1) = Ut(σ
∗, σ∗ | at−1, āt−1, µ∗) = supσ Ut(σ, σ∗ | at−1, āt−1, µ∗), where

µ∗ is generated by σ∗, which does not depend on āt−1 as well. By indifference
at all histories, {pt} and {Vt} satisfy (5).

Let V = inft,at−1 Vt(a
t−1), which is finite since stage-game payoffs are

bounded from below by −l. It follows from (5) that

Vt(a
t−1) = (1 − δ)pt(a

t−1)(1 + g) + δVt+1(a
t−1, D) ≥ δV .

The inequality holds since pt(a
t−1) ≥ 0 and Vt+1(a

t−1, D) ≥ V . Since this is
true for any t and any at−1, δV is one of the lower bounds for Vt(a

t−1). Since V
is the largest lower bound for Vt(a

t−1), I have V ≥ δV . Thus V1(∅) ≥ V ≥ 0.
Similarly, let V = supt,at−1 Vt(a

t−1), which is finite since stage-game pay-
offs are bounded from above by 1 + g. It follows from (5) that

Vt(a
t−1) = (1 − δ)[pt(a

t−1) − (1 − pt(a
t−1))l] + δVt+1(a

t−1, C) ≤ (1 − δ) + δV

The inequality holds since pt(a
t−1) ≤ 1 and Vt+1(a

t−1, C) ≤ V . Since this is
true for any t and any at−1, (1−δ)+δV is one of the upper bounds for Vt(a

t−1).
Since V is the smallest upper bound for Vt(a

t−1), I have V ≤ (1 − δ) + δV .
Thus V1(∅) ≤ V ≤ 1.

In the repeated prisoner’s dilemma with private monitoring, Piccione
(2002) constructed a belief-free equilibrium in which each player’s mixing
probability is independent of his own play; it depends only on the sequence
of signals about his opponent’s actions. In Proposition 2, each player follows
a Piccione-type equilibrium based on the report he receives from the criminal
history repository.13

Although the basic idea is the same, there are two technical differences
between Piccione’s and my constructions. First, Piccione focused on belief-
free equilibria that not only satisfy independence of own play, but also have a
flavor of the tit-for-tat strategy: each of his equilibrium strategies generates
the periodic repetition of finitely many actions if each player observes his

13Unlike Piccione, Ely and Välimäki (2002) constructed a belief-free equilibrium in which
each player chooses an action based only on what he observed at the previous period, i.e.,
his own action and the signal about his opponent’s action at the previous period. An Ely
and Välimäki-type equilibrium would have a counterpart in the community enforcement
model if second-order information were available. See Subsection 5.3.
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opponent’s actions correctly, and any past deviation is immediately forgiven
once this cycle is observed. Since this class of strategies covers at most
countably many payoff profiles under a fixed discount factor, he proved only
an approximate folk theorem: for any target payoff profile, there exists a
sequence of equilibrium payoffs that converges to the target as the discount
factor goes to 1. Second, in some cases, Piccione used asymmetric strategies
to sustain even symmetric payoff profiles. For example, when g−l > 1, due to
his restriction to tit-for-tat-like strategies, for any x ∈ [0, 1], the equilibrium
he constructed in order to (approximately) achieve symmetric payoff profile
(x, x) is asymmetric. In the context of community enforcement, however, it is
not clear whether and how such an asymmetric equilibrium can be translated
to a single-population model, where players are not assigned with the role of
“player 1” or “player 2” at each match. In contrast, for any x ∈ [0, 1] and
any large but fixed discount factor, the proof of Proposition 2 constructed
a nonperiodic and symmetric equilibrium that exactly achieves symmetric
payoff x.

I call the recursively constructed equilibrium in the above proof the lin-
ear independent and indifferent equilibrium with symmetric payoff x since
pt(a

t−1) depends on Vt(a
t−1) linearly.

In the case of g = l, I can provide explicit formulae of the linear in-
dependent and indifferent equilibrium with symmetric payoff x. Let λ =
[(1 − δ)/δ]g, which belongs to (0, 1] as long as δ ≥ g/(1 + g). For at−1 =
(a1, a2, . . . , at−1), it holds that

pt(a
t−1) = λ

∑
1≤s≤t−1,

as=C

(1 − λ)t−s−1 + x(1 − λ)t−1, (6)

1 − pt(a
t−1) = λ

∑
1≤s≤t−1,

as=D

(1 − λ)t−s−1 + (1 − x)(1 − λ)t−1. (7)

(6) is interpreted as the discounted sum of rewards. Every time a player
cooperates, this choice is recorded and other players will reward him in the
future by cooperating with higher probabilities. The impact of cooperation
at a given period remains positive forever (except for the knife-edge case
that δ = g/(1 + g)), but converges to zero at an exponential rate as time
goes by. Also, the probability of cooperation at a given period responds
more sensitively to cooperation in the recent past than to cooperation in the
distant past. These qualitative features remain valid for g �= l. In the same
vein, (7) is interpreted as the discounted sum of punishments.

Note that there may be nonlinear independent and indifferent equilibria.
For example, if δ ≥ (1+ g + l)/(2+ g + l), then there is another construction
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of pt(a
t−1), Vt+1(a

t−1, C), and Vt+1(a
t−1, D) to prove Lemma 1. To see this,

pick any v∗ ∈ [(1 − δ)(1 + g),−(1 − δ)l + δ]. For any Vt(a
t−1) ∈ [0, 1], let

pt(a
t−1) = 1,

Vt+1(a
t−1, C) =

Vt(a
t−1)

δ
− 1 − δ

δ
,

Vt+1(a
t−1, D) =

Vt(a
t−1)

δ
− 1 − δ

δ
(1 + g)

if Vt(a
t−1) ≥ v∗, and

pt(a
t−1) = 0,

Vt+1(a
t−1, C) =

Vt(a
t−1)

δ
+

1 − δ

δ
l,

Vt+1(a
t−1, D) =

Vt(a
t−1)

δ

if Vt(a
t−1) < v∗. Since pt(a

t−1) is either 0 or 1, this construction defines a
pure-strategy independent and indifferent equilibrium.

3.3 Long-Run Stability

Consider the linear independent and indifferent equilibrium with symmet-
ric payoff 1 under discount factor δ ≥ max(g/(1 + g), l/(1 + l)). In this
equilibrium, every player cooperates forever on the equilibrium path. This
subsection investigates whether this long-run prediction is robust to one-time
shocks. Suppose that a small group of players mistakenly defect at some pe-
riod. This defection induces their future partners to punish with a positive
probability, leading to the second defection. The second defection leads to
the third defection and so on. Does this chain of defection spread over the
community or remain in a small part of the population in the long run?

Before answering this question, I have to make three clarifications. First,
a finite number of mistakes do not change the distribution of records in the
continuum population. Thus, in order to check robustness of continuum-
population equilibria, I use a shock that causes simultaneous mistakes by a
small but positive mass of players. Second, I assume that the shock occurs
once and unexpectedly. Players keep cooperating until the shock realizes.
Third, players do not notice the shock after it realizes. Players, including
those who made mistakes because of the shock, believe the same distributions
of records in the population as if there had not been a shock, and follow the
original equilibrium strategy. If a player observes defection in his partner’s
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record, he does not forgive it even though his partner did not deliberately
defect.

Note that long-run stability is a criterion different from maximizing the
average of the players’ equilibrium payoffs. There are two motivations for this
criterion. The first motivation comes from normative analysis. Although it
may seem odd to use a welfare criterion based on undiscounted payoffs, I can
justify this criterion if each player in the model is not an individual but a
dynasty that consists of infinitely many agents. Under this interpretation,
each agent cares his offspring’s payoffs with discount factor δ, but the social
planner has no reason to care older generations more than younger gener-
ations. In this situation, long-run outcomes are a desirable social welfare
criterion that treats all generations equally. The second motivation comes
from positive analysis. If I seriously believe my model as an abstraction of
the real world, and also if there are many communities in reality that suc-
cessfully sustain cooperation for long time, then this phenomenon should be
explained by an equilibrium with long-run stability.14

In my model, long-run stability is analyzed in the following way. Let σ∗

be any equilibrium. Let

Pt(σ
∗
t , µt−1) =

∑
at−1,āt−1∈At−1

µt−1(a
t−1)µt−1(ā

t−1)σ∗
t (a

t−1, āt−1)(C)

be the fraction of players in the population who play C at period t. I add
a shock at the end of period T so that µT differs from µ∗

T generated by
σ∗. From period T + 1 on, all players follow σ∗. The sequence {µt}t≥T of
distributions of records in the population is defined recursively by (2) with
initial condition µT and strategy σ∗. I say that σ∗ sustains cooperation in
the long run from µT if Pt(σ

∗
t , µt−1) → 1 as t → ∞.

Now I focus on any linear independent and indifferent equilibrium. Then
it holds that

Pt+1(σ
∗
t+1, µt) = Pt(σ

∗
t , µt−1) − 1 − δ

δ
(g − l)Pt(σ

∗
t , µt−1)(1 − Pt(σ

∗
t , µt−1))

(8)

for t ≥ T +1. See Appendix A.2 for the derivation of (8). I can approximate
(8) by the linear difference equation

1 − Pt+1(σ
∗
t+1, µt) ≈

(
1 +

1 − δ

δ
(g − l)

)
(1 − Pt(σ

∗
t , µt−1))

14The concept of long-run stability was introduced by Kandori (1992). Ellison (1994)
clarified the difference between long-run stability and robustness to noises analyzed in the
next subsection.
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if Pt(σ
∗
t , µt−1) is close to 1.

If g < l, then the fraction of players who choose D declines exponentially.
In fact, σ∗ sustains cooperation in the long run from any µT . See Appendix
A.3 for the proof. In contrast, if g > l, then defection spreads in the whole
population at an exponential rate. Thus even a small fraction of errors leads
to the corruption of cooperation in the long run. If g = l, then the fraction
of D in the population remains constant.

3.4 Noise in Actions or in Records

The real world contains persistent noise. A player may not be able to choose
an action as he wants. Even if he chooses an action correctly, it may still be
recorded wrong or interpreted with biases. For example, people often forget
to pay their bills on time. Even if they make the payment, credit history
bureaus occasionally make mistakes in recording. In an online transaction, a
seller sometimes fails to deliver a good to the buyer on time due to lost or de-
layed package. Even if the seller delivers on time, the buyer may nevertheless
submit a negative rating.

In this subsection, I add noise to the process of choosing actions, and
show that independent and indifferent equilibria are robust to such noise. (A
similar result is obtained when noise is added to the recording process. The
two kinds of noise are theoretically equivalent under a certain transformation
of stage-game payoffs.) At each period, if a player intends to cooperate,
then he mistakenly defects with probability εC ; if a player intends to defect,
then he mistakenly cooperates with probability εD. So the probability of
cooperation is restricted between εD and 1 − εC . Note that, unlike in the
previous subsection, shocks can occur repeatedly over time. These shocks
are expected, and players take into account the possibility that they make
mistakes. Also I use players’ discounted payoffs as the welfare criterion.

The next proposition shows that the set of independent and indifferent
equilibrium payoffs changes continuously with respect to noise levels. Al-
though very low or very high payoffs are not sustained by independent and
indifferent equilibria if players make mistakes with positive probabilities, the
set of independent and indifferent equilibrium payoffs converges to [0, 1] as
the probabilities of mistakes go to zero.

Proposition 3. In the model with noise in actions, suppose that εC(1+ l)+
εD(1 + g) < 1 and

δ ≥ 1

1 − εC − εD

max

(
(1 − εC)g + εC l

1 + g
,
(1 − εD)l + εDg

1 + l

)
.
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Then there is an independent and indifferent equilibrium with symmetric pay-
off x if and only if x ∈ [εD(1 + g), 1 − εC(1 + l)].

Proof. Proved similarly to Proposition 2. See Appendix A.4.

3.5 Finite Population

In a large community, people may ignore the possibility that a person’s pri-
vate observation can alter his belief about aggregated variables in the com-
munity. My continuum-population model is an idealization that captures
this aspect of the real world. In a finite-population model, in contrast, I
can explicitly analyze the effect of private information on beliefs about other
players’ histories. Since the two models are different, there is no a priori
reason to believe that equilibria in the continuum-population model carry
over to the finite-population model or the vice versa.

As the next proposition shows, however, independent and indifferent equi-
libria carry over to the corresponding finite-population model. The reason is
simple. If an equilibrium satisfies independence of own play, then, to com-
pute a player’s continuation payoff, it does not matter who he meets or what
record of play his partner has. Therefore, his belief about other players’ his-
tories does not matter, either. Note that the only difference between finite-
and continuum-population models is the way of updating beliefs, but this
difference does not affect players’ incentives.

Proposition 4. If a continuum-population perfect equilibrium strategy sat-
isfies independence of own play, then, the strategy combined with any consis-
tent belief system forms a sequential equilibrium in the corresponding finite-
population model.

Proof. For any equilibrium σ∗ that satisfies independence of own play, con-
tinuation payoff Ut(σ, σ∗ | at−1, āt−1, µ) is independent of µ. Even though a
player’s belief about other players’ records of play depends on his private his-
tory in a finite-population model, this does not alter his continuation payoff.
Therefore, in the finite-population model, σ∗ is sequentially rational under
any belief system.

Note that Proposition 4 holds even if matchings are not chosen uniformly.
Moreover, the threshold of δ sufficient for the existence of independent and
indifferent equilibria does not vary with the size of the population. This is
not the case of contagious equilibria. In the finite-population model without
information transmission through the criminal history repository, Kandori
(1992) and Ellison (1994) showed that cooperation can be sustained by a
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popul. size contagious eqm indep. & indiff. eqm
l ≤ 1 l = 2 l = 10

2 0.50 0.50 0.67 0.91
4 0.68 0.50 0.67 0.91
10 0.79 0.50 0.67 0.91
100 0.89 0.50 0.67 0.91
1000 0.93 0.50 0.67 0.91

Table 1: Discount factor sufficient to sustain cooperation: g = 1. The column
for contagious equilibrium is taken from Table 1 in Ellison (1994).

contagious equilibrium if δ is above a threshold. The threshold increases as
the population becomes larger, and converges to 1 in the limit. Therefore,
to sustain cooperation by a contagious equilibrium in a large community,
interactions need to be frequent. Table 1 gives the threshold of the discount
factor for several population sizes and several values of l with g = 1. Note
that the threshold for Ellison’s contagious equilibrium does not depend on
l. The table shows that first-order information improves the possibility of
cooperation when the population size is large and l is small.

If the population size is 2, then the finite-population model collapses to
the standard two-player repeated prisoner’s dilemma. Thus, by Propositions
2 and 4, I can construct an equilibrium that sustains cooperation in the two-
player repeated prisoner’s dilemma. The constructed equilibrium is one of
the belief-free equilibria in Ely et al.’s (2005) terminology.

The next subsection exploits this connection in the other way. Namely,
I will use a technique that was originally developed for two-player repeated
games to construct equilibria in the community enforcement model.

3.6 General Stage Games

Ely et al. (2004, 2005) analyzed belief-free equilibria for two-player repeated
games. In Proposition 5 together with Lemma 3 of their 2005 paper, they
characterized the limit set of belief-free equilibrium payoffs as δ goes to 1 if
public randomization devices are available. Their 2004 paper showed that
the same characterization holds without public randomization devices. Here
I mimic their proofs to characterize the limit set of equilibrium payoffs with
independence of own play as δ goes to 1.

Suppose that the stage game is given by a finite symmetric two-player
game G = (A, u), where A is a nonempty finite set of actions and u : A2 → R

is a player’s payoff function. For each stage game G, I follow Section 2 ver-
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batim to build the infinitely repeated game of G with random matching in
a continuum of population. I do not allow players to observe public ran-
domization devices. I keep the definition of independence of own play as in
Subsection 3.1. Let P be the set of all nonempty subsets of A. For each
t ≥ 1 and Bt ∈ P , I say that σ∗ satisfies indifference within Bt at period t if
(4) is satisfied with equality for all at−1, āt−1 ∈ At−1 and at ∈ Bt, where µ∗

is generated by σ∗. For each B ∈ P , I define

v(B) = min
α∈∆(B)

max
a∈A

u(a, α), (9)

v(B) = max
α∈∆(B)

min
a∈B

u(a, α). (10)

If v(B) < v(B), then, as in Proposition 2, I can show that, for a sufficiently
large δ, there exists an equilibrium with symmetric payoff x that satisfies
independence of own play and indifference within Bt = B at all periods if
and only if x ∈ [v(B), v(B)]. I omit the proof of this claim. Instead, I will
construct equilibria that cover a wider range of payoffs by changing Bt over
time. Namely, I will characterize the limit set of equilibrium payoffs with
independence of own play. The limit set can be strictly larger than the union
of [v(B), v(B)] for B ∈ P such that v(B) < v(B).

The stage game G belongs to the positive case if v(B) < v(B) for some
B ∈ P ; G belongs to the negative case if v(B) ≥ v(B) for all B ∈ P . Let

W =

{
w ∈ ∆(P) |

∑
B∈P

w(B)v(B) ≤
∑
B∈P

w(B)v(B)

}

be the set of weights w on P such that the weighted average of v(B) is less
than or equal to the weighted average of v(B), and

v = min
w∈W

∑
B∈P

w(B)v(B), v = max
w∈W

∑
B∈P

w(B)v(B).

be the minimum and the maximum of such weighted averages, respectively,
when the weight w is taken from W .

Let NE be the set of symmetric Nash equilibrium payoffs of the stage
game.

Proposition 5. (1) Suppose that the stage game belongs to the positive
case. Then, the set of symmetric equilibrium payoffs with independence
of own play is a subset of [v, v]. Conversely, for any x ∈ (v, v), there
exists δ̄ < 1 such that, for any δ > δ̄, there exists an equilibrium with
symmetric payoff x that satisfies independence of own play.
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(2) Suppose that the stage game belongs to the negative case. Then, the set
of symmetric equilibrium payoffs with independence of own play is a
subset of [min NE , maxNE ]. Conversely, for any x ∈ [minNE , maxNE ]
and any δ ≥ 1/2, there exists an equilibrium with symmetric payoff x
that satisfies independence of own play.

Sketch of the Proof. The proof is based on Ely et al. (2004, 2005). I will
sketch the proof of the second statement of Part (1). If the stage game
belongs to the positive case, then, for any x ∈ (v, v), there exists a sequence
{Bt} such that, for sufficiently large δ, it holds that

vt ≡
∑
B∈P

wt(B)v(B) < x <
∑
B∈P

wt(B)v(B) ≡ vt

for every t ≥ 1, where

wt(B) = (1 − δ)
∑

s≥t,Bs=B

δs−t

is the discounted fraction of periods in which Bs = B after period t. I
will construct an equilibrium that satisfies independence of own play and
indifference within Bt at each period t. The construction is recursive as in
Lemma 1. For a player’s target payoff in [vt, vt], I can control his partner’s
action and target payoffs at period t + 1 so that he is indifferent within Bt

but any action outside Bt is severely punished by the worst continuation
payoff vt+1. Also, by having the partner choose a mixture of a solution to
the minmax problem (9) and a solution to the maxmin problem (10), I can
keep the next-period target payoffs within [vt+1, vt+1]. See Appendix A.5 for
the details.

There are two main differences between Proposition 5 and Ely et al.
(2004). One is that I use symmetric strategies in the single-population model.
This simplifies the definitions of positive and negative cases, and makes the
“abnormal case” empty. The other is that a player in the two-player re-
peated game recalls his own past actions whereas a player in the community
enforcement model does not observe the realizations of his partner’s past
partners’ mixed actions. Therefore, a player’s target payoff at the next pe-
riod cannot depend on whether his current partner chooses a solution to the
minmax problem (9) or a solution to the maxmin problem (10). This is why
an equilibrium strategy with independence of own play is not described by
a two-state automaton as in Ely and Välimäki (2002). To fix this problem,
I modify Ely and Välimäki-type equilibria constructed in Ely et al. (2004)
into Piccione-type equilibria. Compare Lemma 6 in Appendix A.5 with step
(iv) in Ely et al. (2004).
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B {C} {D} {E} {C, D} {C, E} {D,E} A = {C, D,E}
v(B) 5 0 4 0 5/2 0 0
v(B) 1 0 2 1 2 0 10/7

Table 2: v(B) and v(B) for Example 2.

Note that the threshold δ̄ depends on the target payoff x in Proposition
5 (1). Also note that Proposition 5 (1) does not say anything about whether
the boundary of [v, v] can be sustained as an equilibrium payoff.

Example 1. For prisoner’s dilemma, I have

v({C}) = 1 + g, v({D}) = 0, v({C, D}) = 0,

v({C}) = 1, v({D}) = 0, v({C, D}) = 1.

The prisoner’s dilemma game belongs to the positive case, and, by Proposi-
tion 5 (1), the limit set of equilibrium payoffs with independence of own play
is given by [v, v] = [0, 1]. Thus, in the case of prisoner’s dilemma, it does not
change the set of equilibrium payoffs whether players are indifferent between
C and D at all histories or not.

Example 2. Consider the following 3 × 3 game with A = {C, D,E}:
C D E

C 1, 1 −1, 5 4, 0
D 5,−1 0, 0 0, 0
E 0, 4 0, 0 2, 2

See Table 2 for the list of v(B) and v(B) for this game. The game belongs
to the positive case. Thus, by Proposition 5 (1), the limit set of equilibrium
payoffs with independence of own play is given by [v, v] = [0, 50/27]. Here the
upper bound 50/27 is the weighted average of v({C, E}) and v({C, D,E})
with weights 20/27 and 7/27, respectively. Note that [0, 50/27] is strictly
larger than [0, 10/7], the union of [v(B), v(B)] such that v(B) < v(B). Thus,
varying sets of indifferent actions over time expands the set of equilibrium
payoffs in this game.

Example 3. Consider the following 3 × 3 game with A = {a, a′, a′′}:
a a′ a′′

a 0, 0 2, 0 1, 2
a′ 0, 2 1, 1 0, 0
a′′ 2, 1 0, 0 0, 0
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B {a} {a′} {a′′} {a, a′} {a, a′′} {a′, a′′} A = {a, a′, a′′}
v(B) 2 2 1 1 2/3 1 2/3
v(B) 0 1 0 1 2/3 0 2/3

Table 3: v(B) and v(B) for Example 3.

See Table 3 for the list of v(B) and v(B) for this game. The game belongs
to the negative case and NE = {2/3}. Thus, by Proposition 5 (2), 2/3 is
the unique repeated-game equilibrium payoff with independence of own play.
Note that [v, v] = [2/3, 1] is different from {2/3}. Thus, this example shows
that the analysis on the negative case cannot be absorbed to the positive
case.

4 Strict Incentives

Every independent and indifferent equilibrium is subject to the criticism that
players lack strict incentives to follow the equilibrium strategy. Motivated by
this criticism, in this section, I explore equilibria that do not use indifference
conditions as heavily as independent and indifferent equilibria.

4.1 Strict Equilibria

I call an equilibrium strict if, at any history, each player strictly prefers the
action prescribed by the equilibrium to any one-shot deviation.

Definition 4. A strategy σ∗ is a continuum-population strict perfect equi-
librium (or strict equilibrium) if (4) holds with strict inequality whenever
at �= σ∗

t (a
t−1, āt−1).

This definition is weaker than the standard definition of strict equilibria
for normal-form games. At each period, this definition ignores deviations at
histories that are not reachable from the current history under the equilib-
rium play. A strict equilibrium is always in pure strategies: σ∗

t (a
t−1, āt−1) is

either C or D for every t ≥ 1 and at−1, āt−1 ∈ At−1.
The next proposition shows that cooperation can be sustained by a strict

equilibrium for a sufficiently large discount factor if and only if g < l.

Proposition 6. (1) If g < l and δ > g(1 + l)/[(1 + g)l], then there exists
a strict equilibrium with symmetric payoff 1.
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(2) If g ≥ l, then there is no strict equilibrium with a positive symmetric
payoff.

To prove Proposition 6 (1), consider the pairwise grim-trigger strategy
defined in Section 2 as a candidate for strict equilibria. Recall that the
pairwise grim-trigger strategy prescribes a player to cooperate if and only
if neither he nor his current partner has ever defected. Since both cheaters
and those who punished cheaters are punished equally, punishment in the
pairwise grim-trigger strategy has two effects that conflict with each other.
One effect is to encourage a player to cooperate when neither his nor his
current partner’s record contains D. The other effect is to discourage a
player to defect when his own record consists of C only but his partner’s
record contains D. In this situation, he may prefer keeping a clean record to
punishing the partner in the current match if the punishment is too severe.
Therefore, punishment needs to be severer than the short-term gain g in the
cooperation phase, but milder than the short-term loss l in the punishment
phase. This is why g < l is assumed in Proposition 6 (1). The next lemma
formalizes this argument.

Lemma 2. The pairwise grim-trigger strategy is an equilibrium if and only
if g/(1+g) ≤ δ ≤ l/(1+ l), and a strict equilibrium if and only if g/(1+g) <
δ < l/(1 + l).

Proof. Consider a match at period t between a player with record at−1 and
another player with record āt−1. First, suppose that neither at−1 nor āt−1

contains D. Let µ∗ be generated by the pairwise grim-trigger strategy. Under
µ∗, the player with record at−1 believes that none of his future partners has
a record that contains D. Thus he believes that his future partners will
cooperate if he follows the equilibrium strategy, but defect otherwise. In this
situation, C is a best response for the player with record at−1 if and only if

1 ≥ (1 − δ)(1 + g). (11)

Second, suppose that at−1 does not contain D but āt−1 does. The only
difference from the previous situation is that the player with record at−1

faces the partner who will play D at period t. In this situation, D is a best
response for the player with record at−1 if and only if

0 ≥ −(1 − δ)l + δ. (12)

Lastly, suppose that at−1 contains D. Then, no matter what the player
with record at−1 does, other players will defect to him. Thus D is always a
strict best response for him.
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Therefore, it follows from (11) and (12) that the pairwise grim-trigger
strategy is an equilibrium if and only if g/(1 + g) ≤ δ ≤ l/(1 + l).

Similarly, the pairwise grim-trigger strategy is a strict equilibrium if and
only if (11) and (12) are satisfied with strict inequalities, i.e., g/(1 + g) <
δ < l/(1 + l).

If g < l, then there is an open interval of δ under which the pairwise
grim-trigger strategy is a strict equilibrium. Then I can apply a well-known
trick by Ellison (1994) to modify the pairwise grim-trigger strategy into an
equilibrium for any sufficiently large discount factor.

Proof of Proposition 6. (1) For any δ > g(1 + l)/[(1 + g)l], there exists an
integer T such that g/(1 + g) < δT < l/(1 + l). For this T , I define a
strategy σ∗ as follows: σ∗

t (a
t−1, āt−1) = C if at−kT = āt−kT = C for every

positive integer k such that kT < t; σ∗
t (a

t−1, āt−1) = D otherwise. In other
words, the whole repeated game is divided into T mini-games such that the
stage game at period t belongs to the t′-th mini-game if and only if t − t′

is divisible by T , and players follow the pairwise grim-trigger strategy in
each mini-game, ignoring information about the other mini-games. Since the
effective discount factor in each mini-game is δT , by Lemma 2, σ∗ is a strict
equilibrium.

(2) Suppose that σ∗ is a strict equilibrium with a positive symmetric
payoff. Since σ∗ is a pure strategy, I can define (a1, a2, . . . ) as the sequence
of pure actions on the equilibrium play. Since σ∗ yields a positive payoff,
there exists a period t at which at = C . If a player deviates at period t by
choosing D, he has to be punished in the future. Thus there exists another
period t′ > t at which the equilibrium play at′ is C but a player chooses D if
he encounters a player who deviated at period t. Let bt′−1 be the deviator’s
record of play before period t′.

Here I consider two incentive compatibility constraints of a non-deviator
whose record of play is at′−1 = (a1, . . . , at′−1). If his partner has followed
the equilibrium play (i.e., the partner’s record of play is also at′−1), then he
strictly prefers C to D:

(1 − δ)u(C, C) + δUt′+1(σ
∗, σ∗ | (at′−1, C), at′, µ∗)

> (1 − δ)u(D,C) + δUt′+1(σ
∗, σ∗ | (at′−1, D), at′, µ∗), (13)

where µ∗
s puts weight 1 on as for any s. Also, he strictly prefers D to C if

the partner’s record of play is bt′−1:

(1 − δ)u(D, ā) + δUt′+1(σ
∗, σ∗ | (at′−1, D), at′, µ∗)

> (1 − δ)u(C, ā) + δUt′+1(σ
∗, σ∗ | (at′−1, C), at′, µ∗), (14)
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where ā = σ∗
t′(b

t′−1, at′−1) is the deviator’s action at period t′. Adding up
(13) and (14), I can cancel out the future payoff terms because the future
payoffs do not depend on the current partner’s record of play. Thus I have

u(C, C) + u(D, ā) > u(D,C) + u(C, ā),

which does not hold no matter whether ā = C or D since g ≥ l.

4.2 Equilibria without History-Dependent Mixing

One might think that using mixed strategies in independent and indiffer-
ent equilibria can be justified by Harsanyi’s (1973) purification theorem. He
showed that, for a generic normal-form game, all mixed-strategy equilibria
can be approximated by a sequence of pure-strategy equilibria in incomplete-
information games with payoff perturbations. Moreover, players in incomplete-
information games have strict best responses with probability 1.

The purification theorem, however, does not apply to extensive-form
games. Moreover, Bhaskar (1998) provided an example of overlapping gen-
eration game with a mixed-strategy equilibrium that cannot be purified if
payoff perturbations enter in the additively separable form. He argued that
non-purifiability does not stem from mixed equilibrium per se, but from hav-
ing mixing probabilities depend on payoff-irrelevant histories. See Bhaskar
and van Damme (2002) for a similar argument in the context of two-player
repeated games.15

No independent and indifferent equilibrium passes Bhaskar’s critique.
This subsection considers whether cooperation can be sustained by an equi-
librium that does not use history-dependent mixing.

Definition 5. An equilibrium σ∗ is without history-dependent mixing if the
following condition is satisfied: for any t ≥ 1, it holds that σ∗

t (a
t−1, āt−1) =

σ∗
t (a

t−1, b̄t−1) if a player with record at−1 is indifferent between C and D both
when his partner has record āt−1 and when his partner has record b̄t−1.

This definition is motivated by Bhaskar’s argument. Consider two sit-
uations: a player with record at−1 faces a partner with record āt−1 and a
partner with record b̄t−1. In both situations, he is indifferent between coop-
eration and defection. Then he has to decide his action based on a payoff
perturbation to his current payoff. No matter how the perturbation is dis-
tributed, it must induce the same mixing probabilities. Note that I do not

15But see Bhaskar et al. (2006). In the repeated prisoner’s dilemma game, they showed
that Ely and Välimäki’s (2002) equilibrium can be purified by a sequence of equilibria
with unboundedly long memory even though it uses history-dependent mixing.
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require that two players’ mixing probabilities be the same when their own
records of play are different. If records are different, then their current de-
cisions can be affected not only by the current payoff perturbation but also
by future payoff perturbations, and the two mixing probabilities do not need
to coincide with each other. I conjecture that an equilibrium being without
history-dependent mixing is sufficient (may not be necessary) for the equilib-
rium to be purifiable when payoffs are perturbed in an additively separable
way.

No strict equilibrium uses history-dependent mixing. Since I have already
shown in Proposition 6 (1) that strict equilibria can sustain cooperation when
g < l for sufficiently large δ, I will focus on g ≥ l in this subsection.

The next proposition shows that, if g > l and players are patient enough,
then cooperation can be approximately sustained by equilibria without history-
dependent mixing, although full cooperation cannot be sustained exactly. It
is also shown that no positive payoff can be sustained by equilibria without
history-dependent mixing if g = l.

Proposition 7. Suppose that g ≥ l.

(1) If g > l and δ > (1 + g + l)/(2 + g + l), then, for any x ∈ [0, 1), there
exists an equilibrium without history-dependent mixing that sustains
symmetric payoff x.

(2) There is no equilibrium without history-dependent mixing that sustains
full cooperation on the equilibrium path.

(3) If g = l, then there is no equilibrium without history-dependent mixing
that sustains a positive symmetric payoff.

For Part (1), since always choosing D is a strict equilibrium with sym-
metric payoff x = 0, I can focus on achieving x ∈ (0, 1) without loss of
generality.

For each x ∈ (0, 1), I will construct an equilibrium with the following
properties.

• At the beginning of period t (before the matching at period t is de-
termined), players with record at−1 are assigned with target payoff
Vt(a

t−1). I will construct an equilibrium under which all players ob-
tain their target payoffs as their continuation payoffs. Set V1(∅) = x.

• Players are divided into two groups based on their target payoffs. If a
player’s target payoff is greater than or equal to a certain threshold v∗,
he is categorized to “high reputation” group H, and to “low reputation”
group L otherwise.
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• If two players who are matched are from the same level of reputation
r = H or L, then they cooperate with probability pr

t . If one player is
from the low-reputation group and the other from the high-reputation
group, then the low-reputation player cooperates whereas the high-
reputation player defects.

• The target payoff in the next period, Vt+1(a
t), is computed recursively

from the current target payoff Vt(a
t−1) and the current action at.

To accomplish the construction, I need to specify v∗, {pH
t }, {pL

t }, and the
transition rule of target payoffs.

Fix any x ∈ (0, 1). Since δ > (1+g+l)/(2+g+l), there exists a threshold
level v∗ such that

(1 − δ)(1 + g) < v∗ < −(1 − δ)l + δ. (15)

This inequality will be used in Lemma 4 to show that target payoffs remain
between 0 and 1.

Suppose that behavior strategies up to period t − 1, σ∗
s(a

s−1, ās−1) for
s = 1, . . . , t − 1, are already specified. This determines the distribution of
records of play in the population, µ∗

t−1 ∈ ∆(At−1). Also suppose that each
player is assigned with his target payoff Vt(a

t−1) as a function of his record
of play. Let

µH
t−1 =

∑
at−1∈At−1, Vt(at−1)≥v∗

µ∗
t−1(a

t−1), µL
t−1 = 1 − µH

t−1

be the masses of players with high and low reputations, respectively.
Now I will specify pH

t , pL
t , and Vt+1(a

t) for all at ∈ At. When a player
with reputation r is matched with a player with the same reputation level,
he must be indifferent between C and D. Therefore, I have

(1 − δ)(pH
t − (1 − pH

t )l) + δVt+1(a
t−1, C) = (1 − δ)pH

t (1 + g) + δVt+1(a
t−1, D)

(16)

if Vt(a
t−1) ≥ v∗, and

(1 − δ)(pL
t − (1 − pL

t )l) + δVt+1(a
t−1, C) = (1 − δ)pL

t (1 + g) + δVt+1(a
t−1, D)

(17)

if Vt(a
t−1) < v∗. The following lemma shows that, as long as these conditions

are satisfied together with 0 < pr
t < 1, every player has a strict incentive to

follow the equilibrium when he faces a player from the opposite level of
reputation.
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Lemma 3. Suppose that g > l. If (16) is satisfied together with pH
t < 1,

then
(1 − δ) + δVt+1(a

t−1, C) < (1 − δ)(1 + g) + δVt+1(a
t−1, D).

Similarly, if (17) is satisfied together with pL
t > 0, then

(1 − δ)(−l) + δVt+1(a
t−1, C) > δVt+1(a

t−1, D).

Proof. This follows from strict submodularity of stage-game payoffs: the
more likely a player is to cooperate, the more willing his partner is to defect.
See Appendix A.6.

Also promise-keeping conditions need to be satisfied:

Vt(a
t−1) = µH

t−1[(1 − δ)pH
t (1 + g) + δVt+1(a

t−1, D)]

+ µL
t−1[(1 − δ)(1 + g) + δVt+1(a

t−1, D)] (18)

if Vt(a
t−1) ≥ v∗, and

Vt(a
t−1) = µL

t−1[(1 − δ)(pL
t − (1 − pL

t )l) + δVt+1(a
t−1, C)]

+ µH
t−1[(1 − δ)(−l) + δVt+1(a

t−1, C)] (19)

if Vt(a
t−1) < v∗.

Lemma 4. Fix any v∗ satisfying (15), µH
t−1, and µL

t−1. Then there exists a
mixing probability pH

t ∈ (0, 1) such that, for any at−1 with Vt(a
t−1) ∈ [v∗, 1),

there exist target payoffs Vt+1(a
t−1, C), Vt+1(a

t−1, D) ∈ (0, 1) such that (16)
and (18) are satisfied. Similarly, there exists a mixing probability pL

t ∈ (0, 1)
such that, for any at−1 with Vt(a

t−1) ∈ (0, v∗), there exist target payoffs
Vt+1(a

t−1, C), Vt+1(a
t−1, D) ∈ (0, 1) such that (17) and (19) are satisfied.

Proof. For any at−1 with Vt(a
t−1) ∈ [v∗, 1), Vt+1(a

t−1, C) and Vt+1(a
t−1, D)

are determined by (16) and (18):

Vt+1(a
t−1, C) =

Vt(a
t−1)

δ
− 1 − δ

δ
[µH

t−1p
H
t (1 + g) + µL

t−1(1 + g) − pH
t g − (1 − pH

t )l]

Vt+1(a
t−1, D) =

Vt(a
t−1)

δ
− 1 − δ

δ
[µH

t−1p
H
t (1 + g) + µL

t−1(1 + g)].

Since Vt(a
t−1) ∈ [v∗, 1) and (15) holds, if pH

t is sufficiently close to 1, I have
0 < Vt+1(a

t−1, D) < Vt+1(a
t−1, C) < 1.
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Similarly, for any at−1 with Vt(a
t−1) ∈ (0, v∗), Vt+1(a

t−1, C) and Vt+1(a
t−1, D)

are determined by (17) and (19):

Vt+1(a
t−1, C) =

Vt(a
t−1)

δ
+

1 − δ

δ
[−µL

t−1(p
L
t − (1 − pL

t )l) + µH
t−1l]

Vt+1(a
t−1, D) =

Vt(a
t−1)

δ
+

1 − δ

δ
[−µL

t−1(p
L
t − (1 − pL

t )l) + µH
t−1l − pL

t g − (1 − pL
t )l].

Since Vt(a
t−1) ∈ (0, v∗) and (15) holds, if pL

t is sufficiently close to 0, I have
0 < Vt+1(a

t−1, D) < Vt+1(a
t−1, C) < 1.

Proof of Proposition 7. (1) Fix any v∗ satisfying (15). For any x ∈ (0, 1),
repeatedly applying Lemma 4, I can construct {Vt}, {pH

t }, and {pL
t } that

satisfy (16)–(19) with initial condition V1(∅) = x. Now I define strategy σ∗

by

σ∗
t (a

t−1, āt−1)(C) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

pH
t if Vt(a

t−1) ≥ v∗ and Vt(ā
t−1) ≥ v∗,

0 if Vt(a
t−1) ≥ v∗ > Vt(ā

t−1),

1 if Vt(a
t−1) < v∗ ≤ Vt(ā

t−1),

pL
t if Vt(a

t−1) < v∗ and Vt(ā
t−1) < v∗.

Since (18) and (19) are satisfied and target payoffs {Vt} are uniformly bounded,
{Vt} are equal to the value functions under σ∗. By (16), (17), and Lemma 3,
σ∗ is an equilibrium without history-dependent mixing.

(2) This is proved similarly to Proposition 6 (2). Suppose that σ∗ is an
equilibrium without history-dependent mixing that sustains cooperation on
the equilibrium path. If a player deviates at period t, he will be punished
with positive probability at period t′ > t. Let at′−1 be the deviator’s record
of play before period t′.

Here I consider two incentive compatibility constraints of a non-deviator.
If his partner has followed the equilibrium play, then he weakly prefers C to
D:

(1 − δ)u(C, C) + δUt′+1(σ
∗, σ∗ | (C, . . . , C, C), (C, . . . , C), µ∗)

≥ (1 − δ)u(D,C) + δUt′+1(σ
∗, σ∗ | (C, . . . , C, D), (C, . . . , C), µ∗), (20)

where µ∗
s puts weight 1 on (C, . . . , C) for any s. Also, he weakly prefers D

to C if the partner’s record of play is bt′−1:

(1 − δ)u(D,α) + δUt′+1(σ
∗, σ∗ | (C, . . . , C, D), (C, . . . , C), µ∗)

≥ (1 − δ)u(C, α) + δUt′+1(σ
∗, σ∗ | (C, . . . , C, C), (C, . . . , C), µ∗), (21)
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where α = σ∗
t′(a

t′−1, (C, . . . , C)) is the deviator’s mixed action at period t′.
Moreover, since σ∗ does not use history-dependent mixing, either (20) or (21)
holds with strict inequality. Adding up (20) and (21), I have

u(C, C) + u(D,α) > u(D,C) + u(C, α),

which does not hold for any α since g ≥ l.
(3) Since g = l, a player’s incentive of choosing C over D is not affected by

his current partner’s action. So there is no payoff-relevant reason for him to
vary mixing probabilities based on his partner’s record of play. Therefore, the
repetition of D is the only equilibrium without history-dependent mixing.

5 Summary Statistics

This section investigates the possibility of cooperation when players use sum-
mary statistics of their partners’ records of play such as the number of co-
operation or the play in the T most recent periods for some finite T . Using
summary statistics requires less amount of players’ computational abilities
and saves social cost of storing data.

5.1 Permutation Invariance

I call a strategy σ permutation-invariant if σt(a
t−1, āt−1) = σt(a

t−1, b̄t−1)
whenever b̄t−1 is a permutation of āt−1, i.e., a player’s action depends on how
many times his current partner has cooperated, but not on at which period
the partner cooperated.

The expressions in (6) and (7) in Subsection 3.2 show that, if g = l, then
linear independent and indifferent equilibria are not permutation-invariant:
records in earlier periods have smaller effects on the current play than records
in later periods. This observation is generalized to nonlinear independent
and indifferent equilibria without any restriction on payoff parameters. The
reason is as follows. Any permutation-invariant equilibrium treats recent
defection and defection in the distant past equally. Also, since each player is
indifferent between cooperation and defection, his continuation payoff after
defection is lower than the continuation payoff after cooperation at least by
a certain positive amount. Therefore, each time he defects, his continuation
payoff differs from the continuation payoff he would get after the record of
full cooperation at least by the same amount. This procedure, however, does
not continue forever since continuation payoffs are uniformly bounded.

Proposition 8. There is no permutation-invariant independent and indif-
ferent equilibrium.
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Proof. Suppose that σ∗ is a permutation-invariant independent and indif-
ferent equilibrium. Let pt(k) be the probability that a player cooperates at
period t when his partner has cooperated k times, and Vt(k) the continuation
payoff of a player at period t who has cooperated k times. Similarly to (5),
for any t ≥ 1 and any k = 0, . . . , t− 1, I obtain

Vt(k) = (1 − δ)[pt(k) − (1 − pt(k))l] + δVt+1(k + 1)

= (1 − δ)pt(k)(1 + g) + δVt+1(k),

which implies

Vt+1(k + 1) − Vt+1(k) =
1 − δ

δ
[pt(k)g + (1 − pt(k))l] ≥ 1 − δ

δ
min(g, l).

Therefore, I have

Vt+1(t) − Vt+1(0) ≥ t × 1 − δ

δ
min(g, l)

for any t ≥ 1, which contradicts Vt+1(0), Vt+1(t) ∈ [−l, 1 + g] if t is large
enough.

Note that Proposition 8 leaves it open whether cooperation can be sus-
tained by a permutation-invariant equilibrium that does not satisfy either
independence of own play or indifference at all histories. For example, the
pairwise grim-trigger strategy is permutation-invariant. Thus, by Lemma
2, cooperation can be sustained by a permutation-invariant equilibrium if
g/(1 + g) ≤ δ ≤ l/(1 + l). It is, however, difficult to extend this result to
any sufficiently large discount factor because permutation invariance is not
preserved under Ellison’s trick.

5.2 Bounded Records

A strategy σ has records of length T if σt(a
t−1, āt−1) = σt(a

t−1, b̄t−1) whenever
(āt−T , āt−T+1, . . . , āt−1) = (b̄t−T , b̄t−T+1, . . . , b̄t−1). Similarly to permutation
invariance, it follows from (6) and (7) that linear independent and indifferent
equilibria do not have bounded records at least when g = l (except for δ =
g/(1+g)). Then I can ask the following question: can nonlinear independent
and indifferent equilibria have bounded records? This question is answered
in the following proposition.

Proposition 9. (1) If g �= l, then there is no independent and indifferent
equilibrium with bounded records.
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(2) If g = l and δ ≥ g/(1 + g), then, for any x ∈ [0, 1], there is an
independent and indifferent equilibrium that has records of length 1 with
symmetric payoff x.

Proof. See Appendix A.7.

Proposition 9 shows that unboundedly long records are necessary to keep
players indifferent at all histories if g �= l, but records of length 1 are sufficient
to sustain cooperation if g = l.

In his analysis on prisoner’s dilemma, which corresponds to g = l = 1/3
in my notation, Rosenthal (1979) argued that cooperation can be sustained
only in a knife-edge case. Namely, he showed that there exist pure-strategy
equilibria with records of length 1 that sustain cooperation if and only if
δ = 1/4. Proposition 9 (2) shows that his construction can be extended to
the case of δ ≥ 1/4 if mixed strategies are allowed. Also, as I showed at
the end of Subsection 3.2, for any δ ≥ (1 + g + l)/(2 + g + l) = 5/8, there
exists a pure-strategy independent and indifferent equilibrium that sustains
cooperation. To sum up, Rosenthal’s non-genericity result is resolved if either
mixed strategies or unboundedly long records are allowed.

Note that Proposition 9 deals only with independent and indifferent equi-
libria. The next proposition shows that, if g < l, then, for any sufficiently
large discount factor, there exists an equilibrium with bounded records with-
out indifference at all histories that sustains cooperation. The case of g > l
is an open question.

Proposition 10. If g < l and δ ≥ g(1 + l)/[(1 + g)l], then there exists an
equilibrium that has records of length T with symmetric payoff 1, where T is
the smallest integer that satisfies δT ≤ l/(1 + l).

Proof. Consider a strategy σ such that a player cooperates at period t if t = 1
or (t ≥ 2 and he and his partner cooperated at period t − 1), and defects
otherwise. Note that σ has records of length 1. Similarly to Lemma 2, I can
show that σ is an equilibrium if and only if g/(1 + g) ≤ δ ≤ l/(1 + l). Using
Ellison’s trick as in Proposition 6, I divide the game into T mini-games, and
let players follow σ in each mini-game. The modified strategy has records of
length T , and is an equilibrium for δ ≥ g(1 + l)/[(1 + g)l].

5.3 Second-Order Information

Note that Proposition 9 uses only first-order information. If higher-order
information is available, then a finite bound on the length of records may
not be restrictive even if g �= l.
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Here I assume that, at every period t ≥ 2, every player i receives a
report from the criminal history repository about the realized action profile
in his current partner’s previous match, (amt(i),t−1, amt−1(mt(i)),t−1), before the
stage game is played. Compared to the original model, each player has more
information in that he obtains a part of second-order information, but less
information in that he loses access to the record of his current partner’s play
more than a period ago.

Proposition 11. Under the above information structure, if δ ≥ max(g/(1+
g), l/(1 + l)), then, for any x ∈ [0, 1], there exists an equilibrium with sym-
metric payoff x.

Proof. See Appendix A.8

If player i at period t ≥ 2 observes his current partner mt(i)’s action at
the previous period (period t − 1) only, then he does not know what kind
of incentive problem his current partner was facing at the previous period.
The short-term gain for player mt(i) to choose defection depends on the
mixed action chosen by his partner at that time (player mt−1(mt(i))) unless
g = l. Without knowing this action, player i cannot make his current partner
indifferent at the previous period. This is why independent and indifferent
equilibria with records of length 1 exist only when g = l (Proposition 9).16

What Proposition 11 shows is the converse of this negative result; player i
can make his current partner indifferent if he knows the realization of his cur-
rent partner’s previous partner’s mixed action, amt−1(mt(i)),t−1. Even though
player i does not observe the mixing probability of player mt−1(mt(i)), know-
ing its realization gives him enough instruments to control player mt(i)’s ex-
pected continuation payoffs from period t− 1 on. From player mt−1(mt(i))’s
point of view, by using his own action, he can convery necessary information
about the incentive problem of his partner (player mt(i)) to his partner’s
next partner (player i).

The proof of Proposition 11 is based on Ely and Välimäki (2002). In the
two-player repeated prisoner’s dilemma with private monitoring, Ely and
Välimäki constructed a belief-free equilibrium in which each player’s mixing
probability depends only on his own action and the signal about his oppo-
nent’s action at the previous period. In the community enforcement model,
each player follows a Ely and Välimäki-type equilibrium, although a player’s
own action at the previous period is replaced by his current partner’s previous
partner’s action at the previous period.

16Proposition 9 (1) shows a slightly stronger claim, extending the negative result to
records of any finite length.
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6 Option to Exit

In decentralized markets without binding contracts, people can stay out of
particular business relations if they want. This is equivalent to modifying
the stage game as follows:

C D Out
C 1, 1 −l, 1 + g w, w
D 1 + g,−l 0, 0 w, w

Out w, w w, w w, w

where w is the reservation payoff that a player obtains outside the matching.
I assume that w < 1, i.e., the reservation payoff is less than the payoff from
cooperation. If a player chooses “Out” at some period, then he stays outside
the matching during this period, and comes back at the next period. The
option to exit was analyzed also by Dixit (2003b) in the context of the twice
repeated prisoner’s dilemma.

The next proposition shows that a variant of pairwise grim-trigger strat-
egy can sustain cooperation as an equilibrium outcome if the option to exit
is available.

Proposition 12. Suppose that the stage game is the prisoner’s dilemma with
the option to exit. If δ ≥ g/(1+ g −w), then there exists an equilibrium with
symmetric payoff 1.

Proof. Consider the following strategy σ∗: σ∗
t (a

t−1, āt−1) = C if as �= D and
ās �= D for all s = 1, . . . , t − 1, and σ∗

t (a
t−1, āt−1) = Out otherwise. In

other words, a player cooperates if neither he nor his current partner has
ever defected, and opts out otherwise.

First, suppose that neither at−1 nor āt−1 contains D. Then a player with
record at−1 weakly prefers cooperation to defection if and only if

1 ≥ (1 − δ)(1 + g) + δw,

which holds when δ ≥ g/(1 + g − w). Also he prefers cooperation to opting
out since w < 1.

Second, suppose that at−1 does not contain D but āt−1 does. Then a
player with record at−1 expects his current partner to opt out. So he is
indifferent between cooperation and opting out, whereas he gets worse off if
he defects.

Lastly, suppose that at−1 contains D. Then no matter what action he
chooses, his current and future partners will choose “Out.” Thus he is indif-
ferent among three actions.
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In the story behind the game, no trade occurs if at least one of the parties
opts out. Then, it may be natural that this situation is recorded as “Out”
for both parties even if only one side chooses to exit. Proposition 12 holds
under this modification as well.

Proposition 12 exhibits a clear contrast between the prisoner’s dilemma
games with and without the option to exit. Unlike in the original prisoner’s
dilemma, it is not difficult to sustain cooperation in the modified prisoner’s
dilemma if the discount factor is sufficiently large. Neither restrictions on
parameters g and l nor Ellison’s trick is needed. The reason for these differ-
ences is that opting out is a costly action for both parties. Therefore, when a
player punishes another player with a bad record by opting out of the match,
the former player does not take a risk of being suspected as a deviator.

Although the equilibrium in Proposition 12 is simple, it works only when
the outside option is bad enough. If the reservation payoff is higher than
max(0, 1 − g/l), then the interval [max(g/(1 + g), l/(1 + l)), g/(1 + g − w))
is nonempty. If δ is within this interval, then there is an independent and
indifferent equilibrium that sustains cooperation (Proposition 2) while the
assumption in Proposition 12 is not satisfied. In this case, punishment by
defection is severe enough to deter deviations whereas punishment by quitting
trade is not.

Appendix

A.1 Proof of Proposition 1

Fix a strategy σ∗ that satisfies indifference at all histories. Let µ∗ be gener-
ated by σ∗. For t ≥ 1 and at−1, bt−1, āt−1 ∈ At−1, let p = σ∗

t (a
t−1, āt−1)(C)

and q = σ∗
t (b

t−1, āt−1)(C). I will show that p = q.
Consider a player with record āt−1 who faces a player with record at−1.

Since (4) is satisfied with equality, I have

(1 − δ)(p − (1 − p)l) + δ
∑
b̄t∈At

Ut+1(σ
∗, σ∗ | (āt−1, C), b̄t, µ∗)µ∗

t (b̄
t)

= (1 − δ)p(1 + g) + δ
∑
b̄t∈At

Ut+1(σ
∗, σ∗ | (āt−1, D), b̄t, µ∗)µ∗

t (b̄
t). (22)

Similarly, considering a player with record āt−1 who faces a player with record
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bt−1, I have

(1 − δ)(q − (1 − q)l) + δ
∑
b̄t∈At

Ut+1(σ
∗, σ∗ | (āt−1, C), b̄t, µ∗)µ∗

t (b̄
t)

= (1 − δ)q(1 + g) + δ
∑
b̄t∈At

Ut+1(σ
∗, σ∗ | (āt−1, D), b̄t, µ∗)µ∗

t (b̄
t). (23)

Deducting (23) from (22), I can cancel all continuation payoff terms. Thus
it holds that

(p − (1 − p)l) − (q − (1 − q)l) = p(1 + g) − q(1 + g).

Rearranging this, I have (p − q)(g − l) = 0, which implies p = q since g �= l.

A.2 Derivation of Equation (8)

Let σ∗ be the linear independent and indifferent equilibrium with symmetric
payoff 1. Denote pt(ā

t−1) = σ∗(at−1, āt−1)(C) and Pt = Pt(σ
∗
t , µt−1). By

independence of own play,

Pt =
∑
at−1

µt−1(a
t−1)pt(a

t−1),

µt(a
t−1, C) = µt−1(a

t−1)Pt,

µt(a
t−1, D) = µt−1(a

t−1)(1 − Pt)

for t ≥ T + 1.
For t ≥ T + 1, I can write Pt+1 as follows:

Pt+1 =
∑
at

µt(a
t)pt+1(a

t)

=
∑
at−1

µt(a
t−1, C)pt+1(a

t−1, C) +
∑
at−1

µt(a
t−1, D)pt+1(a

t−1, D)

=
∑
at−1

µt−1(a
t−1)Pt

(
pt(a

t−1)

δ
− 1 − δ

δ
[pt(a

t−1) − (1 − pt(a
t−1))l]

)

+
∑
at−1

µt−1(a
t−1)(1 − Pt)

(
pt(a

t−1)

δ
− 1 − δ

δ
pt(a

t−1)(1 + g)

)

=

(
1 − δ

δ
(g − l)Pt + 1 − 1 − δ

δ
g

)∑
at−1

µt−1(a
t−1)pt(a

t−1) +
1 − δ

δ
lPt

∑
at−1

µt−1(a
t−1)

=

(
1 − δ

δ
(g − l)Pt + 1 − 1 − δ

δ
g

)
Pt +

1 − δ

δ
lPt

= Pt − 1 − δ

δ
(g − l)Pt(1 − Pt).
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A.3 Long-Run Stability when g < l

Let σ∗ be the linear independent and indifferent equilibrium with symmetric
payoff 1. Since g < l, it is easy to see from (8) that Pt(σ

∗
t , µt−1) → 1 as

t → ∞ as long as PT+1(σ
∗
T+1, µT ) > 0. Now I show that σ∗

T+1(a
T , āT ) > 0 for

any aT and āT so that PT+1(σ
∗
T+1, µT ) > 0 no matter how the shock changes

µT .
Let pt(ā

t−1) = σ∗
t (a

t−1, āt−1). By Lemma 1, I obtain p1(∅) = 1 > 0. Also,
if pt(a

t−1) > 0, then

pt+1(a
t−1, C) ≥ pt+1(a

t−1, D) =
pt(a

t−1)

δ
− 1 − δ

δ
pt(a

t−1)(1 + g) > 0

since δ ≥ l/(1 + l) > g/(1 + g). Thus, by induction, I obtain pT+1(a
T ) > 0

for any aT .

A.4 Proof of Proposition 3

The proof is almost the same as in Proposition 2. The only difference is that
the probability of cooperation needs to be between εD and 1 − εC at any
history. Thus I need to modify Lemma 1 in the following way.

Lemma 5. If εC(1 + l) + εD(1 + g) < 1 and

δ ≥ 1

1 − εC − εD
max

(
(1 − εC)g + εC l

1 + g
,
(1 − εD)l + εDg

1 + l

)
,

then, for every t ≥ 1, every at−1 ∈ At−1, and every Vt(a
t−1) ∈ [εD(1 +

g), 1 − εC(1 + l)], there exist a probability pt(y
t−1) ∈ [εD, 1 − εC] and target

payoffs Vt+1(a
t−1, C), Vt+1(a

t−1, D) ∈ [εD(1 + g), 1 − εC(1 + l)] such that (5)
is satisfied.

Proof. Let

pt(a
t−1) =

1 − εC − εD

1 − εC(1 + l) − εD(1 + g)
[Vt(a

t−1) − εD(1 + g)] + εD,

Vt+1(a
t−1, C) =

Vt(a
t−1)

δ
− 1 − δ

δ
[pt(a

t−1) − (1 − pt(a
t−1))l],

Vt+1(a
t−1, D) =

Vt(a
t−1)

δ
− 1 − δ

δ
pt(a

t−1)(1 + g).

By the construction, (5) is satisfied. Since Vt(a
t−1) ∈ [εD(1 + g), 1 − εC(1 +

l)], I have pt(a
t−1) ∈ [εD, 1 − εC]. Also, by the assumption on δ, I have

Vt+1(a
t−1, C), Vt+1(a

t−1, D) ∈ [εD(1 + g), 1 − εC(1 + l)].

The rest of the proof is the same as in Proposition 2.
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A.5 Proof of Proposition 5

(1) First, I will show that, if there exists an equilibrium σ∗ with symmetric
payoff x that satisfies independence of own play, then x ∈ [v, v]. Let

V t = min
at−1∈At−1

Ut(σ
∗, σ∗ | at−1, āt−1, µ∗),

V t = max
at−1∈At−1

Ut(σ
∗, σ∗ | at−1, āt−1, µ∗),

where µ∗ is generated by σ∗, and

Bt = {at ∈ A | σ∗
t (a

t−1, āt−1)(at) > 0 for some āt−1 ∈ At−1}.
Since σ∗ satisfies independence of own play, V t and V t are independent of
āt−1, and Bt is independent of at−1.

Fix any āt−1 ∈ At−1. For any at−1 ∈ At−1 and any at ∈ A, I have

Ut(σ
∗, σ∗ | at−1, āt−1, µ∗)

≥ (1 − δ)u(at, σ
∗
t (ā

t−1, at−1)) + δ
∑
b̄t∈At

Ut+1(σ
∗, σ∗ | (at−1, at), b̄

t, µ∗)µ∗
t (b̄

t)

≥ (1 − δ)u(at, σ
∗
t (ā

t−1, at−1)) + δV t+1,

Thus

Ut(σ
∗, σ∗ | at−1, āt−1, µ∗) ≥ (1 − δ)max

at∈A
u(at, σ

∗
t (ā

t−1, at−1)) + δV t+1

for any at−1, which implies

V t = min
at−1∈At−1

Ut(σ
∗, σ∗ | at−1, āt−1, µ∗)

≥ (1 − δ) min
at−1∈At−1

max
at∈A

u(at, σ
∗
t (ā

t−1, at−1)) + δV t+1

≥ (1 − δ)v(Bt) + δV t+1

since σ∗
t (ā

t−1, at−1) ∈ ∆(Bt). Repeatedly applying this inequality, I obtain

x = V 1 ≥ (1 − δ)
∞∑
t=1

δt−1v(Bt). (24)

For any at−1 ∈ At−1 and any at ∈ Bt, there exists āt−1 ∈ At−1 such that
σ∗

t (a
t−1, āt−1)(at) > 0. Thus I have

Ut(σ
∗, σ∗ | at−1, āt−1, µ∗)

= (1 − δ)u(at, σ
∗
t (ā

t−1, at−1)) + δ
∑
b̄t∈At

Ut+1(σ
∗, σ∗ | (at−1, at), b̄

t, µ∗)µ∗
t (b̄

t)

≤ (1 − δ)u(at, σ
∗
t (ā

t−1, at−1)) + δV t+1.
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Since σ∗
t (ā

t−1, at−1) is independent of āt−1,

Ut(σ
∗, σ∗ | at−1, āt−1, µ∗) ≤ (1 − δ) min

at∈Bt

u(at, σ
∗
t (ā

t−1, at−1)) + δV t+1

for any at−1, which implies

V t = max
at−1∈At−1

Ut(σ
∗, σ∗ | at−1, āt−1, µ∗)

≤ (1 − δ) max
at−1∈At−1

min
at∈Bt

u(at, σ
∗
t (ā

t−1, at−1)) + δV t+1

≤ (1 − δ)v(Bt) + δV t+1

since σ∗
t (ā

t−1, at−1) ∈ ∆(Bt). Repeatedly applying this inequality, I obtain

x = V 1 ≤ (1 − δ)
∞∑
t=1

δt−1v(Bt). (25)

Let
w(B) = (1 − δ)

∑
t≥1,Bt=B

δt−1.

Then, by (24) and (25),∑
B∈P

w(B)v(B) ≤ x ≤
∑
B∈P

w(B)v(B),

which implies that w ∈ W . Thus v ≤ x ≤ v.
Second, pick any x ∈ (v, v). Then there exist ε > 0, δ0 < 1, and a periodic

sequence {Bt} with period K (i.e., Bs = Bt if s − t is divisible by K) such
that, for any δ > δ0, I have

vt ≡
∑
B∈P

wt(B)v(B) ≤ x − ε < x + ε ≤
∑
B∈P

wt(B)v(B) ≡ vt (26)

for every t ≥ 1, where

wt(B) = (1 − δ)
∑

s≥t, Bs=B

δs−t. (27)

For each B ∈ P , pick any

α(B) ∈ arg min
α∈∆(B)

max
a∈A

u(a, α), α(B) ∈ arg max
α∈∆(B)

min
a∈B

u(a, α).

For any p ∈ [0, 1], let

α(B, p) = pα(B) + (1 − p)α(B)
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be the convex combination of α(B) and α(B) with weights p and 1 − p,
respectively. Note that α(B, p) ∈ ∆(B) for any p ∈ [0, 1] since α(B), α(B) ∈
∆(B).

I will construct an equilibrium with symmetric payoff x that satisfies
independence of own play as follows:

• At period t, players with record at−1 are assigned with target payoff
Vt(a

t−1). Set V1(∅) = x.

• A player who meets another player with record āt−1 plays mixed action
α(Bt) with probability pt(ā

t−1) and α(Bt) with probability 1−pt(ā
t−1),

i.e., the former player plays α(Bt, pt(ā
t−1)).

• The target payoff in the next period, Vt+1(a
t), is computed recursively

from the current target payoff Vt(a
t−1) and the current action at.

In order to provide an incentive for a player to mix actions over Bt at
period t, I will find pt(a

t−1) and Vt+1(a
t−1, ·) that satisfy

Vt(a
t−1) = (1 − δ)u(at, α(Bt, pt(ā

t−1))) + δVt+1(a
t−1, at) (28)

for any at ∈ Bt and

Vt(a
t−1) ≥ (1 − δ)u(at, α(Bt, pt(ā

t−1))) + δVt+1(a
t−1, at) (29)

for any at ∈ A \ Bt.

Lemma 6. Fix ε > 0, δ0 < 1, and a periodic sequence {Bt} with period
K such that (26) and (27) are satisfied for any δ > δ0. Then, for each
k = 1, . . . , K, there exists δk < 1 such that, for every δ > δk, every t ≥ 1 such
that t − k is divisible by K, every at−1 ∈ At−1, and every Vt(a

t−1) ∈ [vt, vt],
there exist a probability pt(a

t−1) ∈ [0, 1] and target payoffs Vt+1(a
t−1, at) ∈

[vt+1, vt+1] for at ∈ A such that (28) is satisfied for any at ∈ Bt and (29) is
satisfied for any at ∈ A \ Bt.

Proof. Let

pt(a
t−1) =

Vt(a
t−1) − vt

vt − vt

,

Vt+1(a
t−1, at) =

{
Vt(at−1)

δ
− 1−δ

δ
u(at, α(Bt, pt(a

t−1))) if at ∈ Bt,

vt+1 if at ∈ A \ Bt.
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By the construction of Vt+1(a
t−1, at), (28) is satisfied for at ∈ Bt. To check

(29) for at ∈ A \ Bt, first consider the case of Vt(a
t−1) = vt. Then I have to

show that

vt ≥ (1 − δ)u(at, α(Bt)) + δvt+1 (30)

for at ∈ A \ Bt. Since vt − vt+1 ≥ 2ε, there exists δ′t < 1 such that (30) is
satisfied for any δ > δ′t. Next consider the case of Vt(a

t−1) = vt. Then I have
to show that

vt ≥ (1 − δ)u(at, α(Bt)) + δvt+1 (31)

for at ∈ A\Bt. By the definition of α(Bt), I have u(at, α(Bt)) ≤ v(Bt). Also,
by (26) and (27), I have vt = (1 − δ)v(Bt) + δvt+1. Thus (31) is satisfied.
For general Vt(a

t−1), I can show (29) by adding (30) and (31) with weights
pt(a

t−1) and 1 − pt(a
t−1), respectively.

Clearly, I have pt(a
t−1) ∈ [0, 1]. Now I will show that Vt+1(a

t−1, at) ∈
[vt+1, vt+1]. Since the case of at ∈ A \ Bt is obvious, I will focus on the case
of at ∈ Bt. First, consider the case of Vt(a

t−1) = vt. In this case, I have to
show that

vt+1 ≤
vt

δ
− 1 − δ

δ
u(at, α(Bt)) ≤ vt+1. (32)

Since vt − vt+1 ≥ 2ε, there exists δ′′t < 1 such that the first inequality in (32)
is satisfied for any δ > δ′′t . By the definition of α(Bt), I have u(at, α(Bt)) ≥
v(Bt). Also, by (26) and (27), I have vt = (1 − δ)v(Bt) + δvt+1. Thus the
second inequality in (32) is satisfied. Next, consider the case of Vt(a

t−1) = vt.
In this case, I have to show that

vt+1 ≤
vt

δ
− 1 − δ

δ
u(at, α(Bt)) ≤ vt+1. (33)

By the definition of α(Bt), I have u(at, α(Bt)) ≤ v(Bt). Also, by (26) and
(27), I have vt = (1 − δ)v(Bt) + δvt+1. Thus the first inequality in (33) is
satisfied. Since vt+1 − vt ≥ 2ε, there exists δ′′′t < 1 such that the second
inequality in (33) is satisfied for any δ > δ′′′t . For general Vt(a

t−1), I can show
Vt+1(a

t−1, at) ∈ [vt+1, vt+1] by adding (32) and (33) with weights pt(a
t−1) and

1 − pt(a
t−1), respectively.

Therefore, desired probability pt(a
t−1) and target payoffs Vt+1(a

t−1, ·) ex-
ist if δ > δt ≡ max(δ0, δ

′
t, δ

′′
t , δ

′′′
t ). Finally, since {Bt} has period K, I can find

δt that depends only on the remainder when t is divided by K.

45



Applying Lemma 6 recursively with initial condition V1(∅) = x, I can
construct an equilibrium with symmetric payoff x that satisfies independence
of own play for any δ > δ̄ ≡ max1≤k≤K δk.

(2) For the negative case, suppose that there exists an equilibrium with
symmetric payoff x that satisfies independence of own play. Let

V t = min
at−1

Ut(σ
∗, σ∗ | at−1, āt−1, µ∗),

V t = max
at−1

Ut(σ
∗, σ∗ | at−1, āt−1, µ∗),

where µ∗ is generated by σ∗, and

Bt = {at ∈ A | σ∗
t (a

t−1, āt−1)(at) > 0 for some āt−1 ∈ At−1}.

Similarly to the proof of Part (1), I obtain∑
B∈P

wt(B)v(B) ≤ V t ≤ V t ≤
∑
B∈P

wt(B)v(B),

where
wt(B) = (1 − δ)

∑
s≥t, Bs=B

δs−t.

Since v(B) ≥ v(B) for every B ∈ P , I have V t = V t. Since the continuation
payoff is constant, the mixed action at period t − 1 is a symmetric Nash
equilibrium of the stage game. Thus x is a convex combination of symmetric
Nash equilibrium payoffs of the stage game.

If δ ≥ 1/2, then it is well known that I can sustain any payoff in
[minNE , maxNE ] by altering the best and the worst symmetric Nash equi-
libria over time.

A.6 Proof of Lemma 3

If (16) is satisfied, then

(1 − δ) + δVt+1(a
t−1, C)

= (1 − δ)(1 − pH
t )(1 + l) + (1 − δ)(pH

t − (1 − pH
t )l) + δVt+1(a

t−1, C)

= (1 − δ)(1 − pH
t )(1 + l) + (1 − δ)pH

t (1 + g) + δVt+1(a
t−1, D)

< (1 − δ)(1 − pH
t )(1 + g) + (1 − δ)pH

t (1 + g) + δVt+1(a
t−1, D)

= (1 − δ)(1 + g) + δVt+1(a
t−1, D),

where the inequality follows from g > l and pH
t < 1.
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Similarly, if (17) is satisfied, then

(1 − δ)(−l) + δVt+1(a
t−1, C)

= −(1 − δ)pL
t (1 + l) + (1 − δ)(pL

t − (1 − pL
t )l) + δVt+1(a

t−1, C)

= −(1 − δ)pL
t (1 + l) + (1 − δ)pL

t (1 + g) + δVt+1(a
t−1, D)

> −(1 − δ)pL
t (1 + g) + (1 − δ)pL

t (1 + g) + δVt+1(a
t−1, D)

= δVt+1(a
t−1, D),

where the inequality follows from g > l and pL
t > 0.

A.7 Proof of Proposition 9

I use the following lemma to prove Part (1).

Lemma 7. Suppose that g �= l. Fix any s ≥ 1. For t ≥ s+1, if pt(a
t−1) and

Vt+1(a
t) satisfy (5) for every at−1, and Vt+1(a

t) is independent of as, then
pt(a

t−1) and Vt(a
t−1) are also independent of as.

Proof. Since g �= l, it follows from (5) that pt(a
t−1) is uniquely determined

by Vt+1(a
t−1, C) and Vt+1(a

t−1, D) as follows:

pt(a
t−1) =

δ

1 − δ

Vt+1(a
t−1, C) − Vt+1(a

t−1, D)

g − l
− l

g − l
.

Since Vt+1(a
t−1, C) and Vt+1(a

t−1, D) are independent of as, so is pt(a
t−1).

By (5), Vt(a
t−1) is also independent of as.

In a proof by contradiction, I assume that σ∗ is an independent and
indifferent equilibrium with records of length T , but not of length T − 1. If
T = 0, then it implies that σ∗ is the repetition of D. This contradicts the
indifference property of independent and indifferent equilibria. Thus I can
assume T ≥ 1 without loss of generality.

For any at−1, since σ∗ has records of length T , Vt+1(a
t) is independent of

at−T . By Lemma 7, pt(a
t−1) is also independent of at−T , which contradicts

the assumption that σ∗ does not have records of length T − 1.
I prove Part (2) by constructing equilibria explicitly. Since δ ≥ g/(1+g),

for any x ∈ [0, 1], I can find a real number y such that

0 ≤ y ≤ x ≤ y +
1 − δ

δ
g ≤ 1.

47



For any t ≥ 1 and any at−1, define Vt(a
t−1) and pt(a

t−1) as follows:

Vt(a
t−1) =

⎧⎪⎨
⎪⎩

x if t = 1,

y + 1−δ
δ

g if t ≥ 2 and at−1 = C,

y if t ≥ 2 and at−1 = D,

pt(a
t−1) =

⎧⎪⎨
⎪⎩

x−δy
(1−δ)(1+g)

if t = 1,
y

1+g
+ 1

δ
g

1+g
if t ≥ 2 and at−1 = C,

y
1+g

if t ≥ 2 and at−1 = D,

It is easy to check that (5) is satisfied, 0 ≤ Vt(a
t−1) ≤ 1, and 0 ≤ pt(a

t−1) ≤ 1
for all at−1. Thus the strategy profile induced by this {pt} is an independent
and indifferent equilibrium that achieves V1(∅) = x.

A.8 Proof of Proposition 11

For any x ∈ [0, 1], I will construct an equilibrium with symmetric payoff x
as follows:

• At period 1, players are assigned with target payoff x. At period t ≥ 2,
players who chose a and whose previous partner chose ā at period t−1
are assigned with target payoff V (a, ā). I will construct an equilibrium
under which all players obtain their target payoffs as their continuation
payoffs.

• At period 1, each player chooses action C with probability p1 and action
D with probability 1 − p1. At period t ≥ 2, if a player meets another
player who chose a and whose previous partner chose ā at period t− 1,
then he chooses action C with probability p(ā, ¯̄a) and action D with
probability 1− p(ā, ¯̄a). Note that p(ā, ¯̄a) is stationary and independent
of his and his previous partner’s actions at period t − 1.

To accomplish the construction, I specify p1 and {(V (a, ā), p(a, ā))}a,ā∈A so
that each player becomes indifferent between C and D at all histories.

Similarly to the proof of Proposition 2, I have the following promise-
keeping and indifference conditions:

x = p1[(1 − δ) + δV (C, C)] + (1 − p1)[−(1 − δ)l + δV (C, D)]

= p1[(1 − δ)(1 + g) + δV (D,C)] + (1 − p1)δV (D,D)

and

V (a, ā) = p(a, ā)[(1 − δ) + δV (C, C)] + (1 − p(a, ā))[−(1 − δ)l + δV (C, D)]

= p(a, ā)[(1 − δ)(1 + g) + δV (D,C)] + (1 − p(a, ā))δV (D,D)
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for any a, ā ∈ A. These conditions are satisfied if

p1 = x,

p(C,C) = V (C, C) = 1,

p(C,D) = V (C, D) =
1 − δ

δ
l,

p(D,C) = V (D,C) = 1 − 1 − δ

δ
g,

p(D,D) = V (D,D) = 0.

Since x ∈ [0, 1] and δ ≥ max(g/(1 + g), l/(1 + l)), I have p1, p(a, ā) ∈ [0, 1]
for any a, ā ∈ A.
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