
TI-games I:

An Exploration of Type Indeterminacy in Strategic

Decision-making

Jerry Busemeyer∗, Ariane Lambert-Mogiliansky†

.

January 19, 2009

Abstract

In this paper we explore an extention of the Type Indeterminacy model of decision-making to

strategic decision-making. A 2X2 game is investigated. We first show that in a one-shot simultaneaous

move setting the TI-model is equivalent to a standard incomplete information model. We then let

the game be preceded by a cheap-talk promise exchange game. We show in an example that in the

TI-model the promise stage can have impact on next following behavior while the standard classical

model predicts no impact whatsoever. The TI approach differs from other behavioral approaches in

identifying the source of the effect of cheap-talk promises in the intrinsic indeterminacy of the type.
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1 Introduction

This paper belongs to a very recent and rapidly growing literature where formal tools of Quantum

Mechanics are proposed to explain a variety of behavioral anomalies in social sciences and in psychology

(see e.g. [1, 2, 4, 5, 7, 9, 10, 14, 18, 19]).

The use of quantum formalism in game theory was initiated by Eisert et al. [8] who propose that

models of quantum games can be used to study how the extension of classical moves to quantum ones can
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affect the analysis of a game.1 Another example is La Mura [17] who investigates correlated equilibria

with quantum signals in classical games. In this paper we introduce some features of an extension of the

Type Indeterminacy (TI) model of decision-making [16] from simple decisions to strategic decisions. We

study, in two different settings, a 2x2 game with options, to cooperate and to defect and we refer to it as

a Prisoner Dilemma, PD2. In the first setting, the players move simultaneously and the game is played

once. In the second setting, the simultaneous move PD game is preceded by a promise exchange game.

Our aim is to illustrate how the TI approach can provide an explanation as to why cheap talk promises

matter.3 There exists a substancial litteratur on cheap talk communication games (see for instance [15]

for a survey). The approach in our paper does not belong to the litteratur on communication games.

The cheap talk promise exchange stage is used to illustrate the possible impact of a move with no payoff

implication. Various behavioral theories have also been proposed to explain the impact of cheap talk

promises when theory predicts that there is none. They most often rely on very specific assumptions

amounting to adding ad-hoc elements to the utility function (a moral cost for breaking promises) or

emotional communication [11]. Our approach provides an explanation relying on a fundamental structure

of the model i.e., the quantum indeterminacy of players’ type. An advantage of our approach is that

the type indeterminacy hypothesis also explains a variety of other so called behavioral anomalies such as

framing effects, cognitive dissonance [16], the disjunction effect [3] or the inverse fallacy [10].

A main interest with TI-game is that the Type Indeterminacy hypothesis can modify quite significantly

the way we think about games. Indeed, a major implication of the TI-hypothesis is to extend the field

of strategic interactions. This is because actions impact not only on the payoffs but also on the profile

of types, i.e., on who the players are. In a TI-model, players do not have a deterministic (exogenously

given) type. The types change along the game together with the chosen actions (which are modelled as

measurements of the type). We provide an example showing that an initially non-cooperative player can

be (on average) turned into a rather cooperative one by confronting him with a tough player in a cheap

talk promise exchange game.

Not surprisingly we find that there exists no distinction in terms of predictions between the standard

Bayesian and Type Indeterminacy approaches in a simultaneous move context. The two models yield

distinct predictions under the following conditions: i. at least one player makes more than one move; ii.

those moves correspond to non-commuting Game Situations4; iii. a first-coming move separates between

1From a game-theoretical point of view the approach consists in changing the strategy spaces, and thus the interest of

the results lies in the appeal of these changes.
2This is for convenience, as we shall see that the game is not perceived as a true PD by all possible types of a player.
3Cheap talk promises are promises that can be broken at no cost.
4A Game Situation is an operator that measures the type of a player, see below.
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”potential” types that would otherwise interfere in the determination of the outcome of a next-coming

interaction. We show that under those conditions a move with no informational content or payoff relevance

still impacts on the outcome of the game.

2 A TI-model of strategic decision-making

Generals

In the TI-model a simple decision situation is represented by an observable5 called a DS. A decision-maker

is represented by his state or type. A type is a vector |tii in a Hilbert space. The measurement of the
observable corresponds to the act of choosing. Its outcome, the chosen item, actualizes an eigentype6 of

the observable (or a superposition7 of eigentypes if the measurement is coarse). It is information about

the preferences (type) of the agent. For instance consider a model where the agent has preferences over

sets of three items, i.e. he can rank any 3 items from the most preferred to the least preferred. Any

choice experiment involving three items is associated with six eigentypes corresponding to the six possible

rankings of the items. If the agent chooses a out of {a, b, c} his type is projected onto some superposition
of the rankings [a > b > c] and [a > c > b] . The act of choosing is modelled as a measurement of the

(preference) type of the agent and it impacts on the type i.e., it changes it (for a detailed exposition

of the TI-model see [16]). How does this simple scheme change when we are dealing with strategic

decision-making?

We denote by GS (for Game Situation) an observable that measures the type of an agent in a strategic

situation, i.e. in a situation where the outcome of the choice, in terms of the agent’s utility, depends

on the choice of other agents as well. The interpretation of the outcome of the measurement is that the

chosen action is a best reply against the opponents’ expected action. This interpretation parallels the one

in the simple decision context. There, we interpret the chosen item as the preferred one in accordance

with an underlying assumption of (basic) rationality i.e., the agent maximizes his utility (i.e., chooses

what he prefers). The notion of revealed preferences and a fortiori of revealed best-reply is problematic

however. A main issue here is that a best reply is a response to an expected play. When the expected

play involves subjective beliefs there may be a problem as to the measurability of the preferences. This is

5An observable is a linear operator.
6The eigentypes are the types associate with the eigenvalues of the observable i.e., the possible outcomes of the mea-

surement of the DS.
7A superposition is a linear combination of the form λi |tii ; λ2i = 1.
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in particular so if subjective beliefs are quantum properties.8 But in the context of maximal information

games (which means that the initial types are pure types)we are dealing objective probabilities so it is

warranted to talk about revealed best-reply.

TI-games are game with type indeterminate players, i.e., games characterized by uncertainty. In par-

ticular, players do not know the payoff of other players. The standard (classical) approach to incomplete

information in games is due to Harsanyi. It amounts to transforming the game into a game of imperfect

information where Nature moves at the beginning of the game and selects, for each player, one among a

multiplicity of possible types (payoff functions). A player’s own type is his private information. But in a

TI-game the players may not even know their own payoff. This is true even in TI-game of maximal infor-

mation where all players are represented by pure types.9 In this paper we focus on TI-games of maximal

information. Can the Harsanyi approach be extended to TI-games? We shall argue that the TI-paradigm

gives even more content to Harsanyi’s approach. What is a fictitious Nature’s move in Harsanyi’s setting

becomes a real move (a measurement) with substantial implications. And the theoretical multiplicity of

types of a player becomes a real multiplicity of "selves".

Types and eigentypes

We use the term type to refer to a quantum pure state of a player. A pure type is maximal information

about the player i.e., about his payoff function.10 But because of (intrinsic) indeterminacy, the type is

not complete information about the payoff function in all games simultaneously not even to the player

himself.

In a TI-game we also speak about the eigentypes of any specific game M , these are complete infor-

mation about the payoff functions in a specific static game M . Any eigentype of a player knows his own

M -game payoff function but he may not know that of the other players. The eigentypes of a TI-game M

are identified with their payoff function in that game.

So we see that while the Harsanyi approach only uses a single concept, i.e., that of type and it

is identified both with the payoff function and with the player. In any specific TI-game M we must

distinguish between the type which is identified with the player and the eigentype which is identified with

the payoff function in game M . A helpful analogy is with multiple-selves models (see e.g., [20] and [12]).

In multiple-selves models, we are most often dealing with two "levels of identity". These two levels are

identified with short-run impulsive selves on the one side and a long-run "rational self" on the other side.

In our context we have two levels as well: the level of the player (the type) and the level of the selves

8 If subjective beliefs and preferences are quantum properties that do not commute then they cannot be measured

simultaneously.
9For a discussion about pure and mixed types (states) see Section 3.2 in [5].
10The payoff of a player is a function of all the players’ actions.
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(the eigentypes) which are to be viewed as potential incarnations of the player in a specific game.11

A central assumption that we make is that the reasoning leading to the determination of the best-reply

is performed at the level of the eigentypes of the game. This key assumption deserves some discussion.

What we have in mind is very much in line with quantum computing. What is happening in the head

of a player is some form of parallel reasoning, all the active (with non-zero coefficient of superposition)

eigentypes perform their own strategic thinking. Another way to put it is that we assume that the player

is able to reason from different perspectives. Note that this is not as demanding as it may at first appear.

Indeed we are used in standard game theory to the assumption that players are able to put themselves

"in the skin" of other players to think out how those will play in order to be able to best-respond to that.

As in the basic TI-model, the outcome of the act of choosing, here a move, is information about

the (actualized) type of the player. The act of choosing changes the type from some initial type to the

actualized one. We call GO or Game Operator, a complete collection of (commuting) GS (each defined

for a specific opponent). The outcome of a GO is an eigentype of the game, it gives information about

how a player plays against any possible opponent in a specific game. Each player is an independent

system i.e., there is no entanglement between players.12

We next investigate an example of a maximal information (see below for precise definition) two-person

game. The objective is to introduce some basic features of TI-games in a simple context and to illustrate

an equivalence and some distinctions between the Bayes-Harsanyi approach and the TI-approach.

A single interaction

Consider a 2X2 symmetric game, M, and for concreteness we call the two possible actions cooperate

(C) and defect (D) (as in a Prisoner’s Dilemma game but as we shall see below for certain types, it is a

coordination game) and we define the preference types of game M also called the M-eigentypes as follows:

θ1 : prefers to cooperate whatever he expects the opponent to do;

θ2 : prefers to cooperate if he expects the opponent to cooperate with probability p > q (for some

q ≤ 1) otherwise he prefers to defect;
θ3 : prefers to defect whatever he expects the opponent to do.

An example of these types is in the payoff matrices below where we depict the row player’s payoff:

11A superposition is a linear combination of the form λi |tii ; λ2i = 1.
12 In future research we intend to investigate the possibility of entenglement between players.
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θ1 :


C D

C 10 5

D 0 0

 , θ2 :


C D

C 10 0

D 6 8

 , θ2 :


C D

C 0 0

D 10 5


Note that these types are complete characterization in the sense that they give the player’s payoff for

any action of the opponent.

We shall now proceed to investigate this simultaneous move TI-game. We note immediately that θ1

and θ3 are non-strategic while θ2 is, i.e., his best-reply will depend on what he expects the opponent

to do. The initial types are generally not eigentypes of the game under consideration. Let player 1 be

described by the superposition:

|t1i = λ1 |θ1i+ λ2 |θ2i+ λ3 |θ3i ,
X

λ2i = 1.
13 (1)

We shall first be interested in the optimal play of player 1 when he interacts with a player 2 of different

eigentypes. Suppose he interacts with a player 2 of eigentype θ1. Using the definitions of the eigentypes

θi above and (1), we know by Born’s rule14 that with probability λ
2
1 + λ22 player 1 plays C (because θ2’s

best-reply to θ1 is C ) and he collapses on the (superposed) type |t01i = λ1√
λ21+λ

2
2

|θ1i+ λ2√
λ21+λ

2
2

|θ2i . With
probability λ23 he plays D and collapses on the eigentype θ3. If instead player 1 interacts with a player 2

of type θ3 then with probability λ
2
1 he plays C and collapses on the eigentype θ1 and since θ

0
2s best-reply

to θ3 is D, with probability λ
2
2 + λ23 he plays D and collapses on type |t”1i= λ2√

λ23+λ
2
2

|θ2i+ λ3√
λ23+λ

2
2

|θ3i .

We note that the probabilities for player 1’s moves depends on the opponent’s type and corresponding

expected play - as usual. More interesting is that, as a consequence, the resulting type of player 1 also

depends on the type of the opponent. This is because in a TI-model the act of choice is a measurement

of the own type and the act of choice modofies it. We interpret the resulting type as the initial type

modified by the measurement. In a one-shot context, this is just an interpretation since formally it

cannot be distinguished from a classical informational interpretation where the resulting type captures

our revised beliefs about player 1.

We now consider a case when player 2’s type is indeterminate as well, it is given by

|t2i = γ1 |θ1i+ γ2 |θ2i+ γ3 |θ3i , .
X

γ2i = 1. (2)

From the point of view of the eigentypes of a player (the θi), the situation can be analyzed as a

standard situation of incomplete information. We consider two examples:

14The calculus of probability in Quantum Mechanics is done according to Born’s rule which defines the probability for

the different eigentypes is given by the square of the coefficients of superposition.
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Example 1 Let λ21 ≥ q, implying that the eigentype type θ2 of player 2 cooperates and let γ21+ γ22 ≥ q so

the eigentype θ2 of player 1 cooperates as well.

Example 2 Let λ21 ≥ q so the eigentype θ2 of player 2 cooperates but now let γ21 + γ22 < q so here the

eigentype θ2 of player 1 prefers to defect.

In Example 1 the types θ1 and θ2 of both players pool to cooperate. So in particular player 1’s

resulting type is a superposition of |θ1i and |θ2i with probability
¡
λ21 + λ22

¢
and it is the eigentype |θ3i

with probability λ23. In Example 2, player 1’s eigentypes θ2 and θ3 pool to defect so player 1’s resulting

type is a superposition of |θ2i and |θ3i with probability λ22 + λ23 and |θ1i with probability λ21. So we see

again how the resulting type of player 1 varies with the initial (here superposed) type of his opponent.

When both players play a best reply to each other we have an equilibrium more precisely:

Definition

A static TI-equilibrium of a game M is

i. A profile of strategies such that each one of the M−eigentypes of each player maximizes his expected
utility given the (superposed) type of his opponent and the strategies played by the opponent’s eigentypes:

s∗1
¡
θ1iM

¢
= arg max

s01.∈S

X
θ2iM

p
¡
θ2iM

¯̄
θ2
¢
uiM

¡
s01, s2

¡
θ2iM

¢
,
¡
θ1iM , θ2iM

¢¢
for all θ1iM

and similarly for player 2.

ii. A corresponding profile of resulting types, one for each player and each action.

¯̄
θt=11

¯̄
a1
®
=

X
θiM ;s∗1(θ1iM)=a1

λiMqP
λ2jM

¡
s∗1
¡
θ1jM

¢
= a1

¢ ¯̄θiM ; s∗1 ¡θ1iM¢ = a1
®

similarly for
¯̄
θt=11

¯̄
a2
®
,
¯̄
θt=12

¯̄
a1
®
and

¯̄
θt=12

¯̄
a2
®
.

For concreteness we shall now solve for the TI-equilibrium of this game in a numerical example. Suppose

the initial types are

|t1i =
√
.7 |θ1i+

√
.2 |θ2i+

√
.1 |θ3i , (3)

|t2i =
√
.2 |θ1i+

√
.6 |θ2i+

√
.2 |θ3i . (4)

Given the payoff matrices above, the threshold probability q that rationalizes the play of C for the

eigentype θ2 is q = .666. For the ease of presentation, we let q = .7. We know that the θ2 of player 2

cooperates since λ21 = .7 ≥ q and so does the θ2 of player 1 since γ21+γ
2
2 = .8 > q.
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In the TI-equilibrium of this game player 1 plays C with probability .9 and collapses on |t01i =√
.7√

.7+.2
|θ1i+

√
.2√

.7+..2
|θ2i and with probability .1 player 1 plays D and collapses on |θ3i . Player 2 plays C

with probability .8 and collapses on |t02i =
√
.4√

.4+.4
|θ1i +

√
.4√

.4+.4
|θ2i and with probability .2, he plays D

and collapses on |θ3i .
We note that the mixture actually played by player 1 (.9C, .1D) is not the best reply of any of his

eigentypes. The same holds for player 2. The eigentypes are the "real players" and they play pure

strategies.

We end this section with a comparison of the TI-game approach with the standard incomplete infor-

mation treatment of this game where the square of the coefficients of superposition in (1) and (2) are

interpreted as players’ beliefs about each other. The sole substantial distinction is that in the Bayes-

Harsanyi setting the players privately learn their own type before playing while in the TI-model they

learn it in the process of playing. A player is thus in the same informational situation as his opponent

with respect to his own play. However under our assumption that all the reasoning is done by the eigen-

types, the classical approach and the TI-approach are indistinguishable. They yield the same equilibrium

outcome. The distinctions are merely interpretational.

Statement 1

The TI-model of a simultaneous one-move game is equivalent to a Bayes-Harsanyi model.

A formal proof of Statement 1 can be found in our companion paper "TI-game 2".

This central equivalence result should be seen as an achievement which provides support for the

hypotheses that we make to extend the basic TI-model to strategic decision-making. Indeed, we do want

the non-classical model to deliver the same outcome in a simultaneous one-move context.15 We next move

to a setting where one of the players is involved in a sequence of moves. This is the simplest setting in

which to introduce the novelty brought about by the type indeterminacy hypothesis.

A multi-stage TI-game

In this section we introduce a new interaction involving player 1 and a third player, a promise game. We

assume that the GS representing the promise game do not commute with the GS representing the game

M (described in the previous section).16 Player 1 and 3 play a promise game where they choose between

either making a non-binding promise to cooperate with each other in gameM or withholding from making
15 Indeed we know that quantum indeterminacy cannot be distinguished from incomplete information in the case of a single

measurement. A simultaneous one-move game corresponds to two single measurements performed on two non-entangled

systems.
16To each game we associate a collection of GS each of which measures the best reply a possible type of the opponent.
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such a promise. Our objective is to show that playing a promise exchange game - with a third player -

can increase the probability for cooperation (decrease the probability for defection) between the player

1 and 2 in a next following game M. Such an impact of cheap-talk promises is related to experimental

evidence reported in Frank (1988)

We shall compare two situations called respectively protocol I and II. In protocol 1 player 1 and 2

play game M. In protocol II we add a third player, 3, and we have the following sequence of events:

step 1 Player player 1 and 3 play a promises exchange game N , described below.

step 2 Player 1 and 2 play M .

step 3 Player 1 and 3 play M .17

The promise exchange game

At step 1, player 1 and 3 have to simultaneously select one of the two announcements: "I promise to

play cooperate", denoted, P, and "I do not promise to play cooperate" denoted no − P . The promises

are cheap-talk i.e., breaking them in the next following games has no implications for the payoffs i.e., at

step 2 or step 3.

There exists three eigentypes in the promise exchange game:

τ1 : prefers to never make cheap-talk promises - let him be called the "honest type";

τ2 : prefers to make a promise to cooperate if he believes the opponent cooperates with probability

p ≥ q (in which case he cooperates whenever he is of type θ2 or θ1 or any superposition of the 2). Otherwise

he makes no promises - let him be called the "sincere type";

τ3 : prefers to promise that he will cooperate whatever he intends to do - he can be viewed as the

"opportunistic type".

Information assumptions

Before moving further to the analysis of the behavior in protocol II we have to make clear the

information that the players have at the different stages of the game. Specifically we assume that:

i. All players know the statistical correlations (conditional probabilities) between the eigentypes of

the two (non-commuting) games.18

ii. At step 2, player 2 knows that player 1 has interacted with player 3 but he does not know the

outcome of the interaction.
17The reason why we have the interaction at step 3 is essentially to motivate the promise exchange game. Our main

interest will focus on the interaction at step 2.
18 So in particular they can compute the correlation between the plays in the different games.
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We note that ii. implies that we are not dealing with an issue of strategic commmunication between

player 1 and 2. No message is being received by player 2.

The classical model

We first establish that in the classical setting we have the same outcome in protocol I and at step 2

of protocol II. We already know from Statement 1 that the analysis of a TI model of game M is fully

equivalent with the classical Bayes-Harsanyi analysis of the corresponding incomplete information game.

We investigate in turn how the interaction between player 1 and 3 at step 1 affects the incentives

and/or the information of player 1 and 2 at step 2. Let us first consider the case of player 1. In a classical

setting, player 1 knows his own type, so he learns nothing from the promise exchange stage. Moreover

the announcement he makes is not payoff relevant to his interaction with player 2. So the promise game

has no direct implication for his play with player 2. As to player 2, the question is whether he has

reason to update his beliefs about player 1. Initially he knows |t1i from which he derives his beliefs

about player 1’s equilibrium play in game M . By our informational assumption (i) he also knows the

statistical correlations between the eigentypes of the two games from which he can derive the expected

play conditional on the choice at the promise stage. He can write the probability of e.g., the play of D

using the conditional probability formula:

p (D) = p (P ) p (D|P ) + p (no− P ) p (D|no− P ) . (5)

He knows that player 1 interacted with 3 but he does not know the outcome of the interaction. Therefore

he has no new element from which to update his information about player 1. We conclude that the

introduction of the interaction with player 3 at step 1 leaves the payoffs and the information in the game

M unchanged. Hence, expected behavior at step 2 of protocol II is the same as in protocol I.

The TI-model

Recall that the GS representing the promise game do not commute with the GS representing the game

M . We now write eq. (1) and (2) in terms of the eigentypes of game N, i.e., of the promise stage

eigentypes:

|t1i = λ01 |τ1i+ λ02 |τ2i+ λ03 |τ3i and |t3i = γ01 |τ1i+ γ02 |τ2i+ γ03 |τ3i .
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Each one of the N−eigentype can in turn be expressed in terms of the eigentypes of game M :

|τ1i = δ11 |θ1i+ δ12 |θ2i+ δ13 |θ3i (6)

|τ2i = δ21 |θ1i+ δ22 |θ2i+ δ23 |θ3i
|τ3i = δ31 |θ1i+ δ32 |θ2i+ δ33 |θ3i

where the δij are the elements of the basis transformation matrix (see the last subsection below). Assume

that player 3 is (initially) of type θ3 with probability close to 1, we say he is a "tough" type. We shall

investigate the choice of between P and no-P of player 1 i.e., the best response of the eigentypes τ i of

player 1.

By definition of the τ i type, we have that τ1 always plays no-P and τ3 always play P. Now by

assumption, player 3 is of type θ3 who never cooperates. Therefore, by the definition of τ2, player 1 of

type τ2 chooses not to promise to cooperate, he plays no−P .

This means that at step 1 with probability λ021 + λ022 player 1 plays no−P and collapses on
¯̄bt1® =

λ01
(λ201 +λ202 )

|τ1i+ λ02
(λ201 +λ202 )

|τ2i . With probability λ023 he collapses on |τ3i .

We shall next compare player 1’s propensity to defect in protocol I with that propensity in protocol

II. For simplicity we shall assume the following correlations: δ13 = δ31 = 0, meaning that the honest

type τ1, never systematically defects and that the opportunistic guy τ3 never systematically cooperate.

Player 1’s propensity to defect in protocol I

We shall consider the same numerical example as before i.e., given by (3) and (4) so in particular we

know that θ2 of player 1 cooperates so p (D ||t1i) = λ23. But our objective in this section is to account

for the indeterminacy due to the fact that in protocol I the promise game is not played. We have

|t1i = λ01 |τ1i+ λ02 |τ2i+ λ03 |τ3i

and using the formulas in (6) we substitute for the |τ ii

|t1i = λ01 (δ11 |θ1i+ δ12 |θ2i+ δ13 |θ3i) + λ02 (δ21 |θ1i+ δ22 |θ2i+ δ23 |θ3i)
+λ03 (δ31 |θ1i+ δ32 |θ2i+ δ33 |θ3i) .

Collecting the terms we obtain

|t1i =
¡
λ01δ11 + λ02δ21 + λ03δ31

¢ |θ1i+ ¡λ01δ12 + λ02δ22 + λ03δ32
¢ |θ2i+¡

λ013δ + λ02δ23 + λ03δ33
¢ |θ3i .

We know from the preceding section that both |θ1i and |θ2i choose to cooperate so

p (D ||t1i ) = p (|θ3i ||t1i ) .
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Using δ13 = 0, we obtain the probability for player 1’s defection in protocol I:

p (D ||t1i )M =
¡
λ02δ23 + λ03δ33

¢2
= λ202 δ

2
23 + λ203 δ

2
33 + 2λ

0
2δ23λ

0
3δ33. (7)

Player 1’s propensity to defect in protocol II

When the promise game is being played, i.e. the measurement N is performed, we can (as in the

classical setting) use the conditional probability formula to compute the probability for the play of D

p (D ||t1i)MN = p (P ) p (D|P ) + p (no− P ) p (D|no− P ) . (8)

Let us consider the first term: p (P ) p (D|P ) .We know that p (P ) = p (|τ3i) = λ203 .We are now interested

in p (D|P ) or p (D |τ3i) . |τ3i writes as a superposition of the θi with θ1 who never defects, θ3 who always
defect while θ2’s propensity to defect depends on what he expects player 2 to do. We cannot take for

granted that player 2 will play in protocol II as he plays in protocol I. Instead we assume for now that

eigentype θ2 of player 2 chooses to cooperate (as in protocol I) because he expects player 1’s propensity

to cooperate to be no less than in protocol I. We below characterize the case when this expectation is

correct. Now if θ2 of player 2 chooses to cooperate so does θ2 of player 1 and p (D |τ3i) = δ233 so

p (P ) p (D|P ) = λ203 δ
2
33

We next consider the second term of (8). The probability for p (no− P ) is
¡
λ201 + λ202

¢
and the type of

player 1 changes, he collapses on
¯̄bt1® = λ01

(λ201 +λ202 )
|τ1i+ λ02

(λ201 +λ202 )
|τ2i. Since we consider a case when θ2

of player 1 cooperates, the probability for defection of type
¯̄bt1® is Ã λ01

(λ201 +λ202 )

!2
δ213+

Ã
λ02

(λ201 +λ202 )

!2
δ223.

Recalling that δ13 = 0, we obtain that p (no− P ) p (D|no− P ) is equal to

¡
λ201 + λ202

¢ λ02q¡
λ201 + λ202

¢
2

δ223 = λ202 δ
2
23

which gives

p (D ||t1i )MN = λ202 δ
2
23 + λ203 δ

2
33 (9)

Comparing formulas in (7) and (9) :

p (D ||t1i)MN − p (D ||t1i )M = −2λ02δ23λ03δ33 (10)

which can be negative or positive because the interference terms only involves amplitudes of probability

i.e., the square roots of probabilities. The probability to play defect decreases (and thus the probability

12



for cooperation increases) when player 1 plays a promise stage whenever 2λ02δ23λ
0
3δ33 < 0. In that case

the expectations of player 2 are correct and we have that the θ2 type of both players cooperate which we

assumed in our calculation above.19

Result 1: When player 1 meets a tough player 3 at step 1, the probability for playing defect in the

next following M game is not the same as in the M game alone, p (D ||t1i )M − p (D ||t1i)MN 6= 0.

It is interesting to note that p (D ||t1i )MN is the same as in the classical case, it can be obtained from

the same conditional probability formula.

In order to better understand our Result 1, we now consider a case when player 1 meets with a "soft"

player 3, i.e., a θ1 type, at step 1.

The soft player 3 case

In this section we show that if the promise stage is an interaction with a soft player 3 there is no effect

of the promise stage on player 1’s propensity to defect and thus no effect on the interaction at step 2..

Assume that player 3 is (initially) of type θ1 with probability close to 1. What is the best reply of the

N -eigentypes of player 1, i.e., how do they choose between P and no-P? By definition we have that τ1

always plays no-P and τ3 always play P. Now by the assumption we just made player 3 is of type θ1

who always cooperates so player 1 of type τ2 chooses to promise to cooperate, he plays P .

This means that at t=1 with probability λ021 he collapses on |τ1i and with probability λ022 +λ023 player

1 plays P and collapses on
¯̄bt1® = λ02√

λ202 +λ
20
3

|τ2i + λ03√
λ202 +λ

20
3

|τ3i . We shall compute the probability to
defect of that type.20 We first the type vector

¯̄bt1® in terms of the M -eigentypes,
¯̄bt1® =

 λ02q
λ022 + λ023

 (δ21 |θ1i+ δ22 |θ2i+ δ23 |θ3i)

+

 λ03q
λ022 + λ023

 (δ31 |θ1i+ δ32 |θ2i+ δ33 |θ3i)

As we investigate player 1’s M -eigentypes’ best reply, we again have to make an assumption about player

2’s expectation. And the assumption we make is that he believes that player 1’s propensity to defect is

unchanged, so as in protocol I the θ2 of both players cooperate and only θ3 defects. We have

p
¡
D
¯̄¯̄bt1®¢MN

=

 λ02q
λ022 + λ023

δ23 +
λ03q

λ022 + λ023
δ33

2

19For the case the best reply of the θ2 types changes with the performence of the promise game, the comparison between

the two protocols is less straightforward.
20Recall that τ1 never defects.
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p
¡
D
¯̄¯̄bt1®¢MN

=
1

λ202 + λ203

£
λ022δ223 + λ023δ233 + 2λ02λ03δ23δ33

¤
The probability for defection is thus

p (D ||t1i )MN = P (τ1) p (D ||τ1i ) + P
¡bt1¢ p ¡D ¯̄¯̄bt1®¢ =

0 +
¡
λ202 + λ203

¢ 1

λ202 + λ203

£
λ202 δ

2
23 + λ203 δ

2
33 + 2λ

0
2λ
0
3δ23δ33

¤
= λ202 δ

2
23 + λ203 δ

2
33 + 2λ

0
2λ
0
3δ23δ33.

Comparing with eq. (7) of protocol I we see that here

p (D ||t1i)M = p (D ||t1i)MN

There is NO effect of the promise stage. This is because the interference effects are still present. We note

also that player 2 was correct in his expectation about player 1’s propensity to defect.

Result 2

If player 1’s move at step 1 does not separate between the N-eigentypes that would otherwise interfere

in the determination of his play of D at step 2 then p (D ||t1i )M = p (D ||t1i )MN .

Let us try to provide an intuition for our two results. In the absence of a promise stage (protocol I) both

the sincere and opportunistic type coexist in the mind of player 1. Both these two types have a positive

propensity to defect. When they coexist they interfere positively(negatively) to reinforce(weaken) player

1’s propensity to defect. When playing the promise exchange game the two types may either separate

or not. They separate in the case of a tough player 3. Player 1 collapses either on a superposition of

the honest and sincere type (and chooses no-P) or on the opportunistic type (and chooses P). Since the

sincere and the opportunistic types are separated (by the first measurement, game N) there is no more

interference. In the case of a soft player 3 case, the play of the promise game does not separate the sincere

from the opportunistic guy, they both prefer P. As a consequence the two N eigentypes interfere in the

determination of outcome of the next following M game as they do in protocol I.

In this example we demonstrated that in a TI-model of strategic interaction, a promise stage does

make a difference for players’ behavior in the next following performance of game M. The promise stage

makes a difference because it may destroy interference effects that are present in protocol I.

Quite remarkably the distinction between the predictions of the classical and the TI-game only appears

in the absence of the play of a promise stage (with a tough player). Indeed the probability formula that

applies in the TI-model for the case the agent undergoes the promise stage (9) is the same as the

conditional probability formula that applies in the standard classical setting.
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A few words about the structure of the example

In the example above we are dealing with a type space Θ which has six elements. These elements go in two

families corresponding to the two games i.e., M : {θ1, θ2, θ3} and the promise game, N : {τ1, τ2, τ3} . So
for instance the strategic type θ1 is defined as a mapping from the simplex of the opponent possible

types into actions θ1 : ∆ ({θ1, θ2, θ3}) → A where A is the set of actions, A = {C,D}. It is interpreted
as the best reply of player 1 against player 2 in the M game. Similarly τ1 is defined by a mapping

τ1 : ∆ ({τ1, τ2, τ3})→ A0, where A0 = {P, no− P} is interpreted as the best reply of player 1 to player
3 in the promise exchange game. The corresponding GS are indexed by the type of the opponent.

Our type space is a three dimensional Hilbert space where, {|θ1i , |θ2i , |θ3i} and {|τ1i , |τ2i , |τ3i} are
two alternative basis. So in contrast with a standard Harsanyi type space where all types are alternatives

(orthogonal) to each other, here |θ1i ⊥ |θ2i and |τ1i ⊥ |τ2i but |θii is not orthogonal to |τ ii , i = 1, 2, 3.
The two games are incompatible measurements of the type of a player. A basis transformation matrix

links the eigentypes of the two GO M and N :
hτ1| θ1i = δ11 hτ1| θ2i = δ12 hτ1| θ3i = δ13

hτ2| θ1i = δ21 hτ2| θ2i = δ22 hτ2| θ3i = δ23

hτ3| θ1i = δ31 hτ3| θ2i = δ32 hτ3| θ3i = δ33

 .

Since there are three eigentypes and only two actions, two of the eigentypes must pool in their choice.

The corresponding GS are coarse measurements of the type.

3 Concluding remarks

In this paper we have explored an extension of the Type Indeterminacy model of decision-making to

strategic decision-making in a maximal information context. We did that by means of an example of a

2X2 game that we investigate in two different settings. In the first setting the game is played directly.

In the second setting the game is preceded by a promise exchange game. We first find that in a one-

shot setting the TI-model is equivalent to the standard Bayes-Harsanyi approach to games of incomplete

information. This is no longer true in the sequential move setting. We give an example of circumstances

under which the predictions of the two models are not the same. We show that the TI-model can provide

an explanation for why a cheap-talk promises matter. The promise game can separates between types and

destroys interference effects that otherwise contribute to the determination of the propensity to defect in

the next following game.

Last we want to emphasis the very explorative character of this paper. A companion paper TI-game 2

develops the basic concepts and solutions of TI-games. We believe that this avenue of research has a rich
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potential to explain a variety of puzzles in (sequential) interactive situations and to give new impulses to

game theory.
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