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Abstract 

 

We derive the optimal dynamic contract in a continuous-time principal-agent setting, in 

which both investors and the agent learn about the firm’s profitability over time.  We 

show that the optimal contract can be implemented through the firm’s payout policy.  The 

firm accumulates cash until it reaches a target balance that depends on the agent’s 

perceived productivity.  Once this target balance is reached, the firm starts paying 

dividends equal to its expected future earnings, while any temporary shocks to earnings 

either add to or deplete the firm’s cash reserves.  The firm is liquidated if it depletes its 

cash reserves.  We also show that once the firm initiates dividends, this liquidation policy 

is first-best, despite the agency problem.     

                                                           
* Stanford University and UC Berkeley/NYU.  This research is based on work supported in part by the 
NBER and the National Science Foundation under grant No. 0452686. 



  2 

One of the important puzzles in corporate finance is the smoothness of corporate 

dividends relative to earnings and cash flows.  In an early empirical study, Lintner (1956) 

developed a model of dividend policy in which he proposed that firms adjust their 

dividends slowly to maintain a target long-run payout ratio.  One motivation for this 

partial adjustment, suggested by Miller and Modigliani (1961), is that managers base 

their dividend decisions on their perception of the permanent component of earnings, and 

avoid adjusting dividends based on temporary or cyclical fluctuations.  Such a policies 

lead to dividend payouts that have much lower volatility than earnings over short time 

horizons.  As an example, Figure 1 shows dividends and earnings for General Motors 

from 1985 until 2006.   

 

Figure 1: Quarterly dividends and earnings for General Motors. 

 

In an early empirical study, Fama and Babiak (1968) confirm the smoothness of dividend 

payouts and demonstrate the dependence of dividends on lagged earnings surprises.  

Numerous more recent studies (see, e.g. Allen and Michaely (2003) and Brav et. al. 

(2005)) continue to find that firm’s smooth their dividends (and their payouts more 

generally).1  Furthermore, dividends tend to be paid by mature firms, and dividend 

changes tend to result in significant stock price reactions in the same direction, 

                                                           
1 When discussing payout policy we will for simplicity often refer to dividends alone, but our discussion 
should be interpreted to include share repurchases as well.  Similarly, when discussing debt or leverage 
policies, we are referring to the firm’s net debt, which includes cash reserves. 
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suggesting that investors view dividends as important indicators of the firm’s future cash 

flows. 

In this paper we develop a dynamic contracting model of dividend smoothing.  We 

consider a natural principal-agent setting in which the agent can reduce effort in the firm 

and engage in outside activities that generate private benefits.  Both the principal (outside 

investors) and the agent are risk neutral, but the agent is wealth-constrained.    We depart 

from the standard principal-agent setting by assuming both investors and the agent learn 

over time about the firm’s expected future profitability based on its current cash flows.  A 

contract provides the agent with incentives by specifying the agent’s compensation and 

whether the firm will continue or be forced to shut down as a function of the firm’s 

history of reported earnings. 

After solving for the optimal contract, we show that it can be implemented through the 

firm’s payout policy and a capital structure in which the agent holds a share of the firm’s 

equity.  When the firm is young, it makes no payouts and accumulates cash until it 

reaches a target level of financial slack that is positively related to the agent’s perceived 

productivity.  Once this target balance is reached, the firm initiates dividend payments.  

From that point on, the firm pays dividends at a rate equal to its expected future earnings.  

The firm absorbs any temporary shocks to earnings by increasing or decreasing its cash 

reserves, and it may also borrow.  However, when the firm’s debt reaches the liquidation 

value of its assets, the debt holders liquidate the firm.   

This payout policy captures well the stylized facts associated with observed payout 

policies cited above.  Immature firms do not pay dividends, but instead retain their 

earnings to invest, repay debt, and build cash reserves.  For these firms the value of 

internal funds is high, as they risk running out of cash and being prematurely liquidated.  

But once the firm has sufficient financial slack, dividends are then paid.  The level of 

dividends is based on the firm’s estimate of the permanent component of its earnings, 

resulting in dividend payments that are much smoother than earnings themselves.  

Because dividend changes reflect permanent changes to profitability, they are persistent 

and have substantial implications for firm value.  
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Despite the broad empirical evidence that firms smooth their dividends, normative 

theoretical models of dividend smoothing have proved rather elusive.  Modigliani and 

Miller (1961) showed that dividend policy is irrelevant if capital markets are perfect and 

investment policy is held constant, so one could argue that observed dividend policy is 

one of many “neutral” variations that firms could adopt.  Such a view is difficult to 

reconcile with the stock price reaction to dividend changes discussed above; it is also 

contrary to the large body of evidence that market imperfections are economically 

significant and important drivers of corporate financial policy more generally. 

One key difficulty with providing a theoretical model in which firm’s optimally smooth 

their payouts relative to earnings is that, given a fixed investment policy, it necessarily 

implies that the firm’s optimal leverage or cash position (its net debt) must be 

correspondingly “non-smooth.”    This observation is hard to reconcile with the standard 

trade-off theory of capital structure and payout policy, which predicts that firms will 

maintain a target level of leverage/financial slack that balances the tax benefits of 

leverage (equivalently, the tax disadvantage of retaining cash) with potential costs of 

financial distress. In such a model, temporary cash flow shocks should be passed through 

to the firm’s payouts as it tries to maintain its leverage target. 

Myers’ (1984) description of the pecking order hypothesis does include the prediction 

that variations in net cash flow will be absorbed largely by adjustments to the firm’s debt.  

However, this conclusion is based on the assumption that firms’ dividends are sticky in 

the short run, and no theoretical justification is provided for this assumption.2   

We take a different approach in this paper.  First, we use an optimal mechanism design 

approach to identify the real variables of interest in our model: the optimal timing of the 

liquidation decision, and the payoffs of the agent and investors after any history.  In spirit 

of Modigliani and Miller (1961), in our model there may be many optimal dividend 

policies that can implement this optimal mechanism if there is no cost to raising equity 

capital in the event that the firm runs out of cash in the future.   

                                                           
2 Taken to its logical extreme, the adverse selection argument in favor of debt given by Myers and Majluf 
(1984) would suggest that the firm should never pay dividends in order to avoid future finance costs.  If a 
firm were to pay dividends (for some other unknown reason), it would presumably be balancing the 
marginal benefit of dividends with the marginal value of financial slack.  In this case one would expect 
dividends and financial slack to move together.  
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Yet, in practice there are both institutional and informational costs to raising equity.   

Investment banks charge a 7% fee on public offerings.  Moreover, new equity could be 

under-priced due to adverse selection.  The pecking-order theory of Myers (1984) and the 

adverse selection arguments of Myers and Majluf (1984) imply that firms should raise 

funds using securities that are least sensitive to the firm’s private information, i.e. debt.  

These arguments suggest that firms should abstain from paying dividends in order to 

avoid future finance costs, at least as long as the risk of running out of cash and triggering 

inefficient liquidation exists.  

With these costs in mind, we identify the unique implementation of the optimal 

mechanism the provides the fastest possible payout rate subject to the constraint that the 

firm will not need to raise external capital in the future.  Thus, in our model firms build 

up a target level of internal funds to ensure that they never need to liquidate inefficiently 

due to financial constraints.  This constraint alone cannot explain dividend smoothing, as 

once the target is reached we would expect all excess cash flows to be paid out as 

dividends.  The key driver of dividend smoothing in our model is the fact that there is 

learning about the firm’s profitability based on the current level of the firm’s cash flows.  

When cash flows are high, the firm’s perceived profitability increases.  This raises the 

cost of liquidating the firm (we are liquidating a more profitable enterprise), and therefore 

raises the optimal level of financial slack.  Thus, a portion of the firm’s high current cash 

flow will optimally be used to increase its cash reserves, resulting in a smoothed dividend 

policy. 

The firm pays out dividends exactly at the rate of expected earnings in our model in order 

to have just enough cash to avoid inefficient liquidation, given current profitability.  Then 

the firm’s cash balances fall after bad news about future profitability due to negative 

earnings surprises, and rise after good news, due to positive earnings surprises.  These 

changes in financial slack are optimal when there is an agency problem given the new 

information earnings provide regarding the firm’s profitability.  Thus, dividend 

smoothing in our implementation of the optimal contract can be explained by two reasons 

(1) financial slack is needed to avoid inefficient liquidation and (2) the optimal level of 

financial slack varies with the shocks to the firm’s earnings.   
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Our model implies that firms smooth dividends by absorbing their cash flow variations 

through variations in their leverage or available financial slack.  This conclusion is 

confirmed by empirical evidence.  Indeed, as documented by Fazzari, Hubbard, and 

Petersen (1988) and others, financially unconstrained dividend-paying firms do appear to 

employ investment policies that are less sensitive to shocks to the firm’s earnings or cash 

flows.  On the other hand, there is evidence that firms’ cash and leverage positions are 

strongly influenced by past profitability, even when firms are financially unconstrained 

(see, e.g., Fama and French (2002)).   

In our model, the firm gains financial strength over time to mitigate the inefficiencies 

connected with moral hazard.  This is a common prediction of a diverse range of dynamic 

contracting model, such as Albuquerque and Hopenhayn (2001), Atkeson and Cole 

(2005), DeMarzo and Sannikov (2006), Biais, Mariotti, Plantin and Rochet (2007) and 

Biais, Mariotti, Rochet and Villeneuve (2007).  The key ingredient of our setting that 

drives the smooth dividend policy is the combination of moral hazard and learning about 

the firm’s profitability.  That is, it is important in our model that the firm’s cash flows 

carry information both about the agent’s effort and the agent’s skill.   

In the next section of the paper, we describe the continuous-time principal-agent problem 

with learning about the firm’s profitability.  Then in Section 2, we present the solution to 

this problem when moral hazard is absent, which is based purely on option-value 

considerations.  This solution is important to understand the optimal long-term contract 

with moral hazard, which we derive in Section 3.  Finally, in Section 3, we show how this 

optimal contract can be implemented in terms of the firm’s payout policy.   

 

1. Model 

In this section we present a continuous-time formulation of the firm and the principal-

agent problem that arises between the manager running the firm and outside investors.  In 

our model, risk-neutral outside investors hire a risk-neutral agent to run a firm.  Both the 
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agent and investors discount the future at rate r > 0.  Investors have unlimited wealth, 

whereas the agent has no initial wealth and must consume non-negatively.3 

When the agent puts full effort at = 1, the firm generates cash flows at an expected rate 

equal to δt.  However, the agent may also reduce his effort, divert his own or the firm’s 

resources for personal benefit, and make corporate decisions out of private interest.  

When the agent’s effort/activity level to generate value for the firm is at ≤ 1, the firm’s 

the cumulative cash flow process Xt is defined by 

 t t t tdX a dt dZ= δ + σ   (1) 

where σ is the volatility of cash flows and Z is a standard Brownian motion.  At the same 

time, the agent’s private benefit is λ(1 – at), where the parameter λ < 1 reflects the fact 

that it is more efficient to use the agent’s and the firm’s resources to make profit than for 

the agent’s private benefit.  

The firm’s profitability evolves over time due to changing market conditions as well as 

the evolution of the manager’s talent. The realization of the firm’s current cash flow is 

informative about these changes in profitability.  We model this by assuming that δt starts 

at δ0 > 0 and evolves according to 

 ( )t t t t td dX a dt dZδ = ν − δ = νσ   (2) 

as long as δt > 0.  If δt ever reaches 0, it is absorbed there.4   

Because of the learning about the firm’s profitability as specified in (2), in our 

contractual environment the agent may have private information not only about his effort, 

                                                           
3 The assumption that the agent has no initial wealth is without loss of generality; equivalently, we can 
assume the agent has already invested any initial wealth in the firm.  The agent’s limited liability prevents a 
general solution to the moral hazard problem in which the firm is simply sold to the agent.  
4 According to equation (2), cash flows Xt and firm profitability δt are driven by the same Brownian motion.  
This equation arises as the steady state of a filtering problem in which δt is the current estimate of the firms 
true underlying profitability δt

*, and cash flows carry information about this profitability.  However, 
imposing the additional constraint that δt

* (and therefore δt) remains non-negative – which is needed for our 
interpretation of effort -- gives rise to technical issues, since we lose normality and inferences become very 
messy.  Instead of dealing with distracting technical complexities, we choose to work with a simpler 
“reduced form” (2), which is motivated by the filtering problem.      



  8 

but also about the firm’s profitability.  Indeed, if the principal expects the agent to choose 

effort at, the principal will update his belief ˆ
tδ  about firm profitability according to 

 0 0
ˆ ˆ ˆ( ),     .t t t td dX a dtδ = ν − δ δ = δ   (3) 

Thus, if the agent chooses a different effort strategy ˆ
tta a≠ , the principal’s belief ˆ

tδ  will 

be incorrect. 

The agent can quit the firm at any time.  In that event the agent devotes his full attention 

and resources, but not those of the firm, to outside activities (so that at = 0), earning 

private benefits at expected rate tλδ .  Thus, the value of the agent’s payoff in the event 

that he quits the firm is represented by 

 ( ) t
tR

r
λδ

δ = .  (4) 

The firm requires external capital of K ≥ 0 to be started.  The investors contribute this 

capital and in exchange receive the cash flows generated by the firm less any 

compensation paid to the agent.  The agent’s compensation is determined by a long-term 

contract.  This contract specifies, based on the history of the firm’s cash flows, non-

negative compensation for the agent while the firm operates, as well as a termination time 

when the firm is liquidated.  Formally, a contract is a pair (C, τ), where C is a non-

decreasing X-measurable process that represents the agent’s cumulative compensation 

(i.e., dCt ≥ 0  is the agent’s compensation at time t) and τ is an X-measurable stopping 

time.  In the event that the firm is liquidated, the agent engages in his outside option and 

so receives the payoff specified in (4).  The investors receive a liquidation value from the 

firm’s assets that may depend on the firm’s productivity,   

 0( )L L
r

τ
τ

κδ
δ = + ,  (5) 
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where λ + κ < 1.5   

A contract (C, τ) together with an X-measurable effort recommendation a is optimal 

given an expected payoff of W0 for the agent if it maximizes the principal’s profit  

 
0

( ) ( )rt r
t t tE e a dt dC e L

τ
− − τ

τ

⎡ ⎤
δ − + δ⎢ ⎥

⎣ ⎦
∫   (6) 

subject to 

 0 0
( (1 ) ) ( )rt r

t t tW E e a dt dC e R
τ − − τ

τ
⎡ ⎤= λ − δ + + δ⎢ ⎥⎣ ⎦∫  given strategy a (7) 

and 

 0 0
( (1 ) ) ( )rt r

t t tW E e a dt dC e R
τ − − τ

τ
⎡ ⎤≥ λ − δ + + δ⎢ ⎥⎣ ⎦∫  for any other strategy a    (8) 

By varying W0 > R(δ0), we can use this solution to consider different divisions of 

bargaining power between the agent and the investors.  For example, if the agent enjoys 

all the bargaining power due to competition between investors, then the agent will receive 

the maximal value of W0 subject to the constraint that the investors’ payoff be at least 

equal to their initial investment, K.  We say that the effort recommendation a is incentive-

compatible with respect to the contract (C, τ) if it satisfies (7) and (8) for some W0.  

REMARKS. For simplicity, we specify the contract assuming that the agent’s 

compensation and the termination time τ are determined by the cash flow process, ruling 

out public randomization.  This assumption is without loss of generality, as we will later 

verify that public randomization would not improve the contract.   

 

                                                           
5 In principle, the investors’ belief ˆ

tδ  about the firm’s productivity might also affect the liquidation value 

of assets.  However, because in equilibrium ˆ
t tδ = δ , without loss of generality we specify L as a function of 

δt. 
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2. The First-Best Solution. 

Before solving for the optimal contract, we derive the first-best solution as a benchmark.  

In the first-best, the principal can control the agent’s effort, and so we can ignore the 

incentive constraints (8). Then it is optimal to let the agent take effort at = 1 until 

liquidation, since it is cheaper to provide the agent with a flow of utility by paying him 

than by letting him divert attention to private activities.  Then the total cost of providing 

the agent with a payoff of W0 is  

00
( )rt r

tE e dC W E e R
τ − − τ

τ
⎡ ⎤ ⎡ ⎤= − δ⎢ ⎥ ⎣ ⎦⎣ ⎦∫ , 

and the principal’s payoff is  

 0
0

( ( ) ( ))rt r
tE e dt e L R W

τ
− − τ

τ τ

⎡ ⎤
δ + δ + δ −⎢ ⎥

⎣ ⎦
∫ .  

Thus, without moral hazard the principal chooses a stopping time τ that solves 

 0
0

( ) max ( ( ) ( ))rt r
tb E e dt e L R

τ
− − τ

τ τ τ

⎡ ⎤
δ = δ + δ + δ⎢ ⎥

⎣ ⎦
∫ . (9) 

This is a standard real-option problem that can be solved by the methods of Dixit and 

Pindyck (1994).  Because liquidation is irreversible, it is optimal to trigger liquidation 

when the expected profitability δt reaches a critical level of δ that is below the level δ* 

such that 

 R(δ∗) + L(δ∗) = δ∗/r 

See Figure 2. 
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Figure 2:  First-best Liquidation Threshold and Value Function 

 

We have the following explicit solution for the first-best liquidation threshold and value 

of the firm: 

 Proposition 1.  Under the first-best contract, the firm is liquidated if δ ≤ δ where 

 *max 0,
2r

νσ⎛ ⎞δ = δ −⎜ ⎟
⎝ ⎠

. 

The principal’s payoff is 0( )b δ  − W0, where 

 ( )2( ) ( ( exp rb L R
r r

⎛ ⎞δ δ⎛ ⎞δ = + δ) + δ) − − δ − δ⎜ ⎟⎜ ⎟ ⎜ ⎟νσ⎝ ⎠ ⎝ ⎠
 

if δ ≥ δ, and ( )b δ  = L(δ) + R(δ) otherwise. 

Proof:  Note that ( )b δ  is the solution on [δ, ∞) to the ordinary differential equation  

 2 21( ) ''( )
2

rb bδ = δ + ν σ δ   (10) 

with boundary conditions  

(a) ( ) ( ) ( ),b L Rδ = δ + δ  

  (b) '( )b
r

λ + κ
δ =  with 0δ >  (smooth-pasting) or '( )b

r
λ + κ

δ >  with 0δ = , 

δ/r

δ*
δ

b

b(δ)
L( δ ) + R( δ )

δ

δ/r

δ*δ**
δ

b

b(δ)b(δ)
L( δ ) + R( δ )L( δ ) + R( δ )

δδδ
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(c)   and ( ) / 0b rδ − δ →  as δ → ∞.    

Let us show that ( )b δ  gives the maximal profit attainable by the principal.  For an 

arbitrary contract (C, τ), consider the process  

 
0

( ) .
t

rt rs
t t sG e b e ds− −= δ + δ∫  

Let us show that Gt is a submartingale.  Using Ito’s lemma, the drift of Gt is  

 2 21( ) ''( )
2

rt rt rt
t t tre b e b e− − −− δ + ν σ δ + δ , 

which is equal to 0 when δt > δ and ( ( ) ( )) 0rt rt
t t tre L R e− −− δ + δ + δ <  when δt < δ.  

Therefore, the principal’s expected profit at time 0 is 

 [ ]

0
0 0

0 0 0

0 0

( ) ( ) ( ( ) ( ))

( ) .

r rt r rt
t t tE e L e dt dC E e L R e dt W

E G W G W

b W

τ τ
− τ − − τ −

τ τ τ

τ

⎡ ⎤ ⎡ ⎤
δ + δ − = δ + δ + δ −⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
≤ − ≤ −

= δ −

∫ ∫
 

The inequalities above become equalities if and only if δτ ≤ δ and δt > δ before time τ.   

 

Our characterization of the first-best contract can be interpreted in terms of the firm’s 

capacity to sustain operating losses.  At any moment of time, the firm must be able to 

withstand a productivity shock of up to dδ = −(δ − δ).  From (2), this corresponds to a 

cash flow shock equal to  

 t
t t t t

ddX a dt dZ δ δ − δ⎛ ⎞− δ = σ = = −⎜ ⎟ν ν⎝ ⎠
. (11) 

We can view Equation (11) as specify the minimal level of “financial slack” the firm will 

require in order to avoid inefficient liquidation.  This result will play an important role in 

our implementation of the optimal contract, which we consider next.  
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3. An Implementation 

Having characterized the first-best outcome, we now consider the problem of finding the 

optimal dynamic contract in our setting with both moral hazard and asymmetric 

information.  The task of finding the optimal contract in a setting like ours is complex, 

because there is a huge space of fully contingent history-dependent contracts to consider.  

A contract (C, τ) must specify how the agent’s consumption and the liquidation time 

depend on the entire history of cash flows.  In classic settings with uncertainty only about 

the agent’s effort but not the firm’s productivity, there are standard recursive methods to 

deal with such complexity.  These methods rely on dynamic programming using the 

agent’s future expected payoff (a.k.a. continuation value) as a state variable.6   

But with additional uncertainty and the potential for asymmetric information about the 

firm’s productivity, these standard methods do not apply directly to our model.  Thus we 

will take a different approach.  We begin instead by conjecturing a simple and intuitive 

implementation for the contract.  In our setting with moral hazard, if the agent had deep 

pockets the first-best liquidation policy could be attained by letting the agent own the 

firm.  If the agent’s wealth is limited, however, negative cash flow shocks can lead to 

inefficient liquidation.  In order to minimize this inefficiency, it is natural to expect that 

in an optimal contract, the firm will build up cash reserves until it has an optimal level of 

financial slack.  In this section we consider an implementation based on this intuition, and 

then show this implementation is incentive compatible.  Though our implementation is 

rather simple, we will then verify the optimality of this contract in the space of all 

possible contracts in the following section. 

                                                           
6 For example, see Spear and Srivastava (1987), Abreu, Pearce and Stacchetti (1990) (in discrete time) and 
DeMarzo and Sannikov (2006) and Sannikov (2007a) (in continuous time) for the development of these 
methods, and Piskorski and Tchistyi (2006) and Philippon and Sannikov (2007) for their applications. 
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3.1. Cash Reserves and Payout Policy 

Consider an all-equity financed firm that uses cash reserves to provide financial slack.7  

Denote the level of its cash reserves by Mt ≥ 0.  Because the firm earns interest at rate r 

on these balances, its earnings at date t are given by 

 dEt ≡ r Mt dt + dXt = (r Mt + δt) dt + σ dZt , (12) 

where we have assumed the agent’s effort at = 1. 

If the firm uses these earnings to pay dividends dDt, then its cash reserves will grow by 

 dMt ≡ dEt − dDt = (r Mt + δt) dt − dDt + σ dZt . (13) 

Consider a contract in which the firm is forced to liquidate if it depletes its reserves and 

Mt = 0.8  In order to avoid inefficient liquidation, we know from (11) that the firm must 

have reserves Mt of at least 

 ( )1( )t tM δ ≡ δ − δ ν .  (14) 

Therefore, it is natural to suppose that if Mt < M1(δt), the firm will retain 100% of its 

earnings in order to increase its reserves and reduce the risk of inefficient liquidation.  In 

that case, dividends are equal to zero: 

 dDt = 0 if Mt < M1(δt).  (15) 

Suppose the firm achieves the efficient level of reserves, so that Mt = M1(δt).  In order to 

maintain its reserves at the efficient level, using (14) and (2) we must have 

 1( ) t
t t t

ddM dM dZδ
= δ = = σ

ν
.  (16) 

                                                           
7 We note that our proposed implementation is not unique, nor is it clear that it is optimal.  The firm could 
also maintain financial slack through alternative means, such as a credit line or loan commitment.  The 
analysis would be similar; for convenience we focus on the simplest implementation in terms of cash 
reserves.  See Biais et al (2006) for a similar implementation based on cash reserves in a moral hazard 
setting without learning. 
8 Over any finite time period, the firm will experience operating losses with probability one; therefore, 
absent cash or credit, the firm must shut down.   However, it is not yet clear whether it is optimal to deny 
the firm funds and force liquidation if Mt = 0.  We will address optimality in the following section. 
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That is, to maintain the efficient level of reserves, the firm should adjust its cash balances 

by the “surprise” component of its earnings.  Then from (13), dividends are equal to the 

firm’s expected earnings: 

 [ ] ( )t t t tdD E dE rM dt= = + δ   if Mt = M1(δt). (17) 

The following result demonstrates that with this payout policy, the liquidation policy is 

first-best: 

Proposition 2.  If Mt = M1(δt) and if the firm follows the payout policy (17) after time t, 

then Mτ = 0 if and only if δτ = δ.   

Proof:  Given the payout policy (17), the firm’s cash balance evolves according to (16).  

Therefore, Mτ = 0 implies  

 ( ) 1( )t s t s t t t tt t
d dM M M

τ τ

τδ = δ + δ = δ + ν = δ + ν − = δ − ν δ = δ∫ ∫ . 

 

 

Finally, because there is no benefit from maintaining reserves in excess of the amount 

needed to avoid inefficient liquidation, we assume the firm pays out any excess cash 

immediately.  Thus, we can summarize the firm’s payout policy as follows: 

 

1

1

1 1

0 if ( )

( ) if ( )

( ) if ( )

t t

t t t t t

t t t t

M M

dD rM dt M M

M M M M

⎧ < δ
⎪

= + δ = δ⎨
⎪ − δ > δ⎩

. (18) 

Under the payout policy described by (18), the firm accumulates cash as quickly as 

possible until it either runs out of cash and is inefficiently liquidated, or its reserves reach 

the efficient level.  Once the efficient level of reserves is attained, the firm begins paying 

dividends at a rate equal to its expected earnings.  It will continue to operate in this 

fashion unless δt falls to δ, in which case Mt = 0 and the firm is liquidated as in the first-

best.   
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Figure 3 presents contract dynamics on an example.  Until time 1.5 the firm has cash 

balances below the efficient level, and it stands the risk of being liquidated inefficiently.  

However, in this example inefficient liquidation does not happen.  At time 1.5 the firm’s 

cash level reaches the efficient target, and the firm initiates dividends.  Dividends 

continue until the firm’s profitability falls sufficiently and it is liquidated at date 5.  The 

right panel of Figure 3 illustrates that the total quarterly dividends are significantly 

smoother than earnings. Note also the qualitative similarity between the results of our 

model and the pattern of dividends illustrated for GM in Figure 1. 

 

 

Figure 3:  Contract dynamics when r = 5%, σ = 15, ν = 33%.  The liquidation threshold is δ = 0. 

 

3.2. Compensation and Incentive Compatibility 

The requirement of cash reserves combined with the payout policy described above 

determines the liquidation time, τ, of the contract.  To complete this implementation, we 

need specify the agent’s compensation, C, and then assess whether the contract provides 

appropriate incentives. 

Note that if the agent had unlimited wealth, we could provide the agent with appropriate 

incentives for effort by paying him a fraction λ of the firm’s cash flows.  This solution is 

not possible, however, since the firm’s cash flows may be negative and the agent has 

limited liability.  Given the implementation above, a natural alternative to consider is to 
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pay the agent the fraction λ of the firm’s dividends (rather than its cash flows), which are 

always non-negative.   

This compensation can be interpreted as providing the agent a fraction λ of the firm’s 

equity, with the proviso that the agent not receive any proceeds from a liquidation should 

it occur.  This outcome could be implemented, for example, by giving outside investors 

preferred stock with complete priority in the event of liquidation.  (Alternatively, the 

agent may receive a zero interest loan to purchase the shares, which becomes due in the 

event of liquidation.)  We refer to the agent’s compensation as equity that is rescindable 

in the event of liquidation. 

Now we are ready to consider the agent’s incentives.  To verify incentive compatibility, 

we must determine the agent’s payoff given different effort choices and payout policies.  

Consider the case in which the firm is already paying dividends; that is, Mt = M1(δt).  

Suppose the agent follows the proposed implementation. Then from (17), the agent’s 

expected payoff Wt is given by 

 

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ( )) ( ( ))

( )

r s t r t r s t r t
s s st t

r s t r t
s st

t t

E e dD e R E e rM ds e R

E e r M R ds e M R

M R

τ τ− − − τ− − − − τ−

τ − − − τ−
τ τ

⎡ ⎤ ⎡ ⎤λ + δ = λ + δ + δ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤= λ + δ + λ + δ⎢ ⎥⎣ ⎦

= λ + δ

∫ ∫

∫

 

where the last equation follows from the fact that Ms and δs are martingales for s > t.9 

Now consider a deviation in which the agent “cashes out” by immediately paying out all 

cash as a dividend, dDt = Mt, and then defaulting.  Under this strategy, the agent again 

receives a payoff of 

 Wt = λ Mt + R(δt).  (19) 

Thus there is no incentive for the agent to deviate in this way.  We can similarly show 

that this implementation is robust to other types of deviations for the agent.  For example, 

                                                           
9 Note that if Xs is a martingale, then ( )( ) ( ) ( ) ( )r s t r t r s t r t

t t st t
X X r e ds e E r e X ds e X

τ τ− − − τ− − − − τ−
τ

⎡ ⎤= + = +⎢ ⎥⎣ ⎦∫ ∫ . 
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because (19) implies that the agent’s payoff increases by λ for each dollar of additional 

cash held by the firm, there is no incentive for the agent to shirk and engage in outside 

activities.  The following result establishes the incentive compatibility, with regard to 

both the agent’s effort choice and payout policy, of our proposed implementation: 

Proposition 3.  Suppose the agent holds a fraction λ of the firm’s equity, rescindable in 

the event of liquidation, and that liquidation occurs if the firm’s cash balance falls to 

zero.  Then for any effort strategy and payout policy, the agent’s expected payoff is given 

by (19).  Thus, it is optimal for the agent to choose effort at = 1 and to adopt the payout 

policy in (18). 

Proof:  Consider an arbitrary payout policy D and effort strategy a.  Define 

 
0

( (1 ) )
t rs rt

t s s s tV e dD a ds e W− −= λ + λ − δ +∫  

Then using the fact that δ is a martingale and that 

[ ] [ ]t t t t t t t tE dM rM dt E dX dD rM dt a dt dD= + − = + δ − , 

the drift of Vt is 

 

[ ] [ ]( )
[ ]( )

(1 )

(1 ) ( )

0

rt
t t t t t t

rt
t t t t t t

E dV e dD a ds rW E dW

e dD a ds r M r E dM

−

−

= λ + λ − δ − + =

= λ + λ − δ − λ + λ δ + λ

=

  

and so Vt is a martingale.  Thus, because Mτ = 0 so that Wτ = R(δτ), the agent’s expected 

payoff from this arbitrary strategy is 

[ ]
0

0 0

( (1 ) ) ( ) ( )rt r r r
t t tE e dD a dt e R E V e W e R

E V V W

τ − − τ − τ − τ
τ τ τ τ

τ

⎡ ⎤ ⎡ ⎤λ + λ − δ + δ = − + δ⎢ ⎥ ⎣ ⎦⎣ ⎦
= = =

∫  

and therefore the implementation is incentive compatible.     
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4. Justification of the Optimal Contract. 

Because standard methods do not apply directly to our model, in this section we develop 

a new approach to justify the optimality of our conjectured contract.  While the specific 

solution is unique to our problem, we propose a three-step method to solve similar 

problems: 

(1) Isolate the necessary incentive constraints, which are most important in limiting 

the attainable expected profit.   

(2) Show that the conjectured contract solves the principal’s optimization problem 

subject to just the necessary incentive constraints.   

(3) Verify that the conjectured contract is fully incentive-compatible. 

We conjectured a contract in the previous section, and verified its full incentive-

compatibility in Proposition 3.  We need to execute steps 1 and 2 of the verification 

argument. 

Before we proceed, we note that the agent must take action at = 1 at all times in the 

optimal contract.  The reason is that because λ < 1, it is cheaper to pay the agent directly 

rather than let him take actions for private benefit.   

Lemma 1 (High Effort).  In the optimal contract at = 1 until time τ.   

Proof.  Consider any contract in which sometimes at < 1, and let us show that there exists 

a better contract.  Let us change it, by giving the agent an option to ask the principal for 

extra payments dCt′.  If the agent exercises this option at least once, then the agent’s 

wages and termination time τ are determined as if the true path of output were  

0

'ˆ
t

s
t t

dCX X
λ

= − ∫ . 

Then the agent is indifferent between lowering at below 1 and simply asking the principal 

for extra money.  If he asks for money now whenever he was lowering effort previously, 

then the agent’s strategy is incentive-compatible, and the principal’s profit is strictly 

higher.  Therefore, the original contract cannot be optimal.    
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From now on, we restrict attentions to contract with recommended effort at = 1. 

4.1. Necessary incentive constraints.   

The necessary incentive-compatibility constraints are formulated using appropriately 

chosen state variables.10  For our problem, we must include as state variables at least the 

principal’s current belief about the agent’s skill ˆ ,tδ  which evolves according to  

 0 0
ˆ ˆ ˆ( ),     ,t t td dX dtδ ν δ δ δ= − =  

and the agent’s continuation value when the agent follows the recommended strategy (as) 

after time t, and the principal has a correct belief about the agent’s skill  

           ( ) ( ) ˆ( ) |r s t r t
t t s t tt

W E e dC e R
τ τ

τδ δ δ− − − −⎡ ⎤= + =⎢ ⎥⎣ ⎦∫  given strategy {at = 1}. 

The variables t̂δ  and Wt are well-defined for any contract (C, τ), after any history of cash 

flows {Xs, s ∈ [0, t]}.  However, they do not fully summarize the agent’s incentives, 

which depend on the agent’s deviation payoffs, the payoff that the agent would obtain if 

t̂ tδ δ≠  due to the agent’s past deviations.  Therefore, we can formulate only necessary 

conditions for incentive compatibility using the variables t̂δ  and Wt.   

Lemma 2A, which is standard in continuous-time contracting, provides a stochastic 

representation for the dependence of Wt on the cash flows {Xt} in a given contract (C,τ).  

The connection between Wt and Xt matters for the agent’s incentives.   

Lemma 2A (Representation).  There exists a process {βt, t ≥ 0} in L* such that 

 ˆ( ).t t t t t tdW rW dt dC dX dtβ δ= − + −   (20) 

Proof.  See Appendix. 

 

                                                           
10 For example, in continuous time Sannikov (2007b) solves an agency problem with adverse selection 
using the continuation values of the two types of agents as state variables, Williams (2007) solves an 
example with hidden savings using the agent’s continuation value and his marginal utility as state variables.  
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The process βt determines the agent’s exposure to the firm’s cash flows shocks and 

therefore the strength of the agent’s incentives under the contract.  It is therefore natural 

to expect that βt must be sufficiently large for the contract to be incentive compatible.  

For example, consider a deviation ˆ 0ta = .  The agent can gain in two ways from this 

deviation.  First, the agent earns the payoff λδt dt outside the firm.  Second, from (3), the 

lower output of the firm reduces principal’s estimate of the firm’s productivity.  If this 

deviation is the agent’s first, then 

 ˆ ( )t t t t td dX dt d dtδ = ν − δ = δ − νδ . 

Given these lowered expectations, the agent can continue to shirk and reduce effort by ν 

from that point onward and still generate cash flows consistent with the principal’s 

expectations, for an additional expected perpetual gain of λ ν δt dt.  Because the deviation 

reduces the agent’s contractual payoff by βt δt dt, this deviation is profitable if 

 ( )1t t t t tr rβ δ < λδ + λν δ = λδ + ν   

Lemma 2B below formalizes this intuition and establishes a necessary condition on βt for 

a contract (C, τ) to be incentive compatible.   

Lemma 2B (Incentive Compatibility).  Consider a contract (C,τ), for which the agent’s 

continuation value evolves according to (20). A necessary condition for {at = 1} to be 

incentive-compatible with respect to (C,τ) is that βt ≥ λ(1 + ν/r) while ˆ 0.tδ >  

Proof.  See Appendix A.  

4.2. Verification of Optimality 

In this section we verify that our conjectured implementation is indeed an optimal 

contract.  Recall from Section 3 that the agent’s payoff in this contract is defined by  

Wt = λ Mt + R(δt),  

where  

dMt = (r Mt + δt) dt + σ dZt and dDt = 0 while Mt < ( )1( )t tM δ = δ − δ ν  and  
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dMt = σ dZt, 1( )t tM M= δ  and dDt = ( )t trM dt+ δ  thereafter. 

It follows that  

dWt = rWt dt + λ(1+ν/r)σ dZt  and dCt = 0 until Wt reaches W1(δt), and 

 Wt = W1(δt) and dCt = rWt dt  thereafter, (21) 

where  

 1 1 1( ) ( ) ( )( ).rW R νδ δ λ δ δ= + + −  

This evolution happens until Wt reaches R(δt), triggering liquidation. 

Let us show that this contract attains the highest expected profit among all contracts that 

deliver value W0 to an agent of skill level δ0 and satisfy the necessary incentive-

compatibility condition of Lemma 2B.  The set of such contracts includes all fully 

incentive-compatible contracts.  Since the conjectured contract is incentive-compatible, 

as shown in Proposition 3, it follows that it is also optimal.   

Let us present a roadmap of our verification argument.  First, we define a function 

b(W0,δ0), which gives the expected profit that a contract of Section 3 attains for any pair 

(W0, δ0) with W0 ≥ R(δ) and δ0 ≥ δ.   Proposition 4 verifies that this definition is indeed 

the expected payoff of outside equity holders in our implementation.  After that, 

Proposition 5 shows that the principal’s profit in any alternative contract that satisfies the 

necessary incentive-compatibility condition of Lemma 2B is at most b(W0, δ0) for any 

pair (W0, δ0) with W0 ≥ R(δ) and δ0 ≥ δ.  It follows that the conjectured contract of 

Section 3 is optimal.  

For W ≥ R(δ) and δ ≥ δ, define a function b(W,δ) as follows.   

(i) For W >W1(δ), let b(W,δ) = ( ) .b Wδ −    

(ii) For W = R(δ), let b(W,δ) = L(δ).   

Otherwise, for δ > δ and W ∈ (R(δ), W1(δ)), let b(W,δ) solve the equation 

 2 2 2 2 2 21 1
2 2

( , ) ( , )

(1 ) ( , ) ( , ) (1 ) ( , )
W

WW Wr r

rb W rWb W

b W b W b Wν ν
δδ δ

δ δ δ

λ σ δ ν σ δ λ νσ δ

= + +

+ + + +
 (22) 
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with boundary conditions given by (i) and (ii).   

For an arbitrary contract (C,τ) with an incentive-compatible effort recommendation a, in 

which the agent’s continuation value evolves according to (21), define the process  

 
0

( ) ( , ).
t

rs rt
t s s t tG e ds dC e b W− −= δ − + δ∫  

Note that on the equilibrium path we always have ˆ
t tδ δ= .  

Lemma 3 helps us prove both Propositions 4 and 5.  

Lemma 3. When δt ≥ δ and Ct is continuous at t, then  

( )2 21
2

( ( , ) ( , )) ( ( , ) 1)

( (1 )) ( , ) ( (1 ))( (1 ) ( , ) ( , ))

rt rt
t t t t W t t t W t t t

rt
t WW t t t WW t t W t tr r r

dG e b W b W dZ e b W dC

e b W b W b W dt
δ

ν ν ν
δ

ν δ β δ σ δ

σ β λ δ β λ λ δ ν δ

− −

−

= + − + +

− + + − + + +
 

Proof.  See Appendix A.   

 

Proposition 4.  The conjectured optimal contract of subsection 3.1 attains profit 

b(W0,δ0).   

Proof.  Under that contract, the process Gt is a martingale.  Indeed, for all t > 0, the 

continuous process Ct increases only when Wt = W1(δt) (where bW(W1(δt),δt) = -1) and 

(1 )t r
νβ λ= + , so Gt is a martingale by Lemma 3.  At time 0, the agent consumes 

positively only in order for W0 to drop to W1(δ0), and bW(W,δ0) = -1 for W ≥ W1(δ0), so Gt 

is a martingale there as well.  Therefore, the principal attains the profit of  

[ ] 0 0 0
0

( , ) ( ) ( , ).r rt
t tE e b W e dt dC E G G b W

τ
τ

τ τ τδ δ δ− −⎡ ⎤
+ − = = =⎢ ⎥

⎣ ⎦
∫  

QED.  

 

Proposition 5.  In any alternative incentive-compatible contract (C,τ) the principal’s 

profit is bounded from above by b(W0,δ0).   
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Proof.   Let us argue that Gt is a supermartingale for any alternative incentive-compatible 

contract (C, τ) while δt ≥ δ.    

First, whenever Ct has an upward jump of ∆Ct, Gt has a jump of e-rt (b(Wt+∆Ct, δt) - b(Wt, 

δt) - ∆Ct) ≤ 0, since bW(W,δ) ≥ -1 for all pairs (W,δ) (see Appendix B, which shows that b 

is concave in W). 

Second, whenever Ct is continuous, then βt ≥ λ(1+ν/r) by Lemma 2B.  By Lemma 3, the 

drift of Gt is  

( )2 21
2

( ( , ) 1)

( (1 )) ( , ) ( (1 ))( (1 ) ( , ) ( , )) 0

rt
W t t t

rt
t WW t t t WW t t W t tr r r

e b W dC

e b W b W b W dtν ν ν
δ

δ

σ β λ δ β λ λ δ ν δ

−

−

− + +

− + + − + + + <

 

since bW(W,δ) ≥ -1 and, as shown in Appendix B, 

 ( , ) 0WWb W δ ≤  and  (1 ) ( , ) ( , ) 0WW Wb W b W
r δ
νλ δ ν δ+ + ≤  (23) 

for all pairs (W,δ).    

Now, let τ  be the earlier of the liquidation time or the time when δt reaches the level δ.  

Then Proposition 1 implies that the principal’s profit at time τ  is bounded from above by 

( , ).b Wτ τδ   It follows that the principal’s total expected profit is bounded from above by  

0 0 0
0

( , ) ( ) ( , ).r rt
t tE e b W e dt dC E G G b W

τ
τ

τ τ τδ δ δ− −⎡ ⎤
⎡ ⎤+ − = ≤ =⎢ ⎥ ⎣ ⎦

⎣ ⎦
∫  

QED 

We conclude that Section 3 presents the optimal incentive-compatible contract for any 

pair (W0, δ0) such that W0 ≥ R(δ) and δ0 ≥ δ.  If W0 ≥ W1(δ0), then this contract attains the 

first-best profit, and liquidation always occurs at the efficient level of profitability of δτ = 

δ.  If W0 < W1(δ0), then liquidation happens inefficiently with positive probability. 

5. Appendix A. 

Proof of Lemma 2A.  Note that  
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0

t
rs rt

t s tV e dC e W− −= +∫  

is a martingale when the agent follows the recommended strategy (as).  By the Martingale 

Representation Theorem there exists a process {βt, t ≥ 0} in L* such that  

0
0

ˆ( ),
t

rs
t s s sV V e dX dsβ δ−= + −∫  

since ˆ
s s sdX ds dZδ σ− =  under the strategy (as = 1).  Differentiating with respect to t, we 

find that  

 ˆ( )rt rt rt rt
t t t t t t tdV e dC e dW re W dt e dX dtβ δ− − − −= + − = − ⇒  

ˆ( ).t t t t t tdW rW dt dC dX dtβ δ= − + −  

This expression shows how Wt determined by Xt (since ˆ( )tδ  itself is determined by Xt), 

and therefore it is valid even if the agent followed an alterative strategy in the past.  In 

this case Wt is interpreted as the continuation value that the agent would have gotten after 

a history of cash flows {Xs, s≤t} if his estimate of the firm’s profitability coincided with 

the principal’s, and he planned to follow strategy (a=1) after time t.  QED. 

Proof of Lemma 2B.  Suppose that βt < λ(1 + ν/r) while ˆ 0tδ >  on a set of positive 

measure.  Let us show that the agent has a strategy ˆ( )a  that attains an expected payoff 

greater than W0.  Let ˆ 1t ta a= =  when βt ≥ λ(1 + ν/r) and ˆ 0ta =  when βt < λ(1 + ν/r) 

before the time τ̂  when the agent is fired or t̂δ  reaches 0, whichever happens sooner.  

After t̂δ  reaches 0 but before the agent is fired, let him put effort 0. Define the process  

 
0

ˆ ˆ( ) ( (1 ) ).
t

rt rs
t t t t s s sV e W e dC a ds

r
λδ δ λ δ− −⎛ ⎞= + − + + −⎜ ⎟

⎝ ⎠ ∫  

If the agent follows the strategy described above, then before time τ̂ , 

ˆ ˆ ˆ ˆˆ ˆ( ( )) ( ) ,t t t t t t t t t t t td d dX a dt dX dt aδ δ ν δ δ ν δ δ δ δ− = − − − = − ⇒ ≥  
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 ˆˆ( ),t t t t t t t tdW rW dt dC a dt dZ dtβ δ σ δ= − + + −  

and  

ˆ( )

ˆ ˆˆ ˆ( ) ( )

ˆˆ ˆ(1 ) ( )( ) .

t
t t trt

t t t t t t t t t t

t t t t t t t t

dV r W dt
e r

rW dt dC a dt dZ dt a

dC a dt a dt dZ
r

λδ δ

β δ σ δ λν δ δ
λλ δ β λ ν δ δ σ

−
⎛ ⎞= − + − +⎜ ⎟
⎝ ⎠

− + + − + − +

+ − = − − − +

 

The drift of Vt is nonnegative, and it is positive when βt < λ(1 + ν/r) (so that ˆ 0ta = ).   

At time τ̂  the agent gets the payoff of ˆ ˆ ˆ
ˆ( ) :W

rτ τ τ
λδ δ+ −  if he gets fired first this number 

is 
ˆ( )

ˆ( ) ( ) ,
tR

R W
rτ τ τ τ

δ

λδ δ δ= + −  and if t̂δ  reaches 0 first, then by putting effort 0 thereafter, 

he gets ˆ ˆ .W
rτ τ
λδ+   Therefore, the agent’s total payoff from the strategy ˆ( )a  is 

ˆ
ˆ

ˆ ˆ ˆ ˆ 0 0
0

ˆ ˆ( ) ( (1 ) ) [ ] .r rs
s s sE e W e dC a ds E V V W

r

τ
τ

τ τ τ τ
λδ δ λ δ− −⎡ ⎤⎛ ⎞+ − + + − = > =⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
∫  

We conclude that βt ≥ λ(1 + ν/r) when ˆ 0tδ >  is a necessary condition for the incentive 

compatibility of the agent’s strategy.   

Proof of Lemma 3.  Note that for δ ≥ δ,  the function b satisfies partial differential 

equation (22) even if W > W1(δ).  Indeed, since ( , ) ( )b W b Wδ δ= −  and bW = -1 in that 

region, the equation reduces to  

2 21
2( ( ) ) ''( ).r b W rW bδ δ ν σ δ− = − +  

This equation holds by the definition of .b    

When Ct is continuous at t, then using Ito’s lemma,  
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( )2 2 21 1
2 2

2 21
2

( , ) ( ) ( , ) ( , ) ( , ) ( , )

( ( , ) ( , )) ( , ) ( , )

( (1 )) ( , ) ( (1 ))( (1 ) ( , )

t t t t W t t t WW t t t t t W t t

t t t W t t t t t t W t t t

t WW t t t WW t tr r r

db W rW dt dC b W b W b W b W dt

b W b W dZ rb W dt dt b W dC

b W dt b W

δδ δ

δ

ν ν ν

δ δ σ β δ ν δ β ν δ

ν δ β δ σ δ δ δ

σ β λ δ β λ λ δ

= − + + +

+ + = − − +

− + + − + + +( )( , )) ,W t tb W dtδν δ

where the second equality follows from (22).   From the definition of Gt, it follows that 

Lemma 3 correctly specifies how Gt evolves.  QED 

6. Appendix B. 

We must show that for all pairs (δ, W), the function b(δ, W) satisfies  

( , ) 0WWb W δ ≤  and  (1 ) ( , ) ( , ) 0.WW Wb W b W
r δ
νλ δ ν δ+ + ≤  

It is useful to understand the dynamics of the pair (δt, Wt) under a conjectured optimal 

contract first.  From (2) and (21), the pair (δt, Wt) follows  

dδt = ν σ dZt  and dWt = rWt dt + λ(1+ν/r)σ dZt  until Wt reaches W1(δt),  

 and Wt = W1(δt) thereafter.  (24) 

When Wt reaches the level R(δt), termination results.  The lines parallel to W1(δ) are the 

paths of the joint volatilities of (Wt, δt).  Due to the positive drift of Wt, the pair (Wt, δt) 

moves across these lines in the direction of increasing Wt.  See the figure below for 

reference. 

  δ 
  R(δ) 

   δ
      W1(δ) 

W 
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The phase diagram of (Wt, δt) provides two important directions: the direction of joint 

volatilities, in which / (1 ) / ,dW d
r
νδ λ ν= +  and the direction of drifts, in which W 

increases but δ stays the same.  We need to prove that bW(δ,W) weakly decreases in both 

of these directions.   

 

To study how bW(W,δ) depends on (W,δ), it is useful to know that bW(Wt, δt) is a 

martingale (Lemma 4) and that bW(R(δ),δ) increases in δ (Lemma 5). 

 

Lemma 4.  When the evolution of (Wt, δt) is given by (24), then bW(Wt,δt) is a martingale.  

Proof.  Differentiating the partial differential equation for b(W,δ) with respect to W, we 

obtain 

2 2 2 2 2 21 1
2 20 ( , ) (1 ) ( , ) ( , ) (1 ) ( , ).WW WWW W WWrWb W b W b W b W

r rδδ δ
ν νδ λ σ δ ν σ δ λ νσ δ= + + + + +

  

The right hand side of this equation is the drift of bW(W,δ) when Wt < W1(δt) by Ito’s 

lemma.  When Wt = W1(δt), then  bW(Wt, δt) = -1 at all times.  Therefore, bW(Wt, δt) is 

always a martingale.  QED 

 

Lemma 5.  bW(R(δ), δ) weakly increases in δ.   

Proof.  Note that  

 0 0 0 0 0 0( , ) ( ) ( ( ) ( ) ( )) | ,rb W b W E e b L R Wτ
τ τ τδ δ δ δ δ δ−⎡ ⎤= − − − −⎣ ⎦ . (25) 

That is, the principal’s profit equals first-best minus the loss of payoff due to early 

inefficient liquidation.  Let us show that for all ε > 0, b(R(δ0)+ε,δ0) - b(R(δ0),δ0) increases 

in δ0.  Consider the processes (Wt
i,δt

i) (i = 1,2) that follow (24) starting from values δ0
1 

and δ0
2 = δ0

1 + ∆ and W0
i = R(δ0

1) + ε.  Then for any path of Z, the process for i = 1 ends 

up in liquidation at a sooner time τi and at a higher value of 
1

1 .τδ   Indeed, from the law of 



  29 

motion (24), it is easy to see that while the difference δt
2 -δt

1 stays constant at all times, 

Wt
2 – Wt

1 becomes larger than λ/r∆ after time 0, where λ/r is the slope of R(δ).  Since  

( ) ( ) ( )b L Rδ δ δ− −  

increases in ∆, it follows that  

1 2

1 1 1 2 2 2

1 1 1 1 1 2 2 2 2 2
0 0 0 0( ( ) ( ) ( )) | , ( ( ) ( ) ( )) | , .r rE e b L R W E e b L R Wτ τ

τ τ τ τ τ τδ δ δ δ δ δ δ δ− −⎡ ⎤ ⎡ ⎤− − ≥ − −⎣ ⎦ ⎣ ⎦  

As a result,  
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1 1 1

2

2 2 2
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0 0 0 0
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0 0 0 0 0

2 2 2 2 2 2 2 2
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2 2 2 2
0 0 0 0

( ( ) , ) ( ( ), )

( ( ) ( ) ( )) | , ( ) ( ) ( )

( ( ) ( ) ( )) | , ( ) ( ) ( )
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r

r

b R b R

E e b L R W b L R

E e b L R W b L R

b R b R

τ
τ τ τ

τ
τ τ τ

δ ε δ δ δ

δ δ δ δ δ δ δ

δ δ δ δ δ δ δ

δ ε δ δ δ

−

−

+ − =

⎡ ⎤− − − + − − ≤⎣ ⎦
⎡ ⎤− − − + − − =⎣ ⎦

+ −

 

where we used (25) to derive the first and the last inequality.  QED 

We can use Lemmas 4 and 5 to reach conclusions about how bW(W,δ) changes as W 

increases or as δ and W increase in the direction / (1 ) / .rdW d νδ λ ν= +  

Lemma 6.  bW(W,δ) weakly decreases in W. 

Proof.  Let us show that for any δ0 ≥ δ, for any two values W0
1 <W0

2, bW(Wt
1, δ0) ≥  

bW(Wt
2, δ0).  

Consider the processes (Wt
i,δt) (i = 1,2) that follow (24) starting from values (W0

1,δ0) and 

(W0
2,δ0) for δ0

1 < δ0
2.  Then for any path of Z, we have Wt

2 – Wt
1

 ≥ 0 until time τ1 when 

Wt
1 reaches the level of R(δt).  The time when Wt

2 reaches the level of R(δt) is τ2 ≥ τ1.  

Since 
1 1 1

2 1 ( ),W W Rτ τ τδ≥ =  it follows that 
2 1τ τδ δ≤  and 

2 1

2 1W Wτ τ≤ . Using Lemmas 4 and 5,  

1 1 2 2

1 2
0 0 0 0( , ) ( ( ), ) ( ( ), ) ( , ).W W W Wb W E b R E b R b Wτ τ τ τδ δ δ δ δ δ⎡ ⎤ ⎡ ⎤= ≥ =⎣ ⎦ ⎣ ⎦  

QED 

Lemma 7.  bW(W,δ) weakly decreases in the direction, in which W and δ increase 

according to / (1 ) / .rdW d νδ λ ν= +  
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Proof.  Consider starting values (W0
i, δ0

i) that satisfy  

δ0
2 - δ0

1 = ∆ > 0  and  W0
2 - W0

1 = (1 ) / .r
νλ ν∆ +  

Starting from those values, let the processes (Wt
i, δt

i) (i = 1,2) follow (*).   Then for any 

path of Z, at all times δt
2 - δt

1=∆ and Wt
2 – Wt

1≥ (1 ) /r
νλ ν∆ +  (with equality after time 0 

only if Wt
2 = W1(δt

2) and Wt
1 = W1(δt

1)).  Therefore, the time τ1 when Wt
1 reaches the 

level of R(δt
1) occurs at least as soon as the time τ2 when Wt

2 reaches the level of R(δt
2).  

Also, since 
1 1 1

2 1 (1 ) / ( ) / ,rW W R rν
τ τ τλ ν δ λ≥ + ∆ + > + ∆  it follows that 

2 1τ τδ δ≤  and 

2 1

2 1W Wτ τ≤ .  Using Lemmas 4 and 5,  

1 1 2 2

1 1 1 1 2 2 2 2
0 0 0 0( , ) ( ( ), ) ( ( ), ) ( , ).W W W Wb W E b R E b R b Wτ τ τ τδ δ δ δ δ δ⎡ ⎤ ⎡ ⎤= ≥ =⎣ ⎦ ⎣ ⎦  

QED 
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