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I. Introduction

There is by now a large body of empirical work documenting that individual households

face a substantial amount of labor income risk, and that this risk has non-negligible effects on

consumption and welfare1. In other words, the hypothesis of perfect risk sharing (complete

markets) is strongly rejected by the data. A recent literature has suggested that this lack

of risk sharing may be explained by enforcement problems (Alvarez and Jermann (2000),

Kehoe and Levine (1993), Kocherlakota (1996), Ligon, Thomas, and Worrall (2002), and

Thomas and Worrall (1988)). This literature has commonly assumed that the labor income

(wage) process is exogenous, an assumption that considerably limits the range of issues that

can be addressed within the framework. In this paper, we develop and analyze a model of

economic growth in which labor income is endogenously determined through human capital

choices and insurance against idiosyncratic labor income (human capital) shocks is limited

by enforcement problems.

Our model is a production economy with an aggregate constant-returns-to-scale produc-

tion function using physical and human capital as input factors. There are a large number of

individual households who can invest in risk-free physical capital and risky human capital.

Human capital investment is risky due to idiosyncratic shocks to the stock of human capital.

Financial intermediaries provide debt and insurance contracts to individual households in

competitive markets. Financial contracts (risk sharing agreements) have to be self-enforcing

in the sense that at any point in time it must be in the best interest of households to honor

their promises. Following the literature, we assume that a household who defaults will be

excluded from financial markets (risk sharing) in the future.

1For the estimation of income risk, see, for example, MaCurdy (1982), Carroll and Samwick (1997),
Meghir and Pistaferri (2004), and Storesletten, Telmer, and Yaron (2004). For the consumption response,
see, for example, Cochrane (1990), Flavin (1981), Townsend (1994), and Blundell, Pistaferri, and Preston
(2008).
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We use our model to address three fundamental problems that have hindered progress in

the literature. First, stochastic models with heterogeneous households are in general diffi-

cult to analyze since the endogenous wealth distribution becomes a relevant state variable.

Thus, even if we confine attention to Markov shock processes with a finite support, recursive

equilibria are in general the solution to a complicated infinite-dimensional fixed point prob-

lem. For the model developed in this paper, we show that this tractability problem can be

avoided. More specifically, we show that individual decision rules are linear in total wealth

(financial plus human), which allows us to prove the equivalence between the complicated

infinite-dimensional fixed point problem and a much simpler finite-dimensional fixed-point

problem. We then prove the existence of recursive equilibria by proving the existence of a

solution to the finite-dimensional fixed point problem.

Second, in models with capital accumulation (physical or human), limited enforcement

of contracts gives rise to a participation constraint that may introduce non-convexities into

the choice sets of individual households. Thus, individual demand correspondences may not

be convex-valued and first-order conditions may not be sufficient. In our model, this non-

convexity problem can be avoided. More precisely, we show that after we have transformed

the infinite-dimensional fixed point problem into an equivalent finite-dimensional problem,

the resulting choice sets are convex.

Finally, we use our model to address an important issue of economic substance. Recent

work in the literature has shown that realistically calibrated models with physical capital

and production yield almost perfect risk sharing (Krueger and Perri, 2006). In other words,

the theory fails to explain the strong response of individual consumption to (permanent)

income shocks found by the empirical micro literature. We show that this result crucially

depends on one assumption made in the previous literature, namely that households who

renege/default are punished by exclusion from future risk sharing and confiscation of all
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their capital. Intuitively, in these models the average household holds a significant amount

of capital and the threat of taking it all away is sufficient to sustain almost complete risk

sharing. In contrast, when we allow reneging/defaulting households to keep around half of

their physical capital (and all of their human capital), we find that our model implies only

a limited amount of risk sharing. In particular, the model is consistent with the response

of consumption to permanent income shocks recently estimated by Blundell, Pistaferri, and

Preston (2008) using household-level data on consumption and income.

Even though our analysis implies that risk sharing is far from perfect, we still find that a

significant amount of insurance can be sustained in equilibrium. Moreover, the welfare gains

from this insurance are quite large. In our baseline model, these gains are around 7 percent

of lifetime consumption, which is two orders of magnitude larger than the welfare cost of

business cycles (aggregate risk) found by Lucas (2003). Put differently, a country with weak

contract enforcement can reap large benefits from improving the enforcement of various risk

sharing arrangements.

II. Model

In this section, we develop the model and define the relevant equilibrium and efficiency

concepts. With its emphasis on physical and human capital investment within a convex

framework, the model is similar to Krebs (2003), but Krebs (2003) assumes exogenous market

incompleteness. Wright (2003) considers an ”AK” model with limited enforcement that bears

some resemblance to the current set-up.

a) Time and Uncertainty

Time is discrete and indexed by t = 0, 1, . . .. Aggregate variables are denoted by upper-

case letters and individual-specific variables by lower-case letters. There is no aggregate risk

3



and we confine attention to stationary equilibria. Idiosyncratic risk is represented by an

i.i.d. shock process with realizations, st, that take on a finite number of possible values. We

denote by st = (s1, . . . , st) the history of idiosyncratic shocks up to period t (date-event,

node) and let π(st) = π(s1) . . . π(st) stand for the probability that st occurs. At time t = 0,

the type of an individual household is characterized by his initial state, x0 = (k0, h0, s0),

where s0 denotes the initial shock, k0 the initial stock of physical capital, and h0 the initial

stock of human capital (note that s0 is not included in st). We take as given an initial

measure, µ, over initial types.

b) Production

There is one all-purpose good that can be consumed, invested in physical capital, or

invested in human capital. Production of this one good is undertaken by one firm (a large

number of identical firms) that rents capital and labor in competitive markets and uses these

input factors to produce output, Yt, according to the aggregate production function Yt =

F (Kt, Ht). Here Kt and Ht are the (aggregate) levels of physical and human capital employed

by the firm. The production function, F , is a standard neoclassical function, that is, it has

constant-returns-to-scale, satisfies a Inada condition, and is continuous, concave, and strictly

increasing in each argument. Given these assumptions on F , the derived intensive-form

production function, f(K̃) = F (K̃, 1), is continuous, strictly increasing, strictly concave,

and satisfies a corresponding Inada condition, where we introduced the ”capital-to-labor

ratio” K̃ = K/H. Given the assumption of perfectly competitive labor and capital markets,

profit maximization implies:

rk = f ′(K̃) (1)

rh = f(K̃) + f ′(K̃)K̃ ,

where rk is the rental rate of physical capital and rh is the rental rate of human capital. Note

that rh is simply the wage rate per unit of human capital and that we dropped the time
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index because of our stationarity assumption. Clearly, (1) defines rental rates as functions

of the capital to labor ratio: rk = rk(K̃) and rh = rh(K̃).

c) Preferences

There are a large number of infinitely-lived, risk-averse households who have well-defined

preferences over consumption allocations, {ct}, where {ct} denotes a sequence of functions

(random variables), ct, mapping initial types, x0, and histories, st, into consumption lev-

els, ct(x0, s
t). Similar notation will be used for investment plans (see below). Preferences

are individualistic in the sense that a household of type x0 only cares about his own con-

sumption plan, {ct(x0)}. Moreover, preferences allow for a time-additive expected utility

representation:

U ({ct})
.
= E

[

∞
∑

t=0

βtu(ct)|x0

]

, (2)

where the expectations in (2) is taken over all histories, st, keeping the initial type, x0,

fixed. We assume that the one-period utility function exhibits constant relative risk aversion:

u(c) = c1−γ

1−γ
for γ 6= 1 and u(c) = lnc otherwise. In other words, we assume that preferences

are homothetic.

d) Budget Constraint

Each household can invest in physical capital, k, or human capital, h. In addition, he

can buy and sell a complete set of financial contracts (assets) with state-contingent payoffs.

More specifically, there is one contract (Arrow security) for each state, and we denote by

at+1(st+1) the quantity bought in period t (sold if negative) of the contract that pays off one

unit of the good in period t + 1 if st+1 occurs. Given his initial type, x0 = (s0, k0, h0), a

household chooses a plan, {ct, kt, ht,~at}, where the notation ~a indicates that in each period

the household chooses a vector of contract holdings. A budget-feasible plan has to satisfy
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the sequential budget constraint

ct + kt+1 + ht+1 +
∑

st+1

at+1(st+1)q(st+1) = (1 + rk − δk)kt + (1 + rh − δh(st))ht + at(st)

ct ≥ 0 , kt+1 ≥ 0 , ht+1 ≥ 0 , (3)

where q(st+1) is the price of a financial contract that pays off if st+1 occurs and δk and δh(st)

are the depreciation rates of physical and human capital, respectively. Note that (3) has to

hold in realizations, that is, it has to hold for all histories, st. We focus on equilibria with

risk neutral financial market prices:

q(st+1) =
π(st+1)

1 + rf

(4)

where rf is the interest rate on financial transactions. The pricing condition (4) can also be

interpreted as a zero-profit-condition for financial intermediaries that borrow at the risk-free

rate rf and use the proceed to sell insurance contracts to households at prices (4).

The budget constraint (3) assumes that physical capital can be accumulated by investing

xkt = kt+1 − (1 − δk))kt. Similarly, human capital can be accumulated by investing xht =

ht+1 − (1− δh(st))ht. The budget constraint (3) makes three implicit assumptions about the

accumulation of human capital. First, it lumps together general human capital (education,

health) and specific human capital (on-the-job training). Second, it neglects the decision of

households to allocate a fixed amount of time across different activities. Third, (3) does not

impose a non-negativity constraint on human capital investment (xhit ≥ 0).

The random variable δht represents uninsurable idiosyncratic labor income risk. A neg-

ative human capital shock, δh(st) <
∑

s δh(s)π(s), can occur when a worker loses firm- or

sector-specific human capital subsequent to job termination (worker displacement). In order

to preserve the tractability of the model, the budget constraint (3) rules out extended peri-

ods of unemployment because it assumes that the wage payment is received in each period.

Thus, the emphasis is on earnings uncertainty, not employment uncertainty. A decline in
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health (disability) provides a second example for a negative human capital shock. In this

case, both general and specific human capital might be lost. Internal promotions and upward

movement in the labor market provide two examples of positive human capital shock.

It is convenient to introduce new variables that emphasize that individual households solve

a standard inter-temporal portfolio choice problem with additional participation constraints.

To this end, introduce the following variables:

wt = kt + ht +
∑

st

qt−1(st)at(st)

θkt =
kt

wt

, θht =
ht

wt

, θat(st) =
at(st)

wt

1 + rt = (1 + rk − δk)θkt + (1 + rh − δh(st))θht + θat (5)

In (5) the variable wt stands for beginning-of-period wealth consisting of real wealth, kt +ht,

and financial wealth,
∑

st
qt−1(st)at(st). The variable θt = (θkt, θht, ~θat) denotes the vector of

portfolio shares and (1 + r) is the gross return to investment. Using the new notation, the

budget constraint (5) reads

wt+1 = [1 + r(θt, st)] wt − ct

1 = θkt + θht +
∑

st

qt−1(st)θat(st) (6)

ct ≥ 0 , wt ≥ 0 , θkt ≥ 0 , θht ≥ 0 .

Clearly, (6) is the budget constraint corresponding to an intertemporal portfolio choice prob-

lem with linear investment opportunities and no exogenous source of income. Note that r

not only depends on the individual choice of θ, but also on the aggregate variables K̃ and q,

but we will suppress this dependence until we turn to the general equilibrium analysis.

So far, we have not imposed any restrictions on trading of financial assets. In this paper,

we augment the sequential budget constraint by the following short-sale constraints:

θat(st) ≥ −θ̄a(st) , (7)
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where θ̄(st) is a number that will be chosen large enough so that it will not bind in equi-

librium. In this case, (7) is equivalent to a no-Ponzi-scheme condition if rf > 0. However,

in contrast to the no-Ponzi-scheme condition, the short-sale constraint (7) has three advan-

tages. First, it allows us to consider equilibria with rf < 0. Second, it nicely fits into a

recursive formulation of the problem. Finally, it will be useful for the proof of proposition 1.

e) Participation Constraint

In addition to the standard budget constraint, the household has to satisfy a sequential

participation constraint, which ensures that at no point in time individual households have an

incentive to default on their financial obligations. We assume that the penalty of defaulting

is exclusion from risk sharing (financial market participation) in the future. Further, we

assume that defaulting households keep all their human capital and a fraction (1 − φ) of

their physical capital. Finally, we make the assumption that after default households use

their physical and human capital to produce at home using the same technology as before.

Below we show that this leads to a value function for defaulting households that takes the

form

Vd (wt, (1 − φ)θkt, θht, st) = Ṽd (1 + r((1 − φ)θk, θh, 0, s))
1−γ w1−γ , (8)

where r is the return function defined above and Ṽd is a real number. Using the autarky

value function (8), the sequential participation constraint reads

E

[

∞
∑

n=0

βnu(ct+n)|x0, s
t

]

≥ Ṽd (1 + r((1 − φ)θkt, θht, 0, s))
1−γ w1−γ

t . (9)

We now specify how a household employs his physical and human capital after default,

which leads to the particular autarky value function (8). We assume that the household

can produce output using the production function y = F (k, h), where F is the production

function introduced before so that there are no technological differences. Similarly, the

household still faces the same types of human capital shocks in autarky. Hence, the sequential
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budget constraint of a household who defaulted in period t becomes:2

cd,t+n + kd,t+n+1 + hd,t+n+1 = F (kd,t+n, hd,t+n) + (1 − δk)kd,t+n + (1 − δh(st+n))hd,t+n

cd,t+n ≥ 0 , kd,t+n+1 ≥ 0 , hd,t+n+1 ≥ 0 . (10)

After default, a household chooses a continuation plan, {cd,t+n, kd,t+n, hd,t+n}, that max-

imizes expected lifetime utility (2) subject to the sequential budget constraint (10). The

resulting choice problem of households is a standard utility maximization problem with

CRRA-preferences and linear investment opportunities, for which the solution is well-known.

The solution is given by (8), where the number Ṽd solves the intensive-form Bellman equation

Ṽd = max
c̃d,θd,k

{

c̃1−γ
d

1 − γ
+ β(1 − c̃d)

1−γṼd

∑

s′

(1 + rd(θd, s
′))1−γπ(s′)

}

. (11)

with rd(θd) = F (θd, 1 − θd) − θdδk − (1 − θd)δh(s).

Using a standard contraction mapping argument, it is straightforward to show that (11)

has a unique solution if the solution, θd, to

∑

s′

(F2(θd, 1 − θd) − δh(s
′)) − (F1(θd, 1 − θd) − δk)

(1 + rd(θd, s′))
γ π(s′) = 0 , (12)

satisfies the condition

β
∑

s′

(1 + rd(θd, s
′)π(s′))

1−γ
< 1 . (13)

Equation (12) says that the marginal utility weighted expected return on both investment

opportunities is equalized. Using the standard properties of neoclasscial production function,

one can show that (12) always has a unique solution (Krebs 2006), though condition (13) is

an extra condition that is not always satisfied.

g) Equilibrium

2For the period in which the household defaults, we assume that he still supplies his physical and human
capital to the market, so that his return (income minus depreciation) in that period is r((1 − φ)θk, θh, 0, s).
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In equilibrium, each type of household, x0 = (w0, θ0, s0), chooses a plan, {ct(x0), wt(x0), θt(x0)},

where θt = (θkt, θht, ~θat). The collection of plans for all initial types defines a global plan

or allocation {ct, wt, θt}. In equilibrium, the level of physical and human capital demanded

by the firm must be equal to the corresponding aggregate levels supplied by households.

Because of the constant-returns-to-scale assumption, only the ratio of physical to human

capital is pinned down by this market clearing condition. That is, in equilibrium we must

have:

K̃ =
E [θktwt]

E [θhtwt]
. (14)

Note that θktwt is simply the physical capital stock of an individual household and θhtwt the

corresponding human capital stock. Note further that in (14) the expectations is taken over

initial types x0 = (w0, θ0, s0) and history of shocks, st−1.

The second market clearing condition requires that no resources are created or destroyed

by trading in financial contracts:

E [θat(st)wt] = 0 (15)

As before, the expectation in (15) is taken over initial types x0 = (w0, θ0, s0) and history of

shocks, st−1. In addition, we take the expectation over types of assets, st.

Straightforward calculation shows that the two market clearing conditions in conjunction

with the budget constraint (7) and the pricing condition (5) imply the standard aggregate

resource constraint (goods market clearing):

E[wt+1] = F (E[θktwt], E[θhtwt]) + (1 − δk)E[θktwt] + (1 − δh)E[θhtwt] − E[ct] (16)

where δh =
∑

s δh(s)π(s) stands for the average depreciation rate of human capital.

Our definition of equilibrium with financial markets is as follows

Definition 1. A stationary equilibrium is an allocation, {ct, wt, θt} and K̃, together with
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rental rates, (rk, rh), and financial market prices, q(.), so that

i) Utility maximization: for each household type, (w0, θ0, s0), the corresponding plan, {ct(x0), wt(x0), θt(x0)}

maximizes expected lifetime utility (2) subject to the sequential budget constraint (6), the

short-sale constraint (7), and the sequential participation constraint (9).

ii) Profit maximization: the aggregate capital-to-labor ratio and rental rates satisfy the first-

order conditions (1).

iii) Market clearing: equations (14) and (15) hold.

III. Theoretical Results

In this section, we present the main theoretical results. We begin with the principle of

optimality for the individual household problem (propositions 1) and the equivalence be-

tween intensive-form Bellman equation and extensive-form Bellman equation (proposition

2). We then show the equivalence between stationary recursive equilibria and intensive-

form equilibria. Further, we show the equivalence between intensive-form equilibria and an

intensive-form social planner problem. We conclude with the existence of a a maximal solu-

tion to the intensive-form social planner problem, which implies that a stationary recursive

equilibrium exists.

a) Principle of Optimality

The budget constraint (6) and the participation constraint (9) suggest that the utility

maximization problem of an individual household is recursive in the state variable (w, θ, s).

More precisely, consider the Bellman equation

V (w, θ, s) = max
c,w′,θ′

{

c1−γ

1 − γ
+ β

∑

s′

V (w′, θ′, s′)π(s′)

}

(17)

s.t. w′ = (1 + r(θ′, s′))w − c

1 = θ′k + θ′h +
∑

s′

π(s′)θ′a(s
′)

1 + rf
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V (w′, θ′, s′) ≥ Ṽd (1 + r((1 − φ)θ′k, θ
′
h, 0, s

′))
1−γ

(w′)1−γ

c ≥ 0 , w′ ≥ 0 , θ′k ≥ 0 , θ′h ≥ 0 , θ′a(s
′) ≥ θ̄a(s

′) .

Then under the condition that for all θ we have

β
∑

s

(1 + r(θ, s))
1−γ

< 1 (18)

the principle of optimality holds and we can confine attention to the Bellman equation (17)

when discussing the utility maximization problem of individual households.

Proposition 1. Suppose that condition (18) is satisfied. Then the values function, V ,

solves the Bellman equation (17). Conversely, the value function is the maximal solution of

the Bellman equation (17) and is obtained as

lim
t→∞

T nV0 = V ,

where T is the operator associated with the Bellman equation (17) and V0 is the solution to

the corresponding Bellman equation without participation constraint.

Proof (outline). This is theorem 3.6 in Rustichini (1998), so it suffices to show that the

conditions A1-A4 in Rustichini (1998) are satisfied. Bi-convergence holds if lifetime utility

is finite (Streufert, 1991), and condition (18) ensures exactly this finiteness property. It is

also straightforward to show that the feasibility correspondence defining the state transition

is continuous and compact-valued. This proves the proposition.

b) Intensive-form Bellman equation

The next proposition is a direct consequence of proposition 1 and is the essential step for

our transformation of a rather complex problem into a very simple problem. It states that

instead of solving the Bellman equation (17), we can confine attention to the much simpler

intensive-form Bellman equation

Ṽ = max
c̃,θ′

{

c̃1−γ

1 − γ
+ β(1 − c̃)1−γṼ

∑

s′

(1 + r(θ′, s′))
1−γ

π(s′)

}

(19)
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s.t. : 1 = θ′k + θ′h +
∑

s′

θ′a(s
′)π(s′)

1 + rf

1 + r(θ′k, θ
′
h,

~θ′a, s
′) ≥

(

Ṽd

Ṽ

)

1

1−γ

(1 + r((1 − φ)θ′k, θ
′
h, 0, s

′))

1 ≥ c̃ ≥ 0 , θ′k ≥ 0 , θ′h ≥ 0 , θ′a(s
′) ≥ θ̄a(s

′)

where the intensive-form variables are defined as follows:

V (w, θ, s) = Ṽ (1 + r(θ, s))1−γ w1−γ

c(w, θ, s) = c̃(1 + r(θ, s))w .

Proposition 2. Suppose that condition (18) is satisfied. Then the value function is

V (w, θ, s) = Ṽ (1 + r(θ, s))
1−γ

w1−γ, where Ṽ is the maximal solution to the intensive-form

Bellman equation (19).

Proof (outline). It is well-known that the value function of the maximization problem

without participation constraint, V0, has the functional form (for example, Krebs 2006). A

tedious but straightforward argument shows that if Vn = T nV0 has this property, so has

Vn+1 = TVn. The proposition then follows from proposition 1.

Note that proposition 2 cannot simply be proved by using substitution since there are

in general multiple solutions to the Bellman equation (17). In other words, the operator

associated with the Bellman equation is monotone, but not a contraction. However, propo-

sition 2 ensures that we have indeed found the value function associated with the original

utility maximization problem. Note further that the constraint set in (19) is linear since

the return functions are linear in θ. Thus, the constraint set is convex and we have trans-

formed the original utility maximization problem into a convex problem. In other words,

the non-convexity problem alluded to in the introduction has been resolved.

c) Intensive-form equilibrium
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Clearly, the maximization problem (19) has a strictly concave objective function and a

convex choice set. Thus, the optimal portfolio choice, θ, is unique. Moreover, the optimal

portfolio choice is independent of s and w. In other words, regardless of their initial type

and history of shocks, all households choose the same portfolio shares. This property in

conjunction with the financial asset pricing equation (5) allows us to re-write the market

clearing conditions (14) and (15) in intensive form:

K̃ =
θk

θh

(20)

∑

s

θa(s)π(s) = 0

To sum up, in our search for a stationary recursive equilibrium, we can confine ourselves to

equations (19) and (20):

Proposition 3. Suppose that (θ, c̃, K̃, rf ) is an intensive-form equilibrium, that is, (θ, K̃)

solves the intensive-form market clearing conditions (20) and, for given (rk(K̃), rh(K̃), rf),

the consumption-portfolio choice (c̃, θ) together with the value Ṽ are the maximal solution

to the intensive-form Bellman equation (19) satisfying condition (18). Then the correspond-

ing allocation {ct, wt, θt} together with prices (rk(K̃), rh(K̃), rf ) are a stationary recursive

equilibrium.

Proof . From proposition 1 and 2 we know that implied consumption-investment plan,

{ct(x0), wt(x0), θt(x0)}, is a solution to the household maximization problem for any house-

hold x0. Further, the fact that individual plans are linear in wealth implies the equivalence

between the market clearing conditions (14,15) and (20). This proves the proposition.

Note that the maximal solution to the intensive-form Bellman equation (19) can be

obtained as the limit limn→∞ T nṼ0 (proposition 1).

d) Existence and Characterization of Equilibrium
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In an intensive-form equilibrium, the maximization problem of individual households (19)

has a concave objective function and a convex constraint set. Thus, first-order conditions

are not only necessary, but also sufficient. Furthermore, prices enter into the constraint set

only in a linear fashion. The convexity of the constraint set together with the linearity in

prices implies that a version of the second welfare theorem holds. More precisely, define the

intensive-form social planner problem as

Ṽ = max
c̃,θ′

{

c̃1−γ

1 − γ
+ β(1 − c̃)1−γṼ

∑

s′

(1 + reff (θ
′, s′))

1−γ
π(s′)

}

(21)

s.t. : θ′k + θ′h = 1 ;
∑

s′

θ′a(s
′)π(s′) = 0

1 + reff (θ
′
k, θ

′
h,

~θ′a, s
′) ≥

(

Ṽd

Ṽ

)

1

1−γ

(1 + reff ((1 − φ)θ′k, θ
′
h, 0, s

′))

1 ≥ c̃ ≥ 0 , θ′k ≥ 0 , θ′h ≥ 0 , θ′a(s
′) ≥ θ̄a(s

′) ,

where reff is the investment return of the social planner defined as

reff (θk, θh, ~θa, s) = F (θk, θh) − δkθk − δh(s)θh + θa(s) .

The following proposition says that an intensive-form equilibrium can be found by solving

the intensive-form social planner problem (21). The proof is based on a comparison of first-

order conditions. These first-order condition also imply some familiar and not so familiar

properties of equilibrium, which are also stated in the proposition:

Proposition 4. Suppose (θ, c̃, K̃) is a maximal solution to the intensive-form social

planner problem (21). Then (θ, c̃, K̃, rf) in an intensive-form equilibrium, where the interest

rate on financial transactions is given by

rf =
1

qf

− 1 =
1

β(1 + r(θ, s̄))
− 1 ,

with s̄ being any state for which the participation constraint is not binding. Further, the

intensive-form equilibrium has the following properties:
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i) Investment returns are equalized for all states, s, s′, with non-binding participation con-

straint: r(θ, s) = r(θ, s′)

ii) The interest rate on financial transactions does not exceed the return to physical capital,

rf ≤ rk − δk, where the inequality is strict when there is less than perfect risk sharing in

equilibrium.

Proof (outline) As mentioned before, first-order conditions are sufficient in both the social

planner problem and the individual household problem. For the problem of an individual

household, we find the following Kuhn-Tucker conditions:

c̃−γ = βṼ (1 − c̃)−γ
∑

s′

(1 + r(θ′, s′))1−γπ(s′) (22)

µ = (1 + rk − δk)
∑

s′

(1 + r(θ′, s′))−γπ(s′) + (1 + rk − δk)





(

V

Vaut

)

1

1−γ

− (1 − φ)





∑

s′

λ(s′)

µ =
∑

s′

(1 + rh − δh(s
′))(1 + r(θ′, s′))−γπ(s′) +





(

V

Vaut

)

1

1−γ

− 1





∑

s′

(1 + rh − δh(s
′)λ(s′)

µ
π(s′)

1 + rf

= (1 + r(θ′, s′))−γ +
(

V

Vd

)

1

1−γ

λ(s′)

1 = θk + θh +
∑

s′

θ′(s′)
π(s′)

1 + rf

1 + r(θ′k, θ
′
h,

~θ′a, s
′) ≥

(

Ṽd

Ṽ

)

1

1−γ

(1 + r((1 − φ)θ′k, θ
′
h, 0, s

′))

0 =
∑

s′

λ(s′)





1 + r(θ′k, θ
′
h,

~θ′a, s
′) −

(

Ṽd

Ṽ

)

1

1−γ

(1 + r((1 − φ)θ′k, θ
′
h, 0, s

′))







λ(s′) ≥ 0 ,

where the Lagrange multipliers λ and µ have already been re-scaled by the factor β(1−c̃)1−γ Ṽ

and we have assumed that the constraints 0 ≤ c̃ ≤ 1 and θk ≥ 0, θh ≥ 0 are non-binding in

equilibrium. The first equality in (22) expresses the optimality of the consumption-saving

choice, the next two equalities the optimality of the real investment decisions θk and θh, and
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the fourth equality ensures that financial decisions are made optimally. Similar Kuhn-Tucker

conditions can be derived for the social planner problem, where the rental rates rh and rk

are replaced by their respective marginal products and the total investment return r by reff .

Further, simple algebraic manipulation show that the two sets of Kuhn-Tucker conditions

are equivalent if rf is chosen as specified. Finally, the properties i) and ii) follow directly

from the first-order conditions (22).

Propositions 3 and 4 imply that any solution to the intensive-from social planner problem

(21) that satisfies (18) defines a stationary recursive equilibrium:

Corollary Suppose (θ, c̃, K̃) is a maximal solution to the intensive-form social planner

problem (21) satisfying (18). Define rf as in proposition 4. Then (θ, c̃, K̃, rf ) generates a

stationary recursive equilibrium with allocation, {ct, wt, θt}, where the consumption-wealth

plan, {ct, wt}, is defined as in (19).

Finally, we show that under a rather weak condition, a solution to the social planner

problem satisfying (18) exists, which implies that a stationary recursive equilibrium exists.

The condition we need to prove existence is that a solution to the maximization problem

with no insurance and full insurance (perfect risk sharing) exists. The existence condition

for the no-insurance case is (13) and the corresponding condition for the full insurance case

is

β (1 + rfull(θfull))
1−γ < 1 , (23)

where rfull = F (θfull, 1 − θfull) − δkθfull −
∑

s π(s)δh(s)(1 − θfull) and θfull is the unique

solution to

F2(θfull, 1 − θfull) −
∑

s

π(s)δh(s) = F1(θfull, 1 − θfull) − δk . (24)

We have the following result:

Proposition 5. Suppose that condition (13) and (23) holds. Then there exists a maximal
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solution to the intensive-form social planner problem (21) satisfying (18). This solution is

obtained as the limit

lim
t→∞

T̃ nṼ0 = Ṽ ,

where T̃ is the operator associated with the intensive-form social planner problem (21) and

Ṽ0 is the solution to the corresponding intensive-form social planner problem (21) without

participation constraint.

Proof (outline) Condition (13) and (23) imply that for all θ that lie in the social planner

constraint set, we have

β
∑

s

π(s) (1 + r(θ, s))1−γ < 1 . (25)

As in the proof of proposition 1, we can then apply theorem 3.6 in Rustichini (1998).

IV. Quantitative Results

We now discuss the quantitative implications of the model. First, we specify functional

forms for utility and production functions and then assigns values to all relevant parameters

of the model (calibration). We then report how much insurance is provided in equilibrium,

how consumption responds to uninsured income shocks, and how much would be lost in an

economy with no insurance.

a) Calibration

The quantitative analysis is based on an economy where workers have logarithmic utility

functions: u(c) = logc. Further, we assume that human capital shocks are normally dis-

tributed, η ∼ N(0, σ2
η), and that the production function is Cobb-Douglas: f(k̃) = Ak̃α.

We use α = .36 to match capital’s share in income and δ = .06 (annually) as a compromise

between the higher depreciation rate of physical capital used in the literature (but see also

Cooley and Prescott (1995) for an argument that δk = .05) and the probably lower depre-
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ciation rate of human capital. The values of the fundamental parameters A, σ2
η, and β are

chosen so that the model is roughly consistent with the US evidence along three dimen-

sions: saving, growth, and labor income risk. More specifically, we require that per capita

consumption growth satisfies µg = E[ci,t+1/cit] − 1 = .02 and that the implied saving rate

is sk = xkt/yt = .20. For the annual US data on saving and growth, see Summers and

Heston (1991). Finally, we match observed labor income risk (before transfer payments) by

requiring σy = ση/(1 + k̃) = .15. To simplify the analysis, we initially calibrate an economy

without insurance. This approach yields A = .267, β = .935, and ση = .252.

The choice of σy = ση/(1 + k̃) = .15 is made to ensure consistency with the empirical

results of a number of micro studies on labor income risk. More specifically, in the model

economy log-labor income of household i, yhit, is given by yhit = (rh + δ)hit. Using the

equilibrium condition hi,t+1 = β [1 + θrk + (1 − θ)(rh + ηit] hit, we find

log yhi,t+1 − log yhit = loghi,t+1 − loghit (26)

= logβ + log (1 + θrk + (1 − θ)(rh + ηit))

≈ d + η̃it ,

where d = logβ + θrk + (1 − θ)rh and {η̃it} is a sequence of i.i.d. random variables with

η̃it = (1−θ)ηit. Hence, the logarithm of labor income follows (approximately) a random walk

with drift d and error term η̃it ∼ N(0, σ2
y), σy = (1 − θ)ση.

3 The random walk specification

is often used by the empirical literature to model the permanent component of labor income

risk (Carroll and Samwick (1997), Meghir and Pistaferri (2004), and Storesletten et al.

(2004)). Thus, their estimate of the standard deviation of the error term for the random

walk component of annual labor income corresponds to the value of σy = (1 − θ)ση. In our

3We have η̃it instead of η̃i,t+1 in equation (24), and the latter is the common specification for a random
walk. However, this is not a problem if the econometrician observes the idiosyncratic depreciation shocks
with a one-period lag. In this case, (24) is the correct equation from the household’s point of view, but a
modified version of (22) with η̃i,t+1 replacing η̃it is the specification estimated by the econometrician.
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baseline model we use σy = .15, which lies on the lower end of the spectrum of estimates

found by the empirical literature. For example, Carroll and Samwick (1997) find .15, Meghir

and Pistaferri (2004) estimate .19, and Storesletten et al. (2004) have .25 (averaged over

age-groups and, if applicable, over business cycle conditions). All these studies use labor

income before transfer payments, which is the relevant variable from our point of view.

There are at least two reasons why the above approach might underestimate human

capital risk. First, a constant σy = .15 represents less uncertainty than a σy that fluctuates

with business cycle conditions and has a mean of .15. Second, the assumption of normally

distributed innovations understates the amount of idiosyncratic risk households face if the

actual distribution has a fat lower tail. For strong evidence for such a deviation from the

normal-distribution framework, see Geweke and Keane (2000). Further, the literature on the

long-term consequences of job displacement (Jacobson, LaLonde, and D. Sullivan (1993))

has found wage losses of displaced workers that are somewhat larger than suggested by our

mean-variance framework.

There are, however, also arguments that the current approach might overestimate human

capital risk. First, we assumes that all of labor income is return to human capital investment.

However, if some component of labor income is independent of human capital investment

and if this component is random (random endowment of genetic skills), then some part of

the variance of labor income is not human capital risk. Second, by ignoring job mobility the

empirical literature cited above attributes wage hikes due to improved firm-worker matches

to income risk, a point that has been emphasized by Low, Meghir, and Pistaferri (2008).

The above calibration procedure ensures that the model economy matches as many fea-

tures of the US economy as there are free parameters. It is also interesting to investigate

how the calibrated model performs in matching additional features of the U.S. economy.

For example, the implied values for the average return on physical and human capital are
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rk = 5.52% and rh = 9.47%, respectively. The return rk = 5.52% is higher than the observed

real interest rate on short-term U.S. government bonds (1%), but lower than the observed

real return on US equity (8%). Given that there is no aggregate risk, and therefore no eq-

uity premium, in the model, it is not clear which one of the many financial return variables

should be used as a basis for calibration, and we therefore conclude that the implied value is

within the range of reasonable values.4 The implied average return on investment in human

capital, rh = 9.47%, is in line with the estimates of rate of returns to schooling.5 Notice that

the implied excess return on human capital investment is rh − rk = 3.95%. Thus, the model

generates a substantial ”human capital premium”.

Finally, we introduce a stochastic probability, q, that a household who lives in autarky can

return to the formal sector and participate in risk sharing. This modification of the model

changes the participation constraint so that the discount factor used when calculating the

continuation utility is β̃ = (1 − q)β. We choose q so that on average a defaulting household

would spend seven years in autarky.

b) Quantitative Results

Table 1 shows the results for different values of φ, which is the fraction of physical capital

seized upon default and measures the extent to which contracts are enforced. In the case

that no physical capital is seized, φ = 0, we have no risk sharing at all, that is, before and

after transfer payment income volatility is the same.6 For φ = 0.2, the income volatility is

reduced from σy = .15 to σy = .14. When we increase the enforcement parameter to φ = .4,

4The RBC literature usually strikes a compromise and chooses the parameter values so that the implied
return on capital is 4%, which is somewhat lower than the value used here.

5The estimates vary considerably across households and studies, with an average of about 10% (Krueger
and Lindhal 2001).

6There is some small amount of risk sharing since very large negative income shocks are insured, but the
probability of these shocks is so small that they have a negligible effect on the variance.
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we find σy = .10, that is, two-third of income risk is insured. The value of σy = .10 is in line

with the estimate of Blundell, Pistaferri, and Preston (2008) of permanent labor income risk

after taxes and transfers are taken into account. Finally, if we have φ = 1 and the entire

physical capital is seized, then there is complete insurance against labor income risk. The

case φ = 1 is the one considered in Krueger and Perri (2006), and our perfect risk sharing

result is, mutatis mutandis, the result Krueger and Perri (2006) found for the majority of

households.

The second column in table 1 shows to what extent the uninsured part of labor income

shocks translate into consumption changes. Independently of the value of φ, the model pre-

dicts that roughly two-thirds of any uninsured labor income shock translate into consumption

changes. Intuitively, labor income is around two-thirds of total income, so that this is exactly

the fraction of the labor income shocks that translates into consumption changes. Further,

this level of consumption response to permanent income shocks is very much in line with the

empirical estimates reported in Blundell, Pistaferri, and Preston (2008).

Finally, the third column shows the welfare consequences of incomplete insurance. More

precisely, we report the welfare gains from having enforcement φ expressed as a percentage of

lifetime consumption. The difference between different rows measures the welfare gains from

improving the enforcement of risk sharing. For example, if we move from no enforcement

(φ = 0, the developing country) to a medium level of enforcement (φ = 0.4, our prefered value

for the US economy), we have a welfare gain of 5 percent of lifetime consumption. In other

words, any government policy that improves the enforcement of risk sharing arrangements

has a very strong effect on welfare.
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Table I. Insurance, consumption, and welfare for different values
of the enforcement parameter7

σ̃y σc ∆U

φ = 0 .15 .10 0%

φ = .2 .12 .08 3%

φ = .4 .10 .07 5%

φ = 1 0 0 10%

7φ is the fraction of capital seized. σ̃y is the standard deviation of uninsured income shocks. σc is
the standard deviation of individual consumption growth. ∆U is the welfare gain from having contract
enforcement φ, expressed as percent of lifetime consumption.
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