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Abstract

The reduced form correlation between inflation and measures of real activity has changed
substantially for the main developed economies over the post-WWII period. In this paper
we attempt to describe the observed inflation dynamics in the United Kingdom, the United
States and the Euro area with a sequence of New Keynesian Phillips curve (NKPC) equations
that are log-linearised around different, non-zero, steady state inflation levels. In doing this,
we follow a two-step estimation strategy. First, we model the time-variation in the trade-
off between inflation and a real cost-based measure of activity through a Markov switching
vector autoregressive model. We then impose in each inflation regime the cross-equation re-
strictions of a Calvo pricing-based NKPC under non-zero steady state inflation and estimate
the structural parameters by minimising for each inflation regime the distance between the
restricted and unrestricted vector autoregressive parameters. The structural estimation re-
sults indicate that for all the economies there is evidence for a structurally invariant NKPC,
albeit with a significant backward-looking component.

Keywords: New Keynesian Phillips curve, trend inflation, Markov switching VAR, min-
imum distance estimation.
JEL classification: C32, C52, E31.

1 Introduction

One of the main building blocs of modern day macroeconomic models, both in academia and
at central banks, is the New Keynesian Phillips curve (NKPC) equation, and this relationship
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is essential for interpreting observed short-run inflation dynamics. Within the context of the
NKPC equation, there is staggered price setting, either motivated using the staggered contract
setting of Taylor (1980) or the probabilistic setting of Calvo (1983), and firms that are allowed
to change their prices do that in a forward-looking manner based on their future expected real
marginal costs. As a result short-run inflation dynamics are not determined within these models
by short-term trade-off relationships between inflation and the output gap or between inflation
and unemployment, but rather by a short-run trade-off between inflation and a measure of real
marginal costs.

When researchers attempt to estimate the structural parameters that underlie the NKPC
equation, they often assume that the relationship has not changed significantly over time, see eg
Gaĺı and Gertler (1999) and Sbordone (2002). There is, however, substantial empirical reduced
form evidence that the inflation process has changed over time, as witnessed by the analysis in
Cogley and Sargent (2002, 2005) for the United States, Benati (2004) for the United Kingdom
and Levin and Piger (2004) for twelve main OECD economies (including France, Germany,
Italy, Japan, the UK and the US). These changes in the inflation process seem at first sight to
be related to shifts in the monetary policy regimes in the respective economies, and therefore, if
valid, the NKPC relationship should be structurally invariant, as only equilibrium inflation rates
would have shifted over time. This is a feature of the NKPC relationship, which can be used to
test its empirical validity, that up to now has not been exploited often. A notable exception is
Cogley and Sbordone (2005), who use a Calvo (1983) pricing-based NKPC relation log-linearised
around a non-zero steady state rate of inflation and then, by mapping this NKPC relationship
into a time-varying parameter vector autoregressive model, attempt to describe post-WWII US
inflation dynamics by a combination of linearised NKPCs across various levels of steady state
inflation. Cogley and Sbordone (2005) claim that this approach provides evidence that the US
NKPC relationship has been structurally invariant across the different inflation regimes. Our
paper is in the same vein as Cogley and Sbordone (2005).

We use a two-step indirect estimation method to estimate a Calvo (1983) pricing-based
NKPC that is log-linearised around a non-zero equilibrium inflation rate. First, we estimate
a reduced form Markov switching vector autoregressive (MS-VAR) model to proxy the shifts
in the inflation process. Then in the second step the structural parameters in the NKPC are
estimated by minimising the distance between the unrestricted MS-VAR model and a version of
the estimated reduced form MS-VAR model on which we impose the cross-equation restrictions of
the NKPC relationship under non-zero equilibrium inflation. This two-step structural estimation
method is comparable to that used in Cogley and Sbordone (2005), but our auxiliary model is
now a MS-VAR model instead of a time-varying parameter VAR model, and the method has
its roots in the structural (micro-)econometrics literature that started with, amongst others,
Chamberlain (1982). We prefer the Markov switching VAR model as the auxiliary model for our
structural estimation over the time-varying parameter VAR framework, as it allows us to identify
the VAR parameters that correspond with the different inflation regimes in an objective, data-
driven manner. Also, it treats the shifts in the inflation process as stochastic, which potentially
could also be non-monotonic (see Sims and Zha (2006)), and its probabilistic selection of the
inflation regimes is in our view more compatible with the theoretical framework.

Our results can be summarised as follows. We estimate for the United Kingdom, the United
States and the Euro area a MS-VAR model for GDP deflator inflation, GDP growth, the labour
share and a proxy for the nominal discount rate where the VAR coefficients are regime dependent
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and identify the different states or regimes based on differences in the VAR-implied long-run
level of inflation. We simultaneously allow for an unobserved break in the covariance matrix for
the VAR that can occur independently of the regime switches in the VAR coefficients. For all
three economies, we identify two regimes that correspond to high trend or equilibrium inflation
(where the equilibrium level is quantitatively similar across the economies) and low equilibrium
inflation. When we map our NKPC under non-zero equilibrium inflation into these estimated
MS-VAR models, we do find that for all economies that we examined the character of the
reduced form short-run trade-off between inflation and real marginal costs has shifted over time
due to changes in equilibrium inflation: under high levels of steady state inflation firms put
more emphasis on the expected future levels of their real marginal costs when they change their
prices, whereas under low levels of steady state inflation they put more emphasis in the current
level of real marginal costs. We find little direct evidence that the structural parameters that
underlie this inflation - real costs trade-off also shift across the different inflation regimes for the
United Kingdom, the United States and the Euro Area.

The outline of the remainder of this paper is as follows. In Section 2 we discuss how the
most commonly used NKPC relationships change when they are derived under the assumption
of a non-zero rate of steady state (or equilibrium) inflation, and we also explain how we can
map such a structural NKPC relationship into a reduced form VAR model in order to be able
to estimate the underlying structural parameters. Our reduced form representation of the data
will be based on a Markov switching VAR model, and the estimation of such a Markov switching
VAR model is discussed in Section 3, where we also report the reduced form estimation results
for the UK and US economies. Structural estimation results based on the estimated Markov
switching VAR models are reported in Section 4 and we conclude the paper in Section 5.

2 The Phillips curve trade-off under positive equilibrium infla-

tion

Within the New Keynesian framework the presence of nominal rigidities in a world of forward-
looking agents does not imply the existence of the traditional short-term Phillips curve trade-
off between inflation and either the output gap or unemployment. Instead short-run inflation
dynamics depends on the trade-off between inflation and real costs, usually proxied by the labour
share, in a forward-looking manner, and we summarise this result in Section 2.1. Typically, one
log-linearises the model around a zero steady state rate of inflation and take the resulting NKPC
equation to the data. However, if we want to fit the NKPC relationship on an inflation process
that shifts over time, one needs to log-linearise the model around non-zero levels of equilibrium
inflation. The consequences for the NKPC are discussed in Section 2.2. Finally, we go through
the basic two-step indirect estimation of the structural parameters that underlie the NKPC
equation in Section 2.3.

2.1 The standard New Keynesian Phillips curve

The typical New Keynesian Phillips curve (NKPC) equation used in the literature, is based
on the Calvo (1983) staggered pricing scheme for an individual firm. Within this framework
the individual firm faces a certain fixed probability (1 − α) of receiving a signal to re-optimise
its profit-maximising pricing plan, and as the firm sets its price as a mark-up over its nominal
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marginal costs when it re-optimises, this optimal price increase reflects the expected future path
of real marginal costs. Assuming that capital is firm-specific, and thus one allows for discrep-
ancies between individual and aggregate marginal costs, we write the equilibrium condition for
the price setting firm, see Cogley and Sbordone (2005), as

0 = Et

∞
∑

j=0

αjRt,t+j

×

{

j
∏

k=1

γy,t+k

j
∏

k=1

πθt+k

j−1
∏

k=0

π
−̺(θ−1)
t+k

(

x1+θω
t −

θ

θ − 1
mct+j

j
∏

k=1

π1+θω
t+k

j−1
∏

k=0

π
−̺(1+θω)
t+k

)}

(1)

Within (1) Rt,t+j is the nominal discount rate between periods t and t+ j, γy,t is the gross rate
of output growth in t, the gross rate of inflation in t is denoted by πt, mct are the aggregate
real marginal costs in t, the elasticity of marginal costs to the firm’s own output, and θ is the
Dixit-Stiglitz elasticity of substitution amongst the goods produced by the individual firms,
which determines the mark-up that firms can demand over their marginal costs, as this mark-up
equals θ

θ−1 .
This leaves the α fraction of firms who do not receive a signal to set a new price. A common

practice is to follow Christiano et al. (2005), and let these firms index their price increase to
lagged inflation with an indexation parameter 0 ≤ ̺ ≤ 1, and thus one can write the evolution
of aggregate prices as

[

(1 − α)x1−θ
t + απ

̺(1−θ)
t−1 π

−(1−θ)
t

] 1

1−θ
= 1 (2)

in which xt is the relative price (relative to the aggregate price level) set in t by the representative
optimising firm.

When one takes this set-up and log-linearises the aggregated pricing equation around a zero
steady-state rate of inflation we get a typical hybrid NKPC equation:1

π̂t =

(

̺

1 + ̺β

)

π̂t−1 +

(

β

1 + ̺β

)

Et(π̂t+1) +

(

(1 − α)(1 − αβ)

α(1 + θω)(1 + ̺β)

)

m̂ct + ut (3)

In (3) β is the real discount factor with which the firms discounts the future expected path of
real marginal costs and ut is a zero-mean, stationary term to capture any approximation error
that might occur; the hat variables indicate that they are log-linearised around their steady
state levels (eg π̂t = ln(πt/π̄)).

2.2 The NKPC under a non-zero equilibrium inflation rate

The assumption of a zero steady state rate of inflation in (3), however, can be undesirable.
Ascari (2004), for example, shows how a positive steady state inflation rate results in a different
optimal monetary policy than if one assumes zero steady state inflation. Bakshi et al. (2003)
and Sahuc (2006) show that ignoring positive steady state inflation in specifying the NKPC
equation, would lead the researcher to erroneously conclude that a hybrid NKPC, which mixes
backward- and forward-looking behaviour as in (3), provides the best fit of the data even when
there is no backward-looking behaviour present. The purpose of this paper is to assess whether

1Detailed derivations can be found in eg Gaĺı and Gertler (1999) and Sbordone (2002).
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‘deep parameters’ that underpin the Phillips curve trade-off have remained stable over the post-
WWII era, despite the monetary policy regime changes we observed for major economies like
the United States and the United Kingdom over this period. And as inflation in the long-run is
determined by the central bank, these monetary regime changes implied different steady state
rates of inflation. Hence, we have to use a NKPC equation derived under positive steady state
inflation to assess the structural stability of the NKPC relationship.

Cogley and Sbordone (2005) derive a concise and empirically usable Calvo pricing-based
NKPC framework under positive equilibrium inflation. In Cogley and Sbordone (2005, Appendix
A) it is shown that under positive steady state inflation, or equilibrium inflation, we have
the following relation between the steady state values of πt and mct in order to ensure that
equilibrium condition (2) holds in steady state:

(

1 − απ̄(θ−1)(1−̺)
)

1+θω
1−θ

(

1 − αR̄γ̄yπ̄
1+θ(1−̺)(1+ω)

1 − αR̄γ̄yπ̄θ−̺(θ−1)

)

= (1 − α)
1+θω
1−θ

(

θ

θ − 1

)

m̄c (4)

where the variables with bars indicate steady state equivalents of the variables that have been
defined earlier. By log-linearising (1) and (2) around a steady state rate of inflation equal to
π̄ > 0, Cogley and Sbordone (2005) show that the zero equilibrium inflation rate NKPC (3)
changes to

π̂t = ˜̺π̂t−1 + ζm̂ct + b1Et(π̂t+1) + b2Et

∞
∑

j=2

γj−1
1 π̂t+j + χ(γ2 − γ1)(PR̂t

+ Pγ̂y,t
) + ut (5)

with

PR̂t
= Et

∞
∑

j=0

γj1R̂t+j,t+j+1

Pγ̂y,t
= Et

∞
∑

j=0

γj1∆ŷt+j+1

Compared to (3), NKPC (5) has two extra righthand side terms: an extra forward-looking term
related to future inflation and one related to future stochastic movements in output growth and
the nominal discount term, and it precisely is because (3) lacks these terms that Sahuc (2006)
argues that only a hybrid version of (3) (i.e. ̺ > 0) can fit the data well. The coefficients in
(5) are non-linear functions of the structural parameters α, θ, ̺ and ω, which are identical as in
(3), as well as equilibrium inflation π̄ and β̃ = R̄π̄γ̄y, which is the steady state value of the real
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discount factor. Hence, the coefficients in (5) can be defined as follows2

˜̺ =
̺

∆

ζ =

(1−αξ1)(1−γ2)
αξ1(1+θω)

∆

b1 =
φ1

(

1−αξ1
αξ1

)

+ γ2

∆

b2 =

1−αξ1
αξ1

(

θ(1−̺γ1)+̺γ1
1+θω

)

(γ2 − γ1)

∆

χ =

1−αξ1
αξ1(1+θω)

∆

(6)

where we use

ξ1 = π̄(θ−1)(1−̺)

ξ2 = π̄θ(1−̺)(1+ω)

γ1 = αβ̃ξ1

γ2 = αβ̃ξ2

∆ = 1 + ̺γ2 −

(

1 − αξ1
αξ1

)

φ0

φ0 =
̺θ(γ1 − (1 + ω)γ2) − ̺γ1

1 + θω

φ1 =
1

1 + θω
(γ2(1 + θω) + (γ2 − γ1)(θ(1 − ̺γ1) + ̺γ1))

(7)

In the end, our purpose is not necessarily to use (5) as a better alternative to (3), but whether
there is a inflation - real activity trade-off that is deeply entrenched in micro-founded behaviour
of agents. More specifically, if we can describe the changes in monetary policy regimes over time
through shifts in the steady state rate of inflation π̄ then if (5) is structurally invariant over the
regimes, any variation in the coefficients of (5) is only due to variations in π̄. The underlying
‘deep’ parameters of the Calvo pricing model, i.e. α, ̺ and θ, would therefore be unaffected.
The observed time-variation in the inflation - real activity trade-off would then be solely due to
changes in the monetary policy regime.

2.3 Two-step structural parameter estimation

Before we discuss the issue of modelling time-variation amongst macroeconomic time series, it
is appropriate at this point to discuss first the general methodology of estimating the structural
parameters in a NKPC equation like (5). In principle, there are two strands in the NKPC
literature when it comes to the estimation of the structural parameters in a NKPC equation like
(3) or (5). One strand attempts to proxy the representative firm’s conditional information set
for the expectations terms in (3) or (5) using instrument variables and the resulting conditional

2Cogley and Sbordone (2005) provide a detailed derivation.
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moment restrictions are than used in a generalised method of moment (GMM) procedure to
estimate the structural parameters, see eg Gaĺı and Gertler (1999). Sbordone (2002), on the
other hand, proposes to use a reduced-form times series model, typically a vector autoregressive
(VAR) model, as a representation of the data, after which values for the structural parameters
are chosen such that they minimise the distance between an unrestricted estimate of the VAR
and a representation of this estimated VAR on which the cross-equation restrictions of a NKPC
equation like (3) or (5) are imposed. We will employ this latter two-step minimum distance
estimation approach, as it is more convenient to incorporate time-variation in the structure
of the data within this framework. The two-step minimum distance estimation of structural
parameters based on an auxiliary model that provides a reduced form representation of the
data, has a long tradition in structural econometrics that goes back to Chamberlain (1982).3

Kodde et al. (1990), for example, apply the approach to estimate a dynamic rational expectation
factor demand model for the Dutch manufacturing sector, and they also show that in general
the method yields asymptotically efficient estimates for a large range of econometric models.

Lets assume for the moment that in our case the data can be represented by a constant
parameter VAR model

Yt = µ+

p
∑

j=1

AjYt−j + Ω
1

2 νt (8)

where Yt denotes a 4×1 data vector: Yt = {πt,∆yt,mct, Rt}
′, µ is the 4×1 vector of intercepts,

Aj is the 4 × 4 matrix of coefficients for the jth lags of the endogenous variables collected in
Yt−j , Ω is the 4 × 4 covariance matrix of the VAR disturbances, and the 4 × 1 vector νt with
νt ∼ N(0, I4). In VAR(1) form (8) reads

Ỹt = µ̃+ ÃỸt−1 + Ω̃ν̃t (9)

with Ỹt = (Y ′
t Y

′
t−1 · · ·Y

′
t−p+1)

′, µ̃ = (µ′ 0 · · · 0)′, ν̃t = (ν ′t 0 · · · 0)′ and the 4p × 4p companion
matrix

Ã =















A1 A2 · · · Ap−1 Ap
I 0 · · · 0 0

0 I 0 0
...

. . .
...

...
0 0 · · · I 0















where I and 0 are an identity matrix and a matrix of zeros respectively with appropriate
dimensions. In a first step we can use the estimate of (9) to construct empirical equivalents
of the log-linearised data on which (5) is based, i.e.

Ŷt = Ỹt −
(

I − Ã
)−1

µ̃ (10)

Next, (9) and (10) can be used to proxy the conditional expectations, current levels as well as
the lagged levels on the righthand side in (5), by considering the inflation rate that is determined
according to (5) as an expectation for present inflation conditional on Ŷt−1. This results in a set

3Of course, the general idea of incorporating cross-equation restrictions of a structural model in a reduced
form presentation of the data to estimate the parameters of this model goes back to Hansen and Sargent (1981),
who propose a one-step maximum likelihood procedure using a VAR representation of the data.
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of non-linear cross-equation restrictions which should be equal to the unrestricted coefficients in
Ã that determine the dynamics of the inflation rate (see also Cogley and Sbordone (2005)):

e′πÃ = ˜̺e′π + ζe′mcÃ+ b1e
′
πÃ

2 + b2e
′
πγ1(I − γ1Ã)−1Ã3

+ χ(γ2 − γ1)e
′
R(I − γ1Ã)−1Ã+ χ(γ2 − γ1)e

′
∆y(I − γ1Ã)−1Ã (11)

where eK is an identity vector that corresponds with the equation for variable K (which can be
π, mc, ∆y or R), and ζ, b1, b2, γ1, γ2 and χ are defined in (5). This then yield the following
4p× 1 vector ̥1 of moment conditions:

̥
′
1(µ̃, π̄, β̃, Ã, ψ) = e′πÃ− g(Ã) (12)

with g(Ã) equals the righthand side in (11), β̃ is the stochastic real discount factor defined as

β̃ = R̄π̄∆ȳ (13)

the empirical equivalents of the steady state values are equal to









π̄
∆ȳ
m̄c
R̄









=

























exp

(

e′π

(

I − Ã
)−1

µ̃

)

exp

(

e′∆y

(

I − Ã
)−1

µ̃

)

exp

(

e′mc

(

I − Ã
)−1

µ̃

)

(

e′R

(

I − Ã
)−1

µ̃

)

























(14)

and ψ is the vector of structural parameters

ψ = (α θ ̺ ω)′ = (ψ′
1 ω)′ (15)

with ω is a function of the production function capital elasticity κ

ω =
κ

1 − κ
; 0 < κ < 1

which we calibrate (see Section 3.2).
Equilibrium condition (4) yields another moment condition,

̥2(µ̃, π̄, R̄,∆ȳ, m̄c, Ã, ψ) =
(

1 − απ̄(θ−1)(1−̺)
)

1+θω
1−θ

(

1 − αR̄∆ȳπ̄1+θ(1−̺)(1+ω)

1 − αR̄∆ȳπ̄θ−̺(θ−1)

)

− (1 − α)
1+θω
1−θ

(

θ

θ − 1

)

m̄c (16)

We will summarise (12) and (16) as the (4p+ 1) × 1 vector

̥(µ̃, π̄, R̄,∆ȳ, m̄c, Ã, ψ) = (̥′
1(µ̃, π̄, β̃, Ã, ψ) ̥

′
2(µ̃, π̄, R̄,∆ȳ, m̄c, Ã, ψ)′ (17)
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After estimating the reduced form VAR model, which will yield estimates of µ̃ and Ã, one
can estimate the parameters in ψ by minimising the following objective function:

min
ψ1

̥
′(µ̃, π̄, R̄,∆ȳ, m̄c, Ã, ψ)̥(µ̃, π̄, R̄,∆ȳ, m̄c, Ã, ψ) (18)

Numerical methods have to be used to solve (18) for ψ, and often when the aforementioned two-
step minimum distance estimation is used to estimate the structural parameters that underly
the NKPC equation, one employs a grid search algorithm. Although slow in terms of reaching
the point of convergence, the grid search approach is robust to any ‘odd shapes’ in the contour
of objective function (18) and hence we employ this approach to get estimates of the structural
parameter vector ψ1.

3 Modelling time-variation in macroeconomic time series: Markov

switching VAR approach

Cogley and Sargent (2002, 2005) as well as Sims and Zha (2006) convincingly showed for the US
that the joint time series behaviour of macroeconomic series such as inflation and real economic
growth has shifted several times over the post-WWII period and although the jury is still out on
whether these shifts are due to changes in the monetary policy regime or shifts in structural shock
processes, our prior is that these shifts in the joint time series behaviour coincided with shifts
in the steady state rate of inflation. In order to be able to estimate the structural parameters
that underlie (5), we have to choose a specification that is able to capture these shifts properly.

Cogley and Sbordone (2005) and Cogley and Sargent (2002, 2005) use a time-varying pa-
rameter VAR (TVP-VAR) to model the shifts in the data. Sims and Zha (2006), on the other
hand, employ a Markov switching framework, which allows them to treat shifts in the joint
behaviour of time series as stochastic and potentially non-monotonic (i.e. the multivariate time
series process can potentially shift back to a regime that had been in place in the past) in na-
ture. This is appealing for our framework, as it would assume that when the representative firm
has to re-optimise its pricing plan, it makes a probabilistic assessment of whether the economy
is operating under a high or a low steady state inflation regime. Also, the Markov switching
framework allows us to identify the VAR coefficients that corresponds with different levels of
steady state inflation in an objective, data-driven manner, whereas with a TVP-VAR model the
researcher has to make a judgement about which VAR coefficient matrix belongs to which steady
state inflation level.4 Note, however, that the TVP-VAR offers flexibility in terms of allowing
for independent variation in VAR coefficients and volatility of the reduced form shocks.

Our empirical model tries to bring together this flexibility of the TVP-VAR and the greater
‘structure’ offered by the Markov switching VAR (MS-VAR). In particular, we use MS-VAR
models where we allow for M possible ‘trend inflation regimes’ while simultaneously allowing for
an unobserved break in the variance covariance matrix. This latter structural break specification
for independent shifts in the variance is inspired by Sensier and Van Dijk (2004), who show that
for a majority of US macroeconomic time series it is more appropriate to model time-variation
in volatility as instantaneous breaks than as gradual changes.

4This is because within a TVP-VAR model for T time series observations, one would end up with a (4p+1)×T
matrix of moment conditions ̥(µ̃t, Ãt, ψ) for t = 1, . . . , T , which yields a too high-dimensional computational
exercise. Cogley and Sbordone (2005) therefore pick the VAR coefficient matrices on four dates, which they
assume, based on anecdotal evidence and judgement, to be representative for different monetary policy regimes.
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In Section 3.1 we describe the MS-VAR framework, summarise the estimation issues that are
related to this framework and describe the procedure we use to select the number of regimes in
the MS-VAR. After a brief data description in Section 3.2, we report the reduced form estimation
results for the MS-VAR models in case of the United Kingdom, the United States and the Euro
area can be found in Section 3.3

3.1 Methodology

We assume that the data can be described by the following Markov Switching VAR (MS-VAR)
model

Yt = µs +

p
∑

j=1

Aj,sYt−i + Ω
1

2

Sνt (19)

where Yt is the 4 × 1 data vector from (8) and the νt is also the same as in (8). The subscript
‘s’ denotes the unobserved regime related to the VAR coefficients and it can take on M dis-
crete values, s = 1, 2, ...M . Similarly, S = 1, 2 denotes the unobserved regime related to the
disturbance covariance matrix (with diag (Ω1) > diag (Ω2) ) and is assumed to be independent
of s.5 Therefore, in (19) µs, Aj,s and ΩS are the regime-specific versions of intercept vector µ,
coefficient matrix Aj and disturbance covariance matrix Ω in (8).

Following Hamilton (1989) and Hamilton (1994, Chapter 22), the state variable s is modelled
as a stationary, time homogeneous, first order Markov Chain with a transitional probability
matrix

P̃ =











p11 p21 · · · pM1

p12 p22 · · · pM2
...

... · · ·
...

p1M p2M · · · pMM











(20)

where pij = Pr (st+1 = j|st = i) for i, j = 1, . . . ,M .
The state variable S follows a first order Markov chain with the following restricted transition

matrix

Q̃ =

(

q11 0
q12 1

)

(21)

where qij = Pr (St+1 = j|St = i) . The restrictions in (21) make regime S = 2 an absorbing state
and essentially implies that we model one unknown breakpoint in the evolution of Ω (see Kim
and Nelson (1999b)). This simple formulation captures time-variation in volatility highlighted
by Kim and Nelson (1999b) and Sims and Zha (2006) while still maintaining model parsimony.

Following Albert and Chib (1993) and Kim and Nelson (1999a, Chapter 9) we use Bayesian
simulation methods to estimate the MS-VAR models6. In particular, we use Gibbs sampling to
simulate draws from the posterior distribution. Details of the prior and the posterior distribu-
tions are confined to Appendix A. Here, we briefly describe the main steps in the algorithm.

5Indeed, Sensier and Van Dijk (2004) find that for 80% of 214 US macroeconomic time series over 1959-1999
most of the observed reduction in volatility is due to a reduction in conditional volatility rather than breaks in
the conditional mean.

6The likelihood function for the model can be calculated using the non-linear filter described in Hamilton
(1994, Chapter 22) and Kim and Nelson (2000). Although standard numerical techniques are readily available for
maximising the likelihood function, the large number of free parameters make this a challenging task especially
with independent regime switching in the VAR coefficients and the covariance matrix. In addition, model selection
is greatly simplified in the Bayesian framework.
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1. Sampling st and St:

Following Kim and Nelson (1999a, Chapter 9) we use Multi-Move Gibbs sampling to draw
st from the joint conditional density f (st|Yt, µs, A1,s, . . . , Ap,s, P, St) and St from the joint
conditional density f (St|Yt, µs, A1,s, . . . , Ap,s, P, st) .

2. Sampling µs, A1,s, . . . , Ap,s, ΩS:

Conditional on a draw for st and St the model is simply a sequence of Bayesian VAR
models. The regime specific VAR coefficients are sampled from a Normal distribution and
the covariances are drawn from an inverted Wishart distribution.

3. Sampling P̃ and Q̃:
Given the state variables st and St, the transition probabilities are independent of Yt and
the other parameters of the model and have a Dirichlet posterior.

This sampling algorithm is complicated due to the possibility of ‘label switching’. That
is, the likelihood function of the model is exactly the same if µm, Aj,m, P̃m are replaced with
µn, Aj,n, P̃n for m 6= n. This may imply that the resulting posterior distribution is multi-modal.
We identify the regimes by imposing inequality restrictions on the level of mean inflation implied
by the model across regimes. For example, when M = 2 we require that π̄1 > π̄2.

We set the lag length p = 2. The choice of the number of (coefficient) regimes, M , is a crucial
specification issue as this may have a substantial impact on our estimates for π̄. Following Sims
and Zha (2006) we select M by comparing marginal likelihoods across models with M = 1, . . . , 4.
In contrast, we fix the number of variance regimes to 2 and assume one break in the volatility
of the reduced form shocks. This assumption about the number of volatility regimes is based on
the following observations. First, there is some evidence for a single major break in volatility
(of some of the variables in our VAR models) presented by Kim and Nelson (1999b), McConnell
and Perez-Quiros (2000), Sensier and Van Dijk (2004) and Benati (2004). Next, given the
computational burden involved in estimating MSVAR models (with independent shifts in the
coefficients and the covariance matrix), one of our aims is to keep the model as parsimonious and
simple as possible while simultaneously allowing for enough time-variation to capture important
shifts in trend values of the endogenous variables.

For the model selection exercise we estimate each MS-VAR using 30000 replications of the
Gibbs sampler discarding the first 27000 as burn-in. Finally, the selected model is re-estimated
using 250000 replications with first 240000 discarded as burn-in.

3.2 The data

Our aim is to estimate the structural parameters in the NKPC equation (5) for the United
Kingdom and the United States, and for us to be able to do that we need data on inflation, real
output growth, the discount rate and real marginal costs of the representative firm. Inflation
and real output growth can be constructed in a fairly straightforward manner from the available
data. Also, the nominal discount rate Rt can be constructed without any major effort from
nominal interest rates data, i.e.

Rt =
1

1 + it
(22)

where it is a nominal interest rate with appropriate maturity. Constructing real marginal costs
is a bit more involved as these are unobserved and one therefore has to come up with some
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approximation. Following Gaĺı and Gertler (1999) and Sbordone (2002), we assume that the
output of an economy is produced through a Cobb-Douglas production function,

Yt = ΛtN
1−κ
t Kκ

t ; 0 < κ < 1 (23)

where Yt is the level of output in real terms, Nt is the total amount of labour input, Kt is the
amount of capital input and κ is the long-run share of capital in output. Abstracting from
capital, the real marginal costs of the representative firm equals

MCt =

(

Wt

Pt

)(

∂Yt
∂Nt

)

(24)

with Wt is the wage rate. Therefore, through (23) and (24), we can write the real marginal costs
in logarithm as

mct = ln

(

WtNt

PtYt

)

− ln(1 − κ) = ln(ULCt) − ln(1 − κ) (25)

Hence, by constructing unit labour costs or labour share data for each of our economies we can
approximate the log real marginal costs through (25) where we assume that κ = 1/37.

For the United Kingdom, we use quarterly data over the sample 1963.I - 2005.II. The inflation
rate πt is computed as the relative annualised quarter-to-quarter change in the implicit gross
domestic product (GDP) deflator, real output growth ∆yt is set equal to the relative annualised
quarter-to-quarter change in real GDP, and the nominal discount rate Rt is constructed through
(22) using the three-month Treasury bill interest rate (divided by 100). Our interest data are
taken from the Global Financial Data website, whereas the GDP related data are from the Office
for National Statistics. The labour share data that is used to construct mct through (25) for
the United Kingdom is an update of the labour share data used in Batini et al. (2000, 2005).8

Quarterly data for a 1955.I - 2005.II sample are used in case of the United States. We
construct the inflation and real output growth data in a comparable way as for the United
Kingdom, i.e. relative annualised quarter-to-quarter changes in the implicit GDP deflator and
real GDP respectively, and these data are extracted from the Federal Reserve Bank of St.
Louis’ FREDr database. Similarly, the nominal discount rate (22) is based on the three-
month Treasury bill rate, which is taken from the Global Financial Data website. To construct
the US labour share data, we use data on labour income from the US Bureau of Economic
Analysis’ National Income and Product Accounts. Based on a Cobb-Douglas production function
decomposition of GDP we use this labour income data to construct a labour share series that
strips out ambiguous components of labour income as well as the impact of the government
sector; see Appendix B for more details.

Finally, for the Euro area we use in our estimations quarterly data for the period 1970.I
- 2005.IV. All the data are either directly taken from or constructed using series taken from
the latest update of the data set that corresponds with the ECB’s Area-Wide Model (AWM)9,
which we retrieved from the the Euro Area Business Cycle Network (see
http://www.eabcn.org/data/awm/index.htm). Inflation and real output growth are, again, con-
structed as annualised relative quarter-to-quarter changes in, respectively, the implicit GDP de-
flator and real GDP, whereas the nominal discount rate (22) is constructed using the short-term

7This is broadly in line with the long-run average of the capital share across the developed economies, see
Backus et al. (1992)

8See Appendix B for more details regarding these labour share data.
9See Fagan et al. (2001) for a description of this data set.
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Table 1: Log marginal likelihoods for
MS-VAR model (19) estimated for the
UK and US

Model UK US Euro Area

BVAR -699.3 -701.8 -701.4
M=1 -700.5 -700.9 -700.7
M=2 -674.8 -687.0 -699.4
M=3 -672.8 -694.8 -701.0
M=4 -690.2 -692.9 -700.8

Notes: The entries are log marginal like-
lihoods computed for MS-VAR model (19)
estimated for lag orders p = 1, 2 and num-
ber of regimes M = 1, . . . , 4. The mod-
ified harmonic mean method of Gelfand
and Dey (1994) is used for computing the
marginal likelihoods.

interest rate measure from the extended AWM database. The quality of the labour share data
for the Euro area is less than for the other economies. We approximate the Euro area equiva-
lent of this variable with the ratio of nominal income of employees, which we corrected for the
presence of self-employed earners, over nominal GDP at factor costs; see Appendix B.

3.3 Reduced form estimation results

We use the described in Section 3.2 to fit a MS-VAR for πt, ∆yt, mct and Rt; see also (19). In
this subsection we report the estimation results of the optimal MS-VAR fitted for each economy.

A first step in the estimation of these MS-VAR models is to determine the optimal number of
regimes M . Our model selection procedure involves the estimation of models with M = 1, . . . , 4
and then selecting the MS-VAR with the highest marginal likelihood. Table 1 reports the
estimated log marginal likelihoods for the UK, the US and the Euro area. Note that the first
row of the table presents results for a time-invariant Bayesian VAR, while the remaining rows
display results from models that incorporate the break in the covariance matrix. These marginal
likelihoods are approximated using the modified harmonic mean method proposed by Gelfand
and Dey (1994)10.

Table 1 indicates that models with M > 1 are preferred to linear VAR models, and this is not
a surprising result given the large literature that indicates the presence of shifts in persistence
and volatility of inflation and output for these economies (e.g. Cogley and Sargent (2002, 2005),
Benati (2004) and Levin and Piger (2004)). For the UK, an MS-VAR withM = 3 is the preferred
model. However, the two regime model is a close second with a relatively small difference in the
estimated log marginal likelihoods. Moreover, our estimates for these two specifications indicate
that the third regime adds little in terms of capturing significant shifts in trend inflation, while
significantly inflating the number of estimated coefficients in the model. Therefore, we base our

10See Sims and Zha (2006) for description of how this method is applied to Markov switching models.
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Figure 1: Probability of coefficient and variance regimes
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The blue shaded areas in the top two figures are the probabilities for the UK, the US and the Euro area that

p (st = 1) estimated from the draws of st in the Gibbs sampling estimation of MS-VAR model (19) with p = 2 and

M = 2 for the UK, the US and the Euro area. The blue shaded areas in the lower two figures indicate when the

disturbance covariance matrix of the aforementioned MS-VAR models is in variance regime 1 (i.e. the era before

the structural break in this covariance matrix).

main results on the MS-VAR model with M = 2 but report results for the three regime model in
Appendix C. For the US, the evidence clearly points to the presence of two coefficient regimes
and similarly, but less clearly, this is the case for the Euro area.

The top panel of Figure 1 plots the probability of each (coefficient) regime for the UK and
the US p (st = i) estimated from the draws of st. For the UK and the US economies the timing
of the trend inflation regimes is quite similar. The high trend inflation regimes occur during the
1970’s and the early 1980’s for both countries. Similarly the pre-1970’s period, the 1990’s and
beyond are largely characterised by the low trend inflation regime for both countries. In case of
the Euro area, the high trend inflation regime lasts throughout the 1970s and 1980s until the
early 1990s - the shift to a low trend inflation regime takes place at the end of 1993. This is
quite similar to the break dates that Levin and Piger (2004) identified for GDP deflator inflation
in the Euro area member states in their sample (France, Germany, Italy and the Netherlands):
using a Bayesian approach they identify break dates for this inflation measure in these countries

14



Figure 2: MS-VAR (19) implied trend inflation levels
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The ‘trend’ levels of the respective GDP deflator inflation series equal the medians across the Gibbs sampling

replications where in each replication we construct a weighted average of the regime-specific long-run values π̄

(see (14)) with the weights derived from the draw of the state variable st

in the first half of the 1990s.
The bottom panel of Figure 1 shows the probability of the first variance regime for the

economies. For both the UK and the Euro area, a break in the variance occurred in the early
1990s, coinciding with the introduction of inflation targeting in 1992 and independence of the
Bank of England in 1997 in the UK as well as the aftermath of the break-down of the European
exchange rate mechanism (ERM I). Interestingly for the Euro area the variance break practically
coincides with the shift in trend inflation regime, where the variance break occurs one to two
quarters earlier than the trend inflation regime shift, despite the fact that we do not impose this
in the estimation. For the US, this break occurred in the mid 1980s after the Volcker experiment
of non-borrowed reserves targeting. This US finding is close to that reported in Kim and Nelson
(1999b) and McConnell and Perez-Quiros (2000).

How can we typify the different trend inflation regimes for the economies? Figure 2 plots
our median estimates of the evolution of annual trend inflation in the economies as estimated
by the MS-VAR models. The estimates for these trends are constructed as a weighted average
of π̄ where the weights are derived from the draw of st. For the UK, the 1970’s and the early
1980’s were clearly a time of high trend inflation with the estimates of π̄ reaching a maximum of
around 7% in the mid-1970s. Since the early 1980s, trend GDP deflator inflation has remained
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Figure 3: Normalised spectral densities for UK and US inflation

The normalised spectral densities in the figure equal the medians across the Gibbs sampling replications of the

UK, US and Euro area MS-VAR models (19) where in each replication we construct a weighted average of the

regime-specific normalised spectral densities based on (27) with the weights derived from the draws of the state

variable st.

just above 2%.11 The results are similar for the US, with the high trend inflation of the 1970s
and the early 1980s declining after the Volcker experiment of the early 1980s. In the Euro area
the high trend inflation of the 1970s and early 1980s declines more gradually than in the other
economies, although towards the starting date of the European monetary union (EMU) Euro
area trend inflation appears to start to decline at a higher pace.12

Figure 3 presents evidence on inflation persistence and plots the normalised spectral densities
of UK, US and Euro area inflation. These are calculated for each regime as

Sπ (̟, s)
∫

̟ Sπ (̟, s)
(26)

11Note that this is not equal to the current 2% inflation target in the United Kingdom, as this target refers to
the consumer price index. Hence, differences in composition, e.g. trade and services have different weights in the
GDP deflator than in the consumer price index, means that the numerical trend levels of the two will be different.

12The dynamic pattern (but not the level) of Euro area trend inflation in Figure 2 looks remarkably similar
to the low frequency component that Assenmacher-Wesche and Gerlach (2006) extract from the same Euro area
GDP deflator inflation series with frequency domain techniques.
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Figure 4: Standard deviations of shocks and endogenous variables
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The blue lines show the square roots of the inflation and GDP growth error variance from the UK, the US and

the Euro area estimates of MS-VAR (19) with p = 2 and M = 2, i.e. the square root of the diagonal elements of

inflation and GDP growth in the estimated ΩS in (19) with p = 2 and M = 2. The green lines show a weighted

average of the regime-specific square roots for the inflation and GDP growth elements of (28) with the weights

derived from the draw of the state variable st based on the UK, US and Euro area estimates of MS-VAR (19)

with p = 2 and M = 2.

where

Sπ (̟, s) =
1

2π

(

I − Ãse
−i̟

)−1
Ω̂S

(

I − Ã′
se
i̟
)−1

(27)

and ̟ denotes the frequency, I is a conformable identity matrix, Ãs denotes the companion
matrix formed at the posterior mean and Ω̂S is the posterior mean estimate of the covariance
matrix. Figure 3 reports the weighted average of the normalised spectrum across the regimes for
the three economies. The normalised spectrum for the UK confirms recent evidence presented
in Benati (2004). The inflation targeting period has been characterised by very low inflation
persistence. For the US, the post-Volcker period saw a sharp fall in inflation persistence. Cogley
and Sbordone (2005) find similar results in their TVP model but report less time-variation than
depicted in figure 3. Finally, Euro area inflation persistence exhibits a sharp decrease in the early
1990s, but note that both before and after this persistence decrease, the level of low frequency
Euro area inflation persistence is quite a bit higher than in the other economies.

In their analysis of volatility breaks in a large number of US macroeconomic time series,
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Sensier and Van Dijk (2004) find for the bulk of those series that the observed decrease in
volatility seemed more likely to be related to break in the error (or shock) variance than due
to a break in the mean of the series. Is this also the case for our data? In Figure 4 we show
the evolution of the standard deviation of the shocks to inflation and GDP growth as well as
the standard deviation of inflation and real GDP growth. In the former, this is the square root
of the corresponding diagonal term in the two-regime disturbance covariance matrix ΩS of the
UK, US and Euro area estimates of MS-VAR (19), whereas the latter equals the square root of
the corresponding element of V̂ , where

V̂ = vec
(

E
(

Y ′
t Yt
))

=
(

I − Ãs ⊗ Ãs

)

× vec
(

Ω̂S

)

(28)

based on estimates of (19). For the UK, the main decline in volatilities coincides with the
introduction of inflation targeting at the end of 1992 and Bank of England independence in
1997, whereas for the Euro area the big volatility decline takes in 1993 after the break-up of
ERM I. For the US, this occurred with the start of the post-Volcker era. Interestingly, for all
economies these volatility reductions seems largely related to less volatile shocks, which is in line
with Sensier and Van Dijk (2004). Note, however, that the sharp increase in (mainly inflation)
volatility and subsequent decrease of the 1970s and early 1980s was not related to a change in
the volatility of shocks, which suggests that shifts in the long-run means of the series are more
likely to have caused this phenomenon.

4 Structural estimation results

In order to get estimates of the structural parameters that underly our general NKPC equation
(5), we will use an estimate of the MS-VAR model in πt, ∆yt, mct and Rt as the auxiliary model
on which we impose the cross-equation restrictions that correspond with (5). In this section we
will generalise the approach outlined in Section 2.3 to the case where one uses a MS-VAR model
like (19) as the auxiliary model instead of a standard linear VAR model, and report estimation
and test results regarding the structural parameters in NKPC equation (5). Details regarding
estimation of and inference on the structural parameters using the MS-VAR auxiliary model can
be found in Section 4.1, and the results of this approach are reported in Section 4.1.1.

4.1 Structural estimation using the MS-VAR model

As a starting point write MS-VAR model (19) in MS-VAR(1) form, i.e.

Ỹt = µ̃s + ÃsỸt−1 + Ω̃S ν̃t (29)

with Ỹt = (Y ′
t Y

′
t−1 · · · Y

′
t−p+1)

′, µ̃s = (µ′s 0 · · · 0)′, ν̃t = (ν ′t 0 · · · 0)′ and the 4p × 4p companion
matrix

Ãs =















As,1 As,2 · · · As,p−1 As,p
I 0 · · · 0 0

0 I 0 0
...

. . .
...

...
0 0 · · · I 0














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Table 2: Bounds of the grid points for the structural parameter estimation.

Parameter α ̺ θ

Bounds {0, 1} {0, 1} {1, 50}

This MS-VAR set-up is then used with the moment conditions (17) to estimate regime-specific
structural parameters for (5)

min
ψ1,s

̥
′(µ̃s, π̄s, R̄s,∆ȳs, m̄cs, Ãs, ψ1,s)̥(µ̃s, π̄s, R̄s,∆ȳs, m̄cs, Ãs, ψ1,s); s = 1, . . . ,M (30)

with ψ1,s = (αs θs ̺s)
′ using the two-step estimation approach described in Section 2.3.

As explained in Section 3.1, we employ Gibbs sampling to estimate st, µs and A1,s, . . . , Ap,s
in MS-VAR model (19). The reduced form results in Section 3.3 are then based on the moments
of the retained draws from the joint posterior distribution for st, µs and A1,s, . . . , Ap,s

13. In each
of these draws from this joint posterior distribution, we also estimate ψ1, s by minimising (30)
for s = 1, . . . ,M ψ1, s for s = 1, . . . ,M : ψ1, s, g, s = 1, . . . ,M, g = 1, . . . , M̃ , where M̃ denotes
the number of retained draws.

The minimum distance estimation uses a simple grid search procedure where the objective
function is evaluated over 20 grid points for each of the deep parameters: α, which is the fraction
of firms who do not receive a signal to re-optimise prices, the indexation parameter ̺, and the
substitution elasticity across goods θ. The bounds of the grid points are specified in Table 2.

4.1.1 UK Estimates

Table 3 reports the moments of the structural estimates of the NKPC equation (5) for the UK
across the two trend inflation regimes (top two panels) and for the entire sample (last panel)14.
In addition to reporting medians and means we capture uncertainty by reporting the median
absolute deviation of the structural estimates across the Gibbs draws.

Estimates of ̺ and α appear to be more precise than the estimate of θ that has a large
median absolute devation in both regimes. The median estimated value of θ indicates that the
mark-up has varied between 4% and 5 % for the UK over the two regimes. Our estimate for α
in the low inflation regime is 0.25.

We find a significant degree of indexation across the two trend inflation regimes. In addition,
the degree of indexation appears to have declined with the estimate of ̺ ranging from 0.8 in
regime 1 to 0.55 in regime 2. The reduction in ̺ across regimes appears to be the only noticeable
indication of structural change. However, the uncertainty surrounding the regime 2 estimate
of ̺ is large enough to cast doubt on this as conclusive evidence for instability. Similarly, the
distribution of the time-invariant estimate of ̺ (10th and 90th percentiles 0.3 and 0.95) includes

13Here, the number of retained draws refers to MCMC draws after the burn in period that satisfy the identifi-
cation restrictions.

14Note that, in computing time-invariant structural estimates we still allow trend values of the endogenous
variables to vary across regimes.
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Table 3: Structural estimates for the
United Kingdom

Median Mean MAD

Regime 1
θ 20.61 24.66 17.15
̺ 0.80 0.65 0.15
α 0.20 0.30 0.15

Regime 2
θ 23.06 26.18 17.15
̺ 0.55 0.52 0.30
α 0.25 0.34 0.15

Both Regimes
θ 25.51 27.49 17.15
̺ 0.80 0.71 0.15
α 0.20 0.26 0.10

Notes: The table reports the mean, me-
dian, and the median absolute deviations
(’MAD’) of the regime-specific estimates
of the structural parameters underlying
(5) across the retained draws from the
Gibbs sampler for the UK MS-VAR model
(19) with p = 2 and M = 2.

the regime specific median estimates. Although these bounds do not represent moments of the
posterior distribution, they indicate that the evidence for instability in ̺ is not clear cut. We
explore this further by computing the probability of an increase (or decrease) in this parameter
across regimes.

The second column of Table 4 shows that the probability of a decrease in ̺ from the high to
low trend inflation regime is larger than the probability of an increase in this parameter. However
both probabilities are close enough to 0.5 to cast doubt on the possibility of a systematic change.

The median point estimates of θ varies little across the two regimes in Table 3. The prob-
abilities in Table 4 indicate little evidence for an increase or decrease in this parameter across
the two regimes.

The estimation results in Table 3 suggests that the degree of price stickiness, as determined
by α (i.e. the fraction of firms that are allowed to re-optimise their prices), is lower in the high
trend inflation regime prevalent in the mid-1970s and the early 1980s and rises slightly in the
low trend inflation regime. Remember that our NKPC specification is based on Calvo (1983)
pricing. Both the Calvo (1983) and Taylor (1980) pricing schemes assume that there is exogenous
staggering of price changes across firms, either because a firms sets its price randomly (Calvo)
or after N periods (Taylor), and thus the fraction of price adjusting firms is constant over time.
This time-dependent pricing is in contrast to state-dependent pricing: firms face a ‘menu cost’
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Table 4: Probability of structural change for
the United Kingdom

θ ̺ α

Regime 2 < Regime 1 0.41 0.59 0.38
Regime 2 > Regime 1 0.59 0.41 0.62

Notes: The probabilities in row ‘Regime 2 <

Regime 1’ (‘Regime 2 > Regime 1’) for each struc-
tural parameter is computed as the ratio of the re-
tained draws from the Gibbs sampler for the UK
MS-VAR model (19) with p = 2 and M = 2, for
which a structural parameter is larger (smaller)
in Regime 2 than in Regime 1.

on adjusting prices, but as monetary shocks and inflation variability become larger it becomes
increasingly costly to keep prices fixed (e.g. Ball et al. (1989) and Dotsey et al. (1999)). Thus,
the fraction of firms that adjust prices varies over time depending on the size of inflationary
shocks and over different inflation regimes. Our result of an increase in price stickiness in the
low trend inflation regime vis-à-vis the high trend inflation regime seems therefore at first sight
more in line with state-dependent pricing than with the time-dependent pricing assumption that
underpins our NKPC model.

However, there is not much evidence for a significant change in α. Firstly, the probabilities
in the last column of Table 4 are not very far from 0.5. Secondly, the distribution of the time-
invariant estimates of these parameters includes the regime specific point estimates (10th and
90th percentiles 0.05 and 0.60). Therefore, as in the case of the other structural parameters ̺
and θ, there is no evidence that the Calvo α has varied with shifts in trend inflation. It also
suggest that once one account for shifts in trend inflation, there is no significant evidence that
time-dependent pricing is empirically inappropriate. This is in accordance with some micro-data
studies across firms in different economies that establish that time-dependent pricing across firms
dominates state-dependent pricing under regular economic conditions; see, for example, Klenow
and Kryvtsov (2005) for the United States and Stahl (2005) for Germany.

Overall we find limited variation in the structural parameters across the equilibrium inflation
regimes. However, this variation is not large or systematic and does not, in our view, represent
conclusive evidence for structural instability.

4.1.2 US Estimates

Estimates for the US are reported in Table 5. Our estimates for θ in the US imply a mark-up
of around 4.5% to 5.8% across the two regimes. This combined with an estimate for α that is
slightly smaller than the the one reported in Cogley and Sbordone (2005) suggests that prices
have been less flexible in the US than suggested by the results in Cogley and Sbordone (2005)
as well as compared to the UK.

We find very different values for ̺ in the US from those reported in Cogley and Sbordone
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Table 5: Structural estimates for the
United States

Median Mean MAD

Regime 1
θ 18.16 23.95 14.70
̺ 0.80 0.67 0.15
α 0.35 0.41 0.25

Regime 2
θ 23.06 26.52 17.15
̺ 0.55 0.51 0.30
α 0.45 0.46 0.25

Both Regimes
θ 30.40 29.49 17.15
̺ 0.85 0.74 0.10
α 0.30 0.35 0.15

Notes: See the notes in Table 3.

(2005). Our median estimate of the indexation parameter is large in both regimes (see Table 5).
This finding is in sharp contrast to Cogley and Sbordone (2005) who report a value of zero.
With respect to that finding, we find based on our structural estimates that the probability that
̺ ≈ 0 slightly increases when trend inflation is low, but remains small, i.e. from just under 10%
in regime 1 to 19% in regime 2. Given these small probabilities for ̺ ≈ 0 it seems that, as in the
UK, irrespective of the level of equilibrium inflation inflation indexation seems to be entrenched
in firms’ pricing behaviour.

As in the case of the UK, the (median) estimate of ̺ in Table 5 falls across the two regimes
where the low equilibrium inflation regime is associated with lower indexation. However, when
we compute the probabilities whether the indexation parameter has been different across the
trend inflation regimes, see Table 6, this suggests that the change in ̺ is unlikely to be systematic.

Table 6: Probability of structural change for
the United States

θ ̺ α

Regime 2 < Regime 1 0.38 0.59 0.41
Regime 2 > Regime 1 0.62 0.41 0.59

Notes: See the notes in Table 4.
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Table 7: Structural estimates for the
Euro Area

Median Mean MAD

Regime 1
θ 18.16 23.02 12.25
̺ 0.70 0.60 0.15
α 0.45 0.44 0.30

Regime 2
θ 20.61 25.38 14.70
̺ 0.45 0.48 0.30
α 0.45 0.46 0.25

Both Regimes
θ 23.06 26.38 14.70
̺ 0.75 0.66 0.20
α 0.35 0.39 0.20

Notes: See the notes in Table 3.

In addition, the bounds of the time-invariant estimates (10th percentiles 0.3 and 0.95 ) again
include the point estimates in both regimes.

We have a similar picture for the other ‘deep’ parameters that underly our NKPC relation-
ship, i.e. Calvo α and θ. The median estimates of θ increases slightly in regime 2 but remains
close to the time-invariant estimate in the last panel of the Table 5 and the computed proba-
bilities for differences in θ across regimes in Table 6 back this up. The slight increase in α in
Table 5 across regimes again suggests that price flexibility may have moved more in line with
a predominance of state-dependent pricing in the economy. However, the results in Table 6
caution against interpreting this as a systematic shift in this parameter.

On balance, our results suggest little conclusive evidence against the hypothesis that there
exists for the US a Calvo pricing-based NKPC trade-off relationship that has remained struc-
turally invariant under shifts in equilibrium inflation rates.

4.1.3 Euro Area Estimates

Finally, the Euro area estimates of the structural parameters underlying NKPC (5) are reported
in Table 7. The estimates show not much variation in the structural parameters across the two
trend inflation regimes, except for the inflation indexation parameter ̺. This is not unlike the
findings for the other economies, and the question is, again, whether this observed decline in ̺ is
structural or not? It appears that it is not, given the reported probabilities of different degrees
if inflation indexation across the regimes in Table 8.

For the remaining structural parameters, θ and the Calvo α (see also (5)), similar proba-
bilities as for ̺ indicate that these parameters have also not been subjected to any structural
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Table 8: Probability of structural change for
the Euro Area

θ ̺ α

Regime 2 < Regime 1 0.41 0.56 0.44
Regime 2 > Regime 1 0.59 0.44 0.56

Notes: See the notes in Table 4.

changes across the different Euro area trend inflation regimes; see Table 8. Therefore, the lower
panel in Table 7 reports for the structural parameters under the assumption that they have not
changed across the different trend inflation regimes. As in the case of the other economies, these
estimates suggest that even if one allows for shifts in trend inflation, inflation indexation still
significantly affects firms’ price setting behaviour in the Euro area. Also, given the median θ
estimate, which suggests an Euro area mark-up of 4.5%, and a median α estimate that is the
highest across our three economies, Euro area price flexibility is lower than in the UK or the
US.

Hence, as for the other economies, the NKPC for the Euro area seems to be structurally
invariant to shifts in trend inflation, and thus changes in the monetary policy regime.

One feature of our structural estimates across all three economies is that even when we
allow for changes in trend inflation, inflation indexation (̺ in (5) is still a significant factor in
the process that drives inflation. This is in contrast with the theoretical arguments made by
Sahuc (2006), namely that the empirical success of the ‘hybrid’ NKPC, log-linearised around
0, is due to the fact that these specifications ignore that trend inflation has been greater than
0 and time varying. It also contrast with the Cogley and Sbordone (2005) estimates of an
US NKPC that allows for postitive and time-varying trend inflation: they claim that inflation
indexation becomes insignificant. Hence, our estimation results, which are similar across different
economies, indicate that staggered pricing is not enough to explain the trade-off between inflation
and real activity satisfactorily, given the slightly the ‘ad hoc’ micro foundation for inflation
indexation. Possibly additional, real, rigidities are needed for this, e.g. a Calvo pricing-based
NKPC with real wage rigidity added to it, as in the case of Blanchard and Gaĺı (2005).

4.2 Coefficients of the non-zero trend inflation NKPC

What are the implications of these structural estimates for the time variation in the coefficients
of the NKPC in (5)? We examine this question by considering the evolution of the reduced form
coefficients ζ, b1, b2 and χ (γ2 − γ1) . An increase in equilibrium inflation, ceteris paribus, will
affect the New Keynesian inflation-real costs relationship as follows: (i) The impact of current
real costs on current inflation decreases, and (ii) the impact of both one-quarter ahead and
higher order inflation expectations on current inflation increases. What is the intuition for this?
Firms face uncertainty about when in the future they will be able to re-optimise their prices
again and therefore the higher equilibrium inflation is, the larger the risk for firms that future
profits will be eroded by inflation. As a consequence, firms attach more weight to future risks
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Figure 5: Coefficients of the NKPC under shifting non-zero trend inflation
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The figure plots the median values of β1, β2 and χ(γ2 − γ1) for (5) across the Gibbs sampling replications for

MS-VAR model (19) with p = 2 and M = 2, where in each replication we construct a weighted average of the

regime-specific long-run values ˜̺, b1, b2 and χ(γ2 − γ1) (using the regime-specific estimates of α, θ and ̺) with

the weights derived from the draw of the state variable st. Except for equilibrium inflation rate π̄, we fix the

remaining structural parameters across the two trend inflation regimes.

and less weight to current costs.
Figure 5 plots the estimated values of these parameters for the UK, the US and the Euro

area. Note that the results in Figure 5 assume that the structural parameters are constant
at their full sample estimates and are constructed using the posterior means of the MS-VAR
parameters. As we argue above, there is little evidence for signifcant structural change in these
parameters.

Across all economies, b1 is the largest coefficient. In contrast, the higher order terms
χ (γ2 − γ1) are relatively small in magnitude. Although our estimate for ζ, b2 and χ (γ2 − γ1),
for the US, are close to those in Cogley and Sbordone (2005) in terms of magnitude, our estimate
of b1 is smaller.

As predicted by the theory, we find that the weight on current real costs decreases when trend
inflation increases, while the weight on inflation expectation terms increase during these periods.
All economies seem to be currently in low trend inflation regimes–our estimates indicate that
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the weight placed by firms on current costs is higher in this regime, while inflation expectations
are not as important for price-setting as they were in the high inflation scenarios of the 1970s
and the early 1980s.

5 Concluding remarks

The current paper estimates a Calvo (1983) pricing-based NKPC for the UK, the US and the
Euro area under the assumption of non zero trend inflation. We characterise the reduced form
dynamics of inflation, economic growth and real marginal costs via Markov Switching VAR
models that allow for independent switching int the coefficients and the covariance matrix. The
structural parameters are then estimated via a minimum distance estimator applied in each
regime.

Reduced form results from the VAR models confirm recent observations on the ‘Great Mod-
eration’. In particular, we find that the recent period has been characterised by low levels of
trend inflation, low inflation persistence and less volatile inflation and GDP growth both for the
UK, the US and the Euro area.

In contrast, for all economies we find only weak evidence for structural change in the ‘deep’
parameters of the NKPC. Therefore our results largely confirm Cogley and Sbordone (2005).
That is, using a different empirical methodology we find that structural parameters of the NKPC
have been largely invariant to shifts in trend inflation. Note, however, that in contrast to Cogley
and Sbordone (2005) we find for the UK, the US and the Euro area that there still is a significant
degree of inflation indexation after one corrects for non-zero, shifting trend inflation. This may
indicate that in addition to staggered pricing, other forms of (real) rigidities also has to be taken
into account when modelling the inflation-real activity trade-off.
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Appendices

A Gibbs sampling algorithm for estimating the MS-VAR model

The Gibbs sampler cycles through the following steps.

1. Sampling the Covariance states St :

Given starting values for the VAR parameters and covariances, the unobserved state variable
for the two covariance regimes St is drawn using Multi-Move Gibbs sampling to draw from the

joint conditional density f
(

St|Yt, µs, A1,s, . . . , Ap,s, P̃ , Q̃
)

. Kim and Nelson (1999a, Chapter 9)

show that the markov property of St implies that

f (St|Yt) = f (ST |YT )

T−1
∏

t=1

f (St|St+1, Yt) (A.1)

where we have suppressed the conditioning arguments. This density can be simulated in two
steps:

1. (a) Calculating f (ST |YT ): The Hamilton (1989) filter provides f (St|Yt) , t = 1, ....T. The
last iteration of the filter provides f (ST |YT ) .

(b) Calculating f (St|St+1, Yt): Kim and Nelson (1999a, Chapter 9) show that

f (St|St+1, Yt) ∝ f (St+1|St) f (St|Yt) (A.2)

where f (St+1|St) is the transition probability and f (St|Yt) is obtained via Hamilton
(1989) filter in step a. Kim and Nelson (1999a) (pp 214) show how to sample St from
(A.2).

2. Sampling the covariance matrices ΩS :

The covariance matrix in each regime S = 1, 2 is drawn from an inverse Wishart distribution.
That is

Ω−1
S ˜W

(

S̄−1
S , vS

)

where the scale matrix S̄1 = I (St = 1)
(

Ē′
tĒt
)

and S̄2 = I (St = 2)
(

Ē′
tĒt
)

where Et = Yt − µ−
∑p

j=1AjYt−j and the ‘bars’ denote the average across st = 1..M with the weights given by st.
I (.) is an indicator function that selects the observations for S = 1, 2. vS is set equal to the
number of observations in each regime15.

3. Sampling the coefficient states st :

Given ΩS , we re-write the model as

Y ∗
t = µs +

p
∑

j=1

Aj,sY
∗
t−i + V̆t (A.3)

15Note that we require each (coefficient and variance) regime to have at least N(N × P + 1) + 5 observations.
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where Y ∗
t = I (St = 1)

[

Ω
−1/2
1 Yt

]

+ I (St = 2)
[

Ω
−1/2
2 Yt

]

and E
(

V̆ ′
t V̆t

)

= Ĩ4 where Ĩ4 is a 4 ×

4 identity matrix. This is an MSVAR model with a switching intercept and autoregressive
parameters but a homoscedastic covariance matrix. We again use Multi-Move Gibbs sampling
to draw st, t = 1, 2, ...T from the joint conditional density f (st|Y

∗
t , µs, A1,s, . . . , Ap,s, P ) using

the methods detailed in Kim and Nelson (1999a).

4. Sampling µs, A1,s, . . . , Ap,s :

Conditional on a draw for st the model in equation A.3 is simply a sequence of Bayesian
VAR models (with an identity covariance matrix). Collecting the VAR coefficients for regime
s = i into the (N × (N × P + 1)) vector Υs and the RHS (i.e. lags and the intercept terms) of
equation 19 into the matrix Xt and letting Υ̂s denote the OLS estimates of the VAR coefficients
the conditional posterior distributions are given by (see Uhlig (2005) ):

Υs˜N
(

Ῡs, Ĩ4 ⊗ V̂s

)

where

Ῡs =
(

N0 +Xs′
t X

s
t

)−1
(

N0Υ0 +Xs′
t X

s
t Υ̂s

)

V̂s =
(

N0 +Xs′
t X

s
t

)−1

and Υ0 and N0 denote the prior mean and variance. Xs
t for s = 1, ..M denotes observations for

a particular regime. In specifying the prior mean, we loosely follow Sims and Zha (1998). We
assume that Υ0 implies an AR(1) structure (with the intercept equal to zero) for each endogenous
variable. As our variables are already in growth rates we center the prior at the OLS estimates of
the AR(1) coefficient for each variable (rather than 1, i.e. a random walk). As in Sims and Zha
(1998), the variance of the prior distribution is specified by a number of hyperparameters that
control the variation around the prior. Our choice for these hyperparameters implies a fairly
loose prior for the autoregressive coefficients in the VAR. The prior on the intercept terms is
tighter and this choice ensures that trend values of the endogenous variables are more precisely
estimated within each regime16. We do not consider ‘unit root’ or ‘cointegration’ priors.

5. Sampling P̃ and Q̃:

The prior for the elements of the transition probability matrix pij and q11, q12 is of the
following form

p0
ij = D (uij) (A.4)

q011 = D (u11) , q
0
12 = D (u12)

16Letting µ denote the hyperparameters, we set µ0 = 1, µ1 = 0.5, µ2 = 1, µ3 = 1 and µ4 = 0.01. The diagonal

elements of the prior covariance matrix N0 (relating to the autoregressive coefficients) are given as
“

µ0µ1

σjpµ3

”2

where σj denotes the variance of the error from an AR regression for the jth variable and p = 1..P denotes the
lags in the VAR. The intercept terms in the VAR are controlled by the term (µ0µ4)

2
.
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Figure A.1: 20th order autocorrelations of the Gibbs draws
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where D(.) denotes the Dirichlet distribution and uij = 20 if i = j and uij = 1 if i 6= j. This
choice of uij implies that the regimes are fairly persistent. The posterior distribution is:

pij = D (uij + ηij) (A.5)

q11 = D (u11 + η̄11) , q12 = D (u11 + η̄12)

where ηij denotes the number of times regime i is followed by regime j. η̄11 and η̄12 denote the
same quantities for the variance regimes.

Two issues arise in the Gibbs sampling algorithm outlined above. First, as mentioned in
the text, normalisation restrictions need to be placed on the draws of the VAR coefficients. We
implement this in a straight forward manner by imposing the condition that π̄i+1 < π̄i where
i = 1, 2, ..M . This normalisation is imposed via rejection sampling. The second issue concerns
draws where one of the regimes is not visited. As noted by Sims and Zha (2006), this implies
that in the next step of the sampler, the data are not informative for the redundant regime.
We deal with such draws in the following way: If a redundant (coefficient or variance) state
is encountered in step 1, we discard this draw and keep on re-drawing st until all regimes are
reached or the number of these intermediate draws exceeds 1000. In the latter case we use the
intial conditions to evaluate step 2 and step 3 but do not retain the draw17.

Figure A.1 plots 20th order autocorrelations of the retained draws. The low autocorrelations
provide some evidence of convergence to the ergodic distribution.

17For the main MSVAR models, this upper limit is reached rarely.
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B Constructing Labour Share Data

There are a number of pitfalls in constructing consistent labour share data, eg the influence of
the government sector and the number of self-employed earners in an economy, and thus one
has to be careful in constructing this approximation of the marginal costs. Of course, data
availability plays a role too. Given this we use slightly different measures of the labour share
for the economies under consideration.

United Kingdom

The UK labour share that we use in this paper is constructed in an identical manner to the one
used in Batini et al. (2000) using the same data sources, and we both took the measure back to
1963.I as well as extended it to 2005.II. Basically, the Batini et al. (2000) labour share measure
takes the ratio of total compensation of employees to nominal GDP at factor costs and corrects
it for both the presence of the number of selfemployed jobs as well as the government sector; for
more details about the construction and the data sources see Batini et al. (2000).

United States

We construct the US labour share directly using the neoclassical growth framework, suggesting
constant long-run shares of capital and labour inputs in production

Yt = ΛtN
(1−κ)
t Kκ

t ; 0 < κ < 1 (B.1)

which is the Cobb-Douglas production function (23). Following Cooley and Prescott (1995,
Section 4) we use the income categories in the US Bureau of Economic Analysis’ National
Income and Product Accounts (NIPA) to establish the share of unambiguous labour income of
income generated by the private sector. In constructing total private sector labour income one
needs to take a stand how much of the more ambiguous income categories, such as proprietors’
income as well as supplements to wages and salaries, should be allocated to private sector labour
income. Analogous to Cooley and Prescott (1995, Section 4) we allocate these ambiguous income
categories to private labour income according to the share of labour income in measured GDP.
Following their line of reasoning, we can define now the labour share (or unit labour costs) as
(for notational convenience we suppress the time indexes):

WN

PY
=

Unambiguous Labour Income + Private Share Supplements

GDP − Ambiguous Labour Income − Government Labour Income
(B.2)

where

• Unambiguous Labour Income equals ‘wages and salary accruals, other’, i.e. row B203RC1,
Table 1.12 in NIPA.

• Private Share Supplements equals ‘supplements to wages and salaries’ (row A038RC1,
Table 1.12 in NIPA) times the ratio of ‘wages and salary accruals, other’ (row B203RC1,
Table 1.12 in NIPA) to ‘wages and salary accruals’ (row A034RC1, Table 1.12 in NIPA).

• GDP is nominal GDP from row A191RC1, Table 1.1.5 in NIPA.
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• Ambiguous Labour Income equals the sum of

– ‘Proprietors’ income with IVA and CCAdj’ (row A041RC1, Table 1.12 in NIPA).

– The difference between nominal GDP (row A191RC1, Table 1.1.5 in NIPA) and na-
tional income (row A032RC1, Table 1.12 in NIPA).

• Government Labour Income equals the sum of

– ‘Wages and salary accruals, government’ (row A553RC1, Table 1.12 in NIPA).

– ‘Supplements to wages and salaries’ (row A038RC1, Table 1.12 in NIPA) times the
ratio of ‘wages and salary accruals, government’ (row A553RC1, Table 1.12 in NIPA)
to ‘wages and salary accruals’ (row A034RC1, Table 1.12 in NIPA).

Euro Area

The quality of the Euro area data equivalents that feed into the construction of labour share
series is not as good as for the other economies. In particular, from the AWM data base it is
not possible to fully adjust labour share for the claim of the government sector on resources of
the economy. What we can do is to approximate labour share (i) at factor costs (i.e. correct
for the total of taxes and subsidies that the government has levied or paid on the production
factors), and (ii) corrected for self-employed earners.

So, basically, we construct total nominal labour income minus the part of government
taxes/subsidies on production factors allocated to labour divided by nominal GDP at factor
costs, i.e.

WN

PY
=

Labour Income − 2
3 × (GDP at market prices − GDP at factor costs)

GDP at factor costs
(B.3)

where

• Labour Income equals the product of

– The ratio of ‘Compensation to employees’ (‘WIN’ in the AWM database) over ‘Em-
ployees (in persons)’ (‘LEN’ in the AWM database).

– ‘Total employment (in persons)’ (‘LNN’ in the AWM database).

which rescales total nominalwage income for the presence of self-employed earners.

• 2
3 × (GDP at market prices − GDP at factor costs) allocates that part of the total net
amount of government taxes/subsidies on production factors to labour according to the
assumed long-run production share of labour within a Cobb-Douglas production function.
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Figure C.2: Reduced form results
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C Three regime MS-VAR model for the UK

In this appendix, we summarise the results for an MS(3)-VAR(2) model for the UK that produces
a very similar marginal likelihood to the one estimated for a two regime model.

Figure C.2 summarised the reduced form results from this model. The top two panels show
that the first two regimes pick up the two peaks in inflation in the mid-1970s and the early
1980s. In the two regime model, both are picked up by regime 1 (see Figure 1). The estimate
of trend inflation is very similar to that shown in Figure 2.

Table C.1 presents estimates of the structural parameters in each regime. The median
estimate of θ in the first two regimes is identical and is similar to the estimates reported in
Table 3. The median value of θ increases in regime 3 but this estimate is fairly imprecise. The
probabilities in Table C.2 suggest little evidence of systematic change in this parameter.

Table C.2 suggests similar conclusions about ̺. An increase or decrease in this parameter
has been equally likely. Note also that there is little difference in this parameter across the
first two regimes. As before, ̺ falls over the regimes. regime 1 is fairly large and close to the
upper bound. As before, α increases and is highest in the regime associated with lowest trend
inflation. However, the estimates in regime 2 and regime 3 are fairly imprecise and this suggests
that evidence for a significant shift in this parameter is weak.

Overall, these results suggest that our overall conclusions on parameter stability are preserved
in this three regime model. In addition, it is unclear (from the reduced form and structural
estimates) that there are significant differences across the first two regimes.
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Table C.1: Structural estimates for
the United Kingdom with three
regimes

Median Mean MAD

Regime 1
θ 18.16 23.35 12.25
̺ 0.80 0.70 0.15
α 0.10 0.23 0.05

Regime 2
θ 18.16 23.99 12.25
̺ 0.70 0.60 0.25
α 0.25 0.36 0.20

Regime 3
θ 27.95 27.54 19.60
̺ 0.50 0.54 0.30
α 0.35 0.41 0.25

All Regimes
θ 20.61 25.64 12.25
̺ 0.90 0.79 0.05
α 0.25 0.27 0.10

Notes: See the notes in Table 3.

Table C.2: Probability of structural change
for the United Kingdom with three regimes

θ ̺ α

Regime 3 < Regime 2 0.40 0.51 0.41
Regime 2 < Regime 1 0.44 0.51 0.29
Regime 3 > Regime 2 0.6 0.49 0.59
Regime 2 > Regime 1 0.56 0.49 0.71

Notes: See the notes in Table 4.
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