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Abstract

We construct a model of evolutionary or reinforcement learning, where boundedly ra-
tional agents choose from a few simple rules for price prediction, such as naive, adaptive
or trend following expectations. Agents update their active rule by evolutionary selec-
tion based upon forecasting errors. Simulations show that after some initial learning
phase, coordination on a common rule occurs. Which rule survives evolutionary selec-
tion depends on the initial conditions, particularly on the price pattern in the first few
periods and the initial shares of agents attached to the rules. Consequently, evolutionary
learning exhibits path dependence and different patterns of realized prices are generated,
explaining the results of the recent experiment on expectations formation in a standard
asset pricing setting (Hommes, Sonnemans, Tuinstra and Van de Velden, 2005). Tuning
the parameters, these patterns can be made both qualitatively and quantitatively close to
those observed in the experiments. We thus provide an explanation of the experimental
findings using a low dimensional nonlinear deterministic model with few parameters.
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1 Introduction

In social systems today’s individual decisions crucially depend upon expectations or beliefs
about future developments. Think for example of the stock market, where an investor buys
(sells) stocks today when she expects stock prices to rise (fall) in the future. Expectations
affect individual behavior and the realized market outcome (e.g. prices and traded quantities)
is an aggregation of individual behavior. A market is an expectations feedback system: market
history shapes individual expectations which, in turn, determine current aggregate market
behavior and so on. But how do individuals actually form market expectations, and what is
the aggregate outcome of the interaction of individual market forecasts?

Traditional economic theory assumes that all individuals have rational expectations (Muth,
1961; Lucas and Prescott, 1971). In a market model, this means that forecasts coincide
with mathematical expectations, conditioned upon available information. In a rational world
individual expectations coincide, on average, with market realizations, and markets are efficient
with prices fully reflecting economic fundamentals (Fama, 1970). In the traditional view,
there is no room for market psychology and “irrational” herding behavior. An important
underpinning of the rational approach comes from an early evolutionary argument made by
Alchian (1950) and Friedman (1953), that “irrational” traders will not survive competition
and will be driven out of the market by rational traders, who will trade against them and earn
higher profits.

However, following Simon (1957), many economists argue that rationality imposes un-
realistically strong informational and computational requirements upon individual behavior
and it is more reasonable to model individuals as boundedly rational, using simple rules of
thumb in decision making. Laboratory experiments indeed have shown that individual deci-
sions under uncertainty are at odds with perfectly rational behavior, and can be much better
described by simple heuristics, which sometimes may lead to persistent biases (Tversky and
Kahneman, 1974; Kahneman, 2003; Camerer and Fehr, 2006). Models of bounded rational-
ity have also been applied to forecasting behavior, and several adaptive learning algorithms
have been proposed to describe market expectations. For example, Sargent (1993) and Evans
and Honkapohja (2001) advocate the use of adaptive learning in modeling expectations and
decision making in macroeconomics, while Arthur (1991) and Erev and Roth (1998) propose
reinforcement learning as an explanation of average behavior in a number of experiments in a
game-theoretical setting. It is interesting that in some models (Bray and Savin, 1986) adap-
tive learning enforces convergence to rational expectations, while in others (Bullard, 1994)
learning may not converge at all but instead lead to excess volatility and persistent deviations
from rational equilibrium similar to real markets (Shiller, 1981; De Bondt and Thaler, 1989).
Recently, models with heterogeneous expectations and evolutionary selection among the fore-
casting rules have been proposed, e.g. Brock and Hommes (1997) and ?, see Hommes (2006)
for an extensive overview.

Laboratory experiments with human subjects and controlled economic fundamentals are
well suited to study how individuals form expectations and how their interaction shapes ag-
gregate market behavior (Marimon, Spear, and Sunder, 1993; Peterson, 1993). But the results
from laboratory experiments are mixed. Early experiments, with various market designs such
as double auction trading, show convergence to equilibrium (Smith, 1962), while more recent
asset pricing experiments exhibit deviations from equilibrium with persistent bubbles and
crashes (Smith, Suchanek, and Williams, 1988; Hommes, Sonnemans, Tuinstra, and Velden,
2005). A clear explanation of these different market phenomena is still lacking (Duffy, 2008).
It is particularly challenging to provide a general theory of learning which is able to explain
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both the possibilities of convergence and persistent deviations from equilibrium.
In recent learning to forecast experiments, described at length in Hommes, Sonnemans, Tu-

instra, and Velden (2005), three qualitatively different aggregate outcomes have been observed
in the same experimental setting. In a stationary environment participants, for 50 periods,
had to predict the price of a risky asset (say a stock) having knowledge of the fundamental
parameters (mean dividend and interest rate) and previous price realizations, but without
knowing the forecasts of others. If all agents would behave rationally or learn to behave ra-
tionally, the market price would quickly converge to a constant fundamental value pf = 60.
While in some groups in the laboratory price convergence did occur, in other groups prices
persistently fluctuate (see Fig. 2, upper parts of different panels). Another striking finding
in the experiments is that in all groups individuals were able to coordinate on a common
predictor (see Fig. 2, lower parts of different panels). The main purpose of this paper is to
present a simple model based on evolutionary selection of simple heuristics explaining how
coordination of individual forecasts can emerge and, ultimately, enforce the different aggregate
market outcomes. Although our model is very simple it fits the experimental data surprisingly
well (see e.g Fig. 11).

The paper is organized as follows. In Section 2 we review the findings of the labora-
tory experiment and we look at individual forecasting rules which will form the basis of our
evolutionary model. Section 3 is devoted to the analysis of implied price dynamics under
homogeneous forecasting rules which were identified in the experiment. A learning model
based on evolutionary selection between simple forecasting heuristics is presented, analyzed
and simulated in Section 4. Finally, Section 5 concludes.

2 Learning to Forecast Experiments

In this section we discuss the laboratory experiments. Subsection 2.1 recalls the experimental
design, Subsection 2.2 focusses on aggregate price behaviour, while Subsection 2.3 discusses
individual prediction rules.

2.1 Experimental Design

A number of sessions of a computerized learning to forecast experiment in the CREED labora-
tory at the University of Amsterdam have been presented in Hommes, Sonnemans, Tuinstra,
and Velden (2005), henceforth HSTV. In each session human subjects had to predict the price
of an asset for 51 periods and have been rewarded for the accuracy of their predictions. Fig. 2
shows the result of the experiment for six different groups. The reader can immediately rec-
ognize two striking results of the experiment: different qualitative patterns in aggregate price
behavior and high coordination of individual forecasts, even though individuals do not know
the forecasts of others. Before starting to develop an explanation for these findings, we briefly
describe the experimental design.

Each market consists of six participants, who were told that they are advisors to a pension
fund and that this pension fund can invest money either in a risk-free or in a risky asset.
In each period the risk-free asset pays a fixed interest rate r(= 0.05), while the risky asset
pays stochastic dividends, independently identically distributed (IID), with mean ȳ(= 3).
Trading in the risky asset had been computerized, using a demand schedule derived from
mean-variance maximization, given the subject’s individual forecast. Hence, subject’s only
task in every period was to give a two period ahead point prediction for the price of the
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risky asset, and their earnings were inversely related to their prediction errors. An advantage
of this approach is that it provides clean data on expectations, which can be used to test
e.g. the rational expectations hypothesis or adaptive learning behavior models, see e.g. the
discussion in Duffy (2008). Participants knew that the actual price realization of the risky
asset is determined by market equilibrium equation on the basis of the investment strategies
of the pension fund. The exact functional form of the strategies and the equilibrium equation
were unknown to the participants. However, they were informed that the higher their own
forecast is, the larger will be the demand for the risky asset. Stated differently, they knew
that their was positive feedback from individual price forecasts to the realized market price.
They were also aware that, ultimately, the demand also depends on the forecasts of other
participants, but they did not know their number nor their identity.

More formally the session of the experiment can be presented as follows. At the beginning
of every period t = 0, . . . , 50 every participant i = 1, . . . , 6 provides a forecast for the price of
the risky asset in the next period, pt+1, given the available information. An individual forecast,
pe

i,t+1, can be any number (with two decimals) between 0 and 100. The information set Ii,t,
at date t, consists of past prices, past own predictions1, past earnings and the fundamental
parameters (the risk-free interest rate (r = 0.05) and the dividend mean (ȳ)):

Ii,t = {p0, . . . , pt−1; p
e
i,0, . . . , p

e
i,t; ei,0, . . . , ei,t−1; r, ȳ} . (2.1)

Note that, since the price pt is unknown at the beginning of period t, it is not included into
the information set. The same holds for the earnings ei,t in period t, which will depend on
the price pt. Notice also that participants can, in principle, compute the rational fundamental
price of the risky asset, pf = ȳ/r = 60, given by the discounted sum of the expected future
dividend stream.

The market clearing price was computed according to a standard mean-variance asset
pricing model (Campbell, Lo, and MacKinlay, 1997; Brock and Hommes, 1998):

pt =
1

1 + r

(
(1− nt) p̄e

t+1 + nt p
f + ȳ + εt

)
. (2.2)

The market price at date t depends on the average of individual predictions, p̄e
t+1 =

∑
i p

e
i,t+1

/
6,

and the fundamental forecast pf given by small fraction nt of “robot” traders. It is also
affected by a small stochastic term εt, representing e.g. demand or supply shocks. The robot
traders were introduced in the experiment as a far from equilibrium stabilizing force to prevent
the occurrence of large bubbles. The fraction of robot traders increased in response to the
deviations of the last price from its fundamental level:

nt = 1− exp
(
− 1

200

∣∣pt−1 − pf
∣∣
)

. (2.3)

This mechanism reflects the feature that in real markets there is more agreement about over- or
undervaluation of an asset when the price deviation from the fundamental level is large2.

At the end of the period every participant was informed about the realized price pt. The
earnings were determined by a quadratic scoring rule

ei,t = max
(
1300− 1300

49
(pt − pe

i,t)
2, 0

)
. (2.4)

1Past prices and predictions were visualized on the computer screen both in a graph and a table.
2In the experiments the fraction of robot trader became never larger than nt ≤ 0.2x. Recently, ? ran

experiments without robot traders, and observed long lasting bubbles.
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Figure 1: Price evolution and prediction errors (inner frame) under Rational Fun-
damental Expectations. When every participant predicts pf the realized price (red) fluctuates
around fundamental level. Small, non-systematic prediction errors (blue) are due to stochastic shocks.

There were seven sessions of the experiment, each with the same realizations of the stochastic
shocks εt drawn independently from a normal distribution with mean 0 and standard deviation
0.5. The same stochastic process {εt}50

t=0 will be used in our simulations.
Fig. 1 shows the simulation of realized prices, which would occur when all individuals

use the rational, fundamental forecasting rule, pe
i,t+1 = pf , for all i and t. Under rational

expectations the realized price pt = εt/(1 + r) randomly fluctuates around the fundamental
level pf = ȳ/r = 60 with small amplitude. In the experiment, one can not expect rational
behavior at the outset, but aggregate prices might converge to their fundamental value through
individual learning.

2.2 Aggregate price behavior

Fig. 2 shows time series of prices, individual predictions and forecasting errors in six different
sessions of the experiment. A striking feature of aggregate price behavior is that three dif-
ferent qualitative patterns emerge. The prices in groups 2 and 5 converge slowly and almost
monotonically to the fundamental price level. In groups 1 and 6 persistent oscillations are
observed during the entire experiment. In groups 4 and 7 prices are also fluctuating but their
amplitude is decreasing.3

A second striking result concerns individual predictions. In all groups participants were
able to coordinate their forecasting activity. The forecasts, as shown in the lower parts of the
panels in Fig. 2, are dispersed in the first periods but then become very close to each other
in all groups.4 The coordination of individual forecasts has been achieved in the absence of

3Price dynamics in group 3 (not shown) is more difficult to classify. Similar to group 1 it started with
moderate oscillations, then stabilized at a level below the fundamental, suddenly falling in period t = 40,
probably due to a typing error of one of the participants.

4To quantify the degree of coordination, HSTV analyze the average prediction error over time and across
the six participants for each group. It turns out that this error is explained more by the “common” prediction
error (measured as the deviation of the average prediction from the realized price), than by the dispersion
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Figure 2: Results of the forecasting experiment in different sessions. Upper panels
show the groups with monotonic convergence, middle panels show the groups with constant oscilla-
tions, lower panels show the groups with damping oscillations. For every panel upper part shows
observed prices (red) in comparison with fundamental level (black); lower part shows individual
predictions; and inner frame shows individual forecasting errors.

between individual predictions. Even in the groups 4 and 7 with the lowest coordination, the dispersion
between individual predictions accounts only for 29% and 34%, respectively, of the average total prediction
error.
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any communication between subjects and knowledge of past and present predictions of other
participants.

To summarize, the HSTV learning to forecast experiment we have the following:

- participants were unable to learn the rational, fundamental forecasting rule; only in
some cases individual predictions moved (slowly) in the direction of the fundamental
price towards the end of the experiment;

- three different price patterns were observed: (i) slow, (almost) monotonic convergence,
(ii) persistent price oscillations with almost constant amplitude, and (iii) large initial
oscillations dampening slowly towards the end of the experiment;

- already after a short transient, participants were able to coordinate their forecasting
activity, submitting in every period similar forecasts.

The purpose of this paper is to explain these findings simultaneously by a simple model of
individual learning behavior.

2.3 Individual Forecasting Rules

Our model will be based upon some features of individual forecasting behavior detected in the
experiment. We therefor first discuss these behavioral aspects.

Structure of the forecasting errors of the participants (see small frames in Fig. 2) gives
some mixed evidence concerning the abilities of agents to learn from the past mistakes. Only
in groups 2 and 5 with monotonic convergence the forecasting errors decreased to the values
less than 1, which is close to the errors under the rational expectations benchmark. Errors in
the oscillating groups 1 and 6 persistently decreased and increased but remained within the
same range during all the experiment. Finally, relatively small initial errors in groups 4 and 7
were followed by huge errors in the middle of the experiment, which then dropped. Therefore,
neither rational expectation theory, nor any learning theory implying that a participant always
successfully learns from own past mistakes is not applicable to this experiment.

If the behavior of participants is not consistent with the rational expectations, which other
models of expectation formation can be used? And would it be correct to conclude that agents
in such groups as 1 or 6 did not learn at all? To answer these questions we consider a few
examples of the time evolution of individual predictions. In every panel of Fig. 3 the dynamics
of forecasts submitted by a certain participant is shown against the price. The timing in the
figure is important. For every time t on the horizontal axes we show price pt against the
individual forecast pe

i,t+2 of participant i. Notice that this forecast is given immediately after
the corresponding price is announced, so that the dependence of forecasts on the information
set (2.1) can be seen clearly.

In group 2 the subject 5 tried to extrapolate price changes in the beginning of the experi-
ment (see the upper left panel). However, starting from period t = 6 this participant always
used simple naive rule pe

t+1 = pt−1. Subject 1 from the same group used more “smooth”, adap-
tive strategy in forecasting, always predicting a price inside an interval between the previous
forecast and previous price realization. In oscillating group 6 the subject 1 used the naive rule
in the first half of the experiment (see the upper right panel). Such rule, however, leads to
the prediction errors, especially during the periods of trend. Consequently, in the middle of
the experiment the prediction strategy has been changed. Now the participant extrapolated
trend in prices, switching back to the naive rule at the periods of expected trend reversal.
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Figure 3: Switching of the experiment’s participants between simple rules. For any
point on the abscissa, representing time t, the price pt (red) and the forecast pe

i,t+2 (blue) are shown.
This forecast was made immediately after the announcement of the price.

Participant 3 from another oscillating group 1 made the fundamental prediction pe
t+1 = pf in

the first four periods (see the lower left panel). Being, probably, unsatisfied with the rewards
from this strategy (which is rational only in the fully rational world), the participant started to
extrapolate observable price trends. Such prediction rule often overshoots at the moments of
the trend reversal implying low earnings. Towards the end of the experiment the participant
learned to anticipate the trend changes to some extent. Finally, in group 7 with damping
oscillations the subject 3 started with a strong trend extrapolation (see the lower right panel).
Despite very low earnings on the turning points of trend, the participant sticked to this rule
until the last 4 periods, when something similar to the adaptive strategy was used.

The availability of the participants’ predictions allowed HSTV to estimate the individual
forecasting rules directly. The estimation was performed for the predictions over the last 40
periods and many intuitive rules with simple interpretation came up from the estimation.
Participants from converging groups often adapted their last forecast in the direction of the
last price. This prediction strategy is known as adaptive expectations :

pe
t+1 = w pt−1 + (1− w) pe

t = pe
t + w (pt−1 − pe

t) , (2.5)

with weight 0 ≤ w ≤ 1. Note that at the moment when forecasts of price pt+1 are submitted,
price pt is still unknown (see Eq. 2.2) and the last observed price is pt−1. At the same time,
the last own forecast pe

t is known when forecasting pt+1. Two rules shown in the upper left
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panel of Fig. 3 are examples of such prediction strategy with w = 1 (for naive expectations of
subject 5) and w ' 0.25 for subject 1.

Often the predictions were well approximated by the trend-following rule:

pe
t+1 = pt−1 + γ (pt−1 − pt−2) , (2.6)

where γ > 0. Under this rule the participant believes that the price is determined by the last
observation adjusted in the direction of the last price change. Extrapolation coefficient γ gives
the strength of the adjustment. The estimates of this coefficient ranged from relatively small
values as γ = 0.4 to quite high values as γ = 1.3.

Finally, some participants used more sophisticated rules extrapolating the last price change
from a certain reference point describing the “long-run” level of the price process. For instance,
for the third participant in group 1 the estimation suggests the following anchoring and ad-
justment rule:

pe
t+1 = 0.5 (pf + pt−1) + (pt−1 − pt−2) . (2.7)

The reference point or anchor for this rule is defined as an equally weighted average between
the last observed price and the fundamental price. Since in the experiment subjects were
not provided explicitly with the fundamental price, it can be argued that rule (2.7) was not
feasible.5 Therefore, in our simulations we will use analogous rule replacing the fundamental
price pf in (2.7) by a proxy given by the observed sample average of past prices pav

t−1 =
∑t−1

j=0 pj.
The forecasting strategy

pe
t+1 = 0.5 (pav

t−1 + pt−1) + (pt−1 − pt−2) . (2.8)

is the anchoring and adjustment rule with learned anchor.
Two important observations are suggested by the above analysis. First, the subjects in the

experiment tend to base their predictions on the past observations, using relatively simple and
intuitive rules of thumb, such as naive rule or trend extrapolation. Following seminal paper of
Tversky and Kahneman (1974) we will use the term “heuristics” for these simple prediction
rules. Second, it seems that participants try to learn from the past errors, and their learning
behavior takes form of a switching between different heuristics (and not, e.g. better estimation
of parameters of a particular heuristic). Moreover, this learning not necessarily leads to the
improvement in the forecasting performance of the agents. These two ideas, simplicity of the
forecasting strategy and (imperfect) evolutionary switching on seemingly more successful rules
will form the basis of our learning model in Section 4.

The trend-following and anchoring and adjustment heuristics are examples of the extrapo-
lation expectation formation as defined in Williams (1987). Such expectational schemes often
come up from the forecasting experiments. For instance, Hey (1994) estimates the individ-
ual prediction rules in the experiment with exogenously given process and found that many
subjects use extrapolation expectations. In the sessions with stable underlying process, the
trend extrapolation started with the past price level, so that the trend-following heuristic
(2.6) was employed. Instead, for the unstable processes the extrapolation started with the
long-run average as in the anchoring and adjustment heuristic (2.7). Such behavior of the
agents seems quite reasonable, and the similar tendency was observed in the HSTV experi-
ments: trend-following behavior prevailed in the groups with converging price (both oscillating

5It is remarkable, however, that the rule (2.7) came from the predictions of the participant who did submit
the fundamental price forecast in the first periods of the experiment, see the lower left panel of Fig. 3.
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and not), while the anchoring and adjustment heuristic often used in the groups with con-
stant oscillations. However, in the HSTV experiment, the price process was endogenous, so
that the stability/instability of the underlying process was the emerging property. In such
circumstances development of the trend-following heuristics in one groups and the anchoring
and adjustment heuristics in other groups is non-trivial and unexpected result deserving some
explanation.

3 Price Behavior under Homogeneous Expectations

Having a set of estimated individual forecasting rules, one can ask whether these homogeneous
expectation rules can generate the qualitatively different patterns observed in the experiments.
The experimental evidence about forecasting behavior suggests strong coordination on a com-
mon prediction rule. One can therefore suspect that this common rule (which, for whatever
reason, turned out to be different in different groups) generates the resulting pattern. In this
Section we investigate this conjecture by investigating price fluctuations under homogeneous
expectations in the forecasting experiment.

The model with homogeneous expectations consists of the following equations:




pe
t+1 = f(pt−1, pt−2, p

e
t)

nt = 1− exp
(
− 1

200

∣∣pt−1 − pf
∣∣
)

pt =
1

1 + r

(
(1− nt)p

e
t+1 + nt p

f + ȳ + εt

)
.

(3.1)

The first equation describes the forecasting behavior with a simple forecasting heuristic f ,
which can be either adaptive (in which case it does not depend on pt−2) or extrapolative
(in which case it does not depend on pe

t ). The second equation gives the evolution of the
share of “robot” traders, identical to the rule used in the experiment. The third equation
is an equilibrium condition from the pricing model used in the experiment (cf. (2.2)), with
the same stochastic component. We concentrate on an analysis of the so-called deterministic
skeleton model of (3.1), setting all stochastic term εt to zero, and then present stochastic
simulations to investigate how the noise affects price fluctuations. In terms of deviations from
the fundamental price the model can be rewritten as

pt − pf =
1

1 + r

(
(1− nt)p

e
t+1 + nt p

f − pf
)

=
1− nt

1 + r

(
pe

t+1 − pf
)
, (3.2)

Fig. 4 shows example of simulated dynamics for different adaptive, trend-following and an-
choring and adjustment rules.

3.1 Adaptive Heuristic

Assume that all participants use the same adaptive heuristic pe
t+1 = w pt−1 +(1−w) pe

t in their
forecasting activity. Notice that naive expectations is obtained as a special case, for w = 1.
The following result describes the behavior of system (3.1) in this case.

Proposition 3.1. Consider the deterministic skeleton of (3.1) with the adaptive prediction
rule (2.5). This system has a unique steady-state with price equal to fundamental price, i.e.
p∗ = pf . The steady-state is globally stable for 0 < w ≤ 1, with a real eigenvalue λ, 0 < λ < 1,
so that the convergence is monotonic.
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Figure 4: Model (3.1) with homogeneous expectations. The trajectories of the determinis-
tic skeleton (the curves) and stochastic simulations with noise (triangles and squares) are shown for
different forecasting heuristics. Upper left panel: Dynamics with the adaptive forecast converge
to the fundamental steady-state. Upper right panel: Dynamics with weak trend extrapolation
converges to the fundamental steady-state. Convergence can be either monotonic (for small extrap-
olation coefficients), or oscillating (for high coefficients). Middle left panel: Dynamics with the
strong trend extrapolation oscillates (slowly) around the fundamental steady-state and diverges to a
quasi-periodic cycle. Middle right panel: Dynamics with the anchoring and adjustment heuristic
oscillates around the steady-state and (ultimately) converges. The same heuristic with learned an-
chor generates small amplitude oscillations around its current long-run estimation, which converges
extremely slowly and almost monotonically.

Proof. See Appendix A.

The dynamics with the adaptive forecasting heuristic is illustrated in the upper left panel
of Fig. 4 for two different values of the weight w assigned to the past price. When the weight
is relatively low, e.g. w = 0.25 as for participant 1 in group 2, the error correction is small,
and the price only converges slowly to the fundamental steady-state. In the case of larger
weight, e.g. w = 0.65 as estimated for subject 4 of group 5, convergence is somewhat faster.
In the case of adaptive expectations, the role of stochastic shocks is minimal. Shocks slightly
perturb the system, but the price trajectory (shown by triangles and squares) still exhibits
almost monotonic convergence. Adaptive expectations thus seems a good explanation of the
price pattern observed in the experimental groups 2 and 5.
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3.2 Extrapolative Rules

Consider now the dynamics with homogeneous extrapolative expectations. For the sake of
generality we write the extrapolative forecasting rules as follows:

pe
t+1 = α + β1 pt−1 + β2 pt−2 . (3.3)

This extrapolative rule contains both the trendfollowing and the anchor and adjustment heuris-
tic as special cases. Indeed, setting α = 0, β1 = 1+γ and β2 = −γ, the trend-following heuris-
tics (2.6) is obtained, while α = pf/2, β1 = 1.5 and β2 = −1 correspond to the anchoring and
adjustment heuristic (2.7).

The rules for which the forecasts are not consistent with realizations will be disregarded
by the participants, sooner or later. Therefore, both in formal analysis and in simulations we
confine our attention to the rules satisfying the following definition.

Definition 3.1. The extrapolative rule (3.3) is called consistent in the steady-state p∗, if it
predicts p∗ in this steady-state.

In other words, consistent rules give unbiased predictions at the steady-state. Obviously,
the extrapolative rule is consistent in p∗ if and only if α = (1− β1 − β2)p

∗. For instance, the
trend-following heuristics are consistent in the steady-state with any price, while the anchoring
and adjustment heuristic (2.7) is consistent only when p∗ = pf .

The following result describes all possible steady-states of the asset-pricing dynamics with
consistent extrapolative heuristic, as well as their local stability.

Proposition 3.2. Consider the dynamics of the deterministic skeleton of (3.1) with extrap-
olative prediction rule (3.3).

There exists a unique steady-state in which the rule is consistent. In this steady-state,
p∗ = pf and n∗ = 0. Such “fundamental” steady-state is locally stable if the following three
conditions are met

β2 < (1 + r)− β1 , β2 < (1 + r) + β1 , β2 > −(1 + r) . (3.4)

The steady-state generically exhibits pitch-fork, period-doubling or Neimark-Sacker bifurca-
tion, if the first, second or third inequality in (3.4) turns to equality, respectively. The dynamics
is oscillating when β2

1 + 4β2(1 + r) < 0.

Proof. See Appendix B.

Dynamical system (3.1) with homogeneous extrapolative expectations (3.3) may have mul-
tiple steady-states. Proposition 3.2 asserts, however, that the extrapolative rule is consistent
in only one of them, with fundamental price pf . The stability conditions (3.4) are illustrated
in Fig. 5 in the parameter space (β1, β2). The two filled regions contain all the rules for which
the extrapolative heuristic (3.3) generates stable dynamics. For the pairs lying below the
parabolic curve, the dynamics are oscillating. The loss of stability happens when the pair
(β1, β2) leaves the stability area. The dynamics immediately after the bifurcation are deter-
mined by the type of the bifurcation through which the stability is lost. For instance, after
the pitchfork bifurcation the price diverges from the fundamental level but converges to one
of two new steady-states. The Neimark-Sacker bifurcation implies an existence of the stable,
quasi-periodic dynamics right after the bifurcation.6

6To be precise, the stable quasi-periodic dynamics arises after the supercritical Neimark-Sacker bifurcation.
This is the case for our system, as simulations suggest.
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Figure 5: Stability of the fundamental steady-state in an asset-pricing model with
homogeneous extrapolative expectations. The dynamics (3.1) with expectations (3.3) con-
verges to the steady-state if the coefficient pair (β1, β2) belongs to the union of light and dark grey
regions. The dynamics oscillates if the pair lies below the parabolic curve.

Three points shown in Fig. 5 correspond to the extrapolative forecasting rules estimated in
the experiment. Two trend-following heuristic (2.6) with different values of the extrapolation
coefficient γ are labeled as γ = 0.4 and γ = 1.3. The anchoring and adjustment heuristic (2.7)
is labeled as AAA.

Trend-following heuristic. These results imply that the price can converge as well as
diverge under the trend-following rule pe

t+1 = pt−1 + γ (pt−1 − pt−2). To distinguish between
these two cases we will use the terms weak and strong trend extrapolation, respectively.

The dynamics with the weak trend extrapolation is illustrated in the upper right panel
of Fig. 4. When extrapolative coefficient is sufficiently small, the convergence is monotone.
For large γ convergence becomes oscillatory, as in case γ = 0.99. Notice that the dynamics
do not reminiscent the damping oscillations observed in the experiment. Also the estimation
of individual strategies did not reveal any trend-following rule which would generate such
converging oscillations. The case of the strong trend extrapolation is illustrated in the middle
panels of Fig. 4. The dynamics diverge from the steady state through oscillations of increasing
amplitude (left panel), and settle down to a quasi-periodic attractor shown in the right panel
in coordinates (pt, pt−1). The speed of divergence and amplitude of the long run fluctuations
increase with γ, as shown by comparison of cases with γ = 1.1 and γ = 1.3.

Anchoring and adjustment heuristic. Applying Proposition 3.2 to the anchoring and
adjustment rule (2.7) we conclude that the price dynamics is converging. Since parameters of
such rule are very close to the Neimark-Sacker bifurcation, the convergence to the fundamental
steady-state is oscillatory and slow. Indeed, as the lower left panel of Fig. 4 shows, after first 50
periods the price still oscillates with relatively large amplitude. The dynamics of the anchoring
and adjustment rule with learned anchor (2.8) is shown in the same panel. Notice that the
dynamics with such heuristic is described by a non-autonomous system, whose formal analysis
is complicated. Simulations with rule (2.8) converge to the same fundamental steady-state
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as with rule (2.7), but much slower and with less pronounced oscillations. In the presence of
noise, the oscillations of both time series look qualitatively similar to the dynamics of groups
1 and 6 of the experiment.

Finally, in the lower right panel of Fig. 4 we show the attractor for the anchoring and
adjustment heuristic pe

t+1 = 0.5(pf + pt−1) + 1.1(pt−1 − pt−2), which differs from our standard
representation (2.7) by stronger extrapolation of the past price trend. In this case the stability
is lost through the Neimark-Sacker bifurcation. The dynamics converge to the 8-cycle when
the noise is not present, and it is quasi-periodic otherwise.

In this Section we analyzed the dynamics underlying the HSTV experiment in case, when
a single heuristic is used. Even if the patterns of monotonic convergence, constant oscillations
and also damping oscillations can be reproduced, we believe that the model with homogeneous
forecasting rule (3.1) gives unsatisfactory explanation for the experiment. First, the model has
difficulties in reproducing some patterns. For example, the damping oscillations, which can
be generated only by the strong trend following rule, look hardly similar to the dynamics in
the groups 4 and 7. Second, on the conceptual level the explanation with homogeneous rules
would leave unanswered the question why different patterns self-emerged in the experiment.

Finally, the assumption of homogeneous forecasting rule is not as plausible as one may
think. Even if the HSTV experiment revealed a large degree of similarity between individual
forecasts in every period, it did not demonstrate a coordination on a common prediction rule.
In Fig. 6 we plot the coefficients of the estimated individual extrapolative rules on the stability
region.7 The dispersion of the forecasting rules is clear. Nevertheless, there are some important
tendencies. As one may expect the majority of the rules in the converging groups belong to
the region of monotonic convergence. In every of the groups with constant oscillations, there
are couple of rules lying very close to the locus of the Neimark-Sacker bifurcation. Finally,
the groups with damping oscillations are characterized by the presence of both stable and
unstable rules.

OLD TEXT FROM BEGINNING SECTION
We show that within the HSTV experimental setting (i) the adaptive heuristics would

translate into (almost) monotonic convergence of prices, (ii) different trend-following heuristics
would generate all three different patterns: monotonic convergence, constant oscillations and
damping oscillations, and (iii) the anchoring and adjustment heuristic would be consistent with
slowly damping oscillations. We will stress, however, some discrepancies between experiment
results and the model of homogeneous expectations and, at the end, will reject the model.

4 Model of Evolutionary Switching of Heuristics

In this Section we demonstrate that the learning process in the form of switching between
simple heuristics can explain different qualitative scenarios observed in the experiment. Before
describing a model, let us recall the most important “stylized facts” which we found during
the analysis of individual prediction strategies.

- participants tend to base their predictions on past observations, following simple rou-
tines;

- learning of people has a form of switching from one routine to another;

7Of course, in every group there were rules which cannot be represented by the extrapolative prediction
(3.3), e.g. adaptive heuristic.

14



-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-2 -1  0  1  2

Stability region and group 2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-2 -1  0  1  2

Stability region and group 5

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-2 -1  0  1  2

Stability region and group 1

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-2 -1  0  1  2

Stability region and group 6

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-2 -1  0  1  2

Stability region and group 4

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-2 -1  0  1  2

Stability region and group 7

Figure 6: Stability of a model with homogeneous extrapolative rules estimated in
the experiment. Upper panel: In both groups with converging price, all rules generate stable
monotonic dynamics. Middle panel: In both groups with oscillating price, there were two rules on
the stability border of the Neimark-Sacker bifurcation. Lower panel: In both groups with damping
oscillations, both stable and unstable rules were present.

- in every group, at every period of time, forecasts are very close to each other;

- some heterogeneity of the applied rules remains at every time period.
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The idea of the model is the following. Assume that there exists a pool of simple prediction
rules (e.g. adaptive or trend-following heuristics) commonly available to the participants of
the experiment. At every time period these heuristics deliver forecasts for the next period
price, and the current price is then computed. However, the impacts of heuristics in the
price determination are changing because of the participants’ learning. The better a heuristic
performed in the past, the higher impact it gets in the price determination. As a result, the
price and heuristics’ impacts co-evolve in a dynamical process feeding back each other.

It turns out that this process can lead to a coordination on the successful rule, implying
certain aggregate price pattern. However, the rule on which agents coordinate can depend
on the impacts of heuristics in the initial stage of the experiment and first price realizations.
These initial conditions were, indeed, casual in the experiment. It could happen, for example,
that in one session participants with adaptive expectations dominated during the first few
rounds, while in other session, say, the weak trend-followers had a majority. The initial prices,
in turn, depended on the forecasts made when participants had only few variables in the
information set.8

Below we show that this natural idea can be formalized as a model with necessary path-
dependence structure.

4.1 Formal Model

Let H denote a set of H heuristics which participants can use for the prediction of price. In
the beginning of time t any rule h ∈ H gives a two-period ahead point prediction for price
pt+1. The prediction is described by deterministic function fh of available information

pe
h,t+1 = fh(pt−1, pt−2, . . . ; p

e
h,t, p

e
h,t−1, . . . ) . (4.1)

The price in period t is computed on the base of these predictions as in (2.2):

pt =
1

1 + r

(
(1− nt) p̄e

t+1 + nt p
f + ȳ + εt

)
, (4.2)

where p̄e
t+1 is the average predicted price, r is the risk free interest rate, ȳ is the mean dividend,

and εt is a noise term. Finally, nt is the share of robot traders evolving as in the experiment
(cf. (2.3)) according to

nt = 1− exp
(
− 1

200

∣∣pt−1 − pf
∣∣
)

. (4.3)

In further simulations we use the same values of parameters and the same noise realization as
in the HSTV experiment. In particular, the fundamental price always predicted by robots is
set to pf = ȳ/r = 0.05/3 = 60.

An important difference with respect to the experiment is that in our evolutionary model,
the average p̄e

t+1 in (4.2) is taken with respect to the predictions given by different heuristics

p̄e
t+1 =

H∑

h=1

nh,t p
e
h,t+1 , (4.4)

8In the HSTV experiment the forecasts of the first period price were around 50, probably because it was
the middle point of the available range. Some participants started with fundamental prediction.
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with pe
h,t+1 defined in (4.1). The weight nh,t assigned to the heuristic h is called impact of this

heuristic. Impact is evolving in time and depends on the past relative performance of all H
heuristics, with more successful in the past heuristics attracting a higher number of followers.

Let the performance measure of a heuristic in a given period be the squared forecasting
error generated by this heuristic. This definition is consistent with the reward structure of the
experiment. Taking the weighted average of the past squared forecasting errors, we define

Uh,t−1 = −(
pt−1 − pe

h,t−1

)2
+ η Uh,t−2 (4.5)

as a performance measure of the heuristic h up to (and including) time t− 1. The parameter
0 ≤ η ≤ 1 represents the memory strength. It measures relative weight agents give to past
errors of heuristic h. When η = 0, only the performance of the last period plays a role in the
updating of the shares assigned to the different rules. For 0 < η ≤ 1 all past prediction errors
affect the heuristic’s performance.

Given the performance measure, the impact of rule h is updated according to a discrete
choice model with asynchronous updating

nh,t = δ nh,t−1 + (1− δ)
exp(β Uh,t−1)

Zt−1

, (4.6)

where Zt−1 =
∑H

h=1 exp(β Uh,t−1) is a normalization factor. There are two important param-
eters in (4.6). Parameter 0 ≤ δ ≤ 1 gives some persistence or inertia in the impact of rule h,
reflecting the fact that not all the participants are willing to update their rule in every period.
Hence, δ may be interpreted as the fraction of individuals who stick to their previous strategy.
In the extreme case δ = 1, the initial impacts of the rules never change, no matter what their
past performance was. If 0 < δ ≤ 1, in each period a fraction 1 − δ of participants update
their rule according to the well known the discrete choice model used for example in Brock
and Hommes (1997). The parameter β ≥ 0 represents the intensity of choice measuring how
sensitive individuals are to differences in strategy performance. The higher intensity of choice
β, the faster individuals will switch to more successful rules. In the extreme case β = 0, the
impacts in (4.6) move to an equal distribution independent of their past performance. At the
other extreme β = ∞, all agents who update their heuristic (i.e. fraction 1− δ) switch to the
most successful predictor.

Initialization. The model is initialized by providing (i) a sequence {p0, p1, . . . , pin} of initial
prices, long enough to allow any forecasting rule in H to generate its prediction, and (ii) an
initial distribution {nh,in}, 1 ≤ h ≤ H of heuristics’ impacts (summing to 1). Additionally,
the initial share of robot traders and initial performances of all H heuristics set to 0.

Given initial prices, the heuristic forecasts can be computed and, using the initial impacts
of the heuristics, the price pin+1 can be computed. In the next period, the forecasts of the
heuristics are updated, the fraction of robot traders is computed, while the same initial impacts
nh,in for the individual rules are used, since past performance is not well defined yet. The
price pin+2 is computed and the initialization stage is finished. Starting from this moment
the evolution according to (4.2) is well defined: first the performance measure in (4.5) is
updated, then, the new impacts of the heuristics are computed according to (4.6), and the
new prediction of the heuristics are obtained according to (4.1). Finally, the new average
forecast (4.4) and the new fraction of robot traders (4.3) are computed, and a new price is
determined by (4.2).
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4.1.1 Example with Four Heuristics

The evolutionary model can be simulated with an arbitrary set of heuristics.9 For the defini-
tiveness we will deal with a case when set H contains only four forecasting rules. These
rules, referred as ADA, WTR, STR and AAA are given in Table 1. In analysis we typically
substitute the LAA heuristic by the similar AAA heuristic.

ADA adaptive heuristic pe
1,t+1 = 0.65 pt−1 + 0.35 pe

1,t

WTR weak trend-following rule pe
2,t+1 = pt−1 + 0.4 (pt−1 − pt−2)

STR strong trend-following rule pe
3,t+1 = pt−1 + 1.3 (pt−1 − pt−2)

LAA
anchoring and adjustment

pe
4,t+1 = 0.5 (pav

t−1 + pt−1) + (pt−1 − pt−2)rule with learned anchor

AAA
anchoring and adjustment

pe
4,t+1 = 0.5 (pf + pt−1) + (pt−1 − pt−2)rule with fixed anchor

Table 1: Heuristics used in an evolutionary model. In simulations in Figs. 7–8 the first four
heuristics are used.

Our choice of these four rules is based on two considerations. First, in pool H we included
only those rules that were estimated in the experiment, slightly modifying them to obtain
consistent rules with simple behavior interpretation. Second, we include the rules which, in a
model with homogeneous expectations discussed in Section 3, generate qualitatively different
dynamics. It allows one to get some non-trivial interaction between different heuristics, so that
qualitatively different patterns can be obtained. Our experimentations with alternative choice
of heuristics suggest that the main result of simulations (possibility to reproduce qualitatively
different price patterns) will not change as soon as the second condition is satisfied.

The complete evolutionary model is given by the following system:





pe
1,t+1 = 0.65 pt−1 + 0.35 pe

1,t

pe
2,t+1 = pt−1 + 0.4 (pt−1 − pt−2)

pe
3,t+1 = pt−1 + 1.3 (pt−1 − pt−2)

pe
4,t+1 = 0.5 pav

t−1 + 1.5 pt−1 − pt−2

nt = 1− exp
(− 1

200

∣∣pt−1 − pf
∣∣)

Uh,t−1 = −(
pt−1 − pe

h,t−1

)2
+ η Uh,t−2 1 ≤ h ≤ 4

nh,t = δ nh,t−1 + (1− δ)
exp(β Uh,t−1)

Zt−1

1 ≤ h ≤ 4

pt =
1

1 + r

(
(1− nt)

(
n1,t p

e
1,t+1 + · · ·+ n4,t p

e
4,t+1

)
+ nt p

f + ȳ + εt

)
,

(4.7)

where as before pav
t−1 stands for the average of all the past prices up to pt−1. Notice that in

the deterministic skeleton the last equation can be rewritten in deviations as

pt − pf =
1− nt

1 + r

4∑

h=1

nh,t(p
e
h,t+1 − pf ) . (4.8)

9The software for simulations evexex is freely available at http://www.cafed.eu/evexex together with
brief documentation and configuration settings used for the simulations reported below.
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Experiment Simulations

Observed Prices Initial Prices Heuristics’ Initial Impacts Parameters
t = 0 t = 1 p0 p1 ADA WTR STR LAA β η δ

Group 2 48.94 51.21 49 50.5 0.25 0.35 0.15 0.25 0.4 0.7 0.9

Group 5 53.78 53.61 54 53.5 0.25 0.35 0.15 0.25 0.4 0.7 0.9

Group 1 53.05 56.45 51 54 0.15 0.35 0.35 0.15 0.4 0.7 0.9

Group 6 56.54 58.38 56 58 0.1 0.3 0.4 0.2 0.4 0.7 0.9

Group 4 43.72 47.33 42 47 0 0.1 0.9 0 0.4 0.7 0.9

Group 7 44.81 49.71 44 48 0 0.17 0.66 0.17 0.4 0.7 0.9

Table 2: Initial conditions for simulation of different qualitative scenarios reported in Figs. 7–8.
Initial prices in simulations are chosen close to the prices observed in the experiment (second
and third columns).

Comparing it with (3.2) we observe that our model can be seen as a generalization of ho-
mogeneous expectation model with weighted average forecast of four heuristics on the case of
endogenous weights.

Due to presence of the demand/supply shocks εt in the pricing equation, system (4.7)
is, in general, stochastic. In the next section we simulate this system for 50 periods with
the same noise process {εt}50

t=0 as was employed in the experiment. Resulting (deterministic)
dynamics will be referred as “simulated path” and will be compared with the experimental
data. Section 4.3 is devoted to the analysis of the deterministic skeleton of system (4.7) when
the noise term εt is absent. Finally, Section 4.4 presents another type of simulations, so-called
“one step ahead predicted path” when the experimental data are used at each step to correct
the prediction errors made by the model.

4.2 Simulated Path

As soon as four heuristics are fixed, there are only three free “learning” parameters in the
model: β, η and δ. Provided that these parameters are given, system (4.7) is initialized with
two initial prices, p0 and p1, and four initial impacts nh,in used at periods t = 2 and t = 3.

We have performed numerous simulations and found that the path-dependence feature of
the model, in particular the capability to produce both persistent oscillating and converging
patterns, remains valid for a large range of parameters. Qualitatively the simulation results
are robust with respect to the parameters, but some quantitative features, such as the speed
of convergence, the amplitude and frequency of oscillations and the stability of long run
equilibrium, may change when parameters are varied.

Six simulations reported in Figs. 7–8 aim to imitate the price dynamics observed in six
experimental groups. Thus, we use the same realizations {εt}50

t=0 as in the experiment. To
stress path-dependence, for all simulations we have fixed the parameter values as β = 0.4,
η = 0.7, δ = 0.9. The simulations only differ in initial conditions, which are reported in
Table 2. We stress that no fitting exercise has been performed at this stage. All the plots have
been easily obtained through a trial-and-error experimentation with different initial conditions
and parameters. In particular, we experimented with initial prices {p0, p1} close to the prices
observed in the first two rounds of the corresponding experimental group (shown in the second
and third columns of Table 2). At the same time initial distribution of agents over the pool
of heuristics, i.e. initial impacts {n1,in, n2,in, n3,in, n4,in}, were chosen in such a way to match
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the experiment dynamics during the first few periods.10 For replication of groups 2 and 5, the
initial impacts of heuristics are distributed almost uniformly, with slight dominance of WTR
heuristics to produce small initial trend in prices. For groups 1 and 6, where initial trend
was even stronger, both trend heuristics WTR and STR were initialized with high weights.
Finally, in groups 4 and 7 with the strongest trend in price in initial periods, the rule STR
got very large impact.

4.2.1 Explaining different qualitative scenario

Fig. 7 can be directly compared with Fig. 2 (we use the same scale in all corresponding panels of
these two figures). Upper parts of panels in Fig. 7 show realized prices for both the experiments
and the heuristic switching model. The heuristic switching model qualitatively matches all
three different patterns, slow monotonic convergence to the fundamental price, persistent price
oscillations and dampened oscillatory price movements, found in the laboratory experiments.
Lower parts of panels show predictions of four heuristics over the simulation, which looks
quite close, especially for monotonic convergence case. In inner frames the forecasting errors
of different heuristics are shown. The errors do not disappear to the end of simulations, in
line with individual forecasts observed in the experiment.

Fig. 8 plots the corresponding transition paths of the impacts of each of the four fore-
casting heuristics. In the case of monotonic convergence (see the upper panels), the impacts
of all four heuristics remain relatively similar during the simulations causing slow (almost)
monotonic convergence of the price to the fundamental equilibrium pf = 60. For group 2 the
increase in price together with a series of subsequent positive shocks εt leads to a temporary
domination of the dynamics by the STR heuristic between periods 13 and 23. However, this
rule overestimates the price trend so that, ultimately, the adaptive heuristic takes the lead,
and price converges to fundamental level.

In two simulations for the groups with constant oscillations (see the middle panels), the
weak and strong trend followers represent the largest proportions in the initial distribution of
heuristics, and prices rise. However already after 5 periods the impact of the LAA heuristic
starts to increase, because it predicts better than the static strong and weak trend followers,
who either overestimate or underestimate the price trend. The impact of the anchoring ad-
justment heuristic gradually increases, so it dominates the market within 10 periods, rising
to more than 70% after 40 periods. It explains coordination of individual forecasts as well as
persistent price oscillations around the long run equilibrium level.

Finally, in the last two simulations (see lower panel) a large initial impact of (strong) trend
followers leads to an extreme rise of market prices in the first 7 periods, followed by large price
oscillations. Relatively fast (after period 10 in case of group 7), however, the impact of STR
rule decreases, while the impact of the LAA heuristic, rises to more than 80% after 30 periods.
Once again, the flexible anchoring and adjustment heuristic forecasts better than the static
strong trend following rule, which overestimates the price trend. In simulation for group 7
after 40 periods the impact of the anchoring adjustment heuristic starts slowly decreasing,
and consequently the price oscillations slowly stabilize. The decline of the impact of the LAA
heuristic implies also smaller coordination between individual predictions during the last 10
periods, which is also consistent with experimental data.

10This is done with a purpose to imitate initial distribution of four heuristics over participants in the exper-
iment. Direct estimation of this distribution in every group seems to be difficult due to obvious insufficiency
of data.
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Figure 7: Laboratory experiments and heuristics switching model simulations. Up-
per parts of panels show prices for laboratory experiments in different groups (red) with corre-
sponding simulations of the evolutionary model (blue). All three different aggregate market outcomes
are reproduced: monotonic convergence to equilibrium (top panels), permanent oscillations (middle
panels), and oscillatory convergence (bottom panels). Lower parts of panels show predictions
and forecasting errors (inner frames) of four heuristics: adaptive expectations (ADA, purple), weak
trend followers (WTR, black), strong trend followers (STR, blue) and anchoring adjustment heuristic
(LAA, red).
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Figure 8: Simulated fractions of the forecasting rules in the heuristics switching
model. Fractions of four forecasting heuristics: adaptive expectations (ADA, purple), weak trend
followers (WTR, black), strong trend followers (STR, blue) and anchoring adjustment heuristic (LAA,
red). Coordination of individual forecasts explains three different aggregate market outcomes re-
ported in Fig. 7.

4.2.2 Fitting the simulated path of the model

Now we turn to the question of how good our explanation of the experiment is and, in partic-
ular, whether the model with four heuristic is capable to explain the experiment better than
the homogeneous expectation model.

In Table 3 we show a mean squared error (MSE) generated by the deterministic models
with different heuristics while fitting the experimental price data. It means that for any period
t we compute a squared deviation of the price observed in the experiment, pexp

t , from the price
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Table 3: MSE for different groups and different specifications.

Specification Group 2 Group 5 Group 1 Group 6 Group 4 Group 7

Fundamental Prediction 18.037 11.797 15.226 8.959 291.376 22.047

ADA – exp prices 0.841 0.200 7.676 8.401 330.101 51.526

WTR – exp prices 4.419 1.983 8.868 6.252 308.549 30.298

STR – exp prices 585.789 478.525 638.344 509.266 1231.064 698.361

AAA – exp prices 39.308 21.760 17.933 17.345 289.134 87.878

LAA – exp prices 5.475 3.534 5.405 14.404 307.605 69.749

ADA – fitted prices 0.514 0.199 6.832 7.431 312.564 36.436

WTR – fitted prices 4.222 1.844 8.670 6.228 292.150 19.764

STR – fitted prices 413.435 42.488 182.284 29.200 580.543 579.141

AAA – fitted prices 26.507 13.228 11.117 13.981 258.010 63.777

LAA – fitted prices 2.055 1.859 4.236 13.433 284.880 45.153

4 heuristics (Table 2) 0.449 0.302 8.627 14.755 526.417 29.520

4 heuristics (fitted) 0.313 0.245 7.227 7.679 235.900 18.662

generated by simulation, psim
t , and average these deviations over time

MSE =
1

49

50∑
t=2

(
pexp

t − psim
t

)2
.

Notice that we skip two time periods corresponding to the initialization stage of our simula-
tions.

Second line of Table 3 shows the MSE for a model where participants submit rational,
fundamental prediction. Next ten lines show the MSE when the model from Section 3 using
one of the five heuristics defined in Table 1 (see the first column) is used. Such model is
initialized by the prices in the first two periods, and we consider two possible initializations.
First, we initialize the model with prices observed in the corresponding experimental session;
second, we vary these experimental prices in order to get the best fit. Finally, the last two lines
show the MSE for the four heuristics switching model both with initializations as in Table 2
and with fitted initial prices (so that initial impacts are not changed).

First of all, notice that the fundamental model is extremely poor compared with actual
experiment realizations. This is also clear if one compares experimental data with time series
for fundamental homogeneous predictions shown in Fig. 1. As expected, in the groups 2
and 5 with monotonic convergence the ADA heuristic performs extremely well giving small
values of the MSE. All other heuristics, especially the STR, are much worse in fitting the
experiment. However, the model with switching can generate even better fit than any of the
four heuristics. It is remarkable that this happens despite the fact that over all 50 periods of
simulation these four heuristics had quite similar impacts. In the groups 1 and 6 with constant
oscillations the LAA, ADA and WTR heuristics generate the smallest MSE. The model with
four heuristics does not improve the best fit of the homogeneous expectations model, but its
MSE is comparable with those of the best heuristics. Similarly, in the groups 4 and 7 with
damping oscillations the LAA and WTR heuristics perform better than other. The model
now improves the results for the best heuristics, even if the overall fit is not as good as for the
other groups.

Recalling the simulations of Fig. 7 in the groups with oscillation, the following problem
with the MSE as a measure of fit becomes clear. Namely, even if our model can generate
qualitatively similar oscillations, they always have different frequencies from those which were
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Table 4: Squared distance between coefficients of AR-2 estimation

Specification Group 2 Group 5 Group 1 Group 6 Group 4 Group 7

Fundamental Prediction 0.946 0.671 2.673 3.610 2.311 2.002

ADA – exp prices 0.239 0.006 2.182 2.898 1.691 1.494

WTR – exp prices 0.066 0.529 0.383 0.627 0.203 0.165

STR – exp prices 1.494 2.583 0.112 0.020 0.240 0.342

AAA – exp prices 1.095 1.848 0.010 0.038 0.045 0.094

LAA – exp prices 0.747 1.544 0.003 0.050 0.003 0.013

ADA – fitted prices 0.100 0.000 1.584 2.159 1.385 1.157

WTR – fitted prices 0.068 0.343 0.262 0.435 0.174 0.139

STR – fitted prices 1.358 2.192 0.078 0.001 0.147 0.242

AAA – fitted prices 1.036 1.755 0.005 0.029 0.038 0.083

LAA – fitted prices 0.640 1.277 0.000 0.033 0.000 0.004

4 heuristics (Table 2) 0.383 0.744 0.011 0.008 0.157 0.239

4 heuristics (fitted) 0.144 0.499 0.009 0.003 0.121 0.048

observed in the experiment.11 Consequently, big errors will be generated at the periods when
oscillations in experiment and simulations are in different phases. To deal with this problem,
we use indirect inference technique. On the first stage, we estimate an AR(2) econometric
model both on the experimental and on the simulational data. On the second stage we compute
the Euclidean distance between estimators. Results of such statistics are reported in Table 4.

Our main focus on those groups where the MSE was not a good measure, i.e. on the
groups 1, 6, 4 and 7. Notice that again the fundamental strategy performs extremely bad.
Also the model with ADA heuristics, which was leading in two converging groups, generates
large deviation from the underlying experimental estimates. In fact, in groups with constant
oscillations the STR and LAA heuristics perform better than others. The switching model
does not improve their fit, but generates similar results, which are at any rate better than
the results of the homogeneous model with other heuristics. In the groups with damping
oscillations, the LAA heuristic gives the best fit, but the model with four heuristics is better
than the second best.

To summarize, even if different heuristics can be better in fitting the experimental data of
different sessions, the model with four heuristics always performs not worse than the second
best heuristic and in some cases even improves the fit. Notice that these results are obtained
without fit of parameters and initial impacts. The main advantage of the model with four
heuristics is, of course, that this model can be applied to all experimental sessions.

4.3 Analysis of the Deterministic Skeleton of the Model

Previous simulations pose a number of interesting theoretical questions concerning the dy-
namics produced by the model: How general is its path-dependent property? Are fluctuations
only short-run phenomena or they do not die out in the long run as well? Is the role of
noise crucial for generating fluctuations?, etc. To address these questions, in this Section we
consider the deterministic skeleton of system (4.7), letting εt = 0, and we analyze its dynamic
properties. To deal with non-autonomous system, in our analysis we substitute the LAA rule

11Simulations of the model show that generated frequencies are more affected by the choice of heuristics
than by the learning parameters. With other extrapolative coefficients in the heuristics or with additional
heuristics, the quantitative fit of the model can be improved. Recall, however, that our choice of heuristics
was driven by the estimation of the experimental data and simplicity of the model.
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by analogous AAA heuristic with fixed anchor pf instead of time varying anchor pav
t−1.

4.3.1 Local stability of four heuristic model of evolutionary switching

For the sake of generality let us introduce the following four heuristics,12 one of which is
adaptive and three other are extrapolative, consistent in pf , rules:

pe
1,t+1 = w pt−1 + (1− w) pe

1,t ,

pe
h,t+1 = (1− βh,1 − βh,2) pf + βh,1pt−1 + βh,2pt−2 for h = 2, 3, 4 .

(4.9)

The resulting dynamics can be described by a multi-dimensional system. As following
result demonstrates, the price dynamics can be constant only on the fundamental level.13

Proposition 4.1. Assume that dynamics of an asset pricing model with evolutionary switch-
ing (4.7) in deterministic skeleton generates constant price level p∗. Then price is on the
fundamental level, p∗ = pf . Furthermore, the share of robots is also fixed and equal to zero,
and all heuristics with non-zero weights give fundamental forecast.

Proof. See Appendix C.

Turning now to the local stability analysis of the fundamental steady-state, notice from
(4.8) that, analogously to the homogeneous expectation model in Section 3, local stability
of price dynamics at the fundamental steady-state is not affected by the dynamics of robot
traders. Eliminating robot traders from the dynamics we obtain differentiable system. Stan-
dard analysis of its Jacobian leads to the following

Proposition 4.2. The fundamental steady-state of an asset pricing model with evolutionary
switching (4.7) (in deterministic skeleton and with fixed anchor in the anchoring and adjust-
ment heuristic) is locally stable if (i) parameters η and δ are less than 1, and (ii) all the roots
of polynomial

P (µ) = µ2 w

4(1 + r)
+ (1− w − µ)

(
µ2 − µ

β2,1 + β3,1 + β4,1

4(1 + r)
− β2,2 + β3,2 + β4,2

4(1 + r)

)
. (4.10)

lie inside the unit circle.
The fundamental steady-state is unstable, if at least one of the roots of polynomial (4.10)

is outside the unit circle.

Proof. See appendix D where straight-forward computations show that Jacobian of the system
has eigenvalues 0, η and δ (of multiplicity 4), as well as three other eigenvalues which are roots
of polynomial (4.10).

When the heuristic coefficients are specified, the roots of the third-order polynomial P (µ)
can be computed. Notice that in general the local stability does not depend on the intensity
of choice β. Furthermore, its dependence on the two other parameters of learning process,
η and δ, is also limited. As soon as δ 6= 1, i.e. impacts of heuristics are not “frozen” over
time, and η < 1, i.e. agents discount their past performances, the local stability conditions
are completely determined by polynomial (4.10) and depend only on the actual heuristics.

12To get a model of the previous session, one sets α2 = 0, β2,1 = 1.4, β2,2 = −0.4 in the rule h = 2,
α3 = 0, β3,1 = 2.3, β3,2 = −1.3 in the rule h = 3 and α4 = 30, β4,1 = 1.5, β4,2 = −1 in the rule h = 4.

13This result holds also for the non-autonomous system with LAA heuristic.
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Parameters η and δ, being the eigenvalues of the Jacobian matrix, affect, however, the speed
of convergence.

It does not seem to be possible to derive the roots of polynomial (4.10) directly. Therefore
we will compute them using numerical methods for four heuristics ADA, WTR, ATR and
AAA defined in Table 1. For these rules the roots of polynomial P (µ) are given as

µ1 = 0.473668 , µ2 = 0.634594− 0.268898 i , µ3 = 0.634594 + 0.268898 i .

The modulus of the complex eigenvalues is equal to 0.689214. Thus, the fundamental steady-
state is locally stable. Consistent with this result, all simulations which we performed with
deterministic version of four heuristics model presented in the previous section did converge
to the fundamental steady-state.

At this point we can conjecture that a small amount of noise εt representing in the exper-
iment demand/supply shocks was crucial in generating oscillating time series in groups 1 and
6. Two caveats are necessary, however. First, the fundamental steady state can be locally
unstable under different pool of heuristics. We shall see in Section 4.3.3 that two heuristics,
unstable under homogeneous expectations STR and stable under homogeneous expectations
AAA, would be sufficient to generate non-converging dynamics in the evolutionary model.
Second, even if the fundamental steady-state is stable, the other attractors may co-exist.

4.3.2 Local stability of four heuristics model with constant impacts

Which rules have to be included to the heuristic pool to generate non-converging dynamics
in the model? It is intuitively clear that dynamics would not converge if high enough im-
pact is given to the “unstable” heuristics, i.e. those which generate unstable dynamics under
homogeneous expectations.

To justify this intuition let us consider an auxiliary version of our model, when impacts of
different heuristics on the price are not changing over time. Formally, such constant impacts
model corresponds to the special case of our evolutionary model with δ = 1. Assuming that
the forecasts are given in general formulation (4.9), price evolution in the constant impacts
model is described by

pt − pf =
1

1 + r
exp

(
− 1

200

∣∣pt−1 − pf
∣∣
) 4∑

h=1

nh(p
e
h,t+1 − pf ) ,

where impacts of heuristics nh are arbitrary constants summed up to 1. It is straight-forward
to find out that the dynamics of such model is stable when all the roots of the polynomial

P1(µ) = µ2 n1w

1 + r
+ (1− w − µ)

(
µ2 − µ

1 + r

4∑

h=2

nhβh,1 − 1

1 + r

4∑

h=2

nhβh,2

)
(4.11)

lie inside the unit circle. Comparing P1(µ) with stability polynomial in Proposition 4.2,
we observe that local stability of evolutionary model is governed by the local stability of the
constant impacts model with equal impacts. This result is not surprising. Indeed, evolutionary
model tends to choose the best performed heuristic at any step, and assigns the impacts to
the forecasting rules according to their performances. In the fundamental steady-state all four
heuristics perform equally well, so if dynamics converge to this steady-state all heuristics will
have equal impacts.
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Figure 9: Local stability of fundamental steady-state in the fixed fraction model.
Left panel: The fundamental steady-state is unstable in a model with four heuristics, when fixed
impacts (n1, n2, n3) belong to the filled conic region of the unit simplex. Right panel: Evolution of
the modulus of the largest eigenvalue of polynomial (4.11) during simulations of evolutionary model.

However, the dynamics of the constant impacts model can be unstable if the distribution
of heuristics is not uniform. In the right panel of Fig. 9 we show simplex

∆4 =
{

(n1, n2, n3, n4) :
∑4

h=1
nh = 1, nh ≥ 0 ∀h

}

of all possible impacts. Inside this simplex we draw a region containing all the points where the
system with fixed impacts and four heuristics defined in Table 1 is unstable. This instability
region was obtained numerically by evaluating the roots of polynomial P1(µ) in (4.11) for
different values of impacts nh. The instability region has conic shape concentrating close to
the upper left vertex of the simplex where the STR rule has the highest impact. Notice that
among four heuristic this is the only rule which generates unstable dynamics when used alone.
Consequently, if the impact of STR is relatively high and the impacts of remaining three
heuristics are low, the dynamics of fixed fraction model are unstable.

The simplex shown in Fig. 9 also illustrates that the point of equal distribution of impacts
(i.e. point A with n1 = n2 = n3 = n4 = 0.25) does not belong to the region of instability.
As we said above, it implies that the fundamental steady-state of evolutionary switching
model is locally stable for four chosen heuristics. It is still, however, interesting to investigate
whether the evolving distribution of impacts generated by such a model and illustrated in
Fig. 8 corresponds to the stability or instability in the model with fixed impacts. The right
panel of Fig. 9 shows an evolution of the largest eigenvalue of polynomial P1(µ) for simulations
discussed in Section 4.2. As expected in the converging groups 2 and 5 the distribution of
impacts is always such that the constant impact model would be stable. In oscillatory groups
1 and 6 the impacts are evolving to the state where the constant fraction model is close to
bifurcation. Finally, in groups 4 and 7 the initial impacts correspond to the instability but
over time the model is stabilizing.

4.3.3 Persistent fluctuations in an evolutionary model

Observing the simplex in Fig. 9, one can easily understand that the evolutionary switching
model with two heuristics, STR and AAA, will generate the dynamics with unstable funda-
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Figure 10: Bifurcation Diagrams in the model with two Heuristics. 100 points after
600 transitory steps are shown for the evolutionary switching model with STR and AAA heuristics
without noise. Initial impacts of the heuristics are equal. Benchmark parameters are β = 0.4, η = 0.7
and δ = 0.9, while extrapolation parameter in STR heuristic γ = 1.3. Left panel: Bifurcation
diagram with respect to the extrapolation parameter γ. Dynamics converges to the fundamental
steady-state for low values of γ and to the quasi-cycle for high values of γ. Right panel: Bifurcation
diagram with respect to the memory parameter η. Dynamics oscillates wildly for low values of η and
converges to a quasi-cycle with a small period for high values of η.

mental steady-state. Indeed, on the vertical edge of simplex n1 = n2 = 0, so it corresponds to
a model with constant fractions of these two heuristics. Stability of the fundamental steady-
state in evolutionary model then depends on the middle point of this edge, which belongs to
the unstable region.

Two panels of Fig. 10 show the bifurcation diagram of the model with two heuristics with
respect to the extrapolation coefficient γ in the STR heuristic (left) and with respect to the
memory parameter η (right). The autonomous system in the case of competing STR and
AAA heuristics undergoes Neimark-Sacker bifurcation when the coefficient of extrapolation
of the STR, γ, becomes large. Fundamental steady-state loses its stability and endogenous
fluctuations are generated. When parameter γ = 1.3 the fundamental equilibrium is unstable.
Small values of memory parameter η imply, then, that the agents forget the previous perfor-
mances of both heuristics quite fast. Since the STR is typically self-reinforcing on the short
time scale, this heuristic will often dominate despite those errors which it does when trend is
reverting. Consequently, oscillations are especially large for small η. When memory increases
the model tends to produce smaller fluctuations. This is because the STR heuristic has quite
low performance and is not used very often.

4.4 One-step ahead predicted time-series

All our simulations so far represented the “simulated paths” when the system (4.7) governs
the initialized simulations and all the model forecasting errors are ignored. Due to path-
dependence feature of the model, these forecasting errors are accumulated, causing sometimes
a big discrepancy between the simulated and observed time series. For example, the model
generated incorrect phase in the oscillatory groups. In practice, the forecasting errors made
by the dynamical model at each time step have to be used to improve its future predictions.

There are two places in the dynamical system (4.7) where “correct” (i.e., observed in the
experiment) price, pexp

t , can be employed instead of the predicted price (i.e., generated by the
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Table 5: MSE of the one-step ahead forecast for different groups and different specifications.

Specification Group 2 Group 5 Group 1 Group 6 Group 4 Group 7

Fundamental Prediction 18.037 11.797 15.226 8.959 291.376 22.047

naive 0.060 0.062 3.397 2.292 126.162 12.652

AAA 5.537 3.447 2.930 0.863 60.751 5.647

ADA 0.126 0.050 5.440 4.303 185.591 18.825

WTR 0.081 0.132 1.902 1.038 86.254 8.674

STR 0.556 0.612 2.792 0.767 81.523 13.663

LAA 0.433 0.434 0.427 0.603 60.025 5.564

4 heuristics (δ = 1) 0.082 0.158 1.128 0.605 62.865 6.683

4 heuristics (Figs. 11-12) 0.066 0.103 0.426 0.266 40.766a 4.148

4 heuristics (best fit) 0.057 0.035 0.405 0.188 33.653a 2.8151

β ∈ [0, 1) 0.99 0.99 0.1 0.99 0.13 0.23

η ∈ [0, 1) 0.63 0.98 0.99 0.1 0.82 0.45

δ ∈ [0, 1] 0.80 0.00 0.45 0.78 0.60 0.44

a Computed for β = 0.1, η = 0.7 and δ = 0.9.

model) pt. First, the forecasts of the future price by all four heuristics can make use of the
observed prices. Second, the square deviation in the performance measure can be computed
on the basis of the observed price. When the experimental prices feed back to the model in
this way, the initial values of prices and heuristics’ impacts which we use in the simulations
are not important, since after a few periods the actual price dynamics will mostly govern the
system.

Fig. 11 compares the experimental data with the one-step ahead predictions made by our
model. For these simulations we chose the benchmark parameters β = 0.4, η = 0.7 and
δ = 0.9, with an exception of the group 4 for which β = 0.1.14 In all the simulations the initial
values are such that the prices in the first two periods coincide with the prices observed in the
corresponding experimental group, while the initial impacts of heuristics are all equal to 0.25.
We again observe that the model can easily reproduce three different qualitative dynamics.
However now, when the model forecasting errors are taken into account, the mismatching in
the oscillatory groups disappear. Fig. 12 shows how in different groups different heuristics are
taking the lead after starting with identical uniform distribution. It is interesting to observe
how the groups with damping oscillations go through three different phases where the STR,
the LAA and the ADA heuristics subsequently dominate.

Table 5 compares the mean squared error of such one-step ahead prediction for different
models: fundamental predictions, six homogeneous expectations models (including also naive
expectations), heterogeneous model with 4 heuristics and fixed fractions (corresponding to
δ = 1), heterogeneous model with 4 heuristics and benchmark parameters (β = 0.4, η = 0.7
and δ = 1), and, finally, the heterogeneous model with 4 heuristics fitted by means of the
grid search in the parameter space (the last three lines show the corresponding values of
parameters for which the best fit is achieved). Comparing different MSE we observe that the
evolutionary model with 4 heuristics generates in average better one-step ahead predictions
than the fundamental forecasting, the homogeneous models (with the exception of group 5; the
MSE for the best among the four models is shown bold for each group) and the heterogeneous
model without evolutionary learning. We also observe that even if the fitting of the model can
improve the MSE, this improvement is relatively small if compared with improvement which

14Relatively large prediction errors, which our heuristics are making for this group, cause overflow of the
numerical computations for high values of β and/or η.
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Figure 11: Laboratory experiments and one-step ahead predictions of the evolution-
ary model. Upper parts of panels show prices for laboratory experiments in different groups
(red) with corresponding one-step ahead predictions of the evolutionary model (blue). Lower parts
of panels show predictions and forecasting errors (inner frames) of four heuristics: adaptive expec-
tations (ADA, purple), weak trend followers (WTR, black), strong trend followers (STR, blue) and
anchoring adjustment heuristic (LAA, red).

the heterogeneous model makes with respect to the homogeneous models.
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Figure 12: Evolution of heuristic impacts during the one-step ahead predictions of
the model. Fractions of four forecasting heuristics: adaptive expectations (ADA, purple), weak
trend followers (WTR, black), strong trend followers (STR, blue) and anchoring adjustment heuristic
(LAA, red).

5 Conclusion

The time evolution of aggregate economic variables, such as stock prices, is affected by market
expectations of individual investors. Neo-classical economic theory assumes that individuals
form expectations rationally, thus enforcing prices to track economic fundamentals and leading
to an efficient allocation of resources. However, laboratory experiments with human subjects
have shown that individuals do not behave fully rational but instead follow simple heuristics.
In laboratory markets prices may show persistent deviations from fundamentals similar to the
large swings observed in real stock prices.
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Here we show that evolutionary selection among simple forecasting heuristics can explain
coordination of individual behavior leading to three different aggregate outcomes observed in
recent laboratory market forecasting experiments: slow monotonic price convergence, oscilla-
tory dampened price fluctuations and persistent price oscillations. In our model forecasting
strategies are selected every period from a small population of plausible heuristics, such as
adaptive expectations and trend following rules. Individuals adapt their strategies over time,
based on the relative forecasting performance of the heuristics. As a result, the evolutionary
switching mechanism exhibits path dependence and matches individual forecasting behavior
as well as aggregate market outcomes in the experiments. Our results are in line with re-
cent work on agent-based models of interaction and contribute to a behavioral explanation of
universal features of financial markets.

Our approach is similar to other models of reinforcement learning: Arthur (1991), Arthur
(1993), Erev and Roth (1998) and ?. However, our model is built in a different environment
from those which are studied in the standard game theory. Namely, agents in our framework
do not have a well defined strategies and they do not know the payoff matrix, which is, in
addition, is changing over time in a path-depended manner. To our best knowledge, the model
presented in this paper is the first learning model explaining different time series patterns in
the same laboratory experiments.
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APPENDIX

A Proof of Proposition 3.1

From the general relation (3.2) it follows that

pe
t+1 − pf = w (pt−1 − pf ) + (1− w) (pe

t − pf ) = (pe
t − pf )

(
w

1− nt−1

1 + r
+ 1− w

)
.

The expression in the last parenthesis is a convex combination of 1 and (1− nt−1)/(1 + r) < 1. For
positive weight w such combination is always less than 1. Therefore, the dynamical system defines
a contraction of expectations, which then must globally converge to pf . The price realization in this
point is uniquely defined from (2.5) as p∗ = pf . Finally, the evolution of robot traders implies that
n∗ = 0 in this fixed-point.

B Proof of Proposition 3.2

Consider the steady-state (p∗, n∗) with consistent forecasting rule, and notice that (3.2) implies that
either p∗ = pf or 1− n∗ = 1 + r. The second case is impossible, so p∗ = pf and, therefore, n∗ = 0.

Using (3.2), the dynamics in deviations is given by

pt − pf = exp
(
− |pt−1 − pf |/200

) (
β1

1 + r
(pt−1 − pf ) +

β2

1 + r
(pt−2 − pf )

)
. (B.1)

The first term in the right hand-side is never greater than 1. Thus, dynamics of (B.1) is a superpo-
sition of contraction with linear process of second order

(1 + r)xt = β1 xt−1 + β2 xt−2 (B.2)

with xt = pt − pf . If the latter dynamics is locally stable, the steady-state pf of original dynamics
(B.1) will be also locally stable. Furthermore, since the exponential term in (B.1) is equal to 1 in the
steady-state, the linear parts of the dynamics of the last two processes are the same. Thus, processes
(B.1) and (B.2) lose stability simultaneously and through the same bifurcation type.

The Jacobian matrix of (B.2) in the steady-state is given by

J =

∥∥∥∥∥
β1

1+r
β2

1+r

1 0

∥∥∥∥∥ .

The standard conditions for the stability can be expressed through the trace Tr(J) and the determi-
nant Det(J) of this matrix, and are given by

Tr(J) < Det(J) + 1 , Tr(J) > −1−Det(J) , Det(J) < 1 . (B.3)
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Furthermore, the dynamics is oscillatory if Tr(J)2 − 4Det(J) = 0. The substitution of the values of
trace and determinant gives inequalities (3.4) and condition β2

1 +4β2(1+ rf ) < 0 for the oscillations.
The bifurcation types can be determined from (B.3), since when one of these inequalities turns to

equality, the unit circle is crossed by a corresponding eigenvalue of the system. the second inequality
is violated when an eigenvalue becomes equal to −1, which implies the period-doubling bifurcation.
The violation of the last inequality in (B.3) implies that two complex eigenvalues cross the unit
circle. This happens under the Neimark-Sacker bifurcation. Finally, consider the first inequality,
which is violated when one eigenvalue becomes equal to 1. It turns out that at this occasion two new
steady-states are emerging, which implies that the system exhibits pitchfork bifurcation. Indeed, any
steady-state (p∗, n∗) should satisfy to

(1 + r)p∗ = (1− n∗)
(
(1− β1 − β2)pf + (β1 + β2)p∗

)
+ n∗pf + ȳ

m
(1 + r)p∗ = pf + (β1 + β2)(p∗ − pf )(1− n∗) + ȳ

m
(1 + r)(p∗ − pf ) = (β1 + β2)(p∗ − pf )(1− n∗)

Thus, in any non-fundamental steady-state, the fractions of robots n∗ = 1− (1 + r)/(β1 + β2). Only
if this fraction belongs to the interval (0, 1) two other steady-states exist with

p∗± = pf ± 200 log(1− n∗) .

(The prediction rule is, of course, inconsistent in both steady-states.) When the first inequality in
(B.3) is satisfied, these two steady-state do not exist, but they appear at the moment when the
inequality changes it sign.

C Proof of Proposition 4.1

In the steady-state with fixed price p∗, the past price sample average will also be equal to p∗. The
dynamics (4.8) in the steady-state with fixed price p∗ then is given as

(1 + r)(p∗ − pf ) = (1− nt)
(
n1,t

(
w(p∗ − pf ) + (1− w)(pe

1,t − pf )
)
+

+ n2,t(p∗ − pf ) + n3,t(p∗ − pf ) + n4,t(p∗ − pf )
)

.
(C.1)

In the state with constant price p∗ = pf , the fraction of robots nt = 0, so that the above condition
simplifies to 0 = (1−w) n1,t (pe

1,t− pf ). Then the ADA rule (if it is in actual use) gives fundamental
forecast.

If p∗ 6= pf , take the limit of t →∞ in (C.1). Since adaptive expectations converge to p∗ in such
limit, we obtain that 1 + r ≤ 1, which is impossible.

D Stability of Evolutionary Model

In the body of the paper we have obtained a model (4.7) describing the dynamics of price and other
variables under the evolutionary learning over 4 heuristics. We will write the dynamical system using
the general notation for four heuristics introduced in (4.9). Recall that all extrapolative rules are
assumed to be consistent in pf . The dynamics below is written in deviations from fundamental price,
both in prices and in forecasts. The variables are introduced as follows

xe
1,t = pe

t − pf , ye
t = xe

1,t−1 , x1,t = pt − pf , x2,t = x1,t−1 , x3,t = x1,t−1 , x4,t = x1,t−3 .
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The following 14-dimensional system of the first order equations describes the dynamics. It consists
of 4 equations describing the evolution of performance measures, 4 variables represent the fractions of
different forecasting rules, 1 equation describes the price dynamics, which we will write in deviations,
and other 3 equations are needed to take lags of price deviations into account, and finally two
equations describe the evolution of adaptive expectation rule.

xe
t+1 = w x1,t−1 + (1− w) xe

t

ye
t+1 = xe

t

U1,t−1 = −(
x1,t−1 − ye

t

)2
+ η U1,t−2

Uh,t−1 = −(
x1,t−1 − βh,1 x3,t−1 − βh,2 x4,t−1

)2
+ η Uh,t−2 2 ≤ h ≤ 4

n1,t = δ n1,t−1 +
1− δ

Zt−1
exp

(
β

[
− (

x1,t−1 − ye
t

)2
+ η U1,t−2

])

nh,t = δ nh,t−1 +
1− δ

Zt−1
exp

(
β

[
− (

x1,t−1 − βh,1 x3,t−1 − βh,2 x4,t−1

)2
+ η Uh,t−2

])
2 ≤ h ≤ 4

x1,t = exp
(
− 1

200
|xt−1|

) 1

1 + r

([
δ n1,t−1 +

1− δ

Zt−1
exp

(
β

[− (
x1,t−1 − ye

t

)2
+ η U1,t−2

])] (
w x1,t−1 + (1− w) xe

t

)
+

[
δ n2,t−1 +

1− δ

Zt−1
exp

(
β

[− (
x1,t−1 − β2,1 x3,t−1 − β2,2 x4,t−1

)2
+ η U2,t−2

])](
β2,1 x1,t−1 + β2,2 x2,t−1

)
+

[
δ n3,t−1 +

1− δ

Zt−1
exp

(
β

[− (
x1,t−1 − β3,1 x3,t−1 − β3,2 x4,t−1

)2
+ η U3,t−2

])](
β3,1 x1,t−1 + β3,2 x2,t−1

)
+

[
δ n4,t−1 +

1− δ

Zt−1
exp

(
β

[− (
x1,t−1 − β4,1 x3,t−1 − β4,2 x4,t−1

)2
+ η U4,t−2

])](
β4,1 x1,t−1 + β4,2 x2,t−1

)
)

x2,t = x1,t−1

x3,t = x2,t−1

x4,t = x3,t−1

where

Zt−1 = exp
(
β

[− (
x1,t−1 − ye

t

)2
+ η U1,t−2

])
+

4∑

h=2

exp
(
β

[− (
x1,t−1 − βh,1 x3,t−1 − βh,2 x4,t−1

)2
+ η Uh,t−2

])

We are interested in stability of this system near the fixed point with price equal to pf and zero
fraction of “robots”. First of all, recall that the term exp

( − |xt−1|/200
)

in the equation for price
deviations can be ignored, since its first-order approximation in this fixed point is 1. The Jacobian
matrix J of the remaining system is given by
∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

1− w 0 0 0 0 0 0 0 0 0 w 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 η 0 0 0 0 0 0 0 0 0 0 0
0 0 0 η 0 0 0 0 0 0 0 0 0 0
0 0 0 0 η 0 0 0 0 0 0 0 0 0
0 0 0 0 0 η 0 0 0 0 0 0 0 0

0 0
9βη(1−δ)

16 − βη(1−δ)
16 − βη(1−δ)

16 − βη(1−δ)
16 δ 0 0 0 0 0 0 0

0 0 − βη(1−δ)
16

9βη(1−δ)
16 − βη(1−δ)

16 − βη(1−δ)
16 0 δ 0 0 0 0 0 0

0 0 − βη(1−δ)
16 − βη(1−δ)

16
9βη(1−δ)

16 − βη(1−δ)
16 0 0 δ 0 0 0 0 0

0 0 − βη(1−δ)
16 − βη(1−δ)

16 − βη(1−δ)
16

9βη(1−δ)
16 0 0 0 δ 0 0 0 0

1−w
4(1+r) 0 0 0 0 0 δpf

1+r
δpf

1+r
δpf

1+r
δpf

1+r

w+β2,1+β3,1+β4,1
4(1+r)

β2,2+β3,2+β4,2
4(1+r) 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

.

It is straight-forward to check that this Jacobian has multipliers equal to 0 (of multiplicity 3) and η and δ
(both of multiplicity 4). The remaining three multipliers are the roots of characteristic polynomial for matrix

Jr =

∥∥∥∥∥∥

1− w w 0
1−w

4(1+r)
w+β2,1+β3,1+β4,1

4(1+r)
β2,2+β3,2+β4,2

4(1+r)

0 1 0

∥∥∥∥∥∥
,

This characteristics polynomial is given in (4.10).

36


