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Abstract

In this paper, we investigate advertising behaviors of privately informed �rms when

some consumers use an advertising search rule, whereby they go to the �rm that adver-

tises the most. In the static game, we �nd that the lowest-cost �rm advertises the most,

and thus advertising directs market share to the lowest-cost supplier and promotes pro-

ductive e¢ ciency. In the repeated game, we �nd that colluding �rms give up productive

e¢ ciency to avoid advertising expenditures. Full or partial pooling is observed in op-

timal collusion. This result is an incomplete-information con�rmation of the idea that

colluding �rms may seek to diminish advertising competition.
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1. Introduction

Modern theoretical analyses of collusion emphasize collusion in prices or quantities. This
emphasis is appropriate for many applications; however, collusion may also occur with respect
to various forms of non-price competition. One possibility of particular interest is that �rms
select their advertising levels in a collusive fashion. This possibility has not received signi�cant
theoretical attention.1

One reason may be that the empirical literature on collusion and advertising o¤ers some-
what mixed �ndings.2 Ferguson (1974) argues that advertising activity is publicly observable
and thus that collusion in advertising is feasible; and Cable (1972), Greer (1971) and Sutton
(1974) emphasize the possibility of collusion in advertising among �rms in highly concen-
trated markets, in their interpretations of the empirical relationship between advertising and
concentration. Simon (1970) and Scherer (1980), however, argue that advertising activities
are di¢ cult to assess and monitor, and thus suggest that collusion in advertising may be dif-
�cult to achieve. More recently, Gasmi, La¤ont and Vuong (1992) argue that Coca-Cola and
Pepsi-Cola colluded in advertising and possibly price over a sample period that covers the late
1970s and early 1980s, and Kadiyali (1996) reports evidence that Kodak and Fuji colluded in
price and advertising in the U.S. photographic �lm industry in the 1980s. But Symeonidis
(2000) reports an absence of collusion in non-price variables like advertising in his study of
U.K. manufacturing cartels.

In the speci�c context of retail markets, however, some interesting empirical relationships
between advertising and prices have been identi�ed. The classic study is by Benham (1972).
Examining the retail eyeglass industry in the U.S. in the 1960s, he reports that retail prices
were higher in states that prohibited all advertising than in states that had no restrictions
on advertising; moreover, prices were only slightly higher in states that allowed just non-
price advertising than in states that also allowed price advertising. Evidently, the ability to
advertise, even if only in a non-price form, results in lower prices. Cady (1976) documents
similar relationships in the U.S. retail market for prescription drugs in 1970. At a broad level,
this work suggests that retail �rms may gain if they are able to limit advertising. In the
absence of a state law that prohibits advertising, retail �rms thus have incentive to achieve a
collusive agreement in which combative advertising is reduced.

1For exceptions, see Friedman (1983) and Stigler (1968). Friedman characterizes open-loop Nash equilibria in a
repeated game of advertising and quantity competition, while Stigler compares cartels that collude in advertising
and compete in price with those that collude in price and compete in advertising.

2For a comprehensive survey of the economic analysis of advertising, see Bagwell (2007).
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Bagwell and Ramey (1994a) develop a model of retail competition with which to interpret
Benham�s �ndings. In their model, some consumers can identify the highest-advertising �rm,
while other consumers do not observe advertising levels. The former (latter) consumers are
referred to as informed (uninformed) consumers. All consumers lack direct information about
�rms�prices: a consumer observes a �rm�s price only after choosing to visit that �rm. Bagwell
and Ramey compare two equilibria. In a random equilibrium, consumers ignore advertising
and choose �rms at random. Firms do not advertise and enjoy symmetric market shares. By
contrast, in an advertising equilibrium, the informed consumers go to the �rm that advertises
the most. Firms then use a symmetric mixed strategy, in which higher advertising choices are
paired with greater investments in cost reduction and thus lower prices. Informed consumers
are then rational in visiting the highest-advertising retailer, since this retailer also o¤ers the
lower price. Bagwell and Ramey include an initial entry stage and show that, in the advertising
equilibrium, the market is more concentrated, prices are lower, and social welfare is higher.
If the random equilibrium is associated with a setting in which advertising is banned, these
�ndings are broadly consistent with the empirical patterns that Benham reports.

In this paper, we modify the Bagwell-Ramey model in two key respects. Our �rst modi�-
cation is to �purify�the model and assume that �rms have private information with respect
to their cost levels. Speci�cally, we consider a model with a continuum of possible cost types,
where cost types are iid across �rms. In the corresponding static model, we characterize an ad-
vertising equilibrium in which �rms use pure strategies and lower-cost �rms advertise strictly
more than do higher-cost �rms. The advertising equilibrium again may be compared with the
random equilibrium, in which no �rm advertises. Our second modi�cation is to allow that
�rms interact repeatedly over an in�nite horizon, where each �rm�s cost type is iid over time.
With this second modi�cation, we may consider any self-enforcing collusive agreement among
�rms. Thus, in our modi�ed model, the search for an optimal collusive equilibrium among
�rms entails signi�cantly more than a comparison of the random and advertising equilibria.

Our �rst set of results concerns the puri�ed equilibria of the static model. As mentioned, we
establish that an advertising equilibrium exists, in which lower-cost �rms advertise more than
do higher-cost �rms. We then establish three further results. First, for any given number of
�rms, if the distribution of types is log-concave and demand is su¢ ciently inelastic, then �rms
earn higher pro�t in the random than in the advertising equilibrium. The second result follows
directly from the �rst: when the number of �rms is endogenous, if the distribution of types is
log-concave and demand is su¢ ciently inelastic, more �rms enter when the random equilibrium
is anticipated. Finally, without making any assumption on the distribution of types or the
elasticity of demand, we show that social surplus is weakly higher in the advertising than in the
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random equilibrium, when the number of �rms is endogenous. In fact, social surplus is strictly
higher in the advertising equilibrium provided that at least two �rms enter in that equilibrium.
Our results thus establish a general sense in which Bagwell and Ramey�s main �ndings carry
over to the private-information setting. We emphasize, however, that the �rst two results
mentioned now employ the additional assumption that demand is su¢ ciently inelastic.

Before leaving the static setting, we also compare the advertising equilibrium with another
benchmark. In particular, we follow Varian (1980) and suppose that informed consumers
observe prices and buy from the lowest-priced �rm while uninformed consumers pick a �rm
at random. Following Spulber (1995) and Bagwell and Wolinsky (2002), we modify Varian�s
model and allow that �rms are privately informed as to their costs.3 Let us refer to the
(symmetric) equilibrium of this game as the pricing equilibrium. For any �xed number of �rms,
we show that �rms earn higher expected pro�t in the pricing equilibrium than in the advertising
equilibrium. This is perhaps surprising, since competition in advertising is sometimes argued
to be less aggressive than competition in prices. As we discuss, the key intuition is that price
competition induces greater in-store demand from consumers and thus elevates the size of
expected information rents for �rms.

With an analysis of the benchmark model in place, we are able to o¤er a more complete
comparison across di¤erent advertising regulatory regimes. Provided that the market always
has at least two �rms, our results indicate that the average transaction price is lowest in
the pricing equilibrium, somewhat higher in the advertising equilibrium, and higher yet in
the random equilibrium. Likewise, when the number of �rms is endogenous, social welfare is
highest in the pricing equilibrium, somewhat lower in the advertising equilibrium, and lower
yet in the random equilibrium. If we associate the pricing equilibrium with a setting in which
price advertising is allowed, the advertising equilibrium with a setting in which only non-price
advertising is allowed, and the random equilibrium with a setting in which all advertising is
banned, then our results are broadly consistent with Benham�s �ndings.

We next return to our model of advertising and analyze the associated repeated game.
Assuming that informed consumers go to the highest-advertising �rm within any given period
and that advertising selections are publicly observed by �rms, we focus on the symmetric
perfect public equilibria (SPPE) of our repeated game with private information. For this class
of equilibria, our goal is to characterize the optimal form of collusion in advertising among a

3Bagwell and Wolinsky follow Varian and assume that each consumer possesses an inelastic demand function.
We generalize this analysis slightly and allow for downward-sloping demand functions. Spulber considers a
related model in which all consumers are informed.
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�xed number of �rms.4 We note that SPPE include a wide range of equilibrium behaviors.
Firms may repeatedly play the (non-cooperative) advertising equilibrium of the static game,
and patient �rms may also enforce zero advertising in all periods. In the latter case, collusion
among �rms is used to implement repeatedly the random equilibrium. The random equilibrium
is then achieved as a self-enforcing ban on advertising rather than as a consequence of a legal
ban on advertising. Patient �rms may also implement other stationary advertising strategies,
including advertising schedules that take the form of step functions. A further possibility is
that �rms implement an SPPE that entails non-stationary play, with �rms moving between
cooperative and war phases in their advertising conduct.

When �rms collude in private-information settings, two kinds of incentive constraints arise.5

First, each �rm must not gain by undertaking an �on-schedule deviation,�whereby a �rm with
one cost type deviates and mimics the behavior that is prescribed for this �rm when it has a
di¤erent cost type. The on-schedule incentive constraint is analogous to the standard truth-
telling constraint encountered in mechanism-design problems. An important feature of an
on-schedule deviation is that no other �rm would be aware that a deviation actually occurred,
since other �rms would infer that the �rm drew the cost type for which the observed behavior
is prescribed in equilibrium. The second kind of deviation is called an �o¤-schedule deviation.�
An o¤-schedule deviation occurs when a �rm takes an action that is not speci�ed in equilibrium
for any of its possible cost types. Importantly, an o¤-schedule deviation is publicly observed
as a deviation. As in standard repeated games, an o¤-schedule deviation is punished harshly;
thus, su¢ ciently patient �rms will not undertake o¤-schedule deviations.

Colluding �rms face interesting trade-o¤s when selecting an optimal collusive scheme. Sup-
pose �rms contemplate the repeated use of the advertising equilibrium of the static game. An
advantage of this scheme is that it maximizes productive e¢ ciency: in each period, lower-cost
�rms advertise at strictly higher levels, and so the informed consumers are allocated to the
lowest-cost �rm. A disadvantage of this scheme, however, is that �rms�pro�ts are reduced
by high advertising expenditures. Firms may thus look for some way to keep the productive-
e¢ ciency advantage while reducing advertising expenditures. They might thus consider a
strictly decreasing advertising schedule that is ��atter�and involves lower levels of advertis-
ing. Such a schedule, however, will induce higher-cost types to raise their advertising and
mimic lower-cost types, unless higher advertising selections result in some future cost. Given
our focus on SPPE, any future cost must be experienced symmetrically by all �rms. The future

4 In the stage game, sequential search is not allowed, and �rms are thus able to select their respective monopoly
prices. We therefore embed monopoly pricing into the pro�t functions and focus on collusion in advertising.

5The discussion here follows Athey, Bagwell and Sanchirico (2004) and Athey and Bagwell (2001).
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cost may thus take the form of a future advertising �war�in which higher and less pro�table
advertising schedules are employed. This discussion points to two general themes. First, there
is a substitutability between current-period advertising and future advertising wars. Second,
the productive-e¢ ciency bene�ts that are associated with sorting can be enjoyed only if the
informational cost of high current or future advertising levels is also experienced.

Our formal analysis builds on these themes. We show that an optimal SPPE always exists
that is stationary (i.e., that does not use wars). This result holds for all demand and distribu-
tion functions. It thus con�rms at a general level that future advertising wars are a redundant
instrument. We also characterize an optimal SPPE that is stationary. In particular, when
the distribution function is log-concave, if the demand function is su¢ ciently inelastic, the
optimal SPPE for su¢ ciently patient �rms entails pooling at zero advertising for all cost types
in all periods. Thus, while the repeated game allows for a wide range of SPPE advertising
behaviors, under some conditions, the optimal SPPE is a self-enforcing agreement among �rms
to eliminate combative advertising.

We emphasize that this result requires patient �rms and assumes su¢ ciently inelastic de-
mand. Firms must be patient in order to resist undertaking an o¤-schedule deviation and
advertising a positive amount. For patient �rms, the immediate gain in pro�t would be over-
whelmed by the loss in future pro�t that would ensue. For example, such a deviation might
trigger reversion to the advertising equilibrium of the static game in all future periods. Like-
wise, for other demand functions, the optimal SPPE may not entail zero advertising by all
types. We show, though, that under general conditions the optimal SPPE has partial rigidity
(i.e., intervals of cost types with pooling). We also consider the special case of a uniform
distribution of types and a CES demand function. For any elasticity of demand, if the extent
of possible dispersion in cost types is su¢ ciently small, then the optimal SPPE again entails
pooling at zero advertising by all types.

Our analysis of the repeated advertising game is closely related to work by Athey, Bagwell
and Sanchirico (2004).6 They consider a repeated game in which �rms have private cost
shocks and collude in pricing. When the distribution of cost types is log-concave, if demand is
su¢ ciently inelastic, the optimal SPPE for su¢ ciently patient �rms is a stationary equilibrium
in which �rms always select the same price, regardless of their respective cost types. We
�nd a similar force in favor of pooling when �rms collude in advertising. Athey, Bagwell

6See also McAfee and McMillan (1992) for a related theory of identical bidding among collusive bidders. They
develop their results for a �rst-price auction in a static model. Our model of advertising is analogous to an all-pay
auction, and we also present a dynamic analysis. For other analyses of repeated games with private information in
which SPPE are analyzed, see Bagwell and Staiger (2006), Hanazono and Yang (2007) and Lee (2007).
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and Sanchirico also establish that an optimal SPPE exists that is stationary, if demand is
su¢ ciently inelastic. In our model of collusion in advertising, an optimal SPPE exists that is
stationary, whether demand is approximately inelastic or not.

Returning to the static setting, we next analyze an extended model in which sequential
search is allowed. If demand is su¢ ciently inelastic or if the cost of sequential search is
su¢ ciently high, then our results are maintained without modi�cation. If these conditions do
not hold, however, then higher-cost �rms must �limit price�(i.e., price below their monopoly
prices), in order to deter sequential search.7 An advertising equilibrium then continues to exist,
if the support of possible cost types is not too large and the number of informed consumers
is not too great. In this equilibrium, informed consumers use observed advertising behavior
to locate the lowest price, and limit pricing by higher-cost �rms ensures that uninformed
consumers do not gain from actually undertaking sequential search. We argue as well that
the possibility of sequential search may even strengthen our results, by raising the relative
pro�tability of the random equilibrium.

We next consider an extension that concerns the extent to which �rms observe each other�s
prices. In our main analysis, we focus on advertising collusion rather than price collusion and
thus assume that past advertising choices, but not past price choices, are publicly observable
among �rms. The assumption that past prices are di¢ cult to observe is plausible in some
settings, such as when pricing schemes are complex and customer speci�c or when search
costs are signi�cant; however, in other market settings, it may be more plausible to assume
that past price choices are publicly observable. We identify the role played in the model by
this assumption, and we argue that our main results for the repeated game are robust to the
possibility that past prices are public, if demand is su¢ ciently inelastic. We also identify forces
that favor pooling in advertising, even when price histories are public.

We conclude by brie�y discussing two other extensions. First, while advertising entails
money burning in our main analysis, it is also plausible that advertising may directly enter
the demand function. We discuss two possible representations of this idea and highlight some
potential implications. Second, our analysis of the repeated game focuses on SPPE, and we
brie�y discuss some potential issues that might arise in an analysis of asymmetric PPE.

The paper is organized as follows. Section 2 contains the analysis of the static game. The
repeated game is examined in Section 3. Optimal collusion is characterized in Section 4. In
Section 5, we extend the static model to allow for sequential search. Section 6 considers an

7Our analysis here builds on Reinganum (1979) and Bagwell and Ramey (1996). Reinganum examines
sequential search in a model with privately informed �rms that are not allowed to advertise. Bagwell and
Ramey examine sequential search when advertising is allowed but private information is absent.
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extended model with public price histories. Section 7 contains a brief discussion of other
extensions, and Section 8 concludes. Remaining proofs are in the Appendix.

2. The Static Game

In this section, we de�ne a static game in which a �xed number of �rms compete through
advertising for market share. Firms are privately informed as to their respective costs, and
each �rm�s advertising choice may signal its costs, and thus its price, to those consumers who
are informed of advertising activities. We establish the existence of an advertising equilibrium,
in which informed consumers visit the �rm with the highest level of advertising. We compare
the expected pro�t earned by �rms in the advertising equilibrium with that which they earn
in a random equilibrium, wherein all consumers pick �rms at random. We then endogenize the
number of �rms and compare market concentration and social welfare across the two equilibria.
Finally, we compare the advertising equilibrium with the pricing equilibrium of a benchmark
model, in which some consumers observe all prices.

2.1. The Model

We assume thatN � 2 ex ante identical �rms compete for sales in a homogeneous-good market.
Each �rm i is privately informed of its unit cost level �i: Cost levels are iid across �rms, and
cost type �i is drawn from the support [�; ��] according to the distribution F (�): Assume that
the density f(�) � F 0(�) is everywhere positive on [�; ��]: After �rms learn their respective cost
types, they simultaneously choose their levels of advertising. A pure strategy for �rm i is a
function, Ai(�i); that maps from the set of cost types [�; ��] to the set of possible advertising
expenditures R+ � [0;1): For simplicity, we assume Ai is continuously di¤erentiable except
at perhaps a �nite number of points where the function jumps. Given a strategy pro�le
[A1; :::; AN ]; let A�i denote the strategies of �rms other than i and let A�i(��i) denote the
vector of these �rms�selections when their cost types are given by the (N � 1)-tuple ��i:
There is a unit mass of consumers, where each consumer possesses a twice continuously

di¤erentiable demand function D(p) that satis�es D(p) > 0 > D0(p) over the relevant range of
prices p. Following Bagwell and Ramey (1994a), we assume that advertising is a dissipative
expense that does not directly a¤ect demand. Consumers cannot observe prices prior to their
visitation decision; thus, prices cannot be directly communicated in the market. Consumers
are divided into two groups. A fraction I of consumers observe �rms�advertising expenses.8

8We assume that informed consumers observe advertising levels for simplicity. In fact, all of our results
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Given this information, informed consumers form beliefs as to �rms�cost types and determine
a search (visitation) strategy. For example, informed consumers may use an advertising search
rule, whereby a consumer goes to the �rm that advertises the most. The remaining fraction
U = 1�I are uninformed. Uninformed consumers always follow a random search rule, whereby
a consumer randomly chooses which �rm to visit.

The interaction between �rms and consumers is represented by the following static game: (i)
�rms learn their own cost types, (ii) �rms make simultaneous choices of advertising and price,
and (iii) given any advertising information, each consumer chooses a �rm to visit, observes that
�rm�s price and makes desired purchases given this price. Note that a consumer is assumed
to visit only one �rm.9 This simpli�es our analysis, since it ensures that each �rm chooses the
monopoly price that is associated with its cost type. Consequently, we assume that monopoly
prices are selected and focus on advertising selections.

We next describe a �rm�s expected pro�t. A �rm�s net revenue is r(p; �) � (p � �)D(p)
(excluding advertising expense) when it has cost type �, sets the price p and captures the
entire unit mass of consumers. We assume that r(p; �) is strictly concave in p with a unique
maximizer p(�) = argmaxp r(p; �): It follows that the monopoly price p(�) strictly increases
in � whereas r(p(�); �) strictly decreases in �: We further assume that the price at the top
has a positive margin: p(��) > ��: The market share for �rm i; denoted by mi; maps from RN+
to [0; 1]: Given the search rule used by informed consumers, mi is determined by the vector
of advertising levels selected by �rm i and its rivals. If �rm i has cost type �i, its interim-
stage market share is E��i [mi(Ai(�i); A�i(��i))]: Embedding the monopoly price p(�i) into the
revenue function, we may de�ne the interim-stage net revenue for �rm i by R(Ai(�i); �i;A�i) �
r(p(�i); �i)E��i [mi(Ai(�i); A�i(��i))]: Firm i�s expected revenue is E�iR(Ai(�i); �i;A�i); and
�rm i�s expected pro�t is thus E�i [R(Ai(�i); �i;A�i)�Ai(�i)].
For the static game, we are interested in Perfect Bayesian Equilibria in which �rms select

their monopoly prices and uninformed consumers use the random search rule. We thus de�ne
an equilibrium as a pro�le [A1; :::AN ] and a belief function and search rules for consumers
that collectively satisfy four conditions. First, given the market share function, mi, that
is induced by consumers� search rules, the pro�le [A1; :::AN ] is such that, for all i and �i;
Ai(�i) 2 argmaxai [R(ai; �i;A�i)� ai]. Second, given an observed advertising level ai by �rm
i, informed consumers use Bayes�Rule whenever possible (i.e., whenever ai = Ai(�i) for some
�i 2 [�; ��]) in forming their beliefs as to �rm i0s cost type �i and thus price p(�i). Third, for any

hold under the assumption that informed consumers observe only the identity of the highest-advertising �rm(s).
9We extend the analysis to allow for sequential search in Section 5.
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observed pro�le of advertising levels [a1; :::; aN ], given their beliefs, the informed consumers�
search rule directs them to the �rm or �rms with the lowest expected price. Finally, �rms�
advertising strategies are symmetric: Ai = A for all i: This �nal condition is necessary for the
random search rule to be optimal for uninformed consumers.

Given symmetry, we can simplify notation somewhat. We can now de�ne �rm i�s interim-
stage market share asM(A(�i);A) � E��i [mi(Ai(�i); A�i(��i))] : Similarly, we can de�ne �rm
i�s interim-stage pro�t and net revenue as follows:

�(A(�i); �i;A) � r(p(�i); �i)M(A(�i);A)�A(�i):
� R(A(�i); �i;A)�A(�i):

We note that the interim-stage pro�t function satis�es a single-crossing property: higher types
are less willing to engage in higher advertising to increase expected market share.10 For here
and later use, we now write interim-stage pro�t in direct-form notation, ignoring subscript i:
if a �rm of type � picks an advertising level A(�̂) when its rivals employ the strategy A; then
we de�ne �(�̂; �;A) � �(A(�̂); �;A); M(�̂;A) �M(A(�̂);A) and R(�̂; �;A) � R(A(�̂); �;A):
We are primarily interested in two kinds of equilibria. In an advertising equilibrium, in-

formed consumers use the advertising search rule, whereby they go to the �rm that advertises
the most.11 Since p(�) is strictly increasing, such equilibria can exist only if the advertising
schedule A is nonincreasing, so that higher-advertising �rms have lower costs and thus o¤er
lower prices. In a random equilibrium, informed consumers ignore advertising and use the ran-
dom search rule. A random equilibrium thus can exist only if �rms maximize expected pro�ts
and do not advertise (i.e., A � 0): We explore these equilibria in the next two subsections.

2.2. Advertising Equilibrium

In an advertising equilibrium, informed consumers use the advertising search rule while unin-
formed consumers are randomly distributed across all N �rms. We now report the following
existence and uniqueness result.

Proposition 1. There exists a unique advertising equilibrium, and in this equilibrium A(�)

is strictly decreasing and di¤erentiable and satis�es A(��) = 0.

10When a �rm increases its advertising level, it may confront a trade o¤ between the larger advertising
expense, ai, and the consequent higher expected market share, M(ai;A): When the interim-stage pro�t is
held constant, the slope dai=dM(ai;A) is given by r(p(�i); �i); which is strictly decreasing in �i:
11Under the advertising search rule, if several �rms tie for the highest advertising level, then the informed
consumers divide up evenly over those �rms.
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Proof. We �rst derive the necessary features of an advertising equilibrium. Consider any
�̂ < �: The following incentive constraints are necessary:

r(p(�̂); �̂)M(�̂;A)�A(�̂) � r(p(�̂); �̂)M(�;A)�A(�)
r(p(�); �)M(�;A)�A(�) � r(p(�); �)M(�̂;A)�A(�̂):

Adding yields [r(p(�̂); �̂) � r(p(�); �)][M(�̂;A) �M(�;A)] � 0: Since r(p(�); �) is strictly de-
creasing in �; it is thus necessary that M(�;A) is nonincreasing. It thus follows that A(�)
is nonincreasing. Further, given the advertising search rule, it is clear that A(�) cannot be
constant over any interval of types: by increasing its advertising an in�nitesimal amount,
a �rm with a type on this interval would experience a discrete gain in its expected mar-
ket share. Thus, A(�) must be strictly decreasing, and consequently it is necessary that
M(x;A) = U

N + [1 � F (x)]
N�1I: It thus follows that M(��;A) = U

N . A �rm with type �� thus
cannot be deterred from selecting zero advertising, and hence A(��) = 0 is also necessary.

We next establish that A(�) must be di¤erentiable, and we also derive the necessary ex-
pression for A0(�): Consider any �̂ < �: Rearranging the incentive constraints presented above,
we �nd that

r(p(�); �)[M(�;A)�M(�̂;A)]
� � �̂

� A(�)�A(�̂)
� � �̂

� r(p(�̂); �̂)[M(�;A)�M(�̂;A)]
� � �̂

:

Taking limits as � ! �̂; and using the di¤erentiability of M(�;A) = U
N + [1 � F (x)]

N�1I; we
conclude that

A0(�) = r(p(�); �)
@M(�;A)

@�
:

When combined with the boundary condition A(��) = 0; this di¤erential equation may be
solved to yield

A(�) = �
Z ��

�
r(p(x); x)[@M(x;A)=@x]dx;

where @M(x;A)
@x = �(N � 1)[1� F (x)]N�2f(x)I < 0 for all x < ��:

We now integrate by parts and establish that A(�) must take the following unique form:

A(�) = R(�; �;A)�R(��; ��;A)�
Z ��

�
D(p(x))

�
U

N
+ [1� F (x)]N�1I

�
dx; (1)

where R(��; ��;A) = r(p(��); ��)UN : Rearranging, we note that interim-stage pro�t for type � then
must be given as

�(�; �;A) = R(��; ��;A) +

Z ��

�
D(p(x))

�
U

N
+ [1� F (x)]N�1I

�
dx: (2)
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Observe that interim-stage pro�t is positive for all � 2 [�; ��]:
The second step in our proof is to construct an advertising equilibrium using the A(�)

function de�ned in (1). Observe that �1(�; �;A) = r(p(�); �)@M(�;A)
@� � A0(�) = 0 when this

function is used. It follows that no type � will deviate by mimicking some other type �̂, since
for all �̂ < � we have

�(�; �;A)��(�̂; �;A) =

Z �

�̂
�1(x; �;A)dx

=

Z �

�̂
[�1(x; �;A)��1(x; x;A)] dx

=

Z �

�̂

Z �

x
�12(x; y;A)dydx > 0;

where the inequality follows from �12(x; y;A) = D(p(y))(N �1)[1�F (x)]N�2f(x)I > 0 for all
x < ��: A similar argument ensures that �(�; �;A) > �(�̂; �;A) for all �̂ > �: Next, if no type
� > � gains from deviating to A(�), then a deviation to any A > A(�) is also unattractive.
Finally, since A0(�) < 0; the advertising search rule is optimal for informed consumers. �

Proposition 1 thus establishes the existence and uniqueness of an advertising equilibrium.12

The advertising equilibrium acts as a fully sorting mechanism: �rms truthfully reveal their
cost types along the downward-sloping advertising schedule. The informed consumers behave
rationally in the advertising model: the lowest-cost �rm advertises the most and o¤ers the
lowest price, and the informed consumers purchase from the highest-advertising �rm. Thus,
ostensibly uninformative advertising directs market share to the lowest-cost supplier and pro-
motes productive e¢ ciency.

We now characterize the expected pro�t for �rms in the advertising equilibrium. Using (2)
and integrating by parts, we �nd that expected pro�t may be represented as:

E� [�(�; �;A)] = r(p(��); ��)
U

N
+ E�

�
D(p(�))

F

f
(�)

�
U

N
+ [1� F (�)]N�1I

��
: (3)

The �rst term on the RHS is the �pro�t at the top.�The fully sorting scheme allocates the
lowest market share for the type at the top: the probability of winning the informed consumers
is zero for the highest type, ��. The second term represents the expected information rents.

12See Maskin and Riley (1984) for a related equilibrium characterization of bidding functions in the context
of optimal auctions when buyers are risk averse. Our model also endogenizes the beliefs and strategies of informed
consumers. For an advertising equilibrium, beliefs are uniquely de�ned on the equilibrium path (by Bayes�
rule) and o¤ the equilibrium path (since the advertising search rule is optimal for informed consumers when they
observe an advertising level in excess of A(�) only if they believe that the deviating �rm has cost type �).
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In regard to the magnitude of the second term, the fully sorting scheme has both a strength
and a weakness. To see this, consider how the market share allocation a¤ects the magnitude
of the term. The strength of the fully sorting scheme is based on downward-sloping demand.
Lower-cost �rms set lower prices and thus generate greater demand from visiting consumers;
hence, by directing more market share to lower-cost �rms, the fully sorting scheme acts to
expand the size of the market and increase expected information rents. The weakness of the
fully sorting scheme is associated with the term F

f (�): When greater market share is directed
to type �, this type earns greater pro�t and is thus less tempted to mimic lower types. Lower
types can then also earn greater pro�t without inducing a violation of incentive compatibility.
Intuitively, the ratio F

f (�) then describes the contribution to expected pro�t that is made
when type � receives greater market share, since this measures the proportion of types below �
conditional on the occurrence of type �. Suppose that F is log-concave (Ff (�) is nondecreasing
in �).13 Then an increase in market share to type � contributes more to expected pro�t when
type � is higher. The fully sorting scheme minimizes the market share that is allocated to
higher types and thus works against the direction to which log-concavity of F appeals.

The advertising equilibrium is a puri�cation of Bagwell and Ramey (1994a). In their paper,
advertising directs market share to the �rm that o¤ers the best deals (in terms of price and
variety) but equilibrium advertising takes the form of a mixed strategy. To see how our model
constructs a puri�ed version, consider a complete-information game, where production costs
are �xed at a constant c > 0: Then, as we establish in Lemma A1 in the Appendix, there exists
a unique symmetric mixed-strategy equilibrium in this game as in Bagwell and Ramey (1994a)
and Varian (1980).14 An increase in advertising raises the probability of winning the informed
consumers, whereas a decrease in advertising saves advertising expenditures and raises the
pro�t-if-win. The tension between these two e¤ects establishes the non-existence of a pure-
strategy equilibrium. Consider next an incomplete-information game, where production costs
rise in types �: As we show in Lemma A2 in the Appendix, if each �rm of type � uses the
advertising strategy, A(�); in the unique advertising equilibrium of the incomplete-information
game, then the probability distribution induced by A is approximately the distribution of

13This assumption is common in the contract literature and is satis�ed by many distribution functions.
14 In the complete-information game considered here, all �rms set the same price and informed consumers
are indi¤erent when using the advertising search rule. By contrast, Bagwell and Ramey (1994a) allow �rms
to make cost-reducing investments, and this ensures that higher-advertising �rms o¤er strictly lower prices.
In the analysis of advertising equilibria considered here, the advertising search rule is strictly optimal for informed
consumers provided that incomplete information is present so that production costs vary (at least a little)
with types.
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advertising in the mixed-strategy equilibrium, when the payo¤relevance of types � gets small.15

2.3. Random Equilibrium

In this subsection, we analyze the random equilibrium, wherein all consumers use the random
search rule and thus divide up evenly across �rms. Each �rm then receives an equal share,
1
N , of the unit mass of consumers. Given the random search rule, �rms necessarily choose
zero advertising, since even informed consumers are unresponsive to advertising; furthermore,
when �rms pool and do not advertise, the random search rule is a best response for each
consumer.16 The random equilibrium thus exists and takes the form of a pooling equilibrium.

In the random equilibrium, the interim-stage pro�t for the �rm of type � is given by
r(p(�); �) 1N : The random equilibrium sacri�ces productive e¢ ciency; however, all advertising
expenses are avoided. Using dr(p(�);�)

d� = �D(p(�)); it is straightforward to con�rm that the
expected pro�t for a �rm in the random equilibrium is

E�

�
r(p(�); �)

1

N

�
= r(p(��); ��)

1

N
+ E�

�
D(p(�))

F

f
(�)

1

N

�
: (4)

On the RHS, the �rst term is the pro�t at the top and the second term is the expected
information rents.

2.4. Comparison of Advertising and Random Equilibria

We now compare the advertising and random equilibria. As illustrated in (3) and (4), in
both types of equilibria, expected pro�t consists of two terms: the pro�t at the top and the
expected information rents. To increase the pro�t at the top, the random equilibrium (pooling)
is strictly preferred to the advertising equilibrium (full sorting). Intuitively, the highest-cost
�rm is never �out-advertised� in the random equilibrium and thus sells to its share of all

15The payo¤ relevance of types gets small when production costs for types � (say, c(�)) approximate the
constant c: Further discussion is found in the Appendix.
16 If informed consumers observe a deviation whereby some �rm selects positive advertising, then random
search remains optimal in the event that informed consumers believe that the deviating �rm has an average
type. Since such a deviation may be more attractive to a lower-cost type, the random equilibrium may fail to be a
�re�ned� equilibrium in the static model. See Bagwell and Ramey (1994b) for an analysis of the re�ned
equilibrium in a related model of advertising in which one �rm has two possible cost types. As noted in
the Introduction, the random equilibrium can also be associated with a setting in which advertising is prohibited
(in which case deviant positive advertising selections are not possible). Our analysis here of random equilibria is
also useful when we later consider the repeated game and the possibility of a self-enforcing agreement among �rms
in which a deviation from zero advertising would cause a future advertising war.
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consumers, 1N ; by contrast, in the advertising equilibrium, the highest-cost �rm is always out-
advertised and thus sells only to its share of uninformed consumers, UN . This advantage for
the random equilibrium expands as r(p(�); �) gets larger. To increase expected information
rents, however, it is not immediately clear whether the random or advertising equilibrium
is preferred. On the one hand, if F

f (�) is nondecreasing, then the random equilibrium is
attractive, since this equilibrium allocates more market share to higher-cost types. On the
other hand, downward-sloping demand creates a force that favors the advertising equilibrium,
which allocates more market share to lower-cost types, since these types price lower and thus
generate larger demand D(p(�)):

To go further, we must formally analyze the expected information rents.17 Let A denote the
advertising schedule used in the advertising equilibrium, in which the market share allocation,
M(�;A) = U

N + [1 � F (�)]N�1I; is strictly decreasing. Similarly, let Ap � 0 denote the
advertising schedule used in the random (pooling) equilibrium, in which the market share
allocation, M(�;Ap) � 1

N ; is constant. We now de�ne the distribution function

G(�;A) �
R �
� M(x;A)f(x)dxR ��
� M(x;A)f(x)dx

:

The distribution G(�;Ap) is similarly de�ned. The denominator represents the (ex ante)
expected market share, which equals 1

N : Since M(�;A) is strictly decreasing, M(�;A
p) =

1
N crosses M(�;A) from below: This implies in turn that G(�;Ap) �rst-order stochastically
dominates G(�;A): G(�;Ap) � G(�;A): Thus, if D(p(�))Ff (�) is nondecreasing, thenZ ��

�
D(p(�))

F

f
(�)dG (�;Ap) �

Z ��

�
D(p(�))

F

f
(�)dG (�;A) :

The inequality can be rewritten as

E�

�
D(p(�))

F

f
(�)M(�;Ap)

�
� E�

�
D(p(�))

F

f
(�)M(�;A)

�
: (5)

To interpret (5), we refer to (3) and (4) and conclude that, if D(p(�))Ff (�) is nondecreasing,
then expected information rents are weakly higher in the random equilibrium than in the
advertising equilibrium.

Summarizing, in comparison to the advertising equilibrium, the random equilibrium gen-
erates strictly higher pro�t at the top and, if D(p(�))Ff (�) is nondecreasing, weakly higher

17Our analysis here builds on arguments made by Athey, Bagwell and Sanchirico (2004) in their analysis of price
competition and collusion.
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expected information rents. As suggested above, D(p(�))Ff (�) is nondecreasing if the log-
concavity of F is signi�cant in comparison to the extent to which demand slopes down. Fur-
ther insight is possible by considering the limiting case in which D(p(�)) is perfectly inelastic,
so that D(p(�)) is constant for all prices up to a reservation value. In this case, if F (�) is
log-concave, then D(p(�))Ff (�) is nondecreasing.

18 Exploiting continuity, we thus conclude:

Proposition 2. Assume that F is log-concave. If demand is su¢ ciently inelastic or r(p(��); ��)
is su¢ ciently large, then �rms make a strictly higher expected pro�t in the random equilibrium
than in the advertising equilibrium.

Proposition 2 indicates that important circumstances exist under which �rms gain when
the use of advertising is restricted.19 As our discussion of the random equilibrium con�rms,
advertising would not be used if informed consumers were to ignore it. If informed consumers
were responsive to advertising, however, then �rms might nevertheless achieve a restriction
on the use of advertising if advertising were legally prohibited. For a �xed industry structure,
Proposition 2 thus suggests that retail �rms would bene�t from a prohibition on non-price retail
advertising. A further possibility is that �rms are able to eliminate the use of advertising
through a self-enforcing collusive agreement and that �rms prefer such a restriction to any
other self-enforcing advertising scheme. We delay further consideration of this possibility until
the next section.

Under the assumption that F is log-concave, Proposition 2 establishes that �rms gain by
restricting the use of advertising if demand is su¢ ciently inelastic. It is important to note,
though, that this conclusion can hold even when demand is very elastic. In particular, consider
the CES demand function, D(p) = p��; and suppose that demand is elastic (i.e., � > 1):

Assume further that F is log-concave in the speci�c sense that types are distributed uniformly
over [�; ��] where � > 0: For this example, calculations reveal that d

d� [D(p(�))
F
f (�)] > 0 if

��=[�� � �] > �: Firms thus earn a strictly higher expected pro�t by pooling at zero advertising
than by following the advertising equilibrium, provided that the elasticity of demand, �; does
not exceed a cost-dispersion measure, ��=[�� � �]. Put di¤erently, for any constant demand
elasticity � > 1, if types are distributed uniformly and the extent of possible dispersion in
costs, ��� �, is su¢ ciently small, then �rms earn strictly higher expected pro�t in the random

18 In fact, if demand is perfectly inelastic and F is log-concave, the random equilibrium generates strictly higher
expected information rents than the advertising equilibrium. This follows since F

f
(�) is strictly increasing at �:

19Notice that the su¢ cient conditions identi�ed in Proposition 2 are independent of the fraction of informed
consumers, I: While this fraction a¤ects the magnitude of the di¤erence in expected pro�ts in the random
and advertising equilibria, it does not a¤ect the sign of this di¤erence.
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equilibrium than in the advertising equilibrium.20

2.5. Free-Entry Equilibrium

We now relax the assumption that the number of �rms is �xed. To this end, following Bagwell
and Ramey (1994a), we include now an initial stage for the game in which �rms simultaneously
decide whether to enter, where entry entails a positive setup (or opportunity) cost. After a
�rm chooses to enter, it privately learns its cost type. The number of entering �rms is publicly
observed, and the game then proceeds as above.

It is clear from (3) and (4) that expected pro�t is strictly decreasing in the number of
�rms, N; whether �rms anticipate the advertising or random equilibrium. Thus, in each case,
an equilibrium number of �rms is implied such that the pro�t from entry (inclusive of the
�xed cost) would be negative were one more �rm to enter. Let N s denote the equilibrium
number of entering �rms when the advertising (full sorting) equilibrium is anticipated, and let
Np denote the equilibrium number of entering �rms when the random (pooling) equilibrium
is expected. It is also clear from Proposition 2 that, when F is log-concave, if demand is
su¢ ciently inelastic or r(p(��); ��) is su¢ ciently large, then Np � N s: Under these conditions,
at least as many �rms enter when the random equilibrium is expected as when the advertising
equilibrium is anticipated.

The model also leads to welfare comparisons. Assume that min(N s; Np) � 1:21 When the
number of �rms is endogenized, if we ignore integer constraints, then �rms earn zero expected
pro�t whether the random or advertising equilibrium is anticipated. Uninformed consumers are
also indi¤erent. Intuitively, under either equilibrium, an uninformed consumer picks a �rm at
random and thus faces an expected price of E�p(�): Finally, consider the informed consumers.
When the random equilibrium occurs, an informed consumer also faces an expected price of
E�p(�); however, when the advertising equilibrium occurs, an informed consumer is guided by
advertising activity to the lowest market price and thus faces the expected minimum price in
the market. Provided that N s � 2; an informed consumer thus strictly prefers the advertising
equilibrium. When the number of �rms is endogenous, it follows that expected welfare is
higher when the advertising equilibrium is anticipated than when the random equilibrium is
expected. Notice that this conclusion does not require any assumption as to the elasticity of
demand or the log-concavity of the distribution function.

20Firms may gain from restricting the use of advertising even when D(p(�))F
f
(�) is not everywhere increasing.

As indicated in Proposition 2, a restriction on the use of advertising is optimal if r(p(��); ��) is su¢ ciently large.
21When N = 1; a single �rm enters the market and chooses A = 0; and all consumers visit it.
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We may now summarize with the following proposition:

Proposition 3. Assume that min(N s; Np) � 1. (i) If F is log-concave and if demand is
su¢ ciently inelastic or r(p(��); ��) is su¢ ciently large, then Np � N s (concentration is at least
as high in the advertising equilibrium as in the random equilibrium). (ii) Social surplus is
as high in the advertising equilibrium as in the random equilibrium; further, if N s � 2; then
social surplus is strictly higher in the advertising equilibrium than in the random equilibrium.

Our �ndings thus establish a general sense in which Bagwell and Ramey�s main �ndings ex-
tend to the private-information setting. When legal or other considerations lead to the absence
of advertising, if the distribution of types is log-concave and demand is su¢ ciently inelastic,
then the market is less concentrated than it would be were advertising competition to occur.
Furthermore, the average transaction price is lower, and social welfare is thus higher, when
entry is endogenized and �rms compete in advertising. Note, however, that some �ndings
such as Proposition 2 and Proposition 3 (i) are not straightforward, given downward-sloping
demand. For a given number of �rms, pooling at zero advertising acts to increase the pro�t at
the top but sorting through advertising acts to increase expected information rents when de-
mand is substantially larger for lower prices. This con�ict suggests that market concentration
could be lower in the advertising equilibrium than in the random equilibrium, when demand is
su¢ ciently elastic. Thus, the established positive association between advertising and market
concentration entails an additional assumption on demand in the private-information setting.

It is interesting to compare these �ndings with empirical patterns emphasized in the earlier
literature on advertising. Benham (1972) provides evidence for retail markets that prices are
lower and market concentration is higher, when non-price retail advertising is allowed. Our
�ndings o¤er theoretical support for these associations. In another set of studies, Bain (1956),
Comanor and Wilson (1974) and others �nd a positive relationship between manufacturer
advertising and pro�tability. These authors suggest that the relationship may re�ect the role
of advertising in deterring entry. Consistent with interpretations o¤ered by Demsetz (1973)
and Nelson (1974), our work suggests that advertising and pro�tability may be positively
related, since they are both implications of superior e¢ ciency. In particular, in the advertising
equilibrium, lower-cost �rms advertise more, have larger sales and earn greater pro�t.

2.6. Comparison with Pricing Equilibrium

In this subsection, we compare the advertising equilibrium with the analogous pricing equilib-
rium that emerges in a benchmark model in which N � 2 ex ante identical �rms compete in
prices. In particular, we follow Varian (1980) and suppose that informed consumers observe
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prices and buy from the lowest-priced �rm while uninformed consumers pick a �rm at random.
Following Spulber (1995) and Bagwell and Wolinsky (2002), we modify Varian�s model and
allow that �rms are privately informed as to their costs. We characterize the pricing equilib-
rium of this benchmark game and compare the associated expected pro�t with that achieved
in the advertising equilibrium of our static game.

In the benchmark game, if a pricing strategy is denote by �; then the interim-stage pro�t
in direct form is given by

�B(�̂; �; �) = [�(�̂)� �]D(�(�̂))MB(�̂; �);

where we use the superscript B to denote the benchmark (Bertrand) game. When a �rm selects
the price �(�̂) and other �rms use the pricing strategy �; then the �rm�s expected market share
is denoted as MB(�̂; �): The pro�t-if-win is de�ned by [�(�̂) � �]D(�(�̂)) � r(�(�̂); �): As in
Spulber (1995), a unique and symmetric equilibrium can be established. A new feature in our
benchmark model is that uninformed consumers exist. The pricing equilibrium � satis�es:

�0(�) = �r(�(�); �)[@M
B(�; �)=@�]

r�(�(�); �)MB (�; �)
and �(��) = p(��); (6)

whereMB(�; �) = U
N +[1�F (�)]

N�1I. Straightforward arguments ensure that the equilibrium
price is lower than the monopoly price except the price at the top, so that r� > 0: As (6)
con�rms, the equilibrium pricing schedule is strictly increasing; thus, �rms are fully sorted by
their types in the pricing equilibrium. Notice that the highest-cost �rm selects its monopoly
price, p(��); and sells only to uninformed consumers.

In the pricing equilibrium, interim-stage pro�t can be written as

�B(�; �; �) = �B(��; ��; �) +

Z ��

�
D(�(x))

�
U

N
+ [1� F (x)]N�1I

�
dx; (7)

where the pro�t at the top is �B(��; ��; �) = r(p(��); ��)UN : Integrating by parts, we �nd that
expected pro�t is given as:

E�
�
�B(�; �; �)

�
= r(p(��); ��)

U

N
+ E�

�
D(�(�))

F

f
(�)

�
U

N
+ [1� F (�)]N�1I

��
: (8)

Comparing (8) with (3), we see that the pro�t at the top is the same in the advertising
equilibrium as in the pricing equilibrium. In each case, the highest-cost �rm monopolizes only
uninformed consumers. The expected information rents are higher in the pricing equilibrium,
however, since demand is greater when prices are set below monopoly levels. We thus have the
following conclusion: for any �xed number of �rms, a �rm�s expected pro�t is strictly higher
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in the pricing equilibrium than in the advertising equilibrium.22 Evidently, when �rms possess
private information about their costs, competition in (non-price) advertising is more aggressive
than (Bertrand) competition in prices. Intuitively, price competition induces greater in-store
demand from consumers and thus elevates the size of expected information rents for �rms.
When the number of �rms is �xed, both consumers and �rms agree that the pricing equilibrium
is preferred to the advertising equilibrium. When the number of �rms is endogenized by the
free-entry condition, more �rms enter in the former equilibrium than in the latter equilibrium.
Once market structure is endogenized, �rms are indi¤erent between pricing and advertising
competition, but consumers strictly prefer the former to the latter (provided that at least two
�rms enter in the pricing equilibrium).

We may thus summarize the �ndings of this subsection as follows:

Proposition 4. There exists a unique and symmetric pricing equilibrium, and in this equilib-
rium the pricing function �(�) satis�es �(�) > � and is strictly increasing and di¤erentiable.
Expected pro�t and consumer surplus are both strictly higher in the pricing equilibrium than
in the advertising equilibrium. Further, when the number of �rms is endogenized, at least as
many �rms enter in the pricing equilibrium as in the advertising equilibrium; and, if at least
two �rms enter in the pricing equilibrium, then social surplus is strictly higher in the pricing
equilibrium than in the advertising equilibrium.

With these �ndings at hand, we may now o¤er a further interpretation of Benham�s �ndings.
Let us associate the advertising equilibrium with a setting in which only non-price advertising
is allowed, the pricing equilibrium with a setting in which price advertising is allowed, and
the random equilibrium with a setting in which advertising is banned. Provided that the
market always has at least two �rms, our results in this section indicate that the average
transaction price is lowest when price advertising is allowed, somewhat higher when only non-
price advertising is allowed, and higher yet when all advertising is banned. Likewise, when
the number of �rms is endogenous, social welfare is highest when price advertising is allowed,
somewhat lower when only non-price advertising is allowed, and lower yet when all advertising
is banned. Finally, when demand is su¢ ciently inelastic and the distribution of types is log-
concave, the market is less concentrated when advertising is banned than when non-price or
price advertising is allowed.23 These �ndings are broadly consistent with Benham�s �ndings.

22 In a di¤erent context, Bagwell and Ramey (1988) present a somewhat related �nding. Working with a
two-type signaling model, they show that a low-cost incumbent earns greater pro�t when it separates using price
as a signal than when it separates using wasteful advertising (money-burning) as a signal.
23For a �xed number of �rms, if demand is perfectly inelastic, the expected information rents in the pricing

19



3. The Repeated Game

If the number of �rms is �xed at N and �rms can collude, what would they do? Our �ndings
in the static model suggest that �rms may prefer a situation in which they select zero adver-
tising (or the minimal advertising that ensures consumers know the �rms exist). The random
equilibrium can be achieved in a static setting if informed consumers ignore advertising; al-
ternatively, a legal ban on advertising can enable �rms to eliminate advertising competition.
Putting these possibilities to the side, we assume henceforth that informed consumers use the
advertising search rule and that advertising is legal. Even under these assumptions, if �rms in-
teract repeatedly through time, they may limit the use of advertising as part of a self-enforcing
agreement. We are thus led to consider a repeated game in which �rms are privately informed
with respect to their cost levels. In this section, we de�ne the repeated game and present some
programs that are useful in later sections when we characterize optimal collusion.

3.1. The Model

We now de�ne the repeated game. In each of an in�nite number of periods, �rms play the static
game de�ned in Section 2. We assume henceforth that, in each period, informed consumers use
the advertising search rule. Uninformed consumers again use the random search rule. As shown
in Section 2, these search rules are optimal in a given period if �rms use symmetric strategies
and lower-cost types always advertise at (weakly) higher levels. As discussed in more detail
below, for the equilibrium concept that we employ, these requirements for �rms�strategies are
satis�ed. Hence, in our formal de�nitions of the repeated game and the equilibrium concept,
we may simplify and focus exclusively on the behavior of �rms.

Upon entering a period, �rms share a public history, in that each �rm observes the realized
advertising expenditures of all �rms in all previous periods. A �rm also privately observes its
current cost type. As well, each �rm privately observes the history of the cost types that it
had, the prices that it selected and the advertising schedules that it used in previous periods.
Thus, we consider a setting in which a �rm does not observe any rival �rm�s current or past
cost types and also does not observe any rival �rm�s current or past advertising schedules. In
addition, a �rm does not observe the realized price choice of any rival in any past period.24

equilibrium are the same as in the advertising equilibrium. Thus, when demand is su¢ ciently inelastic, market
concentration is approximately the same in these two equilibria. Further, when r(p(��); ��) is su¢ ciently large, the
market is less concentrated when advertising is banned than when non-price or price advertising is allowed. This
is because the random equilibrium generates the largest market share for a �rm with cost type ��.
24We discuss the implications of relaxing this assumption in Section 6.
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The vectors of cost types, advertising schedules and realized advertisements at date t are
denoted �t � (�it; ��it); At � (Ait; A�it) and at � (ait; a�it). Under the assumed consumer
search rules, let mi(at) denote the market share received by �rm i when the advertising vector
at is used: Then, an in�nite sequence f�t;Atg1t=1 generates a path-wise payo¤ for �rm i :

ui(f�t;Atg1t=1) =
1X
t=1

�t�1 [r (p (�it) ; �it)mi(at)� ait] :

Notice that we embed the monopoly price selection into the net revenue function, r: This
simpli�es the analysis and is without loss of generality given our assumption that past prices
are not public among �rms. As in the static model, we assume that cost shocks are iid across
�rms. For the repeated game, we introduce as well the assumption that cost shocks are iid
over time. With this assumption, the repeated game takes a recursive structure.

As our solution concept, we employ Perfect Public Equilibrium (Fudenberg, Levine and
Maskin, 1994). We thus focus on public strategies. A �rm uses a public strategy when a �rm�s
current advertising level depends on its current cost level and the public history of realized
advertising levels. At the close of date � ; the public history of realized advertisements is h� =
fatg�t=1: Let H� be the set of potential public histories at date � : A public strategy for �rm i in
period � ; si� , is a mapping from H��1 to the set of stage-game strategies fA j A : [�; ��]! R+g:
A public strategy for �rm i, si, is then a sequence fsitg1t=1; and a pro�le of public strategies
is s = fs1; :::; sNg: We restrict attention to Symmetric Perfect Public Equilibrium (SPPE),
whereby s = s1 = ::: = sN . Thus, in an SPPE, �rms adopt symmetric advertising schedules
after every history: si� (h��1) = sj� (h��1) for all i; j; � and h��1:

3.2. Dynamic Programming Approach

Building on work by Abreu, Pearce and Stacchetti (1986, 1990) [APS], we apply a dynamic
programming approach to our recursive setting. Let V � R be the set of SPPE values.
Note that, at this point, we have not established supV 2 V or inf V 2 V . Following APS,
any symmetric public strategy pro�le s = fs; :::; sg can be factored into two components:
a �rst-period advertising schedule A and a continuation-value function v : RN+ ! R. The
continuation-value function describes the repeated-game expected payo¤ enjoyed by all �rms
as evaluated at the beginning of period two, before period-two cost types are realized. This
payo¤ is allowed to depend on the �rst-period advertising realization a � (a1; :::; aN ) 2 RN+ :
Under this approach, for any given symmetric public strategy pro�le s, we may ignore

subscript i (as in the static model) and denote the interim-stage �rst-period pro�t for �rm
i of type � as �(A(�); �;A) � R(A(�); �;A) � A(�). At the interim-stage in the �rst period,
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�rm i�s expected continuation value may be denoted as �v(A(�);A) � E��i [v(A(�); A�i(��i))],
where A�i(��i) denotes the (N � 1)-tuple of advertising selections by other �rms when these
�rms all use the schedule A. Letting � 2 (0; 1) denote the common discount factor for
�rms, we may now use �(A(�); �;A) + ��v(A(�);A) to represent a �rm�s interim-stage pay-
o¤ from a symmetric public strategy pro�le s. A �rm�s expected payo¤ from s is then given
as E� [�(A(�); �;A) + ��v(A(�);A)] :

The set of optimal SPPE can be characterized by solving a �factored program�. In partic-
ular, we may choose an advertising schedule and a continuation-value function to maximize
the expected payo¤ to a �rm subject to feasibility and incentive constraints.

Factored Program: The program chooses an advertising schedule A and a continuation-
value function v to maximize

E� [�(A(�); �;A) + ��v(A(�);A)]

subject to: (i) for all a; v(a) 2 V; and (ii) for any deviation Â;

E� [�(A(�); �;A) + ��v(A(�);A)] � E�[�(Â(�); �;A) + ��v(Â(�);A)]:

A key implication of the dynamic programming approach is that the set of optimal SPPE
can be characterized by solving the Factored Program. Speci�cally, let s� = fs�; :::; s�g be a
symmetric public strategy pro�le with the corresponding factorization (A�; v�): Then, s� is an
optimal SPPE if and only if (A�; v�) solves the Factored Program.

We next follow Athey and Bagwell (2001) and Athey, Bagwell and Sanchirico (2004), who
show that existing tools from (static) mechanism design theory can be used to �nd the optimal
factorization. To this end, we rewrite the Factored Program as an Interim Program. The latter
program utilizes interim-stage pro�t and parses the incentive constraint into two kinds: (i)
the �on-schedule� constraint that each �rm truthfully announces its cost and (ii) the �o¤-
schedule� constraint that each �rm cannot gain by choosing an advertising level that is not
assigned to any cost type.

Interim Program: The program chooses A and v to maximize

E� [�(A(�); �;A) + ��v(A(�);A)]

subject to:

(i) On-schedule incentive compatibility: 8�̂;

8��i; v(A(�̂); A�i(��i)) 2 V
8�; �(A(�); �;A) + ��v(A(�);A) � �(A(�̂); �;A) + ��v(A(�̂);A)
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(ii) O¤-schedule incentive compatibility: 8â =2 A([�; ��]);

8��i; v(â; A�i(��i)) 2 V
8�; �(A(�); �;A) + ��v(A(�);A) � �(â; �;A) + ��v(â;A)

Following Athey, Bagwell and Sanchirico (2004), we next relax the Interim Program in two
ways. First, we ignore the o¤-schedule constraints by assuming that � is su¢ ciently high so
that no o¤-schedule deviation is pro�table. Second, we relax the on-schedule constraints by
replacing v(A(�̂); A�i(��i)) 2 V with �v(A(�̂);A) � supV: The relaxed constraint thus requires
only that the expected continuation value does not exceed the supremum of SPPE. When the
constraints are relaxed in this way, we have the Relaxed Program.

To facilitate connection with tools from mechanism design theory, we next re-write the Re-
laxed Program using direct-form notation. Formally, as above, we let�(�̂; �;A) � �(A(�̂); �;A)
and R(�̂; �;A) � R(A(�̂); �;A): We also de�ne W (�̂) � �[supV � �v(A(�̂);A)]: For instance,
W (�̂) > 0 means that the expected continuation value falls below the value supV subsequent
to a �rm�s announcement �̂: A continuation-value reduction represents a �war�that involves
an increase of advertising expenses in the future. We may now state the Relaxed Program
in terms of the choice of the current-period advertising schedule A and the �punishment�
function W that maximizes expected payo¤ subject to on-schedule constraints:

Relaxed Program: The program chooses A and W to maximize

E� [R(�; �;A)�A(�)�W (�)]

subject to:

8�; W (�) � 0
(On-IC) 8�; �̂; R(�; �;A)�A(�)�W (�) � R(�̂; �;A)�A(�̂)�W (�̂):

To see that the Relaxed Program is indeed a relaxation of the Interim Program, suppose
that (A; v) satis�es the constraints of the Interim Program. Let us now translate (A; v) into
(A;W ) via W (�̂) � �[supV � �v(A(�̂);A)]. Using this translation, it is now easy to con�rm
that (A;W ) satis�es the constraints of the Relaxed Program and that the Interim and Relaxed
Programs rank factorizations (A; v) in the same way. Therefore, if we �nd a solution (A;W )
to the Relaxed Program, and if that solution can be expressed as a translation of some (A; v)
that satis�es all of the constraints of the Interim Program, then this (A; v) is the factorization
of an optimal SPPE.

Our next step is to identify an important situation in which the solution to the Relaxed
Program can be translated back into an optimal SPPE factorization.

23



Proposition 5 (Stationarity): Suppose that (A�;W � � 0) solves the Relaxed Program: Then
there exists b� 2 (0; 1) such that, for all � � b�, there exists an optimal SPPE which is stationary,
wherein �rms use A� after all equilibrium-path histories, and A� solves the following program:
maximize E�[R(�; �;A)�A(�)] subject to 8�; �̂; R(�; �;A)�A(�) � R(�̂; �;A)�A(�̂):

To prove this proposition, we follow the steps used in the proof of Proposition 2 in Athey,
Bagwell and Sanchirico (2004). In particular, we note two implications of the assumption
that (A�;W � � 0) solves the Relaxed Program. First, following the discussion just above,
(A�; v� � supV ) is then a solution to the Interim Program, provided that this factorization
satis�es the additional constraints of the Interim Program. We may therefore conclude that
(A�; v� � supV ) achieves a (weakly) higher payo¤ than can be achieved by any SPPE factor-
ization. Thus, E� [�(�; �;A�) + � supV ] � supV: Second, if �rms are su¢ ciently patient, then
the repeated play of A� in each period along the equilibrium path, with appropriate punish-
ments o¤ the equilibrium path, is in fact an SPPE. Given that W � � 0, A� satis�es (IC-On)
on a period-by-period basis. Likewise; A� satis�es the on-schedule incentive constraint of the
Interim Program on a period-by-period basis (i.e., when the continuation value does not vary
with the on-schedule advertising level). The o¤-schedule incentive constraint of the Interim
Program is also satis�ed, provided that � is su¢ ciently high. Repeated play of the (noncoop-
erative) advertising equilibrium of the static game is always an SPPE of the repeated game
and may be used as the punishment that follows any o¤-schedule deviation.25 Thus, when �
is su¢ ciently high, E� [�(�; �;A�)] =(1 � �) � supV: Using the two inequalities, we conclude
that the repeated play of A� is then an optimal SPPE: supV = E�[�(�; �;A�)]=(1� �):
Hence, if a solution of the Relaxed Program is (A�;W � � 0), and thus does not involve wars

(i.e., is stationary), and if �rms are su¢ ciently patient, then supV is in fact in V: Further,
an associated optimal SPPE can be easily characterized. Firms simply use the schedule A� in
each period, where A� is the solution to the static program presented in Proposition 5. This
result guides our subsequent analysis. Below, we use mechanism-design tools to characterize
the (A,W ) pairs that satisfy (On-IC) in the Relaxed Program. In the next section, we show
that (A�;W � � 0) is always a solution to the Relaxed Program, and we also characterize A�.
Consider now (On-IC) from the Relaxed Program. As the following lemma indicates, this

constraint may be stated in a more useful way.

Lemma 1. (A;W ) satis�es on-schedule incentive compatibility (On-IC) if and only if 8� (i)

25We show below in Lemma 3 that A� achieves strictly higher expected pro�t than does the advertising
equilibrium of the static game.
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A(�) is nonincreasing and (ii)

R(�; �;A)�A(�)�W (�) = R(��; ��;A)�A(��)�W (��) +
Z ��

�
D(p(x))M(x;A)dx: (9)

The proof of this result is standard in the mechanism-design literature and is therefore omit-
ted.26 The lemma indicates that the interim-stage expected payo¤ for a �rm with period-one
type � is comprised of a payo¤-at-the-top expression (i.e., R(��; ��;A) � A(��) �W (��)) and an
integral that indicates the expected information rents for this type in the �rst period.

It is important to note that the repeated game allows for a wide range of behaviors, even
within the category of stationary SPPE. For example, as noted, in each period of the repeated
game, �rms may use the advertising equilibrium of the static model. Further, under the
conditions given in Proposition 2, �rms strictly prefer pooling at zero advertising to using
the advertising equilibrium of the static game. Hence, if those conditions hold and �rms are
su¢ ciently patient, then they can enforce a stationary SPPE in which they pool with zero
advertising. Any pooling arrangement trivially satis�es on-schedule incentive compatibility,
and patient �rms will not deviate (o¤schedule) to a positive advertising level if such a deviation
induces a future war that takes the form of a reversion to the advertising equilibrium. Likewise,
under appropriate conditions, stationary SPPE exist in which �rms use advertising schedules
that are nonincreasing step functions. More generally, stationary SPPE may entail advertising
schedules with intervals of pooling as well as intervals of separation.

4. Optimal Collusion

In this section, we characterize optimal SPPE, assuming that �rms are su¢ ciently patient so
that o¤-schedule incentive constraints hold. First, we show that equilibrium-path wars are
not necessary to achieve an optimal SPPE. We thus show that an optimal SPPE exists that is
stationary. Second, using Proposition 5, we report conditions under which an optimal SPPE
involves pooling at zero advertising. Third, in a more general setting, we show that an optimal
SPPE involves at least partial pooling. Fourth, we characterize the critical discount factor
above which o¤-schedule constraints hold.

26As in the proof of Proposition 1, it is straightforward to con�rm that (On-IC) implies that M(�;A) is
nonincreasing. Given the consumer search rules,M(�;A) is nonincreasing if and only if A(�) is nonincreasing. A
local optimality condition must also hold, and the application of an appropriate envelope theorem (Milgrom
and Segal, 2002) thus yields (9). Together, the two conditions are su¢ cient for (On-IC), due to the single-crossing
property of the model.
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4.1. No Wars

We now show that equilibrium-path wars are not necessary in an optimal SPPE for patient
�rms. Suppose that a scheme (A;W ) satis�es (On-IC) in the Relaxed Program. Then, we say
that an alternative scheme ( eA;fW ) is point-wise equivalent to (A;W ) if the scheme satis�es
(On-IC) and preserves the market-share schedule and interim-stage pro�t:

8�; M(�; eA) =M(�;A) and R(�; �; eA)� eA(�)�fW (�) = R(�; �;A)�A(�)�W (�):
Lemma 2. Assume that (A;W ) satis�es (On-IC) in the Relaxed Program. (i) There exists a
no-wars scheme ( eA;fW � 0) that is point-wise equivalent to (A;W ): (ii) Any no-wars scheme
( eA;fW � 0) that is point-wise equivalent to (A;W ) satis�es eA(�) � A(�) +W (�):
Proof. The proof for (ii) is immediate by the de�nition of point-wise equivalence. Given
M(�; eA) =M(�;A); R(�; �; eA) = R(�; �;A) follows; thus, eA(�) = A(�) +W (�) must hold.
To prove (i), we decompose the market-share allocation of (A;W ) into three components:

sorting intervals, pooling intervals and jump points. We then show that the intervals on which
the no-war scheme ( eA;fW ) engages in sorting (pooling) are consistent with the intervals on
which (A;W ) engages in sorting (pooling), and that (A;W ) and ( eA;fW ) jump at the same
points.

First, suppose that (A;W ) entails sorting on an interval [�1; �2] � [�; ��]: Using (9), the
interim pro�t for � 2 [�1; �2] is then given by

R(�; �;A)�A(�)�W (�) = R(�2; �2;A)�A(�2)�W (�2) +
Z �2

�
D(p(x))M(x;A)dx; (10)

where M(x;A) = U
N + [1� F (x)]

N�1I: This equation can be rewritten as

A(�) +W (�)� [A(�2) +W (�2)] = �
Z �2

�
r(p(x); x)[@M(x;A)=@x]dx:

As shown in the proof of Proposition 1, the RHS equals the di¤erence between type ��s and
type �2�s advertising levels in the advertising (Nash) equilibrium. Thus, eA(�) � A(�) +

W (�) also entails sorting on the interval [�1; �2] and satis�es (On-IC). Notice that there is
a substitutability between the current-period advertising and wars on the sorting interval.
Second, suppose that (A;W ) entails pooling on an interval [�1; �2] � [�; ��]: The interim pro�t
for � 2 [�1; �2] takes the same form as in (10). When market shares are constant on the pooling
interval, then (10) can be rewritten as

A(�) +W (�) = A(�2) +W (�2); (11)
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and thus eA(�) � A(�)+W (�) also entails pooling on the interval [�1; �2] and satis�es (On-IC).
Since advertising is constant on the pooling interval, wars also are constant by (11). There also
is a substitutability between the current-period advertising and wars on the pooling interval:
over this interval, (On-IC) is maintained when a scheme with a constant level of current
advertising and a future advertising war is replaced with a scheme in which the constant level
of current advertising is raised and the possibility of a future advertising war is removed.
Third, suppose that (A;W ) involves a jump of market-share allocation at a point �� 2 [�; ��]
such that

M(��;A) > lim sup
�>��

M(�;A) �M+(�
�;A):

The associated limit for wars and advertising are denoted byW+(�
�) and A+(��); respectively:

Incentive compatibility at the point �� implies that

A(��) +W (��)� [A+(��) +W+(�
�)] = r(p(��); ��) [M(��;A)�M+(�

�;A)] :

Thus eA(�) � A(�) +W (�) entails a jump at �� and satis�es (On-IC).27 Note lastly that when
( eA;fW � 0) preserves the initial market-share allocation, eA(�) � A(�) +W (�) also preserves
the interim pro�t. �

Lemma 2 identi�es a substitutability between current advertising expenditures and future
advertising wars. In particular, when a scheme (A;W ) sets W > 0 for some values of �
and satis�es (On-IC), we understand that the expected future payo¤ is reduced due to the
possibility of an advertising war. Lemma 2 indicates that we may then construct a point-wise
equivalent scheme ( eA;fW ); in which the possibility of a future advertising war is eliminated
(fW � 0) and current advertising expenditures are increased accordingly ( eA(�) � A(�)+W (�)):
Wars are in this sense redundant.

Together, Lemma 2 and Proposition 5 greatly simplify our analysis. According to Lemma
2, for any (A;W ) that solves the Relaxed Program, there exists an equivalent no-wars scheme,
(A�;W � � 0) with A�(�) � A(�)+W (�); that also solves the Relaxed Program. By Proposition
5, if �rms are su¢ ciently patient, we may conclude that an optimal SPPE exists that is
stationary and in which �rms use A� after all equilibrium path histories.28 Proposition 5 also
provides a program that may be solved in order to characterize A�:

27 If (A;W ) satis�es (On-IC), then M(�;A) must be nonincreasing. As no type would �pay� more for less
market share, incentive compatibility thus requires that A(�) +W (�) is nonincreasing as well. It follows thateA(�) � A(�) +W (�) is nonincreasing.
28The arguments developed here may also be applied to sets of SPPE. For example, consider the set of SPPE in
which full sorting occurs in each period. Proposition 5 also holds with respect to this class of equilibria;
thus, using Lemma 2, we may conclude that an optimal SPPE within the full sorting class is the stationary SPPE
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Our next step is to write the program identi�ed in Proposition 5 in a more useful form. In
particular, using Lemma 1 and W � � 0, we may integrate by parts and rewrite the program
that A� must solve as follows:

No-Wars Program: The program chooses A to maximize

E� [R(�; �;A)�A(�)] = R(��; ��;A)�A(��) + E�
�
D(p(�))

F

f
(�)M(�;A)

�
(12)

subject to: A(�) is nonincreasing in �:

We may now summarize our discussion with the following proposition.

Proposition 6. Let A� solve the No-Wars Program. Then, there exists b� 2 (0; 1) such that,
for all � � b�, there exists an optimal SPPE which is stationary, wherein �rms use A� after
all equilibrium-path histories.

We emphasize that our no-wars (stationarity) �nding is quite general, in that it holds for any
demand function D and also for any distribution function F:

4.2. Optimal SPPE: Pooling at Zero Advertising

We now characterize A� and thereby an optimal SPPE for patient �rms that is stationary. To
this end, we solve the No-Wars Program. We thus characterize the nonincreasing advertising
scheme that maximizes expected pro�t, where as (12) indicates expected pro�t is comprised
of pro�t at the top and expected information rents.

We encounter a related problem in Proposition 2, where we provide conditions under which
expected pro�t is higher in the random equilibrium than in the advertising equilibrium. Gen-
eralizing beyond that particular comparison, we now show that the same conditions ensure
that pooling at zero advertising in fact solves the No-Wars Program.

Proposition 7. Assume that F is log-concave. If � is su¢ ciently high, and if demand is
su¢ ciently inelastic or r(p(��); ��) is su¢ ciently large, then there exists an optimal SPPE that
is stationary, wherein �rms pool with zero advertising following all equilibrium-path histories.

Proof. Using Proposition 6, we must show Ap � 0 solves the No-Wars Program when F is
log-concave, if demand is su¢ ciently inelastic or r(p(��); ��) is su¢ ciently large. Let A denote
any other nonincreasing scheme. Note thatM(�;A) is then also nonincreasing, and recall that

in which �rms use the advertising equilibrium of the stage game in every period. Thus, for �rms to improve on the
Nash equilibrium of the stage game, they must use an advertising scheme that entails some pooling.
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M(�;Ap) � 1
N : Consider �rst the pro�t at the top term in (12). If A entails any sorting, then

M(�;Ap) = 1
N > M(�;A) and Ap(�) = 0 � A(�). Alternatively, if A is a pooling scheme (at

some positive level of advertising), then M(�;Ap) = 1
N = M(�;A) and Ap(�) = 0 < A(�): In

either case, pro�t at the top is strictly higher under Ap than A. This advantage expands as
r(p(��); ��) gets larger. Consider second the expected information rents term in (12). We may
de�ne distribution functions G(�;A) and G(�;Ap) as in the proof of Proposition 2. Notice that
M(�;Ap) � 1

N crosses M(�;A) from below.29 As in the proof of Proposition 2, if D(p(�))Ff (�)
is nondecreasing, then expected information rents are weakly higher under Ap than A: Thus,
when F is log-concave and demand is su¢ ciently inelastic, expected information rents are
weakly higher under Ap than A: �

This result establishes conditions under which an optimal SPPE exists and entails pooling
at zero advertising in all periods. The result thereby provides a formal con�rmation of the
idea that, even if advertising is legal and informed consumers are responsive to it, �rms can
still eliminate advertising as part of an optimal self-enforcing collusive agreement. When �rms
collude in this way, the welfare of informed consumers is reduced from the welfare that they
enjoy in the non-cooperative advertising equilibrium. This is because the collusive agreement
prevents informed consumers from using advertising to locate the lowest price in the market.

While pro�t at the top is uniquely maximized when �rms pool at zero advertising, the
maximization of expected information rents involves con�icting considerations. When the
distribution function is log-concave, a pooling scheme shifts market share to higher-cost types
and is attractive for this reason; however, when demand is downward sloping, a separating
scheme is attractive, since it shifts market share to lower-cost types. Allowing for a wide range
of advertising schemes, Proposition 7 isolates conditions under which the forces in favor of
pooling at zero advertising dominate. In particular, if the distribution function is log�concave
and demand is su¢ ciently inelastic, so that D(p(�))Ff (�) is nondecreasing, then pooling at
zero advertising is an optimal SPPE for patient �rms. While inelastic demand is su¢ cient
in this sense, it is not necessary. As noted in Section 2, for any constant demand elasticity
� > 1, if types are distributed uniformly and the extent of possible dispersion is costs, �� � �,
in su¢ ciently small, then D(p(�))Ff (�) is nondecreasing.

4.3. Optimal SPPE: Partial Pooling

While Proposition 7 characterizes an optimal SPPE under an important set of conditions, it
is also interesting to characterize an optimal SPPE when these conditions do not hold. In

29 If A is a pooling scheme, then M(�;Ap) crosses M(�;A) from below in a weak sense.
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this subsection, we maintain the assumption that �rms are su¢ ciently patient, so that o¤-
schedule constraints may be ignored, and characterize the optimal SPPE without requiring
that D(p(�))Ff (�) is everywhere nondecreasing.

A di¢ culty with solving the No-Wars Program is that the market-share function and the
associated expected pro�t are conditional on the entire advertising schedule. Our analysis
therefore proceeds from the fact that the entire advertising schedule can be decomposed into
three di¤erent kinds of components: sorting, pooling and jumps. Consider the simplest case
that has three parts: from the lowest step (from the highest type), a schedule has a pooling in-
terval with A(�) = 0 on (y; ��] and then jumps to a sorting interval on [�; y]: This nondecreasing
scheme has the following expected pro�t:30

E�[R(�; �;A)�A(�)] = r(p(��); ��)M(y; ��;A) +

Z y

�
D(p(x))

F

f
(x)M(�; y;A)f(x)dx (13)

+

Z ��

y
D(p(x))

F

f
(x)M(y; ��;A)f(x)dx;

where (with some abuse in notation) M(�; y;A) represents the market share for type x in the
sorting interval [�; y] and M(y; ��;A) represents the (constant) market share for any type in
the pooling interval (y; ��]. Formally, these market share functions are de�ned as:

M(�; y;A) � U

N
+ [1� F (x)]N�1I and M(y; ��;A) � U

N
+ [1� F (y)]N�1 I

N
:

The level of jump is determined such that incentive-compatibility constraint is binding at y:

A(y) = r(p(y); y)
�
M(�; y;A)�M(y; ��;A)

�
;

whereM(�; y;A) is here evaluated at x = y: Note that when y ! ��; the scheme approaches the
fully sorting scheme. Given the assumption that p(��) > �� and f(��) > 0; we may di¤erentiate
(13) with respect to y and con�rm that fully sorting can be improved upon by a scheme that
has a pooling interval (y; ��] at the top. Indeed, any incentive compatible scheme that has a
sorting interval at the top can be improved upon by an alternative scheme that has a pooling
interval at the top.

Lemma 3. For any F; if � is su¢ ciently high, then any optimal SPPE that is stationary has
a pooling interval (y; ��] on which A(�) = 0.

The proof is in the Appendix. Since the repeated play of the advertising equilibrium of
the static game is a stationary SPPE that entails full sorting, Lemma 3 ensures that for

30The expected pro�t is derived in the Appendix.
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su¢ ciently patient �rms an optimal SPPE must involve some pooling and strictly improve
upon the repeated use of the advertising equilibrium.

To extend our argument, suppose that the entire advertising schedule is decomposed into
K intervals, [[�1; �2]; (�2; �3]; :::; (�K ; �K+1]]; where �1 = � and �K+1 = ��; and �k < �k+1: Using
Lemma 3, if the schedule A solves the No-Wars Program, then the expected pro�t is

E� [R(�; �;A)�A(�)] = r(p(��); ��)M(�K ; �K+1;A) (14)

+
KX
k=1

Z �k+1

�k

D(p(x))
F

f
(x)M(�k; �k+1;A)f(x)dx:

The interval at the top is pooling so that

M(�K ; �K+1;A) =
U

N
+ [1� F (�K)]N�1

I

N
:

The market-share allocation function on a pooling interval is

M(�k; �k+1;A) =
U

N
+

N�1X
j=0

�
N � 1
j

�
1

j + 1
[F (�k+1)� F (�k)]j [1� F (�k+1)]N�j�1 I: (15)

On a sorting interval, the market share allocated to type � 2 (�k; �k+1] is

M(�k; �k+1;A) =
U

N
+ [1� F (�)]N�1 I: (16)

Note that the expected market share over the entire interval is 1
N :

KX
k=1

Z �k+1

�k

M(�k; �k+1;A)f(�)d� =
1

N
:

An advertising schedule has a discontinuity (a jump) between two �at steps (pooling intervals)
and between sorting and pooling intervals. The level of jump at a point is determined by the
binding incentive constraint at the point.

We next ask whether an optimal SPPE adopts �at steps other than at the top. To provide
a su¢ cient condition for an interval to take a �at step, we �rst show that either pooling or
sorting has the same expected market share on a given interval. The market-share allocation
function on a pooling (sorting) interval is denoted byM(�k; �k+1;Ap) (M(�k; �k+1;As)): These
functions are de�ned in (15) and (16), respectively.

Lemma 4. Fix a partition of types [[�1; �2]; (�2; �3]; :::; (�K ; �K+1]]. On any interval (�k; �k+1];
separating and pooling market-share allocation functions generate the same expected market
share: Z �k+1

�k

M(�k; �k+1;A
s)f(x)dx =

Z �k+1

�k

M(�k; �k+1;A
p)f(x)dx:
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The proof is in the Appendix.

We next argue that if � is su¢ ciently high, then an optimal SPPE involves a single �at
step on any interval where D(p(�))Ff (�) is nondecreasing. We thus argue that, if a scheme on
such an interval involves sorting throughout the interval, multiple �at steps, or combinations
of sorting and pooling, then it is not optimal.

To build toward this result, we �x an interval and de�ne a distribution function under a
pooling scheme Ap:

G (�k; �k+1;A
p) �

R �
�k
M(�k; �k+1;A

p)f(x)dxR �k+1
�k

M(�k; �k+1;Ap)f(x)dx
: (17)

A distribution G (�k; �k+1;As) is analogously de�ned under a sorting scheme As. In the two
distributions, the denominators are the same by Lemma 4. It then follows that G (�k; �k+1;Ap)
�rst-order stochastically dominates G (�k; �k+1;As): for nondecreasing D(p(�))Ff (�);Z �k+1

�k

D(p(�))
F

f
(�)dG (�k; �k+1;A

p) �
Z �k+1

�k

D(p(�))
F

f
(�)dG (�k; �k+1;A

s) : (18)

The inequality can be rewritten to show that a �at step is preferred to a sorting scheme on
an interval where D(p(�))Ff (�) is nondecreasing:Z �k+1

�k

D(p(x))
F

f
(x)M(�k; �k+1;A

p)f(x)dx �
Z �k+1

�k

D(p(x))
F

f
(x)M(�k; �k+1;A

s)f(x)dx:

(19)
In the Appendix, this result is extended to the comparison between a single step and any other
alternative scheme.

The inequality (19) indicates that there is a force in favor of pooling on an interval where
D(p(�))Ff (�) is nondecreasing. It is premature, however, to conclude that optimal SPPE
always entails a single pooling step on such an interval. In particular, our discussion so far
has ignored the possibility that pooling on a given interval may have a negative externality on
the pro�ts for other types on other intervals. Fortunately, however, in our model, a pooling
step on one interval is not harmful to types on other intervals. The reason is that for any
candidate scheme for optimal SPPE, there is an alternative scheme that has a pooling step
on an interval and maintains the initial market-share allocations on other intervals. To see
this, suppose that an optimal scheme, A; entails sorting over (�i; �i+1] where D(p(�))Ff (�) is
nondecreasing. Our attention can be restricted to the candidate scheme that has no wars
and is pooling with zero advertising at the top. We now construct an alternative scheme eA
from the top: eA preserves the original scheme A for � > �i+1 and eA is pooling over (�i; �i+1]
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and makes a parallel shift from A for � � �i:31 There are jumps at �i and �i+1: The level of
jump is made such that (On-IC) is binding at each point. Observe that the alternative scheme
preserves the market-share allocations of the original scheme except for the types on (�i; �i+1];
and that the pooling on (�i; �i+1] a¤ects (On-IC) for all the types below �i+1 and their interim-
stage pro�ts. Having the same pro�t at the top, their interim pro�ts take di¤erent forms of
information rents. Assuming that eA consists of K intervals, the expected pro�t becomes

E�

h
R(�; �; eA)� eA(�)i = r(p(��); ��)M(�K ; �K+1; eA)

+

KX
k 6=i;k=1

Z �k+1

�k

D(p(x))
F

f
(x)M(�k; �k+1; eA)f(x)dx

+

Z �i+1

�i

D(p(x))
F

f
(x)M(�i; �i+1; eA)f(x)dx:

The �rst two terms on the RHS are the same under the original scheme, A. The last term is
in favor of pooling when D(p(�))Ff (�) is nondecreasing over (�i; �i+1]: This result contradicts
the optimality of A and shows that D(p(�))Ff (�) being nondecreasing over an interval is a
su¢ cient condition for optimal SPPE to take a pooling step over the interval.

By the same token, a sorting scheme is optimal on an interval where D(p(�))Ff (�) is decreas-
ing, ignoring its impact on types on the other intervals.32 We �nd, however, that D(p(�))Ff (�)
being decreasing over an interval is only a necessary (not a su¢ cient) condition for optimal
SPPE to entail sorting over the interval. Suppose that D(p(�))Ff (�) decreases over (�i�1; �i]
and then rises over (�i; �i+1] (or is followed by a pooling step at the top). If a sorting scheme
is selected over (�i�1; �i] and is followed by a pooling step over the next interval, then the
sorting scheme may have a negative externality on types above �i: If D(p(�))Ff (�) decreases
slowly on a rather short interval and rises sharply on the next interval (or if r(p(��); ��) is very
high), then a single �at step over the two intervals may be optimal because of the importance
of pooling over the second interval.33

We may now summarize our �ndings as follows:

Proposition 8. Allow for any F and assume that � is su¢ ciently high. (i) An optimal
SPPE entails a single �at step on any interval where D(p(�))Ff (�) is nondecreasing, and has a

31The de�nition of eA is detailed in the Appendix.
32This result is directly given when we multiply both sides of (18) by �1:
33 If a scheme takes a separate pooling step on the interval where D(p(�))F

f
(�) is decreasing, it is not optimal,

since there is an alternative scheme that has a separate sorting step on the interval and maintains the initial
market-share allocations on the other intervals.
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pooling step at the bottom and at the top. (ii) If a sorting scheme is ever used, it is restricted
to a subset of the interval on which D(p(�))Ff (�) is decreasing.

Pooling at the top is immediate from Lemma 3, and D(p(�))Ff (�) strictly increases at the
neighborhood of � when f(�) > 0: The result ensures that an optimal SPPE for patient �rms
involves a single step or multiple steps.

Despite various possibilities of sorting and pooling intervals, an optimal SPPE may take a
simple form. The use of sorting schemes is quite limited, and the number of pooling steps is
also limited, since a separate pooling step is never used over the interval where D(p(�))Ff (�)
decreases. The simplicity of an optimal SPPE is evident when D(p(�))Ff (�) is quasiconcave,
which is likely to occur when F is log-concave. If D(p(�))Ff (�) is quasiconcave, then an optimal
SPPE will be characterized by either a single pooling step with zero advertising or two pooling
steps that may or may not include a sorting interval in the middle. Consider a linear demand
function D(p) = 1 � p when N = 5; and suppose that � is uniformly distributed over [0; ��]:
Then D(p(�))Ff (�) =

(1��)�
2 is concave with the maximum at 0:5: When �� decreases from

1; pooling becomes more desirable, since pro�t at the top rises and the interval on which
D(p(�))Ff (�) decreases becomes shortened. When

�� = 0:99; an optimal SPPE has two �at
steps that include a sorting interval approximately between 0:752 and 0:962: When �� = 0:77;
an optimal SPPE has only two �at steps with a jump at 0:75: When �� = 0:70; it is a single
step with zero advertising.

4.4. O¤-Schedule Incentive Constraints

Up to this point, we have ignored the o¤-schedule constraints by assuming that �rms are su¢ -
ciently patient. We now consider o¤-schedule constraints and characterize the critical discount
factor, b� 2 (0; 1); above which an optimal SPPE exists that is stationary (as established in
Proposition 6). To focus our discussion, we emphasize the setting described in Proposition 7,
wherein the optimal SPPE is stationary and entails pooling at zero advertising following all
equilibrium-path histories. We discuss the extension of our analysis to other settings at the
end of this subsection.

Suppose, then, that the optimal SPPE entails pooling at zero advertising. When �rms
behave in this fashion, a �rm faces a temptation to cheat by advertising a small, positive
amount, as it thereby attracts all informed consumers rather than only its share of these
consumers. This short-term incentive to cheat must be balanced against the long-term cost of a
punishment (i.e., a reduced continuation value). Given our focus on SPPE, such a punishment
must be experienced by all �rms. We thus suppose that an o¤-schedule deviation of this kind
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triggers a reversion to the advertising equilibrium of the static game.34 Thus, the long-term
cost of an o¤-schedule deviation is that the future discounted expected pro�t associated with
pooling at zero advertising is replaced with that associated with the repeated play of the
advertising equilibrium. In other words, if a �rm cheats on the collusive agreement to not
advertise, then a breakdown in cooperation occurs and the �rms revert to the advertising
equilibrium thereafter.

We now consider the type of �rm for which the o¤-schedule constraint �rst binds. Given
our assumption that cost types are determined in an iid fashion through time, a �rm faces
the same long-term cost of an o¤-schedule deviation regardless of its current type, �: The
short-term incentive to deviate, however, is sensitive to �: In particular, when �rms pool at
zero advertising, a �rm with cost type � has the greatest short-term incentive to defect. This
type of �rm values most the increase in market share that accompanies cheating, since it
has the highest pro�t-if-win, r(p(�); �): When �rms pool at zero advertising, the o¤-schedule
constraint is sure to hold for all � if it holds for �: We may thus represent the o¤-schedule
constraint for this situation as follows:

r(p(�); �)I(1� 1

N
) � �

1� � [�
p � �s]; (20)

where �s � E� [�(�; �;A)] and �p � E�
�
r(p(�); �) 1N

�
are a �rm�s expected per-period pro�t

when �rms separate using the advertising equilibrium, A; and pool at zero advertising, respec-
tively. These pro�t terms are formally characterized in (3) and (4).

Solving (20) for the critical discount factor, we obtain that pooling at zero advertising
satis�es the o¤-schedule constraint if

� � b�p � r(p(�); �)(N � 1)I
r(p(�); �)(N � 1)I +N (�p � �s) :

As shown in Proposition 2, �p > �s if F is log-concave and demand is su¢ ciently inelastic
or r(p(��); ��) is su¢ ciently large. Thus, under these conditions, b�p 2 (0; 1): We have thus
established:

Proposition 9. Assume that F is log-concave. If demand is su¢ ciently inelastic or r(p(��); ��)
is su¢ ciently large, then b�p 2 (0; 1) and, for all � � b�p, there exists an optimal SPPE which
is stationary, wherein �rms pool at zero advertising after all equilibrium-path histories.

34Other symmetric punishments, such as those that take a �carrot-stick" form, may also be considered. Build-
ing on arguments developed by Athey, Bagwell and Sanchirico (2004), we can show that the repeated play
of the advertising equilibrium generates the lowest SPPE payo¤ when D(p(�))F

f
(�) is everywhere nonde-

creasing.
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In comparison to Proposition 6, Proposition 9 provides an explicit characterization of the
critical discount factor above which �rms can enforce an optimal SPPE in which they agree
to eliminate the use of advertising.

As we show above, if �rms are su¢ ciently patient and D(p(�))Ff (�) fails to be nondecreasing
over [�; ��]; then the optimal SPPE is again stationary but may involve multiple pooling steps
or perhaps even sorting intervals. For such cases, we can characterize the critical discount
factor in the same general fashion. Along a pooling step, the type that is most tempted to
cheat is the lowest type on the step. If a sorting interval exists, then advertising must rise
discontinuously as the type is lowered below the lowest type on the sorting interval. The
lowest type on the sorting interval already advertises strictly more than all other types on
this interval, and thus does not gain from a slight o¤-schedule increase in its advertising level.
Building on this reasoning, it can be shown that the o¤-schedule constraint is sure to hold if
the lowest type on any pooling interval does not gain from a slight increase in its advertising.

Finally, it is also possible to derive characterizations of optimal collusion when the discount
factor is not su¢ ciently high to support the scheme that would be optimal were only on-
schedule constraints considered. We can show, for example, that the no-wars �nding extends
to the low-� setting. Intuitively, if the o¤-schedule constraint is an issue, it is better to shift
current-period pro�t toward the future, as a �rm then has more to lose in the future by
undertaking an o¤-schedule deviation in the present. Exploiting the substitutability between
current advertising and future wars, �rms can achieve the desired shift by increasing advertising
and eliminating future wars. Athey, Bagwell and Sanchirico (2004) provide a related argument
in their analysis of price collusion, and so we do not develop this point in detail here.

5. Sequential Search

We assume above that consumers are unable to engage in sequential search. Focusing on the
static setting, we now examine equilibrium behavior when this assumption is relaxed. Thus,
we allow that after a consumer visits a �rm and observes that �rm�s price, the consumer may
elect to incur a search cost and visit another �rm.

Consider then a modi�ed static game, in which consumers can undertake costly sequential
search and �rms choose advertising levels and prices. A Perfect Bayesian Equilibrium may be
informally de�ned in terms of the following requirements: (i) each �rm selects its advertising
level and price to maximize its expected pro�t, given its type and the strategies of other
players; (ii) each consumer selects an initial �rm to visit and any subsequent �rm to visit in a
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way that maximizes the consumer�s expected welfare at each point, given the information that
the consumer then has and the consumer�s beliefs about prices at �rms not yet visited; and
(iii) where possible, consumers�beliefs are formed in a manner consistent with Bayes� rule,
given the equilibrium strategies of �rms.35 An advertising equilibrium is a Perfect Bayesian
Equilibrium in which informed consumers pick an initial �rm using the advertising search rule
while uninformed consumers pick an initial �rm at random. A random equilibrium is a Perfect
Bayesian Equilibrium in which all consumers ignore advertising and select an initial �rm at
random. In advertising and random equilibria, the strategies of �rms must be symmetric.

We begin by observing that the sequential-search option is irrelevant if the cost of sequential
search is su¢ ciently large relative to the expected dispersion of prices in the market. Suppose
that �rms follow the advertising equilibrium of the original static game as characterized in
Proposition 1. An uninformed consumer is then most tempted to search again in the event that
the consumer encounters the highest possible monopoly price, p(��): Let U(p) denote consumer
surplus at the price p; and let the cost of sequential search be denoted as d > 0.36 Even a
consumer that encounters p(��) won�t gain from sequential search, if U(p(��)) � E�U(p(�))� d.
Thus, if p(��) � E�p(�) is small relative to the cost of sequential search, then an uninformed
consumer never gains from sequential search. This condition is sure to hold in the limiting
case of perfectly inelastic demand, since then the monopoly price is independent of production
costs. Likewise, for any CES demand with elasticity � > 1, we have that p(��) � E�p(�) =
�
��1 [

�� � E�]. Thus, if the extent of dispersion in production costs is small relative to the
size of the sequential-search cost, then uniformed consumers will not search again even after
encountering the highest monopoly price.

If instead the cost of sequential search is small relative to the expected dispersion of prices,
then higher-cost �rms induce search if they select their monopoly prices. To capture this
situation, we assume henceforth that U(p(��)) < E�U(p(�))�d: Building on work by Reinganum
(1979) and Bagwell and Ramey (1996), our goal is to establish conditions under which an
advertising equilibrium exists in which �rms with cost types at or above a critical level �c 2
(�; ��) select the monopoly price for this critical type. In particular, we seek to construct an
advertising equilibrium in which a �rm with cost type � > �c prices at p(�c) < p(�), where

35The concept of Perfect Bayesian Equilibrium also includes a no-signaling-what-you-don�t-know requirement.
In this present context, this means that, if a consumer initially visits �rm i and contemplates undertaking
the sequential search cost and visiting some other �rm j, then the consumer�s belief about the price that
might be observed at �rm j is not altered by the price observed at �rm i. Of course, for an informed consumer, the
belief about the price at �rm j may be in�uenced by the advertising level selected by �rm j:
36For simplicity, we assume that the initial search has zero cost.
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p(�c) is determined so that the costs and bene�ts of sequential search are equal. Higher-cost
�rms then �limit price�and thereby deter uninformed consumers from searching again.

In our proposed advertising equilibrium, a �rm of cost type � thus selects the price p�(�) �
minfp(�); p(�c)g and earns the corresponding net revenue r(p�(�); �): We now impose a new
assumption that p(�) > ��: This assumption is sure to hold if the dispersion in cost types is not
too great or if demand is su¢ ciently inelastic, and it ensures that p(�c) > �� so that r(p�(�); �)
remains strictly positive even for the highest type. Observe also that r(p�(�); �) is strictly
decreasing with dr(p�(�);�)

d� = �D(p�(�)) < 0: With these properties in place, we can con�rm
that the arguments used in the proof of Proposition 1 continue to hold when �rms use the
pricing function p�(�): Thus, the level of advertising again strictly declines as costs increase,
and no �rm of any type gains from undertaking an on-schedule deviation and mimicking the
advertising level of some other type. Informed consumers are again rational in visiting the �rm
with the highest advertising level, since this �rm selects the lowest price in the market.37 Two
issues remain. First, we must establish that a critical value �c 2 (�; ��) indeed exists such that
an uninformed consumer is indi¤erent to sequential search upon observing p(�c): Second, we
must establish that no �rm with cost type � > �c would gain from undertaking an o¤-schedule
deviation to a higher price.

Consider the �rst issue. Under our assumption that U(p(��)) < E�U(p(�))�d, it is straight-
forward to establish that there exists a unique value �c 2 (�; ��) such that

U(p(�c)) = [1� F (�c)]U(p(�c)) +
Z �c

�
U(p(�))dF (�)� d: (21)

The LHS of (21) represents the consumer welfare from remaining with a �rm that selects p(�c);
while the RHS represents the expected welfare from incurring the sequential-search cost d and
�nding the same price or a lower price. The critical value �c 2 (�; ��) is then determined so as
to make the consumer indi¤erent between the two options: Notice that �c is independent of
the fraction of informed consumers, I, and is strictly increasing in the sequential-search cost,
d. As d gets close to zero, �c gets close to � and thus almost all types select the limit price.

To understand the second issue, consider a �rm with cost type � > �c: This �rm retains
its uninformed consumers if it sets the limit price, p(�c); and loses its uninformed consumers
if it sets any higher price. Under our assumption that p(�) > ��; we know that the �rm earns
strictly positive net revenue on its uninformed consumers at the price p(�c): Thus, as regards its
uninformed consumers, the �rm earns strictly more by selecting the price p(�c) than it would

37Note, though, that informed consumers are indi¤erent about using the advertising search rule in the event
that all �rms draw cost types at or above �c:

38



make by undertaking an o¤-schedule deviation to any higher price. But this �rm must also
consider informed consumers. With probability [1� F (�)]N�1, this �rm advertises more than
all other �rms and receives the informed consumers. In this event, as in the model analyzed
by Bagwell and Ramey (1996), the informed consumers observe all advertising choices and
thus know that all other �rms have higher costs and thus select the price p(�c): The informed
consumers will then tolerate a price hike without searching again, provided that the hike is
not too large. The maximal price hike that informed consumers will tolerate is h(d) where
h(d) is de�ned by U(p(�c) + h(d)) � U(p(�c)) � d: It follows that the optimal o¤-schedule
deviation for a �rm of type � > �c is the price p(�; �c; d) � minfp(�); p(�c) + h(d)g; where �c
is determined as a function of d by (21).

We may now conclude that a �rm with cost type � > �c does not gain from an o¤-schedule
deviation to a higher price if


(�; �c; d) � [(1� F (�))N�1I][r(p(�; �c; d); �)� r(p(�c); �)]�
U

N
r(p(�c); �) � 0: (22)

The �rst term on the RHS of (22) captures the possible bene�t of a price hike in terms of
more pro�table sales to informed consumers whereas the second term re�ects the certain cost
of a price hike in terms of lost sales to uninformed consumers. Notice that 
(�c; �c; d) < 0,
since p(�c; �c; d) = p(�c). Likewise, 
(��; �c; d) < 0 follows, since the highest-cost �rm wins
the informed consumers with probability zero and earns strictly positive net revenue at the
price p(�c) under our assumption that p(�) > ��: Outside of these boundary cases, we cannot
immediately sign 
(�; �c; d): We can, however, state the following su¢ cient condition: There
exists I� 2 (0; 1) such that if I < I� then for all � 2 (�c; ��); 
(�; �c; d) < 0. In other words,
if the fraction of informed consumers is not too great, then no type of �rm will undertake an
o¤-schedule deviation by raising price.

We may now summarize our �ndings as follows.

Proposition 10. Consider the static game, modi�ed to allow for sequential search. Assume
that the search cost satis�es U(p(��)) < E�U(p(�))�d and that p(�) > ��: There exists I� 2 (0; 1)
such that if I < I� then an advertising equilibrium exists. In this equilibrium, (i) �rms use an
advertising strategy A(�) that is strictly decreasing and di¤erentiable and satis�es A(��) = 0;
(ii) �rms use the pricing strategy p�(�); where �c 2 (�; ��) satis�es (21); and (iii) consumers
do not engage in sequential search along the equilibrium path.

In e¤ect, Proposition 10 establishes conditions under which Proposition 1 extends to the setting
in which sequential search is possible and not prohibitively expensive.38

38The advertising equilibrium of the modi�ed static game is also unique, if the de�nitions of the advertising and
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We now consider the e¤ect of sequential search on the comparison between expected pro�ts
under the random and advertising equilibria. When sequential search is possible, our assump-
tion that p(�) > �� ensures that a random equilibrium exists, wherein �rms use the modi�ed
pricing schedule, p�(�):39 As this assumption implies that pro�t at the top is strictly positive,
the random equilibrium again generates strictly greater pro�t at the top than does the con-
structed advertising equilibrium (when it exists). When sequential search is prohibited, recall
that expected information rents are higher under the random than advertising equilibrium if
F
f (�)D(p(�)) is nondecreasing. Likewise, when sequential search is possible, expected informa-
tion rents are strictly higher under the random than advertising equilibrium if Ff (�)D(p

�(�))

is nondecreasing. Since p�(�) is constant in � for � > �c; log-concavity of F alone now ensures
that F

f (�)D(p
�(�)) is nondecreasing when � > �c: Thus, the tension between log-concavity

and reduced demand is removed for higher types when sequential search is possible. In this
respect, the possibility of sequential search serves to strengthen our basic result that �rms
achieve higher expected pro�t when they restrict the use of advertising.40

6. Public Price Histories

In our repeated-game analysis, we assume that each �rm observes the realization of rival
�rms� past advertising choices but not the realization of rival �rms� past pricing choices.
This assumption may be appropriate in markets with complex and customer-speci�c pricing
schemes, or when search costs are high. It also enables us to set prices at monopoly levels,
so that we may use results from the static model and focus on the incentive constraints that
are associated with collusion in advertising. The assumption is not always plausible, however,
and we now discuss the robustness of our analysis when this assumption is relaxed.

When our repeated game is extended to allow for public price histories, each �rm observes
the realizations of rival �rms�past advertising and price choices. Thus, in the extended model,
a �rm with cost type � can undertake an on-schedule deviation only if it mimics the advertising
and price selection of a �rm with cost type �̂: The gain from mimicry is thus reduced, and

random search rules are extended to cover sequential search decisions. Otherwise, some uninformed consumers
that encounter the price p(�c) may undertake sequential search out of indi¤erence, for example.
39The existence of the random equilibrium does not require any additional assumption on the fraction of
informed consumers, since �rms do not advertise in the random equilibrium and thus all consumers are, in e¤ect,
uninformed. Thus, the random equilibrium is the counterpart of the equilibrium featured by Reinganum (1979).
40Note, though, that Proposition 2 also establishes that the random equilibrium generates greater expected
pro�t than the advertising equilibrium if the pro�t at the top is su¢ ciently great. This su¢ cient condition may be
undermined by sequential search, since higher-cost �rms earn lower pro�t when sequential search is possible.
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so new equilibria exist. At the same time, our featured SPPE - in which �rms pool at zero
advertising and set their monopoly prices - continues to exist when price histories are public. In
this equilibrium, �rms simply condition their future play on the public history of advertising,
and �rms again set their prices at monopoly levels.

Formally, in the repeated game with public price histories, we denote a candidate advertising
and pricing schedule as (A; ep); where ep(�) may di¤er from p(�): If a �rm of cost type � mimics
the advertising and price selection of a �rm of cost type b�; then it must select A(b�) andep(b�): To use the Relaxed Program, we let W (b�) � �[supV � v(A(b�); ep(b�);A; ep)] and write the
interim-stage pro�t as

�(�̂; �;A; ep) � r(ep(�̂); �)M(�̂;A)�A(�̂)�W (�̂):
For simplicity, assume that A and ep are continuously di¤erentiable except at a �nite number
of points where the functions may jump.

The scheme (A; ep;W ) satis�es on-schedule incentive compatibility only if two conditions
hold. First, a local optimality condition must hold. Under an appropriate envelope theorem
(Milgrom and Segal, 2002), we may use �2(�̂; �;A; ep) = �D(ep(�̂))M(�̂;A) to get

�(�; �;A; ep) = r(ep(��); ��)M(��;A)�A(��)�W (��) + Z ��

�
D(ep(x))M(x;A)dx:

Second, a monotonicity condition must hold. On-schedule incentive compatibility implies

r(ep(�); �)M(�;A)�A(�)�W (�) � r(ep(�̂); �)M(�̂;A)�A(�̂)�W (�̂)
r(ep(�̂); �̂)M(�̂;A)�A(�̂)�W (�̂) � r(ep(�); �̂)M(�;A)�A(�)�W (�):

Adding the two inequalities, we �nd that D(ep(�))M(�;A) must be nonincreasing in �: As in
Lemma 1, these two necessary conditions are also su¢ cient for (A; ep;W ) to satisfy on-schedule
incentive compatibility.

We now further restrict attention to those incentive-compatible schemes (A; ep;W ) for which
informed consumers are rational in using the advertising search rule.41 With this restriction, we
�nd that A(�) must be nonincreasing.42 Since informed consumers use the advertising search

41This restriction holds automatically when prices are not public, since p(�) is strictly increasing.
42Assume to the contrary that � > �̂ and A(�) > A(�̂): This implies M(�;A) > M(�̂;A); given that informed
consumers use the advertising search rule. Since we require as well that it is rational for informed consumers to
use the advertising search rule, it must be that ep(�) � ep(�̂) and hence D(ep(�)) � D(ep(�̂)): Thus, A(�) >
A(�̂) implies D(ep(�))M(�;A) > D(ep(�̂))M(�̂;A); which contradicts the requirement that D(ep(�))M(�;A) is
nonincreasing.
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rule,M(�;A)must be nonincreasing as well. Given the restriction that informed consumers are
rational to use the advertising search rule, ep(�) must be nondecreasing; equivalently, D(ep(�))
must be nonincreasing. Thus, a scheme (A; ep;W ) satis�es on-schedule incentive compatibility
and is also consistent with the rational use of the advertising search rule only if M(�;A) and
D(ep(�)) are each nonincreasing.
Consider now the potential use of wars. When prices are public, we cannot immediately

use the arguments in Lemma 2 to establish that wars are unnecessary. The reason is that
incentive compatibility no longer ensures that A(�)+W (�) is nonincreasing; hence, we cannot
be sure that an alternative scheme de�ned by eA(�) � A(�)+W (�) would exhibit the necessary
nonincreasing property.43 In the limiting case where demand is inelastic, however, we can
establish that wars are unnecessary. In that case, for an initial scheme that involves a war on
a step, it is possible to eliminate the war and adjust price and advertising on that step, while
ensuring that the induced advertising schedule is nonincreasing and that market shares and
pro�ts are maintained for all types.44 When demand is elastic, however, such step-by-step
maneuvers are not possible. The appeal of a price change then varies with cost type; thus, a
price change on one step requires that the scheme be modi�ed on other steps, in order for the
initial market share allocation to remain incentive compatible.45

To allow for general demand functions, we now impose W (�) � 0 and focus on station-
ary SPPE. Utilizing the two conditions for on-schedule incentive compatibility, we thus now

43To see that A(�) + W (�) may have increasing segments, consider a two-step scheme in which A is at
a high (low) level for cost types below (at or above) a critical type, �c: Suppose that ep(�) = p(�c) for types at
or above �c while ep(�) = p(�) for types below �c: Even though market share is higher for lower types, a
�rm with cost type �c may earn greater net revenue by setting its monopoly price and accepting a lower
market share. On-schedule incentive compatibility would then require that A(�)+W (�) is higher for higher types.
44Consider a two-step scheme, where b� represents a type on the bottom step and � represents a type on the
top step. Let �c denote the critical type that separates the steps. Suppose that A(b�) > A(�) and thusM(b�;A) >
M(�;A): Suppose further that A +W is increasing: A(b�) +W (b�) < A(�) +W (�): Incentive compatibility is
satis�ed if type �c is indi¤erent between the two steps. Given that the higher step entails a lower value forM and
a higher value for A+W; this is possible only if the higher step entails a higher price: ep(�) > ep(b�):We now create a
new scheme, in which W (�) is lowered to a new value, WN (�); at which A(b�)+W (b�) = A(�)+WN (�)+�; for � >
0 small. To maintain incentive compatibility, we adjust ep(�) downward until type �c is again indi¤erent.
The resulting new price epN (�) satis�es epN (�) > ep(�): This maneuver maintains pro�t for all types. We next
eliminate wars and de�ne eA in terms of the new scheme: eA(b�) = A(b�)+W (b�) and eA(�) = A(�)+WN (�): Note thateA decreases with � in the same way as did A; hence, eA generates the same market share allocation as did A.
45For related reasons, Athey, Bagwell and Sanchirico (2004) are also unable to eliminate wars when demand is
elastic.
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analyze the No-Wars Program, in which (A; ep) is selected to maximize
E� [�(�; �;A; ep)] = r(ep(��); ��)M(��;A)�A(��) + E� �D(ep(�))F

f
(�)M(�;A)

�
subject to: D(ep(�)) and M(�;A) are nonincreasing in �:
A �rst point is that, if demand is su¢ ciently inelastic and F is log-concave, then zero

advertising and monopoly pricing, (A � 0; p(�)); solves this program. Given the requirement
that M(�;A) is nonincreasing, we may argue as before to �nd that pro�t at the top and
expected information rents are maximized when A � 0 and each type receives market share
1
N . The best choice of ep(�) is then the monopoly pricing function, p(�): We conclude that our
results are robust to the possibility of public price histories, if demand is su¢ ciently inelastic.

A second point is that pooling at zero advertising is optimal within the class of stationary
SPPE in which the pricing function ep(�) satis�es the further constraint that D(ep(�))Ff (�)
is nondecreasing. For example, if F is log-concave and all types of �rms set a constant
price, p � ep(�) � ��; then the optimal advertising schedule entails pooling at zero advertising.
Firms may set a constant price for a variety of (unmodeled) reasons, including resale price
maintenance requirements and customer market concerns. In fact, when these reasons apply
and a constant price is used, we can argue as in Lemma 2 and show that wars are not useful
(i.e., the restriction to stationary SPPE is without loss of generality, when price is constant).
Thus, in a modi�ed game where �rms must use a constant price, if F is log-concave, the
optimal SPPE for patient �rms entails pooling at zero advertising. Of course, in the case
where price is exogenously �xed at p, it is immaterial whether or not price is public.

Our third point is that robust forces remain in favor of pooling in advertising, even for
general demand functions.46 A simple way to make this point is to consider any scheme (A; ep)
in which A(�) is strictly decreasing and thus entails sorting over [�; ��]. We may then consider
an alternative pooling scheme (A�; ep�) in which ep� � �p� and A� � 0 over [�; ��]. The level of
price �p� is determined to satisfyZ ��

�
D(�p�)

1

N
f(x)dx =

Z ��

�
D(ep(x)) �U

N
+ [1� F (x)]N�1I

�
f(x)dx

We now de�ne a distribution function under (A� � 0; �p�):

G (�;A�; �p�) �
R �
� D(�p

�) 1N f(x)dxR ��
� D(�p

�) 1N f(x)dx
:

46Our discussion here builds on Athey, Bagwell and Sanchirico (2004).
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A distribution G (�;A; ep) is analogously de�ned under (A; ep): Since G(�;A�; �p�) �rst-order
stochastically dominates G (�;A; ep) ; we can show that, for nondecreasing F

f (�);Z ��

�

F

f
(x)D(�p�)

1

N
f(x)dx �

Z ��

�

F

f
(x)D(ep(x)) �U

N
+ [1� F (x)]N�1I

�
f(x)dx:

Thus, when F is log-concave, any scheme in which advertising entails sorting over the support
generates lower expected information rents than an appropriately de�ned scheme in which
advertising entails pooling at zero over the support.

7. Other Extensions

In this section, we provide an informal discussion of extended models in which advertising
enters the demand function and asymmetric PPE are allowed.

7.1. Advertising in the Demand Function

In our analysis above, advertising does not enter the demand function. Instead, we build
on earlier work and study the role of advertising in directing informed consumers to the
lowest prices. Of course, other kinds of advertising are also interesting and worthy of separate
analysis. Here, we brie�y highlight two possibilities.

A �rst possibility is that advertising by a �rm directly increases the demand function that
informed consumers bring to this �rm, in the event that the �rm out-advertises all other �rms.
In this case, Proposition 4 may change in interesting ways, as it is no longer clear that �rms
earn greater expected pro�t in the pricing equilibrium than in the advertising equilibrium. As
noted, the low prices of the pricing equilibrium serve to expand in-store demand, and they thus
elevate expected information rents. If advertising enters the demand function directly, then
high advertising likewise expands in-store demand and thereby elevates expected information
rents. Whether price or non-price advertising is more pro�table may then depend on the
respective elasticities of demand with respect to price and advertising.

A second possibility is that advertising by any one �rm may have a public-good �avor
and serve to expand the size of market demand. By contrast, in the model analyzed above,
advertising is redistributive: the size of aggregate demand is not a¤ected by advertising, and
so one �rm�s market-share gain is another �rms�market-share loss. In the case of public-
good advertising, when a �rm advertises more, aggregate demand increases and so rival �rms
bene�t to some degree as well. Such advertising may be especially important for new-product
markets. An analysis of this kind of advertising is an important direction for future work.
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7.2. Asymmetric PPE

As Athey and Bagwell (2001) show, when �rms collude in prices, pro�t may be higher in asym-
metric PPE than in SPPE. They emphasize the role of future market share favors, whereby a
�rm that claims low costs and enjoys high market share today must su¤er a reduced market
share in the future. Rival �rms then enjoy a future market share gain. Thus, asymmetric
PPE allow that continuation values may be used to satisfy on-schedule constraints, without
requiring that all �rms symmetrically experience a reduced continuation value.

In the price-collusion model, consumers directly observe price and have no independent
interest in �rms�costs. By contrast, in the advertising model analyzed in this paper, informed
consumers observe advertising and draw inferences as to costs and thus prices. The construc-
tion of asymmetric PPE may be more challenging in this context. Suppose, for example, that
one �rm advertises heavily in the current period and that the equilibrium then requires that
this �rm advertise less in the future, so as to transfer future market share to other �rms. Con-
sider now the informed consumers. If they understand the equilibrium, then they recognize
that the reduced level of advertising by this �rm in some future period is not necessarily a
signal that this �rm has a high cost type and thus a high price in that period. Thus, even if
the equilibrium calls for reduced advertising by this �rm, this in itself does not guarantee that
the �rm obtains reduced market share.

8. Conclusion

We investigate the advertising behavior of �rms with private information as to their respective
costs. We �rst analyze a static model, and we show there that an advertising equilibrium exists,
in which informed consumers use an advertising search rule whereby they buy from the highest-
advertising �rm. The key point is that the highest-advertising �rm has the lowest cost and
thus selects the lowest price. In this way, �non-informative� advertising directs consumers
to the lowest price in the market. We establish conditions under which �rms earn greater
expected pro�t when advertising is banned. Consumer welfare falls in this case, however. We
then analyze a dynamic model in which privately informed �rms interact repeatedly. In this
setting, �rms may achieve a collusive equilibrium in which they limit the use of advertising,
and we establish conditions under which optimal collusion entails pooling at zero advertising.
In summary, advertising can promote product e¢ ciency and raise consumer welfare; however,
�rms often have incentive to diminish advertising competition, whether through regulatory
restrictions or collusion.
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9. Appendix

Equilibrium in Complete-Information Game. Suppose that N �rms sell a homogeneous
good at a constant cost c > 0: A pure strategy for �rm i is Ai 2 [0; r(p(c); c)] and A�i denotes
the (N � 1)-tuple of advertising selected by other �rms. The pro�t for �rm i is

�i(Ai; A�i) =

8<: r(p(c); c)UN �Ai if Ai < maxj 6=iAj

r(p(c); c)
�
U
N +

I
k

�
�Ai

if Ai � maxj 6=iAj and
kfj j Aj = Aigk = k � 1:

The term r(p(c); c) represents [p(c) � c]D(p(c)): A mixed strategy for �rm i is a distribution
function � over [A(�); �A(�)]: The pro�t for �rm i is

Ei(�i;��i) =

Z �A

A
� � �
Z �A

A
�(Ai; A�i)d�1 � � � d�N ;

where �A and A are de�ned below. This complete-information game has a unique symmetric
mixed-strategy equilibrium, � = �i for all i; which is characterized as follows:

Lemma A1. (i) There is no pure-strategy Nash equilibrium. (ii) There is a unique symmetric
mixed-strategy equilibrium:

�(A) =

�
A

r(p(c); c)I

� 1

N�1

with A(�) = 0 and �A(�) = r(p(c); c)I: (A1)

Proof. To prove (i), assume that there are k �rms that select the highest advertising A:
First, suppose that 2 � k � N: If A < r(p(c); c)I; then a �rm can gain by raising A slightly
by " and winning all the informed consumers:

r(p(c); c)

�
U

N
+ I

�
�A� " > r(p(c); c)

�
U

N
+
I

k

�
�A:

If A = r(p(c); c)I; then a �rm can increase its pro�t by reducing A to zero and winning only
the uninformed consumers:

r(p(c); c)
U

N
> r(p(c); c)

�
U

N
+
I

k

�
�A:

Second, suppose that k = 1: The highest-advertising �rm can raise its pro�t by setting A� "
which is slightly above the second-highest advertising.

To prove (ii), we begin by showing that any symmetric Nash equilibrium, �; must satisfy
(A1). To this end, we establish four �ndings. First, there is no mass point in �: If A is a
mass point of �; then there is a positive probability of tie at A: A �rm can increase its pro�t,

46



if it preserves the hypothesized equilibrium strategy, except that it replaces the selection of
A with the selection of A + " for small ": Second, A(�) = 0: Suppose that A(�) > 0: If a
�rm chooses A(�); then it wins only the uninformed consumers with probability one, since
ties occur with zero probability (because of no mass point). The �rm can increase its pro�t
when it replaces the selection of [A(�); A(�)+ "] with the selection of zero advertising. Third,
�A(�) = r(p(c); c)I: This result is immediate, since the pro�t at the top is equal to the pro�t
at the bottom in the mixed-strategy equilibrium:

r(p(c); c)

�
U

N
+ I

�
� �A(�) = r(p(c); c)

U

N
:

Fourth, � is strictly increasing over (A(�); �A(�)): Suppose that there is a gap (A1; A2) such
that A(�) < A1 < A2 < �A(�) and �(A1) = �(A2): Advertisements in the interval (A1; A2) are
then selected with zero probability. For " small, a �rm would gain by replacing the selection of
advertising levels in the interval [A2; A2+"] with the selection of A1+": This deviation has the
same probability of winning but uses a lower level of advertising. Given these four �ndings,
we may conclude that, in any symmetric Nash equilibrium, �; and for all A 2 [0; r(p(c); c)I];

r(p(c); c)

�
U

N
+ [�(A)]N�1I

�
�A = r(p(c); c)U

N
: (A2)

This equation yields (A1). Thus, (A1) is necessarily satis�ed in a symmetric Nash equilibrium.
Observe next that (A1) identi�es a well-de�ned and unique distribution function �(A): Lastly,
we verify that � is a Nash equilibrium. A �rm earns the same expected pro�t for any A 2
[A(�); �A(�)] when all otherN�1 �rms adopt �(A): It cannot increase the pro�t by altering the
distribution over the interval. Any advertising above �A(�) earns a lower expected pro�t than
does �A(�); because �A(�) wins the informed consumers with probability one. Any advertising
below A(�) is infeasible. �

Puri�cation. We consider an incomplete-information game, where production costs rise
in types �: We argue that if each �rm of type � chooses A(�); which is the unique advertising
equilibrium in the incomplete-information game, then the probability distribution induced by
A is approximately the distribution of advertising in the mixed-strategy equilibrium, when
the payo¤ relevance of types � gets small. In the incomplete-information game, the �rm of
type � 2 [�; ��] privately observes its type and has the cost c(�): Assume that function c is
di¤erentiable and strictly increasing in �; with 0 < c(�) < c(��) < pR; where pR is given by
D(pR) = 0: The static game is the same as in the text. Then, arguing as in the proof of
Proposition 1, there is a unique advertising equilibrium A which satis�es:

A0(�) = �r(p(�); �)(N � 1)[1� F (�)]N�2f(�)I < 0 and A(��) = 0; (A3)
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where r(p(�); �) = [p(c(�))� c(�)]D(p(c(�))):

Lemma A2. Given a constant c 2 (0; pR); for any " > 0; there exists � > 0 such that if
jc(�)� cj < � for all � 2 [�; ��]; then the probability distribution of advertising induced by the
advertising equilibrium in the incomplete-information game is "-close to �c; where �c is the
distribution of advertising in the mixed-strategy equilibrium of the complete-information game
with constant cost c:

Proof. The distribution induced by A(�) is

prob (� j A(�) � x) = prob
�
� � A�1(x)

�
= 1� F

�
A�1(x)

�
:

Let �c denote the symmetric mixed-strategy equilibrium with costs c: De�ne the function Ac
by

Ac(�) = �
�1
c (�(�)); where �(�) � 1� F (�):

Given that �(�) is strictly decreasing in � and �c is strictly increasing, Ac(�) is strictly de-
creasing in �: The proof is established as a consequence of the following results. First, if each
�rm of type � chooses Ac(�); then the distribution of advertising becomes �c: In other words,
Ac(�) induces the same distribution of advertising as �c:

prob (Ac(�) � x) = prob
�
��1c (�(�)) � x

�
= prob (�(�) � �c(x))
= prob (F (�) � 1� �c(x))
= prob

�
� � F�1(1� �c(x))

�
= 1� F

�
F�1(1� �c(x))

�
= �c(x):

Second, Ac(�) solves (A3) when c(�) = c: By the de�nition of Ac(�); we have that

A0c(�) = �f(�)=�0c(Ac(�)):

To �nd �0c(Ac(�)); we recall the mixed strategy (A2) and di¤erentiate it with respect to A :

1 = (N � 1)r(p(c); c) [�(A)]N�2�0(A)I:
Replacing � with �c; we obtain

�0c(A) =
1

(N � 1)r(p(c); c) [�c(A)]N�2 I
:
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Substituting, we thus �nd that

A0c(�) = �(N � 1)r(p(c); c) [�c(Ac(�))]N�2 f(�)I:

Note also that Ac(��) = ��1c (1 � F (��)) = ��1(0) = 0: Hence, when c(�) = c; Ac(�) solves
(A3). Third, if jc(�)� cj is small, then A(�) induces approximately the same distribution of
advertising as does �c: This result is based on the �rst and second result. The function Ac(�)
induces �c by the �rst result, and Ac(�) approximates A(�) when c(�) approaches c by the
second result: for any " > 0; there exists � > 0 such that if jc(�)� cj < � for all � 2 [�; ��];
then jA(�)�Ac(�)j < ": As c(�) becomes closer to a constant c; the type � becomes less
payo¤-relevant. Hence, the distribution of advertising induced by A(�); prob(� j A(�) � x) ;
approximates �c when the payo¤ relevance of types � gets small. �

Derivation of Interim-Stage Pro�t. We show that if A has a pooling interval with
A(�) = 0 on (y; ��] and jumps to a sorting interval on [�; y]; then it has the expected pro�t (13)
in the text:

E�[R(�; �;A)�A(�)] = r(p(��); ��)M(y; ��;A) +

Z y

�
D(p(x))

F

f
(x)M(�; y;A)f(x)dx

+

Z ��

y
D(p(x))

F

f
(x)M(y; ��;A)f(x)dx;

where M(�; y;A) and M(y; ��;A) are de�ned as in the text. The interim-stage pro�t for � � y
is

R(�; �;A)�A(�) = R(y; y;A)�A(y) +
Z y

�
D(p(x))M(�; y;A)dx;

while the interim-stage pro�t at y is

R(y; y;A)�A(y) = R(��; ��;A)�A(��) +
Z ��

y
D(p(x))M(y; ��;A)dx:

Using two equations, we �nd the interim-stage pro�t for � � y:

R(�; �;A)�A(�) = R(��; ��;A)�A(��) +
Z y

�
D(p(x))M(�; y;A)dx+

Z ��

y
D(p(x))M(y; ��;A)dx:

The interim-stage pro�t for � > y is

R(�; �;A)�A(�) = R(��; ��;A)�A(��) +
Z ��

�
D(p(x))M(y; ��;A)dx:

Based on the two interim-stage pro�ts, we �nd the expected value (13) in the text by inte-
grating by parts and setting A(��) = 0. �
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Proof of Lemma 3. Suppose that a scheme has a sorting interval at the top on (z; ��]:
Then we can consider an alternative scheme A that decomposes the sorting interval on (z; ��]
into a sorting interval on (z; y] and a pooling interval on (y; ��]; where y > z: Letting M(�;A)
denote the market allocation for types below z; the expected pro�t becomes

E� [R(�; �;A)�A(�)] = r(p(��); ��)

�
U

N
+ [1� F (y)]N�1 I

N

�
+

Z z

�
D(p(x))F (x)M(x;A)dx

+

Z y

z
D(p(x))F (x)

�
U

N
+ [1� F (x)]N�1I

�
dx

+

Z ��

y
D(p(x))F (x)

�
U

N
+ [1� F (y)]N�1 I

N

�
dx:

If the initial advertising scheme is nonincreasing in �; then the alternative scheme A also is
nonincreasing in �: Note that if y ! ��; then this scheme approaches the initial scheme. We
show that the optimal choice of y is lower than ��: Taking derivatives of the objective function
with respect to y; we obtain

@E� [R(�; �;A)�A(�)]
@y

=
N � 1
N

[1� F (y)]N�1I
�
D(p(y))F (y)� r(p(��); ��) f(y)

1� F (y)

�
�
Z ��

y
D(p(x))F (x)

�
N � 1
N

[1� F (y)]N�2f(y)I
�
dx:

Because of the assumption that f(��) > 0 and p(��) > ��; the expected pro�t rises when y slightly
falls from ��: �

Proof of Lemma 4. We follow two steps to prove that either sorting or pooling has the
same expected market share:

8�k+1 � �k;
Z �k+1

�k

M(�k; �k+1;A
p)f(x)dx =

Z �k+1

�k

M(�k; �k+1;A
s)f(x)dx: (A4)

First, we can immediately show that if �k+1 = �k; then the equation holds. Second, we can
show that for any �k+1 > �k;

@
R �k+1
�k

M(�k; �k+1;A
p)f(x)dx

@�k+1
=
@
R �k+1
�k

M(�k; �k+1;A
s)f(x)dx

@�k+1
: (A5)

In other words, the expected market-share allocations are the same in both schemes at �k+1 =
�k; and then they increase at the same rate as �k+1 rises above �k: The LHS of (A5) is given
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by

@
R �k+1
�k

M(�k; �k+1;A
p)f(x)dx

@�k+1
=

�
U

N
+ [1� F (�k+1)]N�1I

�
f(�k+1)

=
@
R �k+1
�k

�
U
N + [1� F (x)]

N�1I
�
f(x)dx

@�k+1

=
@
R �k+1
�k

M(�k; �k+1;A
s)f(x)dx

@�k+1
:

The last term is the RHS of (A5). The �rst equality is established by tedious works of induction
for N � 2. Because of the �rst equality, we can deriveZ �k+1

�k

M(�k; �k+1;A
p)f(x)dx =

�
[1� F (�k)]N � [1� F (�k+1)]N

� I
N
+ [F (�k+1)� F (�k)]

U

N
:

(A6)
Lemma 4 is now established. �

First-Order Stochastic Dominance of Ap over As: In the text, we establish the �rst-
order stochastic dominance of Ap over As: The argument presented there uses Lemma 4, which
ensures that the denominators of the distributions G (�k; �k+1;Ap) and G (�k; �k+1;As) are the
same. The result is now extended to the comparison between a single-step function Ap and a
two-step function A2step over an interval (�k; �k+1]: To this end, suppose that there is a jump
at �� 2 (�k; �k+1); and de�ne a distribution:

G
�
�k; �k+1;A

2step
�
�
R ��
�k
M(�k; �

�;A2step)f(x)dx+
R �
��M(�

�; �k+1;A
2step)f(x)dxR �k+1

�k
M(�k; �k+1;A2step)f(x)dx

: (A7)

Observe that if the denominators of G (�k; �k+1;Ap) and G
�
�k; �k+1;A

2step
�
are the same,

then G (�k; �k+1;Ap) �rst-order stochastically dominates G
�
�k; �k+1;A

2step
�
: It thus su¢ ces

to show that Z �k+1

�k

M(�k; �k+1;A
2step)f(x)dx =

Z �k+1

�k

M(�k; �k+1;A
p)f(x)dx: (A8)

Because of (A6), the RHS of (A8) becomes

�
[1� F (�k)]N � [1� F (�k+1)]N

� I
N
+ [F (�k+1)� F (�k)]

U

N
;
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and the LHS becomesZ ��

�k

M(�k; �
�;A2step)f(x)dx+

Z �k+1

��
M(��; �k+1;A

2step)f(x)dx

=
�
[1� F (�k)]N � [1� F (��)]N

� I
N
+ [F (��)� F (�k)]

U

N

+
�
[1� F (��)]N � [1� F (�k+1)]N

� I
N
+ [F (�k+1)� F (��)]

U

N
:

A simpli�cation con�rms (A8). The result can be extended to any form of multiple-step
functions. �

Proof of Proposition 8. Given the original scheme A that has a sorting interval over
(�i; �i+1]; we de�ne eA and derive the corresponding expected pro�t seen in the text. Recalling
the de�nition of A+ and M+ from the proof of Lemma 2, we de�ne an alternative scheme eA
as

eA(�) =
8>>>>><>>>>>:

A(�) if � > �i+1eAp � A+(�i+1) + r(p(�i+1); �i+1) hM(�i; �i+1; eA)�M+(�i+1; eA)i if � 2 (�i; �i+1]eA(�i) � r(p(�i); �i) hM(�i; eA)�M(�i; �i+1; eA)i+ eAp if � = �i

A(�)�
h
A(�i)� eA(�i)i if � < �i

The alternative scheme jumps at �i and �i+1 such that (On-IC) is binding at each point. It
preserves A above �i+1; pools over (�i; �i+1] and makes a parallel shift from A by A(�i)� eA(�i)
below �i: We assume that eA consists of K intervals. The initial scheme A may not have K
intervals; it may have less than K intervals. (On-IC) for the types below �i+1 and their interim
pro�ts are a¤ected under eA: The interim pro�t for � 2 (�i; �i+1] is

R(�; �; eA)� eA(�) = r(p(��); ��)M(�K ; �K+1; eA) + KX
k=i+1

Z �k+1

�k

D(p(x))M(�k; �k+1; eA)dx
+

Z �i+1

�
D(p(x))M(�i; �i+1; eA)dx:

The interim pro�t for � 2 (�j�1; �j ] 8j � i is

R(�; �; eA)� eA(�) = r(p(��); ��)M(�K ; �K+1; eA) + KX
k 6=i;k=j

Z �k+1

�k

D(p(x))M(�k; �k+1; eA)dx
+

Z �j

�
D(p(x))M(�j�1; �j ; eA)dx+ Z �i+1

�i

D(p(x))M(�i; �i+1; eA)dx:
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Since eA preserves the initial market-share allocations except for � 2 (�i; �i+1]; what is new
under eA is the last term in each interim pro�t. Integrating by parts, we can yield the expected
pro�t as in the text. �
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