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Abstract

We obtain a recursive formulation for a general class of contracting
problems involving incentive constraints. These constraints make the cor-
responding maximization (sup) problems non recursive. Our approach
consists of studying a recursive Lagrangian. Under standard general con-
ditions, there is a recursive saddle point (infsup) functional equation (anal-
ogous to Bellman�s equation) that characterizes the recursive solution for
the planner�s problem and the individual values. Our approach applies
to a large class of dynamic contractual problems, as examples, we study
the optimal policies in a model with limited enforcement and in a model
with implementability constraints (as in Ramsey problems).

1 Introduction

Recursive methods have become a basic tool for the study of dynamic economic
models. For example, Stokey, et al. (1989) and Ljungqvist and Sargent (2000)
describe a large number of macroeconomic models that can be analyzed using
recursive methods. A main advantage of such approach is that it characterizes
optimal decisions -at any time t- as a time-invariant functions of a small set of
state variables. However, a key condition in standard dynamic programming
techniques is that only past variables can in�uence the set of feasible current
actions. Unfortunately, many interesting economic problems do not satisfy such
condition. For example, in contracting problems where agents are subject to
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ward Green, Robert Lucas, Andreu Mas-Colell, Fabrizio Perri, Edward Prescott, Victor
Rios,Thomas Sargent, Robert Townsend for comments on earlier developments of this work,
all graduate students who have struggled through a theory in progress and, in particular, to
Matthias Mesner and Nicola Pavoni for pointing out a problem overlooked in previous ver-
sions. Support from MCyT-MEyC of Spain and the hospitality of the Federal Reserve Bank
of Minneapolis is acknowledged.
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intertemporal participation, or other intertemporal incentive constraints, the
future development of the contract determines its feasibility. Similarly, in models
of optimal policy design agent�s reactions to government policies are taken as
constraints and, therefore, future actions limit the set of current feasible actions
available to the government.
In this paper we provide an integrated approach for a recursive formulation of

a large class of dynamic models with constraints that depend on expectations of
functions of future control variables. Even though these models are not recursive
in the standard sense, by reformulating them as an equivalent recursive saddle
point problem we obtain a recursive formulation.
We build on traditional tools of economic analysis, such as duality theory (in

optimization problems), �xed point theory (in in�nite dimensional spaces), and
dynamic programming. We proceed in three steps. We �rst study the planners
problem with incentive constraints (PP) as an in�nite-dimensional maximiza-
tion problem, for which standard duality theory applies. Second, we show the
equivalence between the planner�s problem and a modi�ed saddle point problem
(SPP). Third, we extend dynamic programming theory to show that the (SPP)
has a recursive formulation in the sense that it satis�es a saddle point functional
equation (SPFE) which generalizes Bellman�s equation.
The resulting saddle point problem (SPP) expands the set of state variables

to include new variables that summarize the evolution of the lagrange multipli-
ers of the original (PP) problem. Such transformation creates some technical
di¢ culties since the new (co)state variables can not be bounded. Fortunately,
we can exploit the resulting homogeneity properties of the return function and,
in this way, we are able to extend the standard contraction mapping approach
to establish the relationship between SPP and the SPFE.
We show that solving the lagrangean (SPP) is equivalent to solving the

recursive SPFE without concavity assumptions. This is important because in-
centive constraints may not have a convex structure. If concavity is satis�ed,
then solving the SPP (and, therefore, the SPFE) is equivalent with solving the
maximization problem PP. In the absence of concavity, as in any application
of lagrangean theory, our SPFE characterization is su¢ cient but it may not be
necessary for a solution.
As standard recursive methods have proved to be useful to study many

dynamic economic models -specially, but not only, in macroeconomics,- our ap-
proach has a wide range of applications. It has already proved to be useful to
study models such as: growth and business cycles with possible default (Marcet
and Marimon (1992), Kehoe and Perry (1998), Cooley, Marimon and Quadrini
(2000)), social insurance (Attanasio and Rios-Rull (2000)) and optimal �scal
and monetary policy design with incomplete markets (Rojas (1993), Marcet,
Sargent and Seppala (1996)). For brevity, however, we do not present further
applications here and limit the presentation of the theory to the case of full
information1 . Our approach is related to other existing approaches that study

1 In a follow up paper we characterize recursive contracts with incentive constraints under
private information.
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dynamic models with expectations constraints. In particular, to the pioneer
works of Abreu, Pearce and Stacchetti (1990), Green (1987) and Thomas and
Worrall (1988) and, among others, the more recent contributions of Kocher-
lakota (1996) and Rustichini (1998a). We brie�y discuss how these, and others,
works relate to ours in Section 4, after presenting the main body of the theory
in Sections 2 and 3 (while most proofs are contained in the Appendix).

2 Formulating contracts as recursive saddle-point
problems

In this section we brie�y present our approach and develop the saddle -point
formulation of problems with intertemporal constraints. We start by considering
problems that have the following representation:

PP V (x; s) = sup
fatg

E0

1X
t=0

�tr(xt; at; st) (1)

s.t. xt+1 = `(xt; at; st+1); p(xt; at; st) � 0; (2)

Et

Nj+1X
n=1

�nhj0(xt+n; at+n; st+n) + h
j
1(xt; at; st) � 0;

(3)

j = 1; :::; l; t � 0; x0 = x; s0 = s

at measurable with respect to (: : : ; st�1; st):

Standard dynamic programming methods only consider constraints of the
from (2) (see, for example, Stokey, et al. (1989) and Cooley, (1995)). However,
constraints of the form (3) are not a special case of (2), since they involve
expected values of future variables2 . We know from Kydland and Prescott
(1977) that, under these constraints, the usual Bellman equation is not satis�ed,
the solution is not, in general, of the form at = f(xt; st) for all t and the
whole history of past shocks st can matter for today�s optimal decision. By
letting Nj = 1 PP covers a large class of problems where discounted present
values enter the implementability constraint. For example, long term contracts
with intertemporal participation constraints take this form3 Alternatively, by

2Notice that expressing (3) in the form v(xt; st) �  (xt; st) � 0, where v is the value
function of PP and  some exogenously given participation constraint, is not a special case
of (2) since v is not known a priori. On the other hand, combining 2) and (3) accounts for
a broad class of constraints. For example, a nonlinear participation constraint of the form
g(Et

P1
n=0 �

nh(xt+n; at+n; st+n); xt; at; st) � 0 can easily be incorporated in our framework
with one constraint of the form (2), g(wt; xt; at; st) � 0 (with control variables (wt; at)), and
a constraint of the form (3), Et

P1
n=0 �

nh(xt+n; at+n; st+n) = wt.
3Examples using related methods can be found in Kocherlakota (1996) and Kletzer and

Wright (1998), and using our approach in Marcet and Marimon (1992), Kehoe and Perry
(1998), Attanasio and Rios-Rull (2000). Sargent and Ljungqvist (2002) provides examples
with di¤erent approaches.
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letting Nj = 0 PP covers problems where intertemporal reactions of agents
must be taken into account. For example, dynamic Ramsey problems, where the
government chooses policy variables subject to intertemporal implementability
constraints, have this form4 . We consider the two canonical cases Nj =1 and
Nj = 0, while other intermediate cases can be easily incorporated (without loss
of generality, let Nj =1, for j = 0; :::; k; and Nj = 0 for j = k + 1; :::; l).
We consider a more general class of problems parameterized by �,

PP� V�(x; s) = sup
fatg

E

24 lX
j=0

NjX
t=0

�t�jhj0(xt; at; st) j s

35
s.t. xt+1 = `(xt; at; st+1); p(xt; at; st) � 0; (4)

Et

Nj+1X
n=1

�nhj0(xt+n; at+n; st+n) + h
j
1(xt; at; st) � 0; t � 0

(5)

x0 = x; s0 = s; Nj =1; j = 0; :::; k;Nj = 0; j = k + 1; :::l

at measurable with respect to (: : : ; st�1; st):

It is easy to see that PP is a special case of PP�. It only requires to identify
the function h00 with the function r, set � = (1; 0; :::; 0) and �provided that r is
bounded �choose a h01 for which the corresponding participation constraint is
never binding. It should be noticed that the value function, when well de�ned,
takes the form V�(x; s) = �v�(x; s):This Pareto-welfare form will play a role
in some of ours characterization results. Notice that PP� is an in�nite dimen-
sional maximization problem which, under relatively standard assumptions, has
a solution in state (x; s) which is a plan5 a � fatgt=0, where at(: : : ; st�1; st) is
a state-contingent action (Proposition 1).
An intermediate step in our approach is to transform program PP� into a

one-period saddle-point problem SPP� of the form6 :

4Examples using the �primal approach�can be found in Chari et al. (1995) and Lucas and
Stokey (1983); using related methods in Chang(1998) and Phelan and Stacchetti (1999), and
using our approach in Rojas (1993), and previous working paper versions of this paper.

5We use the bold notation to denote sequences of measurable functions.
6We use the notation �h0(x; a; s) �

Pl
j=0 �

jhj0(x; a; s):
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SPP� inf
2Rl

+

sup
fatg

lX
j=0

�
�jhj0(x; a0; s) + 

jhj1(x; a0; s)
�

+ �E

24 kX
j=0

�
�j + j

� 1X
n=1

�t hj0(xn; an; sn) +
lX

j=k+1

jhj0(x1; a1; s1) j s

35
s.t. xt+1 = `(xt; at; st+1); p(xt; at; st) � 0; t � 0

Et

Nj+1X
n=1

�nhj0(xt+n; at+n; st+n) + h
j
1(xt; at; st) � 0; j = 1; :::; l; t � 1;

at measurable with respect to (: : : ; st�1; st):

We then show that, under fairly general conditions, solutions to PP� are so-
lutions to SPP� (Theorem 1), and viceversa (Theorem 2). Advancing ideas,
it should be noticed the usual slackness conditions guarantee that if (fa�t g; �)
solves SPP� in state (x; s), and x�t=1 = `(x�t ; a

�
t ; st+1), x

�
0 = x; then

E0

lX
j=0

j�

24Nj+1X
t=1

�thj0(x
�
t ; a

�
t ; st) + h

j
1(x; a

�
0; s)

35 = 0; (6)

and therefore the value of SPP� is E0
Pl

j=0

PNj

t=0 �
t�jhj0(x

�
t ; a

�
t ; st): If PP�

were a standard dynamic programming problem, then the following Bellman
equation would be satis�ed

V�(x; s) = �h0(x; a
�
0; s) + �E0V�(x

�0; s0): (7)

The argument being that in (x; s) a (argmax) solution fa�t g to SPP� determines
a new state (x�0; s0); through the Markovian transition s ! s0 and the state�s
law of motion x�0 = `(x; a�0; s

0): However, with forward looking constraints,
as in PP�, the Bellman equation (7) is not satis�ed. A central element of our
approach is to link SPP� problems by de�ning a law of motion for the evolution
the co-state variable �. This link is given by the mapping ', which takes the
form: �0j = 'j(�; ; s) = �j + j if Nj = 1, and �0j = 'j(�; ; s) = j if
Nj = 0. Then a (argmin) solution � to SPP� in state (x; s) de�nes a new
SPP'(�; �; s) problem which can be solved in state (x�0; s0):
The latter construction allows us to obtain a recursive formulation to our

original PP� problem, by showing that solutions to SPP'(�; �; s) in state
(x�0; s0) are one period ahead solutions to SPP� in state (x; s). More speci�-
cally, we show that, under fairly general assumptions, solutions to SPP� obey
a saddle-point functional equation SPFE: A value function W (x; �; s) satis�es
the saddle-point functional equation SPFE if, and only if,
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SPFE W (x; �; s) = inf
�0

sup
a
f�h0(x; a; s) + h1(x; a; s) + � E [W (x0; �0; s0)j s]g

s.t. x0 = `(x; a; s); p(x; a; s) � 0
and �0 = '(�; ; s):

To simplify the exposition we will only consider problems where policy
choices are uniquely de�ned and, therefore, associated with a value function
W satisfying SPFE there is a policy function7  ; i.e. ( a�; �) =  ((x; �; s):
Once we show that V�(x; s) satis�es the SPFE (Theorem 3), we show that

if W (x; �; s) satis�es SPFE, and its solutions are unique, the corresponding
path, fa�t ; �t g generated by  ; is a solution to SPP� in state (x; s); that is,
(fa�t g1t=0; �0) solves SPP� in state (x; s), (fa�t g1t=1; �1) solves SPP��0 in state
(x�0; s0), etc. (Theorem 4). More precisely, once we show that the value of PP�
at (x; s); V�(x; s), satis�es SPFE, we can extend the dynamic programming
principle to show that the modi�ed problem PP� is the �correct continuation
problem�to the planners�problem, in the sense that, if � is properly updated,
the solution can be found each period by re-optimizing a version of PP�.
An implication of this recursive result is that PP� is a way to �solve the

time-inconsistency problem,�in the sense of de�ning the problem that �the
committed planner should solve� if she were given the chance to reoptimize.
To see this, let fa�t g

1
t=0 be the solution to PP� � for example, let PP� be

our original PP problem, with �0 = (1; 0; :::; 0) �in state (x0; s0). The time-
inconsistency problem arises from the fact that, if intertemporal incentive con-
straints of the form (3) are binding along the path leading to (x�t ; st); in period
t; the optimal choice from period t onwards

�
a�t+j

	1
j=0

is not equal to the series
that the planner would choose if she would reoptimize PP� in period t in state
(x�t ; st): In fact,

�
a�t+j

	1
j=0

is the solution to a properly modi�ed planner�s prob-

lem: PP'(t)(�0; �0 ; s0) in state (x
�
t ; st), where '

(1)(�0; 
�
0; s0) � '(�0; 

�
0; s0),

'(n+1)(�0; 
�
0; s0) � '('(n)(�0; 

�
0; s0); 

�
n; sn); 

�
0 is the argmin (the La-

grange multiplier) of SPP�0 , and 
�
n is the argmin of SPP'(n)(�0; �0 ; s0): Only

if planner were to re-optimize using PP'(t)(�0; �0 ; s0) in state (x
�
t ; st), would she

follow the original plan fa�ng
1
n=t

In summary, when (3) only take the form of intertemporal one-period (Euler)
constraints (i.e. k = 0), then '(t)(�0; 

�
0; s0) = �t : In other words, the (Ram-

sey) planner commits to not to react to agent�s expectations or, equivalently, the
(Ramsey) planner takes the �rational expectations�of the agents as a constraint.
The standard �time-consistency problem�takes the form of setting �t+1 = 0,
when �t > 0

8 . Similarly, when (3) only take the form of intertemporal participa-
tion constraints (i.e. k = l), then '(t)(�0; 

�
0; s0) =

Pt
n=0 

�
n. In other words,

7Our approach can be generalized to consider policy correspondences, from which mea-
surable selections determine speci�c optimal choices. Marimon, Messner and Pavoni(2009)
discusses this generalization.

8Building on these ideas, recently, Davide Debortoli and Ricardo Nunes (2007) have develop
models whit mix forms of commitment.
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the planner should reoptimize updating the weights in her Pareto objective
function according to the aggregate shadow-value of agents�intertemporal par-
ticipation constraints along the path. In other words, given that �punishments
to deviate are already implicit in the intertemporal participation constraints�the
only instrument left to the planner is to relatively upgrade those agents who are
tempted to default.
This interpretation of the dynamic planner�s problem exploits the fact that

the value function of SPP� takes the form W (x; �; s) = �!(x; �; s) and it
is homogeneous of degree one in �. In the case of intertemporal participation
constraints !j(x; �; s) (homogeneous of degree zero in �) corresponds to agent
j�s value of the contract at (x; �; s):SPFE, together with (6), de�nes a recursive
saddle-point Bellman equation for the planner,

�!(x; �; s) = � [h0(x; a
�; s) + � E [!(x�0; ��0; s0)j s]] ;

however to have a well de�ned recursive problem it is necessary that a similar
recursive equation is also satis�ed for the individual agents. We provide condi-
tions guaranteeing this to be the case (in Theorem 4). In particular, �individual
values !i are the are the subgradients W� and, therefore, they are uniquely
de�ned if and only if W (x; �; s) is di¤erentiable in �. When they are uniquely
de�ned then it is straightforward to show that individual values are recursive.
The main results of this paper are then an immediate corollary to Theorems 1

- 4 and can be summarized as saying that, under relatively standard conditions:
i) a PP� problem has a recursive SPFE representation, and ii) solutions to
PP� can be obtained by solving recursive saddle point problems SPFE.
Theorem 4 assumes the existence of a value function W satisfying SPFE

and a corresponding policy function  , it also makes concavity and di¤eren-
tiability assumptions that are not necessary for the result. The Corollary of
Theorem 4 provides alternative assumptions for the same su¢ ciency result. To
address the issue of existence of (W; ) and sharpen Theorem 4 we generalize
dynamic programming results, to our saddle-point formulation. We �rst de�ne
the Dynamic Saddle-Point Problem as
DSPP(x;�;s)

inf
�0

sup
a
f�h0(x; a; s) + h1(x; a; s) + � E [�0!(x0; �0; s0)j s]g

s.t. x0 = `(x; a; s); p(x; a; s) � 0
and �0 = '(�; ; s);

we then show that, under fairly standard assumptions and for a general space of
value functionsM , mapping X�Rl+1+ �S to Rl+1, DSPP(x;�;s) has well de�ned
solutions (Proposition 2). Then, DSPP(x;�;s) de�nes then a SPFE operator,
T :M �!M , given by

!j(x; �; s) = hj0(x; a
�(x; �; s); s) + � E [!j(x

�0(x; �; s); ��0(x; �; s); s0)j s] ,
(8)
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if j = 0; :::; k; and

!j(x; �; s) = hj0(x; a
�(x; �; s); s), if j = k + 1; :::; l:

Notice that if a�(x; �; s) is uniquely determined, T immediately delivers
unique values !j ; for j = k + 1; :::; l. For j = 0; :::; k we show that T is a
contraction mapping. This formulation also shows a main di¤erence between
our approach and the so-called �promise utilities approach�(see, for example,
Ljungqvist and Sargent (2000), Ch. 19), where !j are choice variables, and
the recursive equations (8) are taken as constraints. In our approach, both the
individual values !j and their recursive structure (8) are the result of solving
Dynamic Saddle-Point Problem in terms of pre-speci�ed state (and co-sate) vari-
ables. Our main �nal theorem provides conditions under which solutions to Dy-
namic Saddle-Point Problems are solutions to our original Planner�s Problems
with intertemporal incentive (e.g. Euler-equations) or participation constraints
(Theorem 5).
Before we turn to these results in Sections 4 and 5, in the next Section we

show how our approach is impelemented in a couple of canonical examples.

3 Some applications

In this Section, we illustrate our approach with two examples. In the �rst,
there are only intertemporal participation constraints (i.e. k = l in (3)); in
the second, there are only intertemporal one-period (Euler) constraints (i.e.
k = 0 in (3)). The �rst is similar to the model studied in Marcet and Marimon
(1992), Kocherlakota (1996), Kehoe and Perri (2002), among others, and it is
canonical of models with intertemporal default constraints; the second is based
on the model studied by Aiyagari, Marcet, Sargent and Seppala (2002) and it
is canonical models with Euler constraints, as in Ramsey models.

3.1 Intertemporal participation constraints.

We consider, as an example, a model of a partnership, where several agents can
share their individual risks and jointly invest in a project which can not be un-
dertaken by single (or subgroups of) agents. Formally, there is a single good and
J in�nitely-lived consumers, with preferences represented by E0

P1
t=0 �

t u(cj;t);
u is assumed to be bounded, strictly concave and monotone, with u(0) = 0; c
represents individual consumption. Agent j receives an endowment of consump-
tion good yj;t at time t and, given a realization yt; yt =

PJ
j=1 yj;t > 0, agent j

has an outside option vaj (yt): For simplicity we consider that the outside option
is the autarkic solution: vaj (yt) = E [

P1
n=0 �

n u(yj;t+n) j yj;t], which implic-
itly assumes that agent j is permanently excluded from the partnership and, if
she defaults, does not have any claims on the capital of the partnership9Total

9For a model where there is no permanent exclusion and, therefore, the outside option can
not be taken as exogenous, see Cooley, Marimon and Quadrini (2000). Their model requires to
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production is given by F (k; �), and it can be split into consumption c and in-
vestment i: The stock of capital k depreciates at the rate �: The joint process
f�t; ytg1t=0 is assumed to be Markovian and the initial conditions (k0; �0; y0) are
given. The planner�s problem takes the form:

PP max
fct;itg

E0

1X
t=0

�t
JX
j=1

�j u(cj;t)

s.t. kt+1 = (1� �)kt + it; F (kt; �t) + yt �

0@ JX
j=1

cj;t + it

1A � 0

Et

1X
n=0

�n u(cj;t+n) � vaj (yt) for all j; t � 0:

It is easy to map this planner�s problem into our PP� formulation. Let s �
(�; y); x � k; a � (i; c); `(x; a; s) � (1��)k+i; p(x; a; s) � F (k; �)+

P
j2J yj��P

j2J cj + i
�
; h00(x; a; s) �

PJ
j=1 �j u(cj); h

j
0(x; a; s) � u(cj); h

j
1(x; a; s) �

hj0(x; a; s)�vaj (yt); j = 1; :::; J; and h01(x; a; s) � h00(x; a; s)�R; where R = 0:
Finally, apply the convention �0 = (1; 0; :::; 0) and PP is just PP�0 . In its
original notation, SPFE takes the form

W (k; �; y; �) = inf
�0

sup
c;i
f
JX
j=1

�
(�0�j + �j) u(cj)� j

�
u(cj)� vaj (y)

��
+ 0

 X
J

�juj(cj)�R
!
+ � E

�
W (k0; �0; y0; �0) j!; �

�
g

s.t. k0 = (1� �)k + i; F (k; �) +

JX
j=1

yj �

0@ JX
j=1

cj + i

1A � 0

and �0 = �+ 

Letting  be the policy function associated with this functional equation, ef-
�cient allocations satisfy (ct; it; t) =  (kt; �t; �t; yt) with initial conditions
(k0; �0; �0; y0).
Notice that solutions to SPP satisfy �0t = 1: It follows that co-state variables

� become the weights that the planner assigns to each agent, which evolve ac-
cording to whether or not the participation constraint is binding. Furthermore,
if u is di¤erentiable,

u0(ci;t)

u0(cj;t)
=

�j + �
j
t+1

�i + �it+1
; for all i; j and t:

map outside options, taken as exogenous functions, into value functions of the corresponding
recursive contracts, and then �nd the appropriate �xed point of that map.
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Thus, the optimal allocations amount to choosing e¢ ciently the time pro�le of
the time-dependent weights (�j + �j;t+1), in such a way that the participation
constraints are satis�ed. Every time that the participation constraint for an
agent is binding, his weight is increased by the amount of the corresponding
lagrange multiplier. An agent is induced not to default by increasing his con-
sumption not only in the period where he is tempted to default, but also for
many of the following periods; in this way, the additional consumption that
the agent receives to prevent default is smoothed over time. That is, individ-
ual paths of consumption depend on individual histories (in particular, on past
�temptations to default�) not just on the initial wealth distribution and the
aggregate consumption path, as in the Arrow-Debreu competitive allocations.
This also shows that if enforcement constraints are never binding (e.g., pun-
ishments are severe enough) then �t = �0 and we recover the �constancy of
the marginal utility of expenditure�, and the �constant proportionality between
individual consumptions,� given by u0(ci;t)=u0(cj;t) = �j=�i: In other words,
the evolution of the co-state variables can be also interpreted as the evolution
of the distribution of wealth.
The intertemporal Euler equation of SPP� is also very informative:

�it+1u
0(ci;t) = �E

�
�it+2u

0(ci;t+1)
�
Fkt+1 + (1� �)

��
where, as with j = 0; :::; k; constraints: �it+2 = �it+1 + it+1. That is, the �sto-
chastic discount factor�, �u0(ci;t+1)=u0(ci;t) is distorted by

�
1 + it+1=�

i
t+1

�
, a

distortion which does not vanish unless the non-negative process
�
it
	
converges

to zero. But if intetemporal participation constraints are in�nitely often bind-
ing, there will be a non degenerate distribution of consumption in the long-run;
in contrast with an economy where intetemporal participation constraints cease
to be binding, as in an economy with full enforcement.

3.2 Intertemporal implementability (Euler equation) con-
straints

Example 2. A Ramsey problem

We brie�y sketch a version of the optimal taxation problem studied by Aiya-
gari, Marcet, Sargent and Seppala (2002) [to be explained better]. A represen-
tative consumer solves

maxE0

1X
t=0

�t [u(ct) + v(lt)]

s.t. ct + bt+1p
b
t = lt(1� � t) + bt

The government must �nance exogenous random expenditures g issuing debt
and collecting taxes. Given the technology ct + gt = lt;the budget of the gov-
ernment mirrors the budget of the representative agent and is subject to a

10



no-Ponzi constraint. In a competitive equilibrium, the following intertemporal
and intratemporal equations must be satis�ed:

pbtu
0(ct) = � Etu

0(ct+1)

� v
0(lt)

u0(ct)
= (1� � t):

Therefore, the Ramsey problem can be formulated as

max
fct;bt+1g

E0

1X
t=0

�t [u(ct) + v(lt)]

s.t. ct + bt+1� Et
u0(ct+1)

u0(ct)
= �lt

v0(lt)

u0(ct)
+ bt

This problem can be represented as a PP�0 by letting: s � g; x � b; a � (c; y);
p(x; a; s) � l � (c + g), h00(x; a; s) � u(ct) + v(lt), h10(x; a; s) � u0(ct+1);
h01(x; a; s) � h00(x; a; s)�R (big); h11(x; a; s) � y, where

yt =
�ltv0(lt) + btu0(ct)� ctu0(ct)

bt+1
.

In particular, SPP� solutions satisfy

E
�
(�1t+1 � 1t+1)u0(ct+1)

�
= 0 (9)

where, as with j = k+1; :::; l, constraints, �1t+1 = 1t . As it can be seen, (9) im-
mediately shows the nature of the distortion �that is, of the �time-inconsistency�
problem �and of its possible resolution: the convergence of the random vari-
able 1t . In particular, Aiyagari et al. show that, in fact, the process

�
1t
	
is a

non-negative submartingale.

4 The relationship between PP�, SPP�, and SPFE

This section makes more precise the relationships between the initial maxi-
mization problem PP�, the saddle-point problem SPP� and the saddle-point
functional equation SPFE, presented in the previous Sections. We start by
introducing assumptions, which are relatively standard in convex optimization
problems. We then present the main results, making explicit when some of the
special assumptions. listed below, are needed for each of them. Most proofs are
in the Appendix.

4.1 Assumptions and existence of solutions to PP�

Regarding the initial problemPP�, we consider the following set of assumptions:

A1. S is a countable set of an Euclidean space. The stochastic process fstg; st 2
S; is a stationary Markovian process on the probability space (S;S; P ).

11



A2. X and A are convex subsets of Rn and Rm respectively. The functions
p : X � A � S ! R and ` : X � A � S ! X are continuous and
measurable, with respect to (Rn;Rm;S). For any (x; s) 2 X � S there
exist ea 2 A; such that p(x;ea; s) > 0.

A3. The function `(�; �; s) is linear and the function p(�; �; s) is concave.

A4. Given (x; s);there exist constants B > 0 and ' 2 (0; ��1); such that if
p(x; a; s) � 0 and x0 = `(x; a; s0); then kak � B kxk and kx0k � ' kxk

A5. The functions hji (�; �; s); i = 0; 1; j = 0; :::; l; are continuous and uniformly
bounded, hj0(x; �; s) is non-decreasing, and � 2 (0; 1):

A5d. The functions hji (�; �; s); i = 0; 1; j = 0; :::; l; are continuously di¤eren-
tiable on f(x; a) : p(x; a; s) > 0g:

A6. The functions hji (�; �; s); i = 0; 1; j = 0; :::; l; are concave.

A6s. In addition to A6, the functions hj0(x; �; s); j = 0; :::; l; are strictly con-
cave.

A7. For all (x; s); there exists a program feang1n=0 ; with initial conditions (x; s);
which satis�es the inequality constraints (4) and (5) with strict inequality.

We take Assumptions A1-A5 as our basic assumptions, since most dynamic
equilibrium models satisfy them, and treat the concavity and inferiority as-
sumptions, A6-A6b and A7, as special since they are not satis�ed in some
interesting models. It should be noticed, however, that many of our results
do not rely on, simultaneously satisfying A1-A5. For example, that the state
space is countable �instead of continuous, in A1 �only plays a role in proving
existence of solutions to PP� (Proposition 1)10 . Assumptions A2, A3 and A5
are standard, even if our boundedness assumption A5 is not satis�ed in some
interesting examples. As in standard dynamic programming, it is possible to
extend our results to unbounded returns, but we do not pursue such general-
ization here. Assumption A4 allows for technologies with long-run growth. As
it will made clear, A6 is not needed for some of our main (su¢ ciency) results.
Finally, assumption A7 is a standard interiority assumption, only needed to
guarantee the existence of Lagrange multipliers.
It is convenient to express PP� and SPP� as in�nite dimensional maximiza-

tion and saddle-point problems, respectively. For this we need to de�ne �rst the
space in which allocations are de�ned. Let Lm1(S1;St; P ) denote the space of
m-valued �essentially bounded�St-measurable functions. Plans are elements of
A = fa : 8t � 0; at 2 Lm1(S1;St; P )g and endogenous state variables are ele-
ments of X = fx : 8t � 0; xt 2 L

n

1(S1;St; P )g. Given initial conditions, (x; s);
and a plan a 2 A; we can de�ne x 2 X recursively by xn+1 = `(xn; an; sn),

10Similarly, Proposition 1 does not require a Markovian structure, although this assumption
is used to obtain the general recursive structure.
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where x0 = x and s0 = s: It follows that the corresponding evaluation of such
plan is given by

f(x;�:s)(a) = E0

kX
j=0

NjX
t=0

�t�jhj0(xt; at; st)

Similarly, we can describe the constraint sets by de�ning g : A ! Lk+11 and q :
A ! L11 coordinatewise as

g(a) jt = Et

24Nj+1X
n=1

�nhj0(xt+n; at+n; st+n)

35+ hj1(xt; at; st)
q(a)t = p(xt; at; st)

Given initial conditions (x; s); the corresponding constraint set is then

B(x; s) = fa 2 A : q(a)t � 0; g(a) t � 0; x 2 X ; x0(s) = x; xt+1 = `(xt; at; st); t � 0g

In summary, PP� can be written in compact form as

PP� V�(x; s) = sup
a2B(x;s)

f(x;�:s)(a)

Proposition 1. Assume A1-A6 and �x � 2 Rl+1+ . There exists a program
a� which solves PP� with initial conditions (x0; s0), achieving the value
V�(x; s): Furthermore, if A6s is also satis�ed then the solution is unique.

Proof: See Appendix.

4.2 The relationship between PP� and SPP�

The following result follows from the standard theory of constrained optimiza-
tion in linear vector spaces (see, for example, Luenberger (1969, Section 8.3,
Theorem 1 and Corollary 1). Notice that, as in standard constrained optimiza-
tion theory, convexity and concavity assumptions (A2, A3, and A6), as well
as an interiority assumption (A7) are necessary in order to obtain the result.

Theorem 1 (PP� =) SPP�). Assume A1- A6 and A7 and �x � 2 Rl+1+ .
Let a� be a solution to PP� with initial conditions (x; s):There exist a
� 2 Rl+ such that (a�; �) is a solution to SPP� in state (x; s), and the
value of this latter problem is V�(x; s):

Proof: See Appendix.
We can also write SPP� in a compact form, by de�ning

B0(x; s) = fa 2 A : q(a)t � 0 & g(a) t+1 � 0; x 2 X ; x0(s) = x; xt+1 = `(xt; at; st); t � 0g

SPP� inf
2Rl

+

sup
a2B0(x;s)

�
f(x;�;:s)(a) + g(a) 0
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Theorem 2 (SPP� =) PP�). Given initial conditions (x; s) and � 2 Rk+1+ ;
let (a�; �) be a solution to SPP�. Then a� is a solution to PP� in
state (x; s):

Notice that, Theorem 2 is a su¢ ciency theorem �almost free of assumptions.�
In fact, only the basic structure of A1- A5, de�ning the corresponding
in�nite-dimensional optimization and saddle-point problems, is needed,
together with assuming that a well de�ned solution to SPP� exists11 .
Once these conditions are satis�ed, assumptions, such as concavity (A3)
or boundedness (A5), can be dispensed with.

Proof: The proof is an adaptation, to SPP�, of a su¢ ciency theorem for La-
grangian saddle points (see, for example, Luenberger (1969), Theorem
8.4.2, p.221). Let (a�; �) be a solution to SPP�, then letbV�(x; s) = f(x;�;s)(a

�) + �g(a�)0:

Minimality of � implies that, for every  � 0;

( � + ) g(a�)0 � �g(a�)0;

therefore, g(a�) 0 � 0; which together with the fact that a� 2 B0(x; s),
implies a� 2 B(x; s); i.e. a� is a feasible program for PP�: Furthermore,
the minimality of � also implies that

�g(a�)0 � 0g(a�)0 = 0

but since � � 0 and g(a�)0 � 0, it follows that �g(a�)0 = 0: Now,
suppose there exist ~a 2 B(x; s) satisfying f(x;�;s)(~a) > f(x;�;s)(a

�); then,
since �g(~a)0 � 0; it must be that

f(x;�;s)(~a) + 
�g(~a)0 > f(x;�;s)(a

�) + �g(a�)0

which contradicts the maximality of a� for SPP� . As a result, bV�(x; s) =
f(x;�;s)(a

�) + �g(a�)0 = V�(x; s) �

4.3 The relationship between SPP�, and SPFE

Recall that a value function W satis�es SPFE at (x; �; s) if, and only if,

W (x; �; s) = min
�0

max
a
f�h0(x; a; s) + h1(x; a; s) + � E [W (x0; �0; s0)j s]g

(10)

s.t. x0 = `(x; a; s); p(x; a; s) � 0
and �0 = '(�; ; s):

11 In fact, to simplify the exposition, we implicitly assume that the solution is unique,
although the generalization is straightforward, except when one needs to recursively connect
SPP� problems (Marimon, Messner and Pavoni (2008)).
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We simply say that W satis�es SPFE if, and only, if it satis�es SPFE at any
possible state (x; �; s):
The saddle-point policy correspondence (SP policy correspondence) is de�ned

by

	(x; �; s) =

f( a�; �) :W (x; �; s) = �h0(x; a
�; s) + �h1(x; a

�; s) + � E [W (x�0; ��0; s0)j s] ;
andx�0 = `(x; a�; s); p(x; a�; s) � 0; and ��0 = '(�; �; s)g

If 	 is single valued, we denote it by  , and we call it a saddle-point policy
function (SP policy function).

Theorem 3 (SPP� =) SPFE). Let W (x; �; s) � V�(x; s) be the value of
SPP� at (x; s), for an arbitrary (x; �; s), then the value function W
satis�es SPFE: In particular, if (a�; �) is a solution to SPP� at (x; s);
(a�0; 

�) 2 	(x; �; s):

As in Theorem 2, Theorem 3 is also a theorem �almost free of assumptions,�
once the underlying structure and the existence of a well de�ned solution to
SPP� at (x; s) is assumed.

Proof: We �rst proof the recursively condition (10). Let (a�; �) be a solution
to SPP� at (x; s);

W (x; �; s) = f(x;�;s)(a
�) + �g(a�)0

= �h0(x; a
�
0; s) + 

�h1(x; a
�
0; s)

+�E

24 kX
j=0

1X
t=1

�t�1
�
��j + �j

�
hj0(x

�
t ; a

�
t ; st)j s

35
+�E

24 lX
j=k+1

�jhj0(x
�
1; a

�
1; s1)j s

35
= �h0(x; a

�
0; s) + 

�h1(x; a
�
0; s)

+�E
�
f(x�1 ;'(�; �;s);s1)(a

�)j s
�

� �h0(x; a
�
0; s) + 

�h1(x; a
�
0; s)

+�E
�
V'(�; �;s)(x

�
1; s1)j s

�
= �h0(x; a

�
0; s) + 

�h1(x; a
�
0; s)

+�E [W (x�1; ' (�; 
�; s) ; s1)j s] ;

where the �rst two equalities follow from the de�nition of W and f , the
weak inequality follows from the fact that V'(�; �;s)(x�1; s1) is the value of
PP'(�; �;s) at (x�1; s1) and the last equality follows from Theorem 2.

To show the reverse weak inequality, it is convenient to explicitly denote by
(a�(x; �; s); �(x; �; s)) a solution to SPP� at (x; s) and by a��(x; �; s) a
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solution to PP� at (x; s) (not recalling Theorem 1 for the moment), and
to de�ne the shift operator � : St+1 ! St by: �(st) = (s1; s2:::; st), where
st = (s0; s1; :::; st). We construct a sequence a+ that consists of the op-
timal choice for SPP� at (x; s) in the initial period, but subsequently is fol-
lowed by the optimal choices forPP'(�; �(x;�;s);s) at (`(x; a�0(x; �; s); s1); s1).
Formally a+ is de�ned by

a+0 (x; �; s) = a�0(x; �; s)

a+t (x; �; s)(s
t) = a��t�1(`(x; a

�
0(x; �; s); s1); ' (�; 

�(x; �; s); s) ; s1)(�(s
t))

for all (x; �; s), all t � 1 and all st 2 St+1. In what follows, we sim-
plify again notation by denoting a�t (x; �; s) by a

�
t , 

�(x; �; s) by �, and
a+t (x; �; s)(s

t) by a+t ; then, we have:

W (x; �; s) = f(x;�;s)(a
�) + �g(a�)0

= �h0(x; a
�
0; s) + 

�h1(x; a
�
0; s)

+�E

24 kX
j=0

1X
t=1

�t�1
�
��j + �j

�
hj0(x

�
t ; a

�
t ; st)j s

35
+�E

24 lX
j=k+1

�jhj0(x
�
1; a

�
1; s1)j s

35
� �h0(x; a

+
0 ; s) + 

�h1(x; a
+
0 ; s)

+�E

24 kX
j=0

1X
t=1

�t�1
�
��j + �j

�
hj0(x

+
t ; a

+
t ; st)j s

35
+�E

24 lX
j=k+1

�jhj0(x
+
1 ; a

+
1 ; s1)j s

35
= �h0(x; a

�
0; s) + 

�h1(x; a
�
0; s)

+�E [W (x�1; ' (�; 
�; s) ; s1)j s] ;

where the �rst equality follow from the de�nition of W and f , the weak
inequality follows from the fact that a+(x; �; s) is a feasible allocation �
from (x; s) �but a�(x; �; s) is a solution to SPP� at (x; s), and the last
equality follows from Theorem 1.

From the above two weak inequalities it follows that SPP� values satisfy the
recursive �minmax Bellman equation�,(10). To show that the saddle-point
condition of SPFE is also satis�ed is relatively straightforward once we
show that SPFE values are unique and we take into account that SPP�
already satis�es a saddle-point condition. To see uniqueness of values, con-
sider two solutions to SPFE at (x; �; s), (ea; e) and (ba; b), then repeated
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application of the saddle-point condition implies:

�h0(x; ea; s) + eh1(x; ea; s) + �E [W (`(x; ea; s0); '(�; e; s); s0)j s]
� �h0(x; ba; s) + eh1(x; ba; s) + �E [W (`(x; ba; s0); '(�; e; s); s0)j s]
� �h0(x; ba; s) + bh1(x; ba; s) + �E [W (`(x; ba; s0); '(�; b; s); s0)j s]
� �h0(x; ea; s) + bh1(x; ea; s) + �E [W (`(x; ea; s0); '(�; b; s); s0)j s]
� �h0(x; ea; s) + eh1(x; ea; s) + �E [W (`(x; ea; s0); '(�; e; s); s0)j s]

Now, suppose that while (a�; �) is a solution to SPP� at (x; s); there existea 2 A; p(x;ea; s) � 0, such that
�h0(x; ea; s) + �h1(x; ea; s) + �E [W (`(x; ea; s0); '(�; �; s); s0)j s]

> �h0(x; a
�
0; s) + 

�h1(x; a
�
0; s) + � E [W (`(x; a

�; s0); '(�; �; s); s0)j s]

but, letting ea�t � a��t (`(x; ea; s0); '(�; �; s); s0); the �rst term of the
inequality can be expressed in terms of the program ea� as:

�h0(x; ea; s) + �h1(x; ea; s) + �E [W (`(x; ea; s0); '(�; �; s); s0)j s]
= �h0(x; ea0; s) + �h1(x; ea0; s)

+�E

240@ kX
j=0

1X
t=1

�t�1
�
��j + �j

�
hj0(ex�t ; ea�t ; st) + lX

j=k+1

�jhj0(ex�1; ea�1; s1)
1A j s

35
= f(x;�;s)(ea�) + �g(ea�)0;

while, by (10), the second term of the inequality is simply

�h0(x; a
�
0; s) + 

�h1(x; a
�
0; s) + � E [W (`(x; a

�; s0); '(�; �; s); s0)j s]
= f(x;�;s)(a

�) + �g(a�)0;

therefore the inequality contradicts the fact that (a�; �) is a solution to
SPP� at (x; s):

Similarly, suppose there exist b 2 Rl+ such that
�h0(x; a

�
0; s) + bh1(x; a�0; s) + � E [W (`(x; a�; s0); '(�; b; s); s0)j s]

< �h0(x; a
�
0; s) + 

�h1(x; a
�
0; s) + � E [W (`(x; a

�; s0); '(�; �; s); s0)j s] ;

but, letting ba�t � a��t (`(x; a
�; s0); '(�; b; s); s0); we obtain the following
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contradiction with the previous inequality:

�h0(x; a
�
0; s) + bh1(x; a�0; s) + � E [W (`(x; a�; s0); '(�; b; s); s0)j s]

= �h0(x; a
�
0; s) + bh1(x; a�0; s)

+�E

240@ kX
j=0

1X
t=1

�t�1
�
��j + bj�hj0(bx�t ; ba�t ; st) + lX

j=k+1

bjhj0(bx�1; ba�1; s1)
1A j s

35
� �h0(x; a

�
0; s) + bh1(x; a�0; s)

+�E

240@ kX
j=0

1X
t=1

�t�1
�
��j + bj�hj0(x�t ; a�t ; st) + lX

j=k+1

bjhj0(x�1; a�1; s1)
1A j s

35
= f(x;�;s)(a

�) + bg(a�)0
� f(x;�;s)(a

�) + �g(a�)0

= �h0(x; a
�
0; s) + 

�h1(x; a
�
0; s) + � E [W (`(x; a

�; s0); '(�; �; s); s0)j s] ;

where the �rst equality follows from the de�nition of ba� and Theorem 2,
the �rst inequality follows from the fact that ba� is a solution toPP'(�; b; s)
at (`(x; a�; s0); s0), for every s0 (following s), the next equality is de�ni-
tional, the last inequality follows from the fact that (a�; �) is a solution
to SPP� at (x; s), and the last equality follows from (10) �

The value function of SPP� at (x; s) satis�es

W (x; �; s) = f(x;�;s)(a
�) + �g(a�)0

= f(x;�;s)(a
�)

= E0

lX
j=0

NjX
t=0

�t�jhj0(x
�
t ; a

�
t ; st)

�
lX

j=0

�j!j(x; �; s)

= �!(x; �; s)

where, for j = 0; :::k; !j(x; �; s) � E0
P1

t=0 �
thj0(x

�
t ; a

�
t ; st), and, for j = k +

1; :::l; !j(x; �; s) � hj0(x
�
0; a

�
0; s0): Similarly, the value function of SPP'(�; �; s)

at (x�1; s1); x
�
1 = `(x; a�0; s); satis�es

W (x�1; '(�; 
�; s); s1) � '(�; �; s)!(x�1; '(�; 

�; s); s1):

This representation not only has an interesting economic meaning � for ex-
ample, as a �social welfare function,� with varying weights, in problems with
intertemporal participation constraints � but is also very convenient analyti-
cally. In particular, the following Corollary to Theorem 3 shows that it satis�es
what we call the saddle-point inequality property SPI (Lemma 1 below shows
its equivalence, for W , with SPFE).
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A functionW (x; �; s) =
Pl

j=0 �
j!j(x; �; s) satis�es the saddle-point inequal-

ity property SPI at (x; �; s) if and only if there exist (a�; �) satisfying

�h0(x; a
�; s) + eh1(x; a�; s) + � E ['(�; e; s)!(x�0; '(�; �; s); s0)j s]

� �h0(x; a
�; s) + �h1(x; a

�; s) + � E ['(�; �; s)!(x�0; '(�; �; s); s0)j s] :
(11)

� �h0(x; ea; s) + �h1(x; ea; s) + � E ['(�; �; s)!(ex0; '(�; �; s); s0)j s] ; (12)
for any e 2 Rl+1+ and (ea; ex0) satisfying the technological constraints at (x; s):
Corollary 3.1. (SPP� =)SPI). Let W (x; �; s) � V�(x; s) be the value of

SPP� at (x; s), for an arbitrary (x; �; s), thenW (x; �; s) =
Pl

j=0 �
j!j(x; �; s)

satis�es SPI:

Proof: We only need to show that (11) is satis�ed, but this is immediate from
the following identities

f(x;�;s)(a
�) = �h0(x; a

�
0; s) + � E

24 kX
j=0

�j!j(x
�
1; '(�; 

�; s); s1)j s

35
g(a�)0 =  [h1(x; a

�
0; s) + � E [!(x

�
1; '(�; 

�; s); s1)j s]] ;

and the de�nition of SPP� at (x; s); that is, for any e 2 Rl+1+ ,

�h0(x; a
�; s) + eh1(x; a�; s) + � E ['(�; e; s)!(x�0; '(�; �; s); s0)j s]

= f(x;�;s)(a
�) + g(a�)0

� f(x;�;s)(a
�) + �g(a�)0

= �h0(x; a
�; s) + �h1(x; a

�; s) + � E ['(�; �; s)!(x�0; '(�; �; s); s0)j s]

�

The argument used in the proof of Theorem 3 can be iterated a �nite
number of times to show the underlying recursive structure of the PP� for-
mulation. If PP� has a unique solution fa�t g

1
t=0 at (x; s); then by Theo-

rem 1 there is a SPP� at (x; s) with solution (fa�t g
1
t=0 ; 

�); which in turn
de�nes a PP'(�; �; s) problem. As it has been seen in the proof of Theo-
rem 3, fa�t g

1
t=1 solves PP'(�; �; s) at (`(x; a

�
0; s); s1) and by Theorem 1 there

is a �1 such that (fa�t g
1
t=1 ; 

�
1) solves SPP'(�; �; s) at (`(x; a

�
0; s); s1). In

turn, fa�t g
1
t=2 solves PP'(2)(�; �; s) at (`

(2)(x; a�0; s); s1) where '
(2)(�; �; s) �

'('(�; �; s); �1; s1) and `(2)(x; a�0; s) � `(`(x; a�0; s); a
�
1; s1): Similarly, let

'(n+1)(�; �; s) � '('(n)(�; �; s); �n; sn); then by recursively applying the
argument of the proof of Theorem 3 we obtain the following result.

Corollary 3.2. (Recursivity of PP�). If PP� satis�es the assumptions of
Theorem 1 and has a unique solution fa�t g

1
t=0 at (x; s); then, for any

(t; x�t ; st),
�
a�t+j

	1
j=0

is the solution to PP'(t)(�; �; s) at (x�t ; st); where 
�

is the minimizer of SPP� at (x; s):
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We now show that, under fairly general conditions, programs satisfying
SPFE are solutions to SPP� at (x; s). More formally,

Theorem 4 (SPFE =) SPP�) Assume W , satisfying SPFE, is continuous
in (x; �), concave in x, and convex and homogeneous of degree one in �,
and assume A5d. Then if (a�;�) is generated by the SP policy function
 , associated with W , from an initial condition (x; �; s) and, for all (t; st);
p(x�t ; a

�
t ; st) > 0, then (a

�;�) is also a solution to SPP� at (x; s):

Notice that the assumptions onW are fairly general. They are also relatively
standard; in particular, ifW (x; �; s) is the value function of SPP� at (x; s) (i.e.
W (x; �; s) � V�(x; s)) then � as Lemma A2 in the Appendix shows � it is
convex and homogeneous of degree one in �, is continuous and bounded in
(x; �) if A2 and A5 are satis�ed. Concavity and di¤erentiability of W in x �
which are satis�ed if A6 and A5d are, respectively, satis�ed �are somewhat
stringent assumptions. The Corollary to Theorem 4 shows how the same result
(SPFE =) SPP�) can be satis�ed even without these assumptions. The only
remaining �stringent condition�is that (a�;�) must be generated by a SP policy
function  ; i.e. must be uniquely determined12 .
Before we prove Theorem 4, we �rst show some interesting properties of W

in Lemmas 1 and 2. These lemmas follows from several properties of convex
and homogeneous functions, together with the fact that W is a value function
with unique saddle-point solutions.
To simplify the exposition of these properties let F : Rm+ ! R continuous,

convex and homogeneous of degree one. The subgradient set of F at y, denoted
@F (y), is given by

@F (y) =
�
z 2 Rm j F (y0) � F (y) + (y0 � y)z for all y0 2 Rm+

	
:

The following facts, regarding F , will be used in proving Lemmas 1 and 2:

1. If F is convex, then it is di¤erentiable at y if, and only if, @F (y) consists of
a single vector; i.e. @F (y) = frF (y)g ; where rF (y) is called the gradient
of F at y:

2. If F is convex and �nite in a neighborhood of y, then @F (y) is the convex
hull of the compact set

fy 2 Rm j 9 yk �! y with F di¤erentiable at yk and rF (yk) �! zg :

3. (Euler�s formula) If F is homogeneous of degree one and di¤erentiable at
yk, then F (yk) = ykrF (yk). Therefore, if yk �! y; with F di¤erentiable
at yk; andrF (yk) �! z, then F (y) = yz. In particular, F (y) has (partial)
directional derivatives given by: @F (�)

@dyj
� fdj (y) �which are extreme points

of @F (�) �and F (�) =
Pm

j=1 y
jfdj (y):

12As said, Marimon, Messner and Pavoni (2009) analyzes the general case with policy
correspondences. We are specially grateful to the latter two authors who provided an example
showing the problems that may arise when solutions are not uniquely determined. The proof
of Theorem 4 has bene�ted from the study of their example.
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4. If W is convex and homogeneous of degree one, for any pair
�
f; bf� ; if

fd(y) 2 @F (y) and fd(by) 2 @F (by), then byfd(by) � byfd(y).
5. If F is convex, y� � 0 satis�es F (y) � F (y�); for all y � 0, if and only if,
for all f(y�) 2 @F (y�), f(y�) � 0 and fj(y�) = 0 whenever y�j > 0:

Fact 1 is a basic result on di¤erentiability of convex functions (see, Rockafel-
lar, 1981, Theorem 4F, or 1970, Theorem 25.1). Fact 2 is a very convenient char-
acterization of the subgradient set of a convex function (see Rockafellar, 1981,
Theorem 4D, or 1970, Theorem 25.6). Fact 3 is the well known Euler�s formula
and its second part follows from continuity and the characterization of the ex-
treme points of the subgradient set. To see Fact 4 notice that if F (y) = yfd(y);
by convexity, homogeneity of degree one, and Euler�s formula,

F (by) � F (y) + (by � y)fd(y)
= yfd(y) + byfd(y)� yfd(y) = byfd(y):

Finally, Fact 5 is a result on minimization of convex functions on Rm+ . To see
this, notice that by assumption for all y � 0; F (y + y�) � F (y�) � 0, suppose
fj(y

�) < 0, and let ej 2 Rm be given by ekj = 1; if k = j; ekj = 0; if k 6= j. Then,
by convexity and the fact that and f(y�) 2 @F (y�)

F (ej + y
�)� F (y�) � ejf(y

�) = fj(y
�);

but if fj(y�) < 0 then

F (y�)� F (ej + y�) � �fj(y�) > 0;

which contradicts the minimality of F (y�). This latter contradiction also arises
if fj(y�) > 0 and y�j > 0: To see this, let � > 0 be small enough, such that
y�j � � � 0; then

F (��ej + y�)� F (y�) � ��ejf(y�) = ��fj(y�);
i.e. F (y�)� F (��ej + y�) � fj(y

�) > 0:

To see the su¢ ciency part, notice that for all y � 0;

F (y)� F (y�) � (y � y�)f(y�)
= yf(y�) � 0;

where the equality follows from the fact that y�f(y�) = 0, and the inequality
from the fact that y � 0 and f(y�) � 0.
It follows from Facts 2 and 3 that, without loss of generality, we can express

the saddle-point Bellman equation (10) in the form

�!d(x; �; s) = �h0(x; a
�; s) + �h1(x; a

�; s)

+� E
h
'(�; �; s)!d

0
(x�0; '(�; �; s); s0)j s

i
; (13)
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where �!d(x; �; s) = W (x; �; s); and the vectors !d and !d
0
are (partial) direc-

tional derivatives of W (x; �; s) and W (x�0; '(�; �; s); s0); respectively. Corre-
spondingly, the SPFE saddle-point inequalities take the form

�h0(x; a
�; s) + eh1(x; a�; s) + � E h'(�; e; s)!d0(x�0; '(�; e; s); s0)j si

� �h0(x; a
�; s) + �h1(x; a

�; s) + � E
h
'(�; �; s)!d

0
(x�0; '(�; �; s); s0)j s

i
(14)

� �h0(x; ea; s) + �h1(x; ea; s) + � E h'(�; �; s)!d0(ex0; '(�; �; s); s0)j si ;
(15)

for any e 2 Rl+1+ and (ea; ex0) satisfying the technological constraints at (x; s):
The saddle-point inequality property, SPI, substitutes (14) for

�h0(x; a
�; s) + eh1(x; a�; s) + � E h'(�; e; s)!d0(x�0; '(�; �; s); s0)j si

� �h0(x; a
�; s) + �h1(x; a

�; s) + � E
h
'(�; �; s)!d

0
(x�0; '(�; �; s); s0)j s

i
(16)

We �rst show, in Lemma 1, the equivalence between SPFE and SPI.

Lemma 1 (SPI () SPFE). If W (x; �; s) is convex and homogeneous of de-
gree one, then (14) is satis�ed if and only if (16) is satis�ed. Furthermore,
the inequality (16) is characterized by the following �rst order necessary
and su¢ cient conditions, for j = 0; :::; l;

hj1(x; a
�
0; s) + � E

h
!d

0

j (x
�

1; �
�
1; s1)j s

i
� 0 (17)

�j
h
hj1(x; a

�
0; s) + � E

h
!d

0

j (x
�

1; �
�
1; s1)j s

ii
= 0: (18)

Proof of Lemma 1: That SPI =) SPFE follows from Fact 4. With respect
to W (x�0; '(�; ; s); s0); Fact 4 takes the form:

'(�; e; s)!d0(x�0; '(�; e; s); s0) � '(�; e; s)!d0(x�0; '(�; �; s); s0);
therefore (16) together with this latter inequality results in the following
inequalities, which show that (14) is satis�ed whenever (16) is satis�ed:

�h0(x; a
�; s) + eh1(x; a�; s) + � E h'(�; e; s)!d0(x�0; '(�; e; s); s0)j si

� �h0(x; a
�; s) + eh1(x; a�; s) + � E h'(�; e; s)!d0(x�0; '(�; �; s); s0)j si

� �h0(x; a
�; s) + �h1(x; a

�; s) + � E
h
'(�; �; s)!d

0
(x�0; '(�; �; s); s0)j s

i
To see that SPFE =) SPI, let

G(x; a�; s)(; �) � �h0(x; a
�; s)+h1(x; a

�; s)+� E
h
'(�; ; s)!d

0
(x�0; '(�; ; s); s0)j s

i
;
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and

F(x; a�; s)(; �) � �h0(x; a
�; s)+h1(x; a

�; s)+� E
h
'(�; ; s)!d

0
(x�0; '(�; �; s); s0)j s

i
;

Then (14) reduces toG(x; a�; s)(; �) � G(x; a�; s)(
�; �), (16) to F(x; a�; s)(; �) �

F(x; a�; s)(
�; �) and, sinceG(x; a�; s)(�; �) = F(x; a�; s)(

�; �); the above in-
equalities show that, if f(x; a�; s)(�; �) 2 @F(x; a�; s)(�; �); for all  � 0;

G(x; a�; s)(; �)�G(x; a�; s)(�; �) � F(x; a�; s)(; �)� F(x; a�; s)(�; �)
( � �) f(x; a�; s)(�; �);

that is, f(x; a�; s)(�; �) 2 @G(x; a�; s)(
�; �). However, if g(x; a�; s)(�; �)

is an extreme point of @G(x; a�; s)(�; �), then

g(x; a�; s)(
�; �) =

h
h1(x; a

�(x; �; s); s) + � E
h
!d

0
(x�0(x; �; s); '(�; �; s); s0)j s

ii
;

and, therefore, g(x; a�; s)(�; �) 2 @F(x; a�; s)(�; �) �in fact, it is also an
extreme point of @F(x; a�; s)(�; �). This shows that @F(x; a�; s)(�; �) =
@G(x; a�; s)(

�; �); which, in turn, implies the equivalence between (14)
and (16).

Finally, (17) and (18) are an immediate consequence of Fact 5�

Lemma 2. If the assumptions of Theorem 4 are satis�ed, then W (x; �; s) is
di¤erentiable at �:

Proof of Lemma 2: By Facts 2 and 3, we can consider that W takes the
form W (x; �; s) = �!(x; �; s), where !(x; �; s) is uniquely de�ned (i.e.
!(x; �; s) � r�W (x; �; s)) if, and only if, W (x; �; s) is di¤erentiable at �:
It is convenient to consider �rst the case of one-period constraints (i.e. j =
k+1; :::; l). In this case the saddle-point Bellman equation, corresponding
to SPFE, takes the form:

�!d(x; �; s) = �h0(x; a
�; s) + �

h
h1(x; a

�; s) + �E
h
!d

0
(x�0; �; s0) j s

ii
:

(19)
De�ne F(x; a�; s)(; �) as in the proof of Lemma 1; that is, F(x; a�; s)(�; �)
is the right-hand side of (19). Then,

@F(x; a�; s)(
�; �)

@�j
= hj0(x; a

�; s) +
@F(x; a�; s)(

�; �)

@�
@�

@�j
+
@F(x; a�; s)(

�; �)

@a�
@a�

@�j

= hj0(x; a
�; s)

That
@F(x; a�; s)(

�;�)

@� = 0 follows from the fact that F(x; a�; s)(; �) is dif-

ferentiable in ; together with (17) and (18); that
@F(x; a�; s)(

�;�)

@a� = 0 fol-
lows from the fact that, under the assumptions of Theorem 4, W (�; �; s)
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satis�es the conditions of Benveniste and Scheinkman� theorem on the
di¤erentiability of concave value functions (Stokey, Lucas and Prescott,
1989, Theorem 4.10) and, therefore, (15) is also characterized by �rst-
order conditions. In summary, since @W (�)

@d�j
� !dj (�), this envelope theorem

argument shows that, for j = k + 1; :::; l; !dj (x; �; s) = hj0(x; a
�; s). The

latter equalities imply that !dj (x; �; s) is uniquely determined whenever
a� is the unique maximizer. It then follows from Fact 1 that W (x; �; s) is
di¤erentiable at �.

Consider next the case of intertemporal participation constraints (i.e. j =
0; :::; k ). In this case the saddle-point Bellman equation, corresponding to
SPFE, takes the form:

�!d(x; �; s) = �
h
h0(x; a

�; s) + �E
h
!d

0
(x�0; �+ �; s0) j s

ii
+�

h
h1(x; a

�; s) + �E
h
!d

0
(x�0; �+ �; s0) j s

ii
Using, as before, an envelope argument and the fact that the (partial)
directional derivatives are well �but, possibly, not uniquely �de�ned, we
obtain

!dj (x; �; s) = hj0(x; a
�; s) + �E

h
!d

0

j (x
�0; �+ �; s0) j s

i
(20)

In particular, non di¤erentiability of W at � means that �at least from
some j � the right and the left (partial) derivatives13 do not coincide:
!+j (x; �; s) 6= !�j (x; �; s): By recursive iteration of (20), and using the
fact that W is bounded, we obtain

!dj (x; �; s) = E0

" 1X
t=0

�thj0(x
�
t ; a

�
t ; st)j s

#
; if j = 0; :::; k: (21)

Uniqueness of the solution fx�t ; a�t ; stg
1
t=0 implies that the left-hand side

of (21) is uniquely determined; that is, !j(x; �; s) � !+j (x; �; s) =

!�j (x; �; s): From Facts 2 and 1, the di¤erentiability of W (x; �; s) at �
follows�

Notice that by (18) the aggregate saddle-point Bellman equation (13) sim-
pli�es to

�!(x; �; s) = �
�
h0(x; a

�(x; �; s); s) + � E
�
�j!(x�0(x; �; s); '(x; �; s); s0)j s

��
;

where �j = 1, if j = 0; :::; k; �j = 0, if j = k + 1; :::; l: The proof of Lemma
2 shows that, under the assumptions of Theorem 4, the aggregate saddle-point
Bellman equation also translates into (componentwise) individual saddle-point
Bellman equations. Formally,

13The left (partial) derivative is de�ned as !�j (x; �; s) � @W (x;�;s)

@��i
=

lim�#0
W (x;���ei;s)�W (x;�;s)

�
.

24



Corollary: The following (recursive) equations are satis�ed:

!j(x; �; s) = hj0(x; a
�(x; �; s); s)+� E [!j(x

�0(x; �; s); ��0(x; �; s); s0)j s] ,
(22)

if j = 0; :::; k;

!j(x; �; s) = hj0(x; a
�(x; �; s); s), if j = k + 1; :::; l: (23)

We now turn to the proof of Theorem 4.

Proof (Theorem 4): By Lemma 2, there is a unique representationW (x; �; s) =
�!(x; �; s), where !j(x; �; s) � @W (x;�;s)

@�i
: To see that solutions of SPFE

satisfy the participation constraints of SPP�, we use the �rst order con-
ditions (17) and 18), as well as the individual recursive equations (22) and
(23). As in the proof of Lemma 2, equation (22) can be iterated to obtain

!j(x; �; s) = E0

" 1X
t=0

�thj0(x
�
t ; a

�
t ; st)j s

#
; if j = 0; :::; k: (24)

Following the same steps for any t > 0 and state (x�t ; �
�
t ; st), equation(23)

and (24) together with the inequality (17) show that the intertemporal
participation constraints in PP� �and therefore in SPP� �are satis�ed;
that is,

Et

Nj+1X
n=1

�n hj0(x
�
t+n; a

�
t+n; st+n)+h

j
1(x

�
t ; a

�
t ; st) � 0; ; t � 0; j = 0; :::; l

(25)
Notice that equations (23) and (24) also show that

�!(x; �; s) = E0

lX
j=0

NjX
t=0

�t�jhj0(x
�
t ; a

�
t ; st) (26)

Finally, suppose there exist a program featg1t=0 ; and fextg1t=0, ex0 =
x; ext+1 = `(ext; eat; st+1), satisfying the constraints of SPP� with initial
condition (x; s) and such that

�h0(x; ea0; s) + �h1(x; ea0; s)
+ �E

24 kX
j=0

�
�j + �j

� 1X
n=1

�t hj0(ext; eat; st) + lX
j=k+1

�jhj0(ex1; ea1; s1)j s
35

> �h0(x; a
�
0; s) + 

�h1(x; a
�
0; s)

+ �E

24 kX
j=0

�
�j + �j

� 1X
n=1

�t hj0(x
�
t ; a

�
t ; st) +

lX
j=k+1

�jhj0(x
�
1; a

�
1; s1)j s

35 :
(27)
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The following string of equalities and inequalities, which we explain at the
end, contradict this inequality,

�h0(x; a
�
0; s) + 

�
0h1(x; a

�
0; s)

+ �E

24 kX
j=0

�
�j + �j

� 1X
n=1

�t hj0(x
�
t ; a

�
t ; st) +

lX
j=k+1

�jhj0(x
�
1; a

�
1; s1)j s

35
= �h0(x; a

�
0; s) + 

�
0h1(x; a

�
0; s) + � E [�

�
1!(x

�
1; �

�
1; s1)j s] (28)

� �h0(x; ea0; s) + �0h1(x; ea0; s) + � E [��1!(ex1; ��1; s1)j s] (29)

= �h0(x; ea0; s) + �0h1(x; ea0; s)
+ � E [��1h0(ex1; a�(ex1; ��1; s1); s1) + �(ex1; ��1; s1)h1(ex1; a�(ex1; ��1; s1); s1)

(30)

+ ���0(ex1; ��1; s1)!(x�0(ex1; ��1; s1); ��0(ex1; ��1; s1); s2)j s]
� �h0(x; ea0; s) + �0h1(x; ea0; s)
+ � E [��1h0(ex1; ea1; s1) + �(ex1; ��1; s1)h1(ex1; ea1; s1) (31)

+ ���0(ex1; ��1; s1)!(ex2; ��0(ex1; ��1; s1); s2)j s]
� �h0(x; ea0; s) + �0h1(x; ea0; s)
+ � E [��1h0(ex1; ea1; s1) + �(ex1; ��1; s1)h1(ex1; ea1; s1) + ���0(ex1; ��1; s1)!(ex2; ��1; s2)j s]

(32)

� �h0(x; ea0; s) + �0h1(x; ea0; s)
+ � E [��1 [h0(ex1; ea1; s1) + �!(ex2; ��1; s2)] j s] (33)

= �h0(x; ea0; s) + �0h1(x; ea0; s) + � E [��1h0(ex1; ea1; s1)j s]
+ �2 E [��1h0(ex2; a�(ex2; ��1; s2); s2) + �(ex2; ��1; s2)h1(ex2; a�(ex2; ��1; s2); s2)

(34)

+ ���0(ex2; ��1; s2)!(x�0(ex2; ��1; s2); ��0(ex2; ��1; s2); s2)j s]
� �h0(x; ea0; s) + �0h1(x; ea0; s)
+ �E

24 kX
j=0

�
�j + �j

� 1X
n=1

�t hj0(x
�
t ; a

�
t ; st) +

lX
j=k+1

�jhj0(x
�
1; a

�
1; s1)j s

35 (35)

Notice that the �rst equality (28) is just notational and the other two
equalities (30) and (34) are simple expansions of the of the saddle-point value
paths (i.e., of (13)). Inequalities (29) and (31) follow from the maximality
property of SPFE. Inequalities (32) and (33) require explanation. Inequal-
ity (32) follows from using the above stated fact about convex and homoge-
neous of degree one functions (i.e. Fact 4: b�!(b�) � b�!(�)) since (32) is sim-
ply ��0(ex1; ��1; s1)!(ex2; ��0(ex1; ��1; s1) � ��0(ex1; ��1; s1)!(ex2; ��1; s2): Inequal-
ity (33) follows from applying the slackness inequality (17), as well as equations
(23) and (24) to the plan generated by SPFE in state (ex2; ��1; s2) (i.e. to
fa�t (ex2; ��1; s2)g1t=2), showing that such plan satis�es the corresponding SPP
constraints (25); that is,

h
hj1(ex1; ea1; s1) + �!j(ex2; ��1; s2)i � 0; j = 0; :::; l:
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Finally, since the equality (34) is simply the equality (30) after one iteration,
repeated iterations result in the last inequality (35), which contradicts (27).
It only remains to show that the inf part of SPP is also satis�ed. Reasoning

again by contradiction, suppose there exist a e � 0 such that
�h0(x; a

�
0; s) + eh1(x; a�0; s)

+ �E

24 kX
j=0

�
�j + ej� 1X

n=1

�t hj0(x
�
t ; a

�
t ; st) +

lX
j=k+1

ejhj0(x�1; a�1; s1)j s
35

< �h0(x; a
�
0; s) + 

�h1(x; a
�
0; s)

+ �E

24 kX
j=0

�
�j + �j

� 1X
n=1

�t hj0(x
�
t ; a

�
t ; st) +

lX
j=k+1

�jhj0(x
�
1; a

�
1; s1)j s

35 :
(36)

Using (26), this inequality can also be expressed as

e [h1(x; a�(x; �; s); s) + � E [!(x�0(x; �; s); ��0(x; �; s); s0)j s]]
< �(x; �; s) [h1(x; a

�(x; �; s); s) + � E [!j(x
�0(x; �; s); ��0(x; �; s); s0)j s]] ;

but the �rst order conditions (17) and (18) require that (16) is satis�ed, i.e.

e [h1(x; a�(x; �; s); s) + � E [!(x�0(x; �; s); ��0(x; �; s); s0)j s]]
� �(x; �; s) [h1(x; a

�(x; �; s); s) + � E [!j(x
�0(x; �; s); ��0(x; �; s); s0)j s]] = 0

which contradicts (36)�

A key step in the proof of Theorem 4 is to show that the representation
of W , given by Euler�s Theorem (Fact 3), is unique and satis�es the (compo-
nentwise) individual saddle-point Bellman equations, which are needed to show
that the constraints of the PP� are satis�ed. The proof relies on Benveniste
and Scheinkman�s theorem on the di¤erentiability of concave value functions,
which is used to establish an envelope theorem argument. However, one can
establish the latter argument with alternative assumptions (e.g. guaranteeing
di¤erentiability of W in x), or once W = �! is known it may be relatively easy
to establish the uniqueness of the representation of W , as well as that individ-
ual saddle-point Bellman equations are satis�ed. The following Corollary makes
this remark more precise.

Corollary (Su¢ ciency): AssumeW , satisfying SPFE, is continuous in (x; �)
and convex and homogeneous of degree one in �. Then if (a�;�) is
generated by the SP policy function  , associated with W , from an initial
condition (x; �; s) and, for all (t; st); t � 0; there is a unique representation
W (x�t ; �

�
t ; st) = ��t!(x

�
t ; �

�
t ; st), satisfying (22) and (23), then (a

�;�) is
also a solution to SPP� at (x; s):
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5 DSPP and the contraction mapping

In this Section we sharpen the results of Theorem 4 by applying the Contraction
Mapping Theorem to the Dynamic Saddle-Point Problem. We fully exploit the
properties of the value functions derived in the previous section. We �rst de�ne
the space of �value�functions,

M = f! : X �Rl+1
+ � S ! Rl+1 s.t., for j = 0; :::; l;

i) !j(�; �; s) is continuous, and !j(�; �; s) is bounded if k�k � 1
ii) !j(�; �; s) is concave, and
iii) !j(x; �; s) is convex and homogeneous of degree zerog

The space M is a normed vector space with the norm

k!k = sup fj!j(x; �; s)j : j = 0; :::; l; k�k � 1; x 2 X; s 2 Sg ;
and we show in the Appendix (Lemma 3A) that it is a complete metric space;
therefore, a suitable space for the Contraction Mapping Theorem. Given a value
function W = �!, ! 2 M , we can de�ne the following Dynamic Saddle Point
Problem:
DSPP(x;�;s)

inf
�0

sup
a
f�h0(x; a; s) + h1(x; a; s) + � E [�0!(x0; �0; s0)j s]g

s.t. x0 = `(x; a; s); p(x; a; s) � 0
and �0 = '(�; ; s);

In order for this problem to have well de�ned solutions we must make an inte-
riority assumption:

A7b: For any (x; �; s) 2 X � Rl+1+ � S, there exists an ea 2 A; satisfying A2,
such that, for any �0 2 Rl+1+ ; k�0k � 1; and j = 0; :::; l : hj1(x;ea; s) +
�E
�
!j(`(x; ea; s0); �0; s0)j s� > 0:

Notice thatA7b is satis�ed, wheneverA7 is satis�ed and �0!(`(x; ea; s0); �0; s0)
is the value function of SPP(`(x;ea; s0);�0;s0). In general, A7b is not a restrictive
assumption in the class of possible value functions if the original problem has
interior solutions. Nevertheless, an assumption, such as A7b is needed when
one takes DSPP(x;�;s) as the starting problem. This is a relatively standard
minmax problem, except for the dependency of ! on '(�; ; s): The following
proposition shows that it has a solution. Obviously, solutions to DSPP(x;�;s)
satisfy SPFE.

Proposition 2. Let ! 2 M and assume A1-A6 and A7b. There exists
(a�; �) that solves DSPP(x;�;s): Furthermore if A6s is assumed, then
a�(x; �; s) is uniquely determined.
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Proof: See Appendix.

DSPP(x;�;s) de�nes then a SPFE operator, T :M �!M , given by

!j(x; �; s) = hj0(x; a
�(x; �; s); s) + � E [!j(x

�0(x; �; s); ��0(x; �; s); s0)j s] ,
(37)

if j = 0; :::; k; and

!j(x; �; s) = hj0(x; a
�(x; �; s); s), if j = k + 1; :::; l:

Let Mk be the j = 0; :::; k; projection of M and Tk : M
k ! Mk be the

operator de�ned by (37), then under our assumptions �all individual values !j
are uniquely determined�. More formally,

Lemma 3. Assume A1-A6, A6s and A7b. Tk : Mk ! Mk is a well de�ned
contraction mapping.

Proof: The proof is an immediate consequence of Lemmas 3A to 7A in the
Appendix.

As we have seen, since �individual values !i are the are the subgradientsW�,
Lemma 3 also shows the di¤erentiability of W in �: More importantly, another
immediate consequence of Lemma 3, and our previous Theorems 4 and 2, is our
main �nal theorem:

Theorem 5 (DSPP(x;�;s) =) PP�(x; s)). Assume A1-A6, A6b and A7b.
T : M ! M has a unique solution !, which de�nes a value function
W (x; �; s ) = �!(x; �; s) and a saddle-point policy function  , such that
if (a�;�) is generated by  from (x; �; s), then a� is the unique solution
to PP� at (x; s):

As we have emphasized not all our assumptions are necessary. In particular,
in applications assumptions, such as concavity of the h functions may not be
satis�ed and yet DSPP(x;�;s) may have unique solutions. The following Corol-
lary, makes this remark more precise. Let fM be de�ned asM , without imposing
ii) (i.e, not requiring concavity).

Corollary (Bounded returns): Assume A1-A5 and that, for all (x; �; s),
DSPP(x;�;s) has a solution, unique in a�(x; �; s), then T : fM ! fM has a
unique solution !, which de�nes a value function W (x; �; s ) = �!(x; �; s)
and a saddle-point policy function  , such that if (a�;�) is generated by
 from (x; �; s), then a� is the unique solution to PP� at (x; s):
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6 Related work

Precedents of our approach can be found in Kydland and Prescott (1980) and
in Hansen, et al. (1985). They introduced lagrange multipliers as co-state
variables. Our work provides a formal proof that a stationary optimal policy can
be obtained by properly introducing lagrange multipliers as co-states. There are
special cases, however, where there is a one-to-one relationship between states
and co-states. Obviously, in these cases it is possible to obtain a policy function
that only depends on the state variables, although it may be discontinuous14 .
Rustichini (1998) provides a recursive characterization that encompasses these
cases. He focuses on deterministic models with one (default) constraint. In
this class of models, in general, it is possible to reduce the dimensionality of
the policy to its natural states15 . Cooley, Quadrini and Marimon (2000) obtain
a similar result in a stochastic model with possible default and risk neutral
agents. E¢ cient contracts in these models have the special feature that if a state
is reached there can no be di¤erent past promises, regarding the value of the
contract at that state, depending on past contractual histories. In deterministic
models past histories may be uniquely determined by the state and in models
with risk neutral agents there is no need for consumption smoothing. However,
in economies with uncertainty and risk-averse agents the e¤ect of intertemporal
(default) constraints must be smoothed and, as a result, since the same state
may be reached following di¤erent contractual histories the optimal contract
can not have a unique value associated with such state16 .
The pioneer work of Abreu, et al. (1990) -APS, from now on,- character-

izing sub-game perfect equilibria, shows that past histories can be summarized
in terms of promised utilities (we summarize them with the co-state �). While
the pioneer work of Green (1987) and Thomas and Worral (1988)) -GTW, from
now on- shows that e¢ cient contracts, promising a given initial level of (present
value) utility, can have a recursive structure. These related approaches have
been widely used in macroeconomics17 . In particular, Kocherlakota (1995) has
applied GTW to characterize optimal social insurance contracts with participa-
tion constraints18 and the APS approach has been further developed by Cron-
shaw and Luenberger (1994), to study dynamic games, and by Chang (1998)

14 In particular, discontinuities may arise at points where, given a value of the state variable,
a co-state variable jumps. In contrast, the corresponding policy function of our approach (i.e.,
a function of states and co-states) may well be continuous. An example of such discontinuities
can be found in Benhabib and Rustichini (1996).
15Notice that a similar �reduction� is proposed by the Subspace Method to solve, for ex-

ample, Optimal Linear Regulator problems (see, for example, Hansen and Sargent (2000)).
However, as the Subspace Method shows, even when the �reduction� is possible, can be very
convenient to express policies in terms of state and co-state variables.
16See Marcet and Marimon (1992) or Kocherlakota (1995) for an explanation of how, to

achieve consumption smoothing, idiosyncratic shocks imply increased consumption over the
whole future. This can only be achieved by keeping track of past shocks through �:
17Ljungqvist and Sargent (2000) provides an excellent introduction, and reference, to most

of this recent work.
18A two agents (without capital) version of Marcet and Marimon (1992), recently studied

using our approach by Attanasio and Rios-Rull (2000).
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and Phelan and Stacchetti (1999), to study Ramsey models.
There are similarities and di¤erences between our approach and the �promised

utilities�approaches. The extent that these approaches duplicate, complement
or dominate, each other will not be fully understood until they are more de-
veloped and applied19 . Nevertheless, some conceptual di¤erences emerge. For
instance, our approach provides a common framework that encompasses two-
period (dynamic competitive) constraints as well as discounted sums that may
or may not be discounted utilities (as is the case with some present value budget
constraints). Within this general framework, our approach directly character-
izes e¢ cient contracts, without having to �nd the whole set of feasible -incentive
compatible- contracts. Presumably one could develop APS or GTW to provide
a similar general framework (and the work of Chang (1998) and Phelan and
Stacchetti (1999) are important steps in this direction), but it may not be the
most e¢ cient way to proceed. There are issues of dimensionality and proper
recursivity that must be taken into account.
By proper recursivity we mean that our SPFE provides a recursive solution

that starts out from pre-set initial conditions20 In the GTW approach initial
promised (present value) utilities must be speci�ed for all -but one- agents and,
therefore, needs to be known that it is feasible. As it is well known from stan-
dard Pareto Optimal problems such approach is very useful when there are
two agents and the Pareto frontier is downward slopping, otherwise it can be-
come very cumbersome21 . Similarly, while the APS approach provides a method
to obtain the set of feasible initial present values22 in many applications may
be a fairly roundabout way to proceed. For instance, one could apply the same
method to solve a simple dynamic model -such as the neoclassical growth model-
where interetemporal constraints are given by Euler equations. That is, given a
�promised expected marginal utility�for next period, the Euler equation deter-
mines which current actions and marginal utilities are feasible. Proper iteration
of such a map determines which initial conditions result in paths satisfying
the transversality conditions and, therefore, the initial marginal utility that an
e¢ cient planner must set (given an initial capital and shock). Standard recur-
sive methods, aimed at obtaining directly the value and policy functions, have
proved to be a more useful approach for problems of this type. We think that

19For instance, our approach needs to be fully developed to incorporate private informa-
tion constraints and its range of applications is yet to be exploited. Similarly, some of our
assumptions -such as the linear additivity of utilities and constraints- need to be relaxed in
order to make its generality at par with some of the developments of Rustichini, APS or GTW
approaches. We leave these issues for future research (see, however, Footnote 2).
20For example, when we transform the problem PP into the problem SPP we set � =

(1; 0; :::; 0):
21Even with two agents and a downward slopping Pareto frontier, as in Kocherlakota (1996),

one may be interested in �nding the e¢ cient allocation that ex-ante gives the same utility to
both agents. While this is trivial with our approach (just give the same initial weights in the
PP problem), becomes very tricky with the GTW approach since the �right promise�must
be made to determine the initial conditions.
22We refer to the self-generation and factorization properties of the operator characterizing

incentive constraints (see, Abreu et al. (1990), and Chang (1998) and Ljungqvist and Sargent
(2000) for macroeconomic applications).
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the same principle applies to models with intertemporal constraints.
The strength of the APS approach, however, is in the study of models where

one must know the set of feasible payo¤s in order to characterize the e¢ cient
ones. In particular, as the work of Abreu (1988) shows, in order to characterize
an e¢ cient sub-game perfect equilibrium it is enough, in general, to know the
extremal points of the set of feasible present value payo¤s. More precisely, the
worst equilibrium payo¤ may be su¢ cient to characterize the best equilibrium
payo¤, and a corresponding equilibrium path. Nevertheless, even in this class
of models, it is often the case that one can separately obtain the worst sub-
game perfect equilibrium payo¤. If this is the case, such value plays the role
of an intertemporal participation constraint in our framework. But, even when
the computation of the worst equilibrium is not straightforward, our recursive
approach, as a general method to obtain extremal points, may be a convenient
approach23 . In contrast, from a computational point of view, following the APS
approach may not be very convenient general approach. In particular, while
�nding the set of feasible equilibrium payo¤s may not be a hard computational
problem when there is only one promised utility to consider, when there are n co-
state variables a set in Rn has to be computed, which is not a straightforward
computational problem. As we said, our approach is based on well speci�ed
initial values and deals with the computation of functions, which is a better
understood problem24 .
Finally, an interesting -but not exclusive- feature of out approach is that the

evolution of � often helps to directly characterize the behavior of the model. For
example, in models with participation constraints the ��s allow to interpret the
behavior of the model as changing the Pareto weights sequentially depending on
how binding the participation constraints become. In Ramsey type models the
behavior of the ��s is associated with the commitment technology and the extent
that markets are complete. For example, with full commitment and complete
markets the ��s are constant after period one25 Alternatively, in Marcet, Sargent
and Seppala (1996) the behavior of � characterizes optimal tax policies as a
risk-adjusted martingale. In summary, having optimal policies dependent of
an additional co-state vector � is not just convenient from a technical point of
view, but also provides a fairly transparent interpretation of how intertemporal
incentive constraints a¤ect (e¢ cient) economic outcomes.

23For example, Ljungqvist and Sargent (2000) show how separately compute the worst equi-
librium in dynamic models with only one promised utility and no additional state variables.
That our approach can also be used to obtain other extremal values may be seen by properly
replacing the objective function, etc. Nevertheless we plan to make such application more
explicit in future work.
24For example, consider a version of the model of Chang (1998) with two agents. Certainly,

an additional state variable needs to be introduced. If we use APS, the set of initial values
would be a subset of R2; and it would normally not be an interval, so it is di¢ cult to char-
acterize numerically. But using SPFE we know to set initial values for co-state variables to
zero.
25For these models, our approach provides a recursive, alternative, formulation to the primal

approach developed in Lucas and Stokey (1983) and Chari, et al. (1995).
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7 Concluding remarks

We have shown that a large class of problems with implementability constraints
can be analyzed by an equivalent recursive saddle point problem. This saddle
point problem obeys a saddle point functional equation, which is a version of
the Bellman equation. This approach works for a very large class of models
with incentive constraints, restricted budget constraint, optimal policy, optimal
regulation, etc. This means that a uni�ed framework can be provided to analyze
all these models. The key feature of our approach is that instead of having to
write optimal contracts as history-dependent contracts one can write them as
a stationary function of the standard state variables together with additional
co-state variables. These co-state variables are -recursively- obtained from the
Lagrange multipliers associated with the intertemporal incentive constraints,
starting from pre-speci�ed initial conditions. With such approach we aim to
extends the existing set of tools available to study dynamic economies with
intertemporal constraints.
Our current research aims at relaxing several of the assumptions, in partic-

ular that of full information, developing in detail some computational aspects
of this method, and exploring a range of applications to several models, includ-
ing strategic dynamic behavior, optimal policy and borrowing under incomplete
insurance.
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APPENDIX

The proof of Proposition 1 relies on the following result:

Lemma 1A. Assume A1-A6,then

i) B(x; s) is non-empty, convex, bounded and �(L1; L1) closed; therefore it is
�(L1; L1) compact

ii) Given d 2 R; the set
�
a 2 A : f(x;�;s)(a) � d

	
is convex and �(L1; L1)

closed

The proof of Lemma 1A builds on three theorems. First, the Urysohn
metrization theorem stating that regular topological spaces with a count-
able base are metrizable26 . Second, the Mackey-Arens theorem stating
that di¤erent topologies consistent with the same duality share the same
closed convex sets; in our case, the duality is (L1; L1) and the weak-
est and the strongest topology consistent with such duality; namely, the
weak-star, �(L1; L1) and the Mackey �(L1; L1) . Third, the Alaoglu
theorem stating that norm bounded �(L1; L1) closed subsets of L1 are
�(L1; L1) compact27 .

Proof:

Assumptions A2, A3 and A5 imply that B(x; s) is convex, and closed under
pointwise convergence. Since, by assumption A1, S is countable, Urysohn
metrization theorem guarantees that B(x; s) is, in fact, �(L1; L1) closed.
Assumptions A4 and A5 imply that B(x; s) is bounded in the k�k�1 norm
as needed for compactness, according to the Alaoglu theorem.

AssumptionsA3 andA5 imply that B(x; s) and the upper contour sets fa 2 A : f�(a) � dg ;
are convex and Mackey closed and, therefore, �(L1; L1) closed28�

Proof of Proposition 1: As in Bewley (1991), the central element of the proof
follows from the Hausdor¤ maximal principle and an application of the
�nite intersection property29 . Let Pd =

�
a 2 B(x; s) : f(x;�:s)(a) � d

	
,

then by Lemma 1 (see Appendix), Pd is �(L1; L1) closed and, for d low
enough, it is non-empty. In fact, we can consider the family of sets d 2 D �
R for which Pd 6= ?; fPd : d 2 Dg. The sets Pd are ordered by inclusion;

26See Dunford and Schwartz (1957) p. 24. in our case the metric we use is given by

��1(a; b) =
1X
n=0

�n sup
sn2Sn

j an(s)� bn(s) j :

27See Schaefer (1966) p. 130 and p. 84, respectively.
28See Bewley (1972) for a proof of the Mackey continuity expected utility.
29See, Kelley (1955) p. 33-34. for the Hausdor¤ principle and the Minimal principle, and

p. 136 for the theorem stating that "a set is compact if and only if every family of closed sets
which has a the �nite intersection property has a non-void intersection."
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in fact, if d0 > d then Pd0 � Pd and every �nite collection of them has a
non-empty intersection (i.e., fPd : d 2 Dg satis�es the �nite intersection
property), but then by compactness of B(x; s) any family of subsets of
fPd : d 2 Dg -say, fPd : d 2 B � Dg- has a non-empty intersection and,
by inclusion, there is Pbd = \fPd : d 2 B � Dg 6= ?. In particular, there
is Pd� = \fPd : d 2 Dg 6= ? which -as the the minimal principle states-
is a minimal member of the family fPd : d 2 Dg. It follows that if a� 2
Pd� then f(x;�:s)(a�) � f(x;�:s)(a) for any a 2 B(x; s): Furthermore, if
strictly concavity is assumed then Pd� must be a singleton, otherwise
convex combinations of elements of Pd� will form a proper closed subset
of Pd� contradicting its minimality�

Proof of Theorem 1: It is an application of Theorem 1 (8.3) in Luenberger
(1969), p. 217.

Lemma 2A. Let W (x; �; s) � V�(x; s) be the value of SPP� at (x; s), for an
arbitrary (x; �; s), then

i) W (x; �; s) is convex and homogeneous of degree one;

ii) if A1- A5 are satis�ed W (�; �; s) is continuous and uniformly bounded;

iii) if A3 and A6 are satis�ed W (�; �; s) is concave, and

iv) if A5d is satis�ed W (�; �; s) is di¤erentiable at (x; �; s), provided that
p(x; a�(x; s); s) > 0:

Proof: i) follows from the fact that, for any � > 0, f(x;��:s)(a) = �f(x;�:s)(a).
Let (�;a�) satisfy

f(x;�:s)(a
�) + g(a�)0

� f(x;�:s)(a
�) + �g(a�)0

� f(x;�:s)(a) + 
�g(a)0;

for any  2 Rl+1+ and a 2 B0(x; s), then (��;a�) satis�es

f(x;��:s)(a
�) + g(a�)0

� f(x;��:s)(a
�) + ��g(a�)0

� f(x;��:s)(a) + �
�g(a)0;

for any  2 Rl+1+ and a 2 B0(x; s): ii) and iii) are straightforward; in
particular, ii) follows from applying the Theorem of the Maximum Stokey�
Lucas and Prescott,1989, Theorem 3.6) iii) follows from the fact that the
constraint sets are convex and the objective function concave. Finally, iv)
is an application of Benveniste and Scheinkman�s theorem (Stokey, Lucas
and Prescott, 1989, Theorem 4.10)�
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Proof of Proposition 2: Given the assumptions of Proposition 2, for any
(x; �; s); and  2 Rl+1

+ , let

F(x;�;s)() = arg sup
a

�
�
�
h0(x; a; s) + � E

�
�j!(x0; �0; s0)j s

��	
s.t. x0 = `(x; a; s); p(x; a; s) � 0

and �0 = '(�; ; s);

and hj1(x; a; s) + �E
�
!j(x0; �0; s0)j s

�
� 0; j = 0; :::; l (38)

where �j = 1, if j = 0; :::; k; �j = 0, if j = k + 1; :::; l: Since this is a
standard maximization problem of a continuous function on a compact set,
there is a solution a�(x; �; s; ) 2 F(x;�;s)(). Furthermore, given that the
constraint set is convex and has a non-empty interior (by A2 and A7b),
there is an associated multiplier vector; let �j(x; �; s; ) be the multiplier
corresponding to (38), for j. In particular, �(x; �; s; ) 2 G(x;�;s)(a

�);
where

G(x;�;s)(a) = arg inf
�0

f�h0(x; a; s) + h1(x; a; s) + � E ['(�; ; s)!(x0; '(�; ; s); s0)j s]g

s.t. x0 = `(x; a; s); p(x; a; s) � 0

(see, for example, Luenberger (1969), p. 218). By homogeneity of de-
gree zero of !, � 2 G(x;�;s)(a

�) if, and only if, for all � > 0; �� 2
G(x;��;s)(a

�). Let

G1(x;�;s)(a) = arg inf
f�0:kk�1g

f�h0(x; a; s) + h1(x; a; s) + � E ['(�; ; s)!(x0; '(�; ; s); s0)j s]g

s.t. x0 = `(x; a; s); p(x; a; s) � 0;

�x � 2 (0; 1) and let

G�(x;�;s)(a) =
n
� � 0 : � 2 G1(x;�;s)(a) and �� 2 G1(x;��;s)(a)

o
:

Notice that while G1(x;�;s)(a) admits solutions which are not solutions
to G(x;�;s)(a) � corresponding to a not satisfying (38) � G�(x;�;s)(a) =

G(x;�;s)(a): The rest of the proof [details to be added] is an application of
the Theorem of the Maximum (e.g. Stokey et al. (1989), p. 62) and of
Kakutani�s Fixed Point Theorem (e.g. Mas-Colell et al. (1995), p.953).
By the former, G�(x;�;s)(�) and F(x;�;s)(�) are upper hemicontinuous corre-
spondences, non-empty and, by our assumptions on concavity and convex-
ity, they are also convex valued, mapping a convex and (by A2 and A4)
compact set,

�
(a; ) 2 A�Rl+1

+ : p(x; a; s) � 0 & kk � 1
	
, in itself; by

Kakutani�s Fixed Point Theorem there is a �xed point (a�; �) which is a
solution toDSPP(x;�;s). Furthermore, F(x;�;s)(�) is a continuous function,
when A6s is assumed�

Lemma 3A. M is a nonempty complete metric space.
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Proof: That it is non-empty is trivial. Except for the homogeneity property,
that every Cauchy sequence f!ng 2 M converges to ! 2 M satisfying
i) to iii) follows from standard arguments (see, for example, Stokey, et
al. (1989), Theorem 3.1 and Lemma 9.5). To see that the homogeneity
property is also satis�ed, for any (x; �; s) and � > 0,

j!(x; ��; s)� !(x; �; s)j
= j!(x; ��; s)� !n(x; ��; s) + !n(x; �; s) � !(x; �; s)j
� j!(x; ��; s) � !n(x; ��; s)j + jWn(x; �; s) � W (x; �; s)j
! 0

�

[The proofs of the remaining Lemmas have to be adapted to the new formula-
tion of T !!]

Lemma 4A. The operator T maps M into itself.

Proof:

(TKW )(x; �; s) = �h0(x; a
�; s) + �h1(x; a

�; s) + �EW (x�
0
; ��

0
; s0)

therefore,

k(TKW )(x; �; s)k � k�k kh0(x; a�; s) k+max f1; k�kgK kh1(x; a�; s) k

+�
W (x�0 ; ��0 ; s0)

� k�k kh0(x; a�; s) k+max f1; k�kgK kh1(x; a�; s) k

+�(max f1; k�kgK + k�k)
W (x�0 ; ��

0

k��0k ; s
0)


It follows that the boundedness condition of ii) is satis�ed. A routine gen-
eralization of the Theorem of the Maximum (see, for example, Stokey, et
al.,1989, Theorem 3.6) to this saddle point case, shows that (TW )(�; �; s)
is continuous. To see that the homogeneity properties are satis�ed, let
(a�; �) satisfy

(TKW )(x; �; s) = h(x; a�; �; �; s) + �EW (x�; ��; s0)

then, for any � > 0

�(TKW )(x; �; s) = �[h(x; a�; �; �; s) + �EW (x�; ��; s0)]

Furthermore,

h(x; a�; ��; ��; s) + �EW (x�; ���
0
; s0)

= �
h
h(x; a�; �; �; s) + �EW (x�; ��

0
; s0)

i
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Now, let  � 0, �0 = '(��; ; s0) and a 2 A(x; s), x0 = `(x; a; s0), then

h(x; a�; ��; ; s) + �EW (x�; �0; s0)

= �
�
h(x; a�; �; ��1; s) + �EW (x�; �0��1; s0)

�
� �

h
h(x; a�; �; �; s) + �EW (x�; ��

0
; s0)

i
� �

h
h(x; a; �; �; s) + �EW (x0; ��

0
; s0)

i
It follows that,

(TKW )(x; ��; s) = h(x; a�; ��; ��; s) + �EW (x�; ���
0
; s0)

= �(TKW )(x; �; s)

[NOTE Show also concavity and convexity!!]�

Lemma 5A (monotonicity) Let F; G 2 M be such that F � G, then
(TKF ) � (TKG).

Proof Fix (�; x; s), then for any �0 satisfying �0 = '(�; ; s) � 0,

max
a2A(x;s)

fh(x; a; �; ; s) + �EF (`(x; a; s); �0; s0)g

� max
a2A(x;s)

fh(x; a; �; ; s) + �EG(`(x; a; s); �0; s0)g

It follows that

min
f�0:kk�K�g

max
a2A(x;s)

fh(x; a; �; ; s) + �EF (`(x; a; s); '(�; ; s); s0)g

� min
f�0:kk�K�g

max
a2A(x;s)

fh(x; a; �; ; s) + �EG(`(x; a; s); '(�; ; s); s0)g

�

In our context, if F 2 M and a 2 R, we de�ne the function F + a 2 M by
(F + a)(x; �; s) = F (x; �; s) + a.

Lemma 6A (discounting) For all W 2 M , and a 2 R+, TK(W + a) �
TKW + �a.

Proof First notice that, for any (x; �; s) and  � 0,

max
a2A(x;s)

fh(x; a; �; ; s) + �E(W + a)(`(x; a; s); '(�; ; s); s0)g

= max
a2A(x;s)

fh(x; a; �; ; s) + �EW (`(x; a; s); '(�; ; s); s0) + �ag

= max
a2A(x;s)

fh(x; a; �; ; s) + �EW (`(x; a; s); '(�; ; s); s0)g+ �a
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Now, using this equalities and the above de�nition for F + a,

TK(W + a)(x; �; s)

= min
f�0:kk�K�g

max
a2A(x;s)

fh(x; a; �; ; s) + �E(W + a)(`(x; a; s); '(�; ; s); s0)g

= min
f�0:kk�K�g

max
a2A(x;s)

fh(x; a; �; ; s) + �EW (`(x; a; s); '(�; ; s); s0)g+ �a

= (TKW + �a)(x; �; s)

We have shown that TK(W + a) � TKW + �a�

Lemma 7A (Contraction property): The argument is standard. We show
that the contraction property is satis�ed. Let F;G 2 M , then, using the
homogeneity property of the functions in M , for any (x; �; s),

F (x; �; s) = G(x; �; s) + [F (x; �; s)�G(x; �; s)]
� G(x; �; s) + jF (x; �; s)�G(x; �; s)j

That is, F � G + jjF � Gjj. By the monotonicity and the discounting
properties, it follows that TKF � TKG+ �jjF �Gjj. But now, reversing
the roles of F and G we obtain that

jjTKF � TKGjj � �jjF � Gjj

Since 0 < � < 1 we have that TK is a contraction mapping�
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