
Characterization of Revenue Equivalence

Birgit Heydenreich1 Rudolf Müller1 Marc Uetz2 Rakesh Vohra3

January 9, 2008

Abstract

The property of an allocation rule to be implementable in dominant strategies by a

unique payment scheme is called revenue equivalence. In this paper we give a characteri-

zation of revenue equivalence based on a graph theoretic interpretation of the incentive

compatibility constraints. The characterization holds for any (possibly infinite) out-

come space and many of the known results are immediate consequences. Moreover,

revenue equivalence can be identified in cases where existing theorems are silent.

1 Introduction

One of the most important results of auction theory is the Revenue Equivalence Theorem.

Subject to certain reasonable assumptions, it concludes that a variety of different auctions

generate the same expected revenue for the seller. Klemperer (1999) writes that “much of

auction theory can be understood in terms of this theorem.....”. Hence the long line of papers

that have attempted to relax the sufficient conditions under which revenue equivalence holds.

The present paper provides necessary and sufficient conditions on the underlying primitives

for revenue equivalence to hold.
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We consider direct revelation mechanisms for agents with multidimensional types. Such

mechanisms consist of an allocation rule and a payment scheme. The allocation rule selects

an outcome depending on the agents’ reported types, whereas the payment scheme assigns

a payment to every agent. We focus attention on allocation rules that are implementable in

dominant strategies. Hereafter we refer to such rules as implementable. In this environment

we characterize the uniqueness of the relevant payment scheme in terms of conditions that

are easily verified in potential applications. The property of an allocation rule to be imple-

mentable in dominant strategies by a unique payment scheme is called revenue equivalence.

Our characterization of revenue equivalence is based on a graph theoretic interpretation of

the incentive compatibility constraints. This interpretation has been used before by Rochet

(1987), Gui, Müller, and Vohra (2004), as well as Saks and Yu (2005) to identify allocation

rules that are implementable in dominant strategies. Müller, Perea, and Wolf (2007) used it

to identify Bayes-Nash implementable allocation rules. With this graph theoretic interpreta-

tion, our characterizing condition for revenue equivalence is almost self-evident and the proof

writes itself. The characterization holds for any (possibly infinite) outcome space. Many of

the known results about revenue equivalence are immediate consequences of our character-

ization. More importantly, with this characterization revenue equivalence can be identified

in cases where existing theorems are silent.

Related Work. The bulk of prior work on revenue equivalence has been devoted to

identifying sufficient conditions on the type space that ensure all allocation rules from a given

class satisfy revenue equivalence. The papers by Green and Laffont (1977) and Holmström

(1979) restrict attention to allocation rules called ‘utilitarian maximizers’, that is, allocation

rules that maximize the sum of the valuations of all agents. Holmström (1979), generalizing

the paper by Green and Laffont (1977), shows that when the type space is smoothly path

connected then utilitarian maximizers satisfy revenue equivalence.

Myerson (1981) shows that revenue equivalence holds for every implementable rule in a

setting where the type space is an interval of the real line, the outcome space is a lattice and

an agents valuation for an outcome is continuous and supermodular in his type.

Krishna and Maenner (2001) derive revenue equivalence under two different hypotheses.

In the first, agents’ type spaces must be convex and the valuation function of an agent is a

convex function of the type of the agent. Under these conditions they show that every im-

plementable rule satisfies revenue equivalence. The second hypothesis requires the allocation
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rule to satisfy certain differentiability and continuity conditions and the outcome space to

be a subset of the Euclidean space. Furthermore, the valuation functions must be regular

Lipschitzian and monotonically increasing in all arguments.

Milgrom and Segal (2002) show that revenue equivalence is a consequence of a particular

envelope theorem in a setting where the type spaces are one-dimensional and the outcome

space is arbitrary. An agent’s valuation function is assumed differentiable and absolutely

continuous in the type of the agent and the partial derivative of the valuation function with

respect to the type must satisfy a certain integrability condition. Their result can be applied

to multi-dimensional type spaces as well. In this case the type spaces must be smoothly

connected and the valuation functions must be differentiable with bounded gradient.

We know of only two papers that identify necessary as well as sufficient conditions—i.e.

characterizing conditions—for revenue equivalence to hold. If the outcome space is finite,

Suijs (1996) characterizes type spaces and valuation functions for which utilitarian maximiz-

ers satisfy revenue equivalence. Chung and Olszewski (2007) characterize type spaces and

valuation functions for which every implementable allocation rule satisfies revenue equiv-

alence, again under the assumption of a finite outcome space. Furthermore, they derive

sufficient conditions on the type spaces and valuation functions that generalize known re-

sults when the outcome space is countable or a probability distribution over a finite set of

outcomes. In particular, they can show that some of the previously known conditions can be

weakened for countable outcome spaces.

Our characterization differs from prior work in an important way. We identify a condition

on the type spaces, the valuation functions and the implementable allocation rule together

that characterize revenue equivalence. In other words, we prove that a particular allocation

rule satisfies revenue equivalence if and only if this condition is satisfied. Our characterization

differs from the one by Chung and Olszewski (2007) in three ways. First, ours holds for

general outcome spaces. Second, our result implies revenue equivalence in cases where their

result does not apply. In fact, given agents’ type spaces and valuation functions, several

allocation rules may be implementable in dominant strategies, some of which satisfy revenue

equivalence and some do not. In this case, the conditions on the type space and valuation

functions from their paper obviously cannot hold. However, our characterization can be

used to determine which of the allocation rules do satisfy revenue equivalence. We give an

example in Section 4.3. Third, the characterization in Chung and Olszewski (2007) is a
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corollary of our result, in the sense that their necessary and sufficient condition is naturally

related to our graph theoretic interpretation of revenue equivalence. We refer to Section 4.2

for details. Moreover, our characterization yields elementary and direct alternative proofs

for their sufficient conditions for countable infinite outcome spaces.

As in Chung and Olszewski (2007), a sufficient condition derived from the characterization

yields a number of the earlier results as immediate consequences We list some of them below.

1. By restricting attention to countable outcome spaces we can relax the smooth con-

nectedness condition on the type space invoked in Holmström (1979) to (topological)

connectedness. In addition, our sufficient condition applies to any allocation that can

be implemented in dominant strategies rather than just utilitarian maximizers.

2. The sufficient condition that Suijs (1996) derives from his characterization follows as a

special case.

3. The sufficient condition of Krishna and Maenner (2001) under their first hypothesis

when the outcome space is countable follows as a special case.

4. The sufficient condition of Milgrom and Segal (2002) when the outcome space is count-

able follows as a special case.

The remainder of the paper is organized as follows. In Section 2 we introduce notation and

basic definitions. In Section 3, we derive our graph-theoretic characterization of revenue

equivalence. In Section 4 we give three applications of the new characterization. First, a

simple and elementary proof for a sufficient condition for revenue equivalence in a setting

with countable outcome spaces. Second, we show how the characterization from Chung

and Olszewski (2007) can be obtained as a consequence of ours. Finally, an example of an

economic setting where our characterization can be used to identify revenue equivalence,

whereas all known previous results are not applicable. We conclude with extensions to other

notions of incentive compatibility in Section 5.

2 Setting and Basic Concepts

Denote by {1, . . . , n} the set of agents and let A be the set of possible outcomes. Outcome

space A is allowed to have infinitely many, even uncountably many, elements. By ti, we
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denote the type of agent i ∈ {1, . . . , n}. Let Ti be the type space of agent i. Type spaces

Ti can be arbitrary sets. Agent i’s preferences over outcomes are modeled by the valuation

function vi : A × Ti → R, where vi(a, ti) is the valuation of agent i for outcome a when he

has type ti.

A mechanism (f, π) consists of an allocation rule f : Πn
i=1Ti → A and a payment scheme

π : Πn
i=1Ti → Rn. In a direct revelation mechanism, the allocation rule chooses for a vector t

of aggregate type reports of all agents an outcome f(t), whereas the payment scheme assigns

a payment πi(t) to each agent i. Let the vector (ti, t−i) denote the aggregate type report

vector when i reports ti and the other agents’ reports are represented by t−i. We assume

quasi-linear utilities, that is, the utility of agent i when the aggregate report vector is (ti, t−i)

is vi(f(ti, t−i), ti)− πi(ti, t−i).

Definition 1 (dominant strategy incentive compatible) A direct revelation mechanism

(f, π) is called dominant strategy incentive compatible if for every agent i, every type ti ∈ Ti,

all aggregate type vectors t−i that the other agents could report and every type si ∈ Ti that i

could report instead of ti:

vi(f(ti, t−i), ti)− πi(ti, t−i) ≥ vi(f(si, t−i), ti)− πi(si, t−i).

If for allocation rule f there exists a payment scheme π such that (f, π) is a dominant strategy

incentive compatible mechanism, then f is called implementable in dominant strategies, in

short implementable.

With the exception of Section 5, we assume that the allocation rule is implementable in

dominant strategies and study the uniqueness of the corresponding payment scheme. We

refer to the latter as revenue equivalence.4

Definition 2 (Revenue Equivalence) An allocation rule f implementable in dominant

strategies satisfies the revenue equivalence property if for any two dominant strategy incentive

compatible mechanisms (f, π) and (f, π′) and any agent i there exists a function hi that only

depends on the reported types of the other agents t−i such that

∀ti ∈ Ti : πi(ti, t−i) = π′i(ti, t−i) + hi(t−i).

4We choose the term revenue equivalence in accordance with Krishna (2002). It is equivalent to payoff
equivalence as used in Krishna and Maenner (2001).
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3 Characterization of Revenue Equivalence

We give a necessary and sufficient condition for revenue equivalence with the aid of a graph

theoretic interpretation used by Rochet (1987), Gui, Müller, and Vohra (2004) and Saks

and Yu (2005) to characterize implementable allocation rules. We also adopt some of their

notation.

Fix agent i and let the reports of the other agents t−i be fixed as well. For simplicity of

notation we write T and v instead of Ti and vi. Similarly, for any mechanism (f, π), we regard

f and π as functions of i’s type alone, i.e. f : T → A and π : T → R. If (f, π) is dominant

strategy incentive compatible, it is easy to see that for any pair of types s, t ∈ T such that

f(t) = f(s) = a for some a ∈ A, the payments must be equal, i.e. π(t) = π(s) =: πa.

Hence, the payment of agent i is completely defined if the numbers πa are defined for all

outcomes a ∈ A such that f−1(a) is nonempty. For ease of notation, we let A denote the set

of outcomes that can be a achieved for some report of agent i. For an allocation rule f , let

us define two different kinds of graphs. The type graph Tf has node set T and contains an

arc from any node s to any other node t of length5

`st = v(f(t), t)− v(f(s), t).

Here, `st represents the gain in valuation for an agent truthfully reporting type t instead of

lying type s. This could be positive or negative. The allocation graph Gf has node set A.

Between any two nodes a, b ∈ A, there is a directed arc with length5

`ab = inf
t∈f−1(b)

(v(b, t)− v(a, t)).

The arc lengths `ab in the allocation graph represent the least gain in valuation for any agent

with type t ∈ f−1(b) for reporting truthfully, instead of misreporting so as to get outcome

a (instead of b). The type graph and allocation graph are complete, directed, and possibly

infinite graphs6. We introduce our main results in terms of allocation graphs. Nevertheless,

analogous results hold for type graphs as well.

5We assume that arc lengths are strictly larger than −∞. For allocation rules implementable in dominant
strategies this is no restriction, as the incentive compatibility constraints imply finiteness of the arc lengths.

6Clearly, type and allocation graph depend on the agent i and reports t−i of the other agents. In order
to keep notation simple, we will suppress this dependence on i and t−i and will simply write Tf and Gf .
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A path from node a to node b in Gf , or (a, b)-path for short, is defined as P = (a =

a0, a1, . . . , ak = b) such that ai ∈ A for i = 0, . . . , k. Denote by length(P ) the length of this

path. A cycle is a path with a = b. For any a, we regard the path from a to a without

any arcs as an (a, a)-path and define its length to be 0. Define P(a, b) to be the set of all

(a, b)-paths.

Definition 3 (Node Potential) A node potential p is a function p : A → R such that for

all x, y ∈ A, p(y) ≤ p(x) + `xy.

Observation 1 Let f be an allocation rule. Payment schemes π such that (f, π) is a domi-

nant strategy incentive compatible mechanism, exactly correspond to node potentials in each

of the allocation graphs Gf that are obtained from a combination of an agent and a report

vector of the other agents.

Proof. Assume f is implementable. Fix agent i and the reports t−i of the other agents.

Consider the corresponding allocation graph Gf . For any pair of types s, t ∈ T such that

f(t) = f(s) = a for some a ∈ A, the payments must be equal, i.e. π(t) = π(s) = πa.

Therefore, π assigns a real number to every node in the graph. Incentive compatibility

implies for any two outcomes a, b ∈ A and all t ∈ f−1(b) that v(b, t) − πb ≥ v(a, t) − πa,

hence, πb ≤ πa + `ab.

For the other direction, define the payment π for agent i as follows. For any report

vector of the other agents t−i, consider the corresponding allocation graph Gf and fix a node

potential p. At aggregate report vector (ti, t−i) with outcome a = f(ti, t−i), let the payment

be πa := p(a). Incentive compatibility now follows from the fact that p is a node potential

in Gf , similarly to the above. ¤
Let

distGf
(a, b) = inf

P∈P(a,b)
length(P ).

In general, distGf
(a, b) could be unbounded. However, if Gf does not contain a negative cycle

(the nonnegative cycle property), then distGf
(a, b) is finite, since the length of any (a, b)-path

is lower bounded by −`ba.

Lemma 1 Fix an agent and some report vector of the other agents. The corresponding

allocation graph Gf has a node potential if and only if it satisfies the nonnegative cycle

property.
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Proof. Proofs can be found e.g. in Schrijver (2003) for finite A and in Rochet (1987)

for infinite A. For the sake of completeness, we give a simple proof here. If Gf has no

negative cycle, then for any a ∈ A, distGf
(a, ·) is well-defined, i.e. takes only finite values.

The distances distGf
(a, ·) define a node potential, because distGf

(a, x) ≤ distGf
(a, y) + `yx

for all x, y ∈ A. On the other hand, given a node potential p, add up the inequalities

p(y)− p(x) ≤ `xy for all arcs (x, y) on a cycle to prove that the cycle has nonnegative length.

¤
Observation 1 together with Lemma 1 yields a characterization of allocation rules that

are implementable in dominant strategies (see also e.g. Rochet (1987)).

Observation 2 The allocation rule f is implementable in dominant strategies if and only if

all allocation graphs Gf obtained from a combination of an agent and a report vector of the

other agents satisfy the nonnegative cycle property.

From Lemma 1 and observations 1 and 2 it follows that for any allocation rule f imple-

mentable in dominant strategies, there exist node potentials in all allocation graphs Gf . The

allocation rule f satisfies revenue equivalence if and only if in each allocation graph Gf , the

node potential is uniquely defined up to a constant. Our main result states that this is the

case if and only if distances are anti-symmetric in every Gf .

Theorem 1 (Characterization of Revenue Equivalence) Let f be an allocation rule

that is implementable in dominant strategies. f satisfies revenue equivalence if and only if in

all allocation graphs Gf obtained from a combination of an agent and a report vector of the

other agents, distances are anti-symmetric, i.e. distGf
(a, b) = −distGf

(b, a) for all a, b ∈ A.

Proof. Suppose first that f satisfies revenue equivalence. Fix a combination of an agent and

a report vector of the other agents and let Gf be the corresponding allocation graph. Let

a, b ∈ A. The functions distGf
(a, ·) and distGf

(b, ·) are node potentials in Gf . As any two

node potentials differ only by a constant, we have that distGf
(a, ·)−distGf

(b, ·) is a constant

function. Especially, for a and b we get that distGf
(a, a) − distGf

(b, a) = distGf
(a, b) −

distGf
(b, b). Clearly, distGf

(a, a) = distGf
(b, b) = 0 and hence distGf

(a, b) = −distGf
(b, a).

Now suppose that distGf
(a, b) = −distGf

(b, a) for all a, b ∈ A. Let a, b ∈ A. Let Pab

be an (a, b)-path with nodes a = a0, a1, . . . , ak = b. For any node potential p add up the
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inequalities p(ai) − p(ai−1) ≤ `ai−1ai
for i = 1, . . . , k. This yields p(b) − p(a) ≤ length(Pab).

Therefore,

p(b)− p(a) ≤ inf
P∈P(a,b)

length(P ) = distGf
(a, b).

Similarly, p(a) − p(b) ≤ distGf
(b, a). Therefore, −distGf

(b, a) ≤ p(b) − p(a) ≤ distGf
(a, b).

Since distGf
(a, b) = −distGf

(b, a), p(b)−p(a) = distGf
(a, b) for any node potential p. Hence,

any potential is completely defined, once p(a) has been chosen for some outcome a. Thus,

any two node potentials can only differ by a constant and f satisfies revenue equivalence.

¤
An analogous characterization holds for type graphs as well. One can check that all

previous arguments still apply when using type graphs. On the other hand, note the following

relation of node potentials in Gf and node potentials in Tf . Given a node potential pG in

Gf , we can define a node potential pT in Tf by letting pT (t) := pG(f(t)) for any t ∈ T .

In fact, let `G and `T denote the arc lengths in Gf and Tf respectively and observe that

`G
ab = inf{`T

st | s ∈ f−1(a), t ∈ f−1(b)}. Then, for any s, t ∈ T , pT (t) = pG(f(t)) ≤
pG(f(s)) + `G

f(s)f(t) ≤ pT (s) + `T
st and pT is a node potential. On the other hand, given

a node potential pT in Tf , let pG(a) := pT (s) for any s ∈ f−1(a). Note that pG is well-

defined as f(s) = f(t) = a implies `T
st = 0 and hence pT (s) = pT (t). Furthermore, for any

a, b ∈ A and any s ∈ f−1(a), t ∈ f−1(b), pG(a) = pT (s) ≤ pT (t) + `T
ts = pG(b) + `T

ts. Hence,

pG(a) ≤ pG(b) + `G
ba and pG is a node potential in Gf . Consequently, there is a one-to-one

relationship between node potentials in Gf and node potentials in Tf . This insight together

with a proof similar to the one of Theorem 1 yield the following corollary.

Corollary 1 (Characterization of Revenue Equivalence on Type Graphs) Let f be

an allocation rule that is implementable in dominant strategies. Then f satisfies revenue

equivalence if and only if in all type graphs Tf obtained from a combination of an agent

and a report vector of the other agents, distances are anti-symmetric, i.e. distTf
(s, t) =

−distTf
(t, s) for all s, t ∈ T .

4 Applications

In this section we give three applications of our main result. The first shows how Theorem 1

yields a simple transparent proof that all implementable f satisfy revenue equivalence in a
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setting where the outcome space is countable. The second shows that the characterization

of Chung and Olszewski (2007) can be derived from Theorem 1. The third describes an

economic environment with uncountable outcome space where Theorem 1 can be used to

identify revenue equivalence, but where the existing theorems are silent.

4.1 Countable Outcome Spaces

We investigate the case of countably infinite outcome spaces in this section. Theorem 1 yields

an elementary proof for revenue equivalence under weak assumptions.

Theorem 2 Let A be a countable outcome space. Let each agent i ∈ {1, . . . , n} have types

from the (topologically ) connected type space Ti ⊆ Rki. Let the family of valuation functions

{vi(a, ·)}a∈A be equicontinuous7 for every agent i. Then, every allocation rule f : Πn
i=1Ti → A

implementable in dominant strategies satisfies revenue equivalence.

Proof. Assume an allocation rule f implementable in dominant strategies that does not

satisfy revenue equivalence. We show this implies that there is an agent i whose type space is

not connected. According to Theorem 1, there is an agent i and a report vector of the other

agents t−i with corresponding allocation graph Gf and a∗, b∗ ∈ A such that distGf
(a∗, b∗) +

distGf
(b∗, a∗) > 0. Let T be the type space of i and regard f as a function on T as before. As

A is countable, the set {distGf
(a∗, x) + distGf

(x, a∗) |x ∈ A} contains only countably many

values. Hence, there exists a z > 0 such that the sets A1 = {x | distGf
(a∗, x)+distGf

(x, a∗) <

z} and A2 = {x | distGf
(a∗, x) + distGf

(x, a∗) > z} are both non-empty and together yield

a partition of A. Then, the sets T1 = f−1(A1) and T2 = f−1(A2) are non-empty and yield

a partition of the type space T . T1 is a proper subset of T . We show that T1 is open and

closed, implying that T is not connected.

T1 is open: Let t ∈ T1. Let f(t) = x ∈ A1. Then, distGf
(a∗, x) + distGf

(x, a∗) = z − ε

for some ε = ε(x) > 0. As the v(a, ·), a ∈ A, are equicontinuous, there is a δε/2 such that

|v(a, t) − v(a, s)| < ε/2 for all a ∈ A and s ∈ T with ‖s − t‖ < δε/2. Let s ∈ T such that

7{v(a, ·)}a∈A is equicontinuous if for all ε > 0 and t ∈ T ⊆ Rk there is δ > 0 such that for all outcomes
a ∈ A and all s ∈ T with ‖t− s‖ < δ it holds that |v(a, t)− v(a, s)| < ε. Especially, δ may not depend on a.
‖ · ‖ denotes the Euclidean norm on Rk.
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‖s− t‖ < δε/2 and let y = f(s). Then the following is true:

distGf
(a∗, y) + distGf

(y, a∗) ≤ distGf
(a∗, x) + `xy + `yx + distGf

(x, a∗)

= z − ε + `xy + `yx

≤ z − ε + |v(y, s)− v(y, t)|+ |v(x, t)− v(x, s)|
< z

Hence distGf
(a∗, y) + distGf

(y, a∗) < z. Thus y ∈ A1 and s ∈ T1 for any s in the δε/2-ball

around t. Consequently, T1 is open.

T1 is closed: Let (tn)n∈N be a sequence in T1 that converges to t ∈ T . Suppose for con-

tradiction that t ∈ T2. Let x = f(t). Then distGf
(a∗, x) + distGf

(x, a∗) = z + ε for some

ε = ε(x) > 0. By equicontinuity, there is a δε/2 such that |v(a, t)−v(a, s)| < ε/2 for all a ∈ A

and s ∈ T with ‖s − t‖ < δε/2. Choose n0 such that ‖tn0 − t‖ < δε/2. Let y = f(tn0). As

tn0 ∈ T1, distGf
(a∗, y) + distGf

(y, a∗) < z. Then the following holds:

z + ε = distGf
(a∗, x) + distGf

(x, a∗)

≤ distGf
(a∗, y) + `yx + `xy + distGf

(y, a∗)

< z + `yx + `xy

≤ z + |v(x, t)− v(x, tn0)|+ |v(y, tn0)− v(y, t)|
< z + ε,

a contradiction. ¤
An example in Section 4.3 demonstrates that Theorem 2 cannot be generalized to un-

countable outcome spaces.

Since equicontinuity of {vi(a, ·)}a∈A for finite A is equivalent to the requirement that

vi(a, ·) be continuous for all a ∈ A we obtain the following Corollary for the case |A| finite.

Corollary 2 Let A be a finite outcome space. Let each agent i ∈ {1, . . . , n} have types from

the (topologically ) connected type space Ti ⊆ Rki. Let each agent’s valuation function vi(a, ·)
be a continuous function in the type of the agent for every outcome a ∈ A. Then, every

allocation rule f : Πn
i=1Ti → A that is implementable in dominant strategies satisfies revenue

equivalence.

11



A different way of modeling valuations for countable outcome spaces is to identify types

with vectors in RA, such that vi(a, t) = ta. On RA we can define the sup-topology by defining

for ε > 0, and t ∈ RA the ε-ball around t as Bε(t) = {s ∈ RA | supa∈A |ta − sa| < ε}. Using

almost the same proof as for Theorem 2, one can show the following theorem, which can also

be found in Chung and Olszewski (2007).

Theorem 3 Let A be a countable outcome space. Let the type space Ti ⊆ RA for every agent

i be (topologically ) connected with respect to the sup-topology on RA. Then, every allocation

rule f : Πn
i=1Ti → A that is implementable also satisfies revenue equivalence.

4.2 The Characterization by Chung and Olszewski

In this section, we show how the characterization by Chung and Olszewski (2007) follows from

our main result and comment briefly on the results in other papers on revenue equivalence.

First, we introduce the notation used by Chung and Olszewski (2007) and restate their

characterization theorem.

Let A be countable. As before, regard everything from the perspective of a single agent.

Let A1, A2 be disjoint subsets of A and r : A1 ∪ A2 → R. For every ε > 0, let

T1(ε) =
⋃

a1∈A1

{t ∈ T | ∀ a2 ∈ A2 : v(a1, t)− v(a2, t) > r(a1)− r(a2) + ε}

and

T2(ε) =
⋃

a2∈A2

{t ∈ T | ∀ a1 ∈ A1 : v(a1, t)− v(a2, t) < r(a1)− r(a2)− ε}.

Finally, let Ti = ∪ε>0Ti(ε), i = 1, 2. Observe that T1∩T2 = ∅. Call the type space T splittable

if there are A1, A2 and r such that T = T1 ∪ T2 and Ti 6= ∅ for i = 1, 2. Note that, if T is

splittable, T is disconnected with respect to the sup-topology on RA defined above, as T1 and

T2 are open sets. T being topologically disconnected, does not imply that T is splittable.

Theorem 4 (Chung and Olszewski 2007) If A is finite then the following two state-

ments are equivalent.

(i) All f that are implementable in dominant strategies satisfy revenue equivalence.

(ii) For all agents Ti is not splittable.
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If A is not finite, but countable, (ii) implies (i).

Notice that in Theorem 1 no assumption on the cardinality of A is made, whereas in Theorem

4, A is assumed finite or countable, respectively. On the other hand, Theorem 1 imposes

a condition on the allocation rule, whereas Theorem 4 characterizes T and v such that all

allocation rules that are implementable in dominant strategies satisfy revenue equivalence.

We elaborate on this difference in Section 4.3.

In order to show that (ii) in Theorem 4 is a necessary condition for revenue equivalence

in the case of finite A, one can directly construct an allocation rule and two payment schemes

that do not differ by a constant from the assumption that T is splittable. This is done in

the paper by Chung and Olszewski. We give an alternative proof for the fact that (ii) is

a sufficient condition for countable A. Our proof establishes a connection to the allocation

graph defined in Section 3.

Proof. [(ii) ⇒ (i)] Suppose an allocation rule f that is implementable in dominant strategies

but does not satisfy revenue equivalence. Since f is implementable, the allocation graphs

satisfy the non-negative cycle property. Since revenue equivalence is violated, Theorem 1

implies that there is an agent i and reports of the other agents t−i such that in the corre-

sponding allocation graph Gf , distGf
(a∗, b∗)+distGf

(b∗, a∗) > 0 for some a∗, b∗ ∈ A. Assume

the the perspective of agent i. In the following, we write dist(·, ·) instead of distGf
(·, ·) and T

instead of Ti for ease of notation. We show the above assumptions imply that T is splittable.

Define d(a) = dist(a∗, a) + dist(a, a∗) for all a ∈ A. Since the function d takes only

countably many values, there exists z ∈ R such that the following sets form a non-trivial

partition of A: A1 = {a ∈ A | d(a) > z}, A2 = {a ∈ A | d(a) < z}. Observe that for every

a1 ∈ A1, there exists ε(a1) > 0 such that d(a1) > z + ε(a1). Similarly, for every a2 ∈ A2,

there exists ε(a2) > 0 such that d(a2) < z − ε(a2).

For a1 ∈ A1, let r(a1) = −dist(a1, a
∗). For a2 ∈ A2, let r(a2) = dist(a∗, a2)− z. Now let

t ∈ T such that f(t) = a1 ∈ A1. We claim that for all a2 ∈ A2 it holds that v(a1, t)−v(a2, t) >

r(a1)− r(a2) + ε(a1), which proves t ∈ T1(ε(a1)). Indeed, v(a1, t)− v(a2, t) ≥ `(a2, a1). The

claim then follows from:

dist(a∗, a2) + `(a2, a1) + dist(a1, a
∗) ≥ dist(a∗, a1) + dist(a1, a

∗)

> z + ε(a1).
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Next, let t ∈ T such that f(t) = a2 ∈ A2. We claim that for all a1 ∈ A1 it holds that

v(a1, t)−v(a2, t) < r(a1)−r(a2)−ε(a2), which proves t ∈ T2(ε(a2)). Again, v(a1, t)−v(a2, t) ≤
−`(a1, a2), and the claim follows from:

dist(a∗, a2) + dist(a1, a
∗)− `(a1, a2)

≤ dist(a∗, a2) + dist(a1, a
∗)− dist(a1, a

∗) + dist(a2, a
∗)

= dist(a∗, a2) + dist(a2, a
∗)

< z − ε(a2).

¤
Using Theorem 4, Chung and Olszewski derive Theorem 3 for the case of countable out-

come spaces and show how the results of prior work mentioned in the introduction (Green and

Laffont 1977, Holmström 1979, Krishna and Maenner 2001, Milgrom and Segal 2002) follow

from that theorem. In a similar way, those results are implied by Theorem 2. We therefore

refer to Chung and Olszewski (2007) for a detailed discussion of the mentioned literature.

Furthermore, the sufficient condition that Suijs (1996) derives from his characterization fol-

lows easily from Corollary 2 and the fact that path-connectedness implies connectedness.

4.3 A Setting with an Uncountable Outcome Space

In this section, we give an example for an economic setting where Theorem 1 can be used to

identify revenue equivalence, where all previous results are not applicable.

Cachon and Lariviere (1999) consider demand rationing problems where agents have to

share a divisible good. We consider the following variant of the problem. A supplier has

one unit of a perfectly divisible good that has to be distributed among n retailers (agents).

The type of agent i is his demand ti ∈ (0, 1]. Given the reports t ∈ (0, 1]n of all agents,

an allocation rule f : (0, 1]n → [0, 1]n assigns a fraction of the good to every agent such that∑n
i=1 fi(t) ≤ 1. If an agent’s demand is met, he incurs a disutility of 0, otherwise his disutility

is linear in the amount of unmet demand. More precisely, agent i’s valuation8 if he is assigned

8This valuation function appears in Holmström (1979) as an example to demonstrate that his smooth
path-connectedness assumption cannot be weakened. Likewise, the example can be used to show that the
convexity assumption of the valuation function in Krishna and Maenner (2001) cannot be relaxed.
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quantity qi is

vi(qi, ti) =

{
0, if qi ≥ ti,

qi − ti, if qi < ti.

In this context, payments are reimbursements by the supplier for unmet demand.

Let us call an allocation rule f dictatorial, if there is an agent i that always gets precisely

his demanded quantity, fi(ti, t−i) = ti for all t−i. We show that any dictatorial rule violates

revenue equivalence.

Theorem 5 For the above demand rationing problem, let f1(t) = t1 and fi(t) = (1−t1)/(n−
1). Then f is implementable but does not satisfy revenue equivalence.

Theorem 5 is formulated for the allocation rule that splits the remaining supply equally

among agents 2 to n. However, from the proof it can be easily seen that the conclusion of

Theorem 5 holds for all other dictatorial rules that are implementable.

Proof. [Theorem 5] Note that for agents 2, . . . , n their assigned quantity does not depend on

their report. Therefore, truthful reporting is a (weakly) dominant strategy for those agents.

Regard the type graph for agent 1 and note that it does not depend on the report of the

other agents. For simplicity we use v, t and f instead of v1, t1 and f1. Consider the type

graph Tf . Let s, t ∈ (0, 1] with s < t. We call (s, t) a forward arc and (t, s) a backward arc.

Then

`st = v(f(t), t)− v(f(s), t) = v(t, t)− v(s, t) = t− s > 0, and

`ts = v(f(s), s)− v(f(t), s) = v(s, s)− v(t, s) = 0.

As all arcs have non-negative length, there is no negative cycle and f is implementable.

Furthermore, distTf
(t, s) = `ts = 0 for t > s. We claim that distTf

(s, t) = t− s > 0. To that

end, note that all paths from s to t that use only forward arcs have the same length t− s. If

a path from s to t contains a backward arc, the forward arcs of that path have a total length

more than t−s. Hence, for all s < t we have distTf
(s, t)+distTf

(t, s) > 0. Therefore revenue

equivalence does not hold according to Theorem 1. In fact, π1(t) = 0 for all t ∈ (0, 1] and

π1(t) = t − 1 for all t ∈ (0, 1] are two payment schemes for agent 1 that make f dominant

strategy incentive compatible. (For the other agents, pick any constant payment scheme.)

¤
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Theorem 5 implies that in this setting not all implementable f satisfy revenue equiva-

lence. A theorem describing sufficient conditions for all implementable f to satisfy revenue

equivalence is necessarily silent here. Nevertheless, we can use Theorem 1 to identify prop-

erties of allocation rules that guarantee revenue equivalence in this setting. We state such

properties formally in Theorem 6 below, and then show that for instance the proportional

allocation rule with fi(t) = ti/
∑n

j=1 tj satisfies these properties.

Theorem 6 Let f : (0, 1]n → [0, 1]n be an allocation rule. If for every agent i and every

report t−i of the other agents, f satisfies any of the conditions below, then f is implementable

and satisfies revenue equivalence.

(i) fi(ti, t−i) is continuous in ti and fi(ti, t−i) < ti for all ti ∈ (0, 1],

(ii) fi(ti, t−i) is continuous in ti and fi(ti, t−i) > ti for all ti ∈ (0, 1), fi(1, t−i) = 1,

(iii) fi(ti, t−i) is continuous and increasing in ti and has exactly one fixed point x ∈ (0, 1]

with fi(x, t−i) = x, fi(ti, t−i) > ti for all ti ∈ (0, x), fi(ti, t−i) < ti for all ti ∈ (x, 1].

Proof. Again, fix agent i, t−i and use v, t and f instead of vi, ti and fi. Furthermore, regard

f as a function of i’s type only. For all three cases, assume that f is continuous. Regard the

corresponding type graph Tf .

(i) We have f(t) < t for t ∈ (0, 1]. Let s < t. Using f(s) < s < t, the arc lengths in Tf

are as follows:

`st = f(t)− f(s) and

`ts =

{
f(s)− f(t), if f(t) < s,

f(s)− s, if f(t) ≥ s.

To verify implementability, we prove that any cycle in the type graph has non-negative length.

Note that for s < t, `st = `sx + `xt for any s < x < t. We say that we split arc (s, t) at x if we

replace (s, t) by arcs (s, x) and (x, t) in a path or cycle. Note that splitting forward arcs does

not change the length of the path or cycle. Consider any finite cycle c with nodes c1 to ck and

rename the nodes such that c1 < c2 < · · · < ck. Split every forward arc (cu, cv) with u < v at

all intermediate nodes cu+1, . . . , cv−1 and call the resulting cycle c′; the cycle length remains

the same. Consider some backward arc (cv, cu) with u < v. As c′ is a cycle, it contains all
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forward arcs (cu, cu+1), . . . , (cv−1, cv). The length of the sub-cycle (cu, cu+1, . . . , cv−1, cv, cu) is

equal to

`cucu+1 + ... + `cv−1cv + `cvcu = `cucv + `cvcu =

{
f(cv)− cu, if f(cv) ≥ cu,

0, if cu > f(cv)

and hence is non-negative. Removing the arcs of the sub-cycle (cu, cu+1, . . . , cv−1, cv, cu) from

c′ leaves a new cycle c′′ of smaller or equal length. As c′′ is still a cycle we can repeat the

argument finitely many times and finally arrive at the empty cycle with length 0. Hence, c

has non-negative length and f is implementable.

In order to verify that f satisfies revenue equivalence, we compute distances distTf
(s, t)

and distTf
(t, s) for s < t. Note that distTf

(s, t) ≤ `st = f(t) − f(s). We claim that also

distTf
(t, s) ≤ f(s) − f(t), so distTf

(s, t) + distTf
(t, s) ≤ 0. Together with implementability

we get distTf
(s, t) + distTf

(t, s) = 0, and revenue equivalence holds by Corollary 1. To prove

the claim we consider two cases. If f(t) < s, distTf
(t, s) ≤ `ts = f(s)− f(t) and we are done.

If f(t) ≥ s, consider the sequence (xn)∞n=0 = (t, f(t), f(f(t)), . . . ). It is monotonically de-

creasing and bounded and so converges. The sequence (f(xn))∞n=0 = (f(t), f(f(t)), f 3(t), . . . )

converges for the same reason and limn→∞ xn = limn→∞ f(xn) =: x. As f is continuous,

we have x = f(x) if x is in (0, 1]. As there is no fixed point in (0, 1], we conclude x = 0.

Therefore, there exists some smallest index K such that xK < s. Now consider the path PK

defined as (t = x0, . . . , xK , s). Path PK has length f 2(t)−f(t)+f 3(t)−f 2(t)+ · · ·+fK+1(t)−
fK(t) + f(s) − fK+1(t) = f(s) − f(t). We conclude distTf

(t, s) ≤ `(PK) = f(s) − f(t), and

we are done.

(ii) We have f(t) > t for t ∈ (0, 1) and f(1) = 1. Let s < t. Using f(t) ≥ t > s, the arc

lengths in Tf can be computed as follows:

`st =

{
0, if f(s) ≥ t;

t− f(s), if f(s) < t
and

`ts = 0.

As all arc lengths are non-negative, all cycles have non-negative length and f is imple-

mentable.

Since all paths have non-negative length, we know that distTf
(t, s) = `ts = 0. We
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claim that also distTf
(s, t) = 0, hence revenue equivalence holds by Corollary 1. If f(s) ≥

t, distTf
(s, t) = `st = 0 and we are done. If f(s) < t, regard the sequence (xn)∞n=0 =

(s, f(s), f(f(s)), . . . ). This sequence converges to fixed point x = 1 by the same arguments

as in (i). Let us regard paths Pk defined as Pk = (s = x0, . . . , xk, 1). As `xi,f(xi) = 0 for

i = 0, . . . , k − 1 and `xk,1 = 1− f(xk), the length of Pk is 1− f(xk), which converges to 0 as

k increases. Thus, distTf
(s, 1) = 0. With `1t = 0 it follows that distTf

(s, t) = 0.

(iii) We have that f is increasing on (0, 1] and there is x ∈ (0, 1) such that f(x) = x,

f(t) > t for t ∈ (0, x), and f(t) < t for t ∈ (x, 1]. There are six types of arcs, whose lengths

are as follows.

If s < t ≤ x: `st =

{
0, if f(s) ≥ t;

t− f(s), if t > f(s);
`ts = 0;

If s ≤ x < t: `st = f(t)− f(s); `ts = 0;

If x < s < t: `st = f(t)− f(s); `ts =

{
f(s)− f(t), if f(t) < s;

f(s)− s, if s ≤ f(t).

Implementability can be verified in a manner similar to case (i). It can be checked

that splitting forward arcs can only decrease the cycle length. When removing sub-cycles

consisting of a backward arc (t, s), for s < t, together with the corresponding forward arcs,

there are different cases. If x < s < t, the cycle length is non-negative by arguments similar

to case (i). If s < x < t or s < t < x, the length of the backward arc is 0 and all forward arcs

have non-negative length. Thus, such a sub-cycle has non-negative length and the argument

can be continued as in (i).

For revenue equivalence, we consider two cases. If s < t ≤ x or x < s < t, both s and t

lie on a 0-length cycle just like in cases (i) and (ii). Hence, distTf
(s, t) + distTf

(t, s) = 0. If

s ≤ x < t, an analogue argument as in (ii) yields distTf
(s, x) = 0. With `xt = f(t)−f(x), we

get distTf
(s, t) ≤ f(t)−f(x). Similarly as in (i), we can show that distTf

(t, x) ≤ f(x)−f(t).

Consequently, and since `xs = 0, we have distTf
(t, s) ≤ distTf

(t, x)+ `xs ≤ f(x)−f(t). Thus,

distTf
(s, t) + distTf

(t, s) ≤ 0 and by implementability, distTf
(s, t) + distTf

(t, s) = 0. Hence

revenue equivalence holds. ¤

Corollary 3 For the demand rationing problem, the proportional allocation rule f with

fi(t) = ti/
∑n

j=1 tj for i = 1, . . . , n is implementable and satisfies revenue equivalence.

Proof. For every agent i and every report of the other agents t−i, the function fi(ti, t−i) =

ti/
∑n

j=1 tj satisfies the assumptions of either case (i) or (iii) in Theorem 6. ¤
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The proportional allocation rule completely distributes the supply among the retailers.

In particular, a retailer can get more than his demanded quantity. In an economy without

free disposal this may not be desired. In this case, the proportional allocation rule becomes

fi(t) = min{ti, ti/
∑n

j=1 tj} for i = 1, . . . , n, and the supplier keeps part of the good if the

supply exceeds the total demand. We next show that this allocation rule does not satisfy

revenue equivalence. The result follows from the following Theorem.

Theorem 7 Suppose in the demand rationing problem, f is implementable and there is one

agent i and reports t−i with fi(·, t−i) increasing and continuous such that there are x1, x2 ∈
[0, 1] with

fi(ti, t−i) > ti if ti < x1

fi(ti, t−i) = ti if x1 ≤ ti ≤ x2

fi(ti, t−i) < ti if x2 < ti.

Then f does not satisfy revenue equivalence.

Proof. Fix agent i and report vector t−i of the other agents satisfying the assumptions of the

Theorem. Regard the corresponding type graph Tf . There are six types of arcs (s, t) with

s < t depending on the position of s and t with respect to x1 and x2. Similarly, there are six

types of arcs (t, s). It can be checked that the arc lengths are as follows.

s < t ≤ x1: `st =

{
0, if f(s) ≥ t;

t− f(s), if t > f(s);
`ts = 0

x2 ≤ s < t: `st = f(t)− f(s) `ts =

{
f(s)− f(t), if f(t) < s;

f(s)− s, if s ≤ f(t).

all other cases: `st = f(t)− f(s) `ts = 0

Note that the only arcs with negative lengths are (t, s)-arcs for x2 ≤ s < t.

That f is implementable can be verified in a manner to the other cases. Splitting forward

arcs can only reduce the length of a cycle. In order to verify that the total length of a sub-

cycle consisting of a backward arc together with the corresponding forward arcs is indeed

non-negative, one can check the case x2 ≤ s < t similar to case (i) of Theorem 6. In all other

cases it is sufficient to note that the lengths of all involved forward and backward arcs are

non-negative.
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We show that f violates revenue equivalence by proving the existence of types s and t

such that distTf
(s, t) + distTf

(t, s) > 0. In fact, this inequality holds for any s, t ∈ [x1, x2].

Let s, t ∈ [x1, x2], s < t. Since `ts = 0, we get distTf
(t, s) ≤ 0. If distTf

(t, s) was in fact

smaller than 0, there would exist a path p of negative length from t to s. Such a path must

contain at least one (t′, s′)-arc with x2 ≤ s′ < t′. In this case, the path must contain a

sub-path from t to t′. Splitting forward arcs of this sub-path at s′ (if necessary) yields a non-

negative sub-cycle through s′ and t′. The split does not increase the path length. Removing

the sub-cycle can only reduce the length of p. This way, all negative arcs can be removed

from p without increasing its length. That contradicts the length of p being negative. Hence,

distTf
(t, s) = 0.

We claim that distTf
(s, t) = t−s > 0. To that end, note that any (s, t)-path that contains

a backward arc, can be turned into a path of smaller or equal length without any backward

arcs as follows. Suppose that backward arc (t′, s′) is contained in p, s′ < t′. Because p is

an (s, t)-path for t > s, it has to contain forward arcs that completely “pass” the (t′, s′)-

arc in forward direction. Splitting all forward arcs passing s′ at s′ and splitting all forward

arcs passing t′ at t′ does not increase p’s length. Again, this splitting procedure results in

a sub-cycle consisting of the (t′, s′)-arc and a forward path from s′ to t′. This sub-cycle has

non-negative length and can be removed without increasing the length of p. Hence, we can

without loss of generality restrict our attention to (s, t)-paths that contain only forward arcs.

Such paths can only contain nodes from [s, t] ⊆ [x1, x2]. Therefore, the length of all such

paths is equal to f(t)− f(s) = t− s > 0, which proves the claim. ¤

Corollary 4 For the demand rationing problem, the allocation rule f with fi(t) = min{ti,
ti/

∑n
j=1 tj} for i = 1, . . . , n is implementable, but does not satisfy revenue equivalence.

Proof. For any agent i, and any t−i, let d−i =
∑

j 6=i tj be the total demand of the other

agents. If d−i > 1, fi satisfies the assumptions of case (i) of Theorem 6. If d−i < 1, f satisfies

the assumptions of Theorem 7 for x1 = 0 and x2 = 1−d−i. Implementability follows from the

mentioned theorems. However revenue equivalence does not hold according to Theorem 7.

¤
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5 Other Notions of Incentive Compatibility

Our results can be extended to other notions of incentive compatibility. We briefly discuss

two of them.

Ex-post incentive compatibility with externalities. The notation used throughout

this paper can be used to model allocational externalities in auction settings, as allocations

of items to other agents can be described by an extended set of outcomes A. In order to

account for informational externalities in the case of ex-post incentive compatibility, the

valuation function of agent i is also a function of the true types of the other agents. An

ex-post equilibrium is a Nash-equilibrium where every agent knows the types of all other

agents. Formally, truth-telling is an ex-post equilibrium for allocation rule f and payment

scheme π if for all agents i, all types ti and si of i and all types t−i of the other agents

vi(f(ti, t−i), ti, t−i)− π(ti, t−i) ≥ vi(f(si, t−i), ti, t−i)− π(si, t−i).

Again, incentive compatible payment schemes can be associated with node potentials in

the allocation graphs. The arc lengths in Gf have to be defined as follows:

`ab = inf
ti∈f−1(b)

(vi(b, ti, t−i)− vi(a, ti, t−i)).

We get the following result.

Theorem 8 An ex-post implementable allocation rule f satisfies revenue equivalence if and

only if in every allocation graph Gf , for every two allocations a, b, distGf
(a, b)+distGf

(b, a) =

0.

Bayes-Nash incentive compatibility. Müller, Perea, and Wolf (2007) already used type

graphs for the case of Bayes-Nash incentive compatible allocation rules. In this setting, the

(multi-dimensional) types of all agents are independently distributed. The notation used

by Müller et al. accounts for allocational as well as informational externalities, that is, the

valuation of an agent depends on the chosen allocation, the type of the agent and the types

of all other agents.

An allocation rule f is said to be Bayes-Nash incentive compatible if there is a payment
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scheme π such that for all agents i and all types ti and si of i the following is true

E−i[vi(f(ti, t−i), ti, t−i)− πi(ti, t−i)] ≥ E−i[vi(f(si, t−i), ti, t−i)− πi(si, t−i)],

where the expected value is taken with respect to the types of all agents other than i. That

is, truth-telling of every agent is a Nash equilibrium when agents try to maximize expected

utilities. We use the type graph with arc lengths defined as follows:

`siti = E−i[vi(f(ti, t−i), ti, t−i)− vi(f(si, t−i), ti, t−i)].

Note that by taking expectations, there is a single type graph for every agent. Here, we

analyze expected payment schemes E−i(πi(·, t−i)), and an allocation rule satisfies revenue

equivalence if expected payments are unique up to a constant.

Theorem 9 A Bayes-Nash implementable allocation rule f satisfies revenue equivalence with

respect to expected payments if and only if in every type graph Tf for all types s and t of this

agent, distTf
(s, t) + distTf

(t, s) = 0.

Incentive compatibility, monotonicity and potential functions. In settings with

multi-dimensional type spaces, finite A, and valuation functions that are linear in types, it

was established by several authors that implementability, and thus the non-negative cycle

property, is sometimes implied by a monotonicity property, termed weak monotonicity in

Bikhchandani, Chatterjee, Lavi, Mu’alem, Nisan, and Sen (2006). For dominant strategy

incentive compatibility see Bikhchandani et al., Gui, Müller, and Vohra (2004), Saks and Yu

(2005), and Monderer (2007), for Bayes-Nash incentive compatibility see Müller, Perea, and

Wolf (2007). In these settings implementability implies that the allocation rule f , viewed

from a single agent perspective as a vector field that maps multi-dimensional types on lotteries

over outcomes, has a potential function F . One can easily verify that this property has the

following interpretation on type graphs: the length of a shortest path in Tf from some type s

to some type t is upper bounded by a path integral of the vector field f , or equivalently F (t)−
F (s). From this it follows easily that distTf

(s, t) = −distTf
(t, s), i.e. revenue equivalence

holds. In particular, distTf
(s, t) = F (t)−F (s) for any potential function F . This connection

between implementability, potential functions and revenue equivalence is also established in

Jehiel and Moldovanu (2001) and Krishna and Maenner (2001).
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