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Abstract

An equilibrium in a repeated game with imperfect private moitoring is called

a finite state equilibrium, if each player’s action on the equilibrium path is given

by an automaton with a finite number of states. We provide a tractable general

method to check the equilibrium conditions in this class. Our method is based

on the belief-based approach and employs the theory of POMDP (Partially

Observable Markov Decision Processes). This encompasses the majority of

existing works.

1 Introduction

Repeated games with imperfect private monitoring represent long-term relation-

ships, where each player receives a noisy private signal about others’ actions. Al-

though this class of games has a wide range of applications, the characterization of

all equilibria has yet to be obtained. This is in sharp contrast to the theory of

repeated games with perfect or imperfect public monitoring, where complete charac-

terizations of all equilibria have been obtained. The present paper provides valuable

general methods to verify equilibrium conditions in repeated games with private

monitoring.

In particular, we focus on a finite state equilibrium, where each player’s action

on the equilibrium path is given by an automaton with a finite state space. We

provide a complete characterization of this class of equilibria and provide a tractable

computational method to determine if a given profile of finite automata (one for

∗Previous versions of this paper has been circulated under the title "Finite State Equilibria".
†e-mail: kandori@e.u-tokyo.ac.jp
‡e-mail: iobara@econ.ucla.edu
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each player to determine his action on the path of play) can constitute a (finite)

equilibrium. The present paper provides a unifying general theory to encompass the

majority of the existing works, because most of them are based on some form of finite

state equilibria. The belief-based approach by Sekiguchi (1997), Bhaskar and Obara

(2002) consider trigger strategies on the path of play, hence finite state equilibria.

The present paper can be regarded as a generalization of those papers. The belief-

free approach by Ely and Välimäki (2002) considers an equilibrium which can be

implemented by a finite state automata on and off the path of play. Proposition

4 in Ely, Horner and Olszewski (2005) (bang-bang property) shows that most of

belief-free equilibrium payoffs (indeed all of them if the discount factor is close to

1) can be obtained by a finite state equilibrium with only two states.

Matsushima’s review strategy equilibria (2004) and Hörner and Olszewski (2006)

also employ finite equilibria. An exception which does not employ a finite equilib-

rium is Piccione (2002), whose equilibrium path requires infinite (countably many)

states. However, the result by Ely, Horner and Olszewski shows that Piccione’s

equilibrium payoff can be obtained by a finite state equilibrium.

A more recent paper by Phelan and Skrzypacz (2009) also proposes an algorithm

to compute a class of stationary finite state equilibria. Their approach focuses on

dynamics of beliefs, while we utilize the theory of POMDP (Partially Observable

Markov Decision Processes) to solve the belief-based dynamic programming prob-

lem.

2 Repeated Games with Private Monitoring

We use repeated games with private monitoring as our base model. Let Ai be the

(finite) set of actions for player i = 1, ...,N and A := A1 × · · · × AN . Within

each period, player i observes her own action ai and private signal ωi ∈ Ωi . We
denote ω = (ω1, ...,ωN ) ∈ Ω := Ω1 × · · · × ΩN and let q(ω|a) be the probability of
private signal profile ω given action profile a (we assume that Ω is a finite set). We

denote the marginal distribution of ωi by qi(ωi|a). It is also assumed that no player
can infer which actions were taken (or not taken) for sure; to this end, we assume

that each ω ∈ Ω occurs with a positive probability for any a ∈ A ( full support

assumption). Player i’s realized payoff is determined by her own action and signal,

and denoted πi(ai,ωi). Hence her expected payoff is given by

gi(a) =
X
ω∈Ω

πi(ai,ωi)q(ω|a).

This formulation ensures that the realized payoff πi conveys no more information

than ai and ωi do. A mixed action for player i is denoted by αi ∈ ∆(Ai), where
∆(Ai) is the set of probability distributions over Ai. With an abuse of notation, we

denote the expected payoff and the signal distribution under a mixed action profile

α = (α1, ...,αN ) by gi(α) and q(ω|α) respectively. The stage game is to be played
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repeatedly over an infinite time horizon t = 1, 2, .... Player i’s discounted payoff

from a sequence of action profiles a(t) ∈ A, t = 0, 1, 2... is given byP∞
t=1 δ

tgi(a(t)),

where δ ∈ (0, 1) is the discount factor.

3 Repeated Game Strategies and Path Automata

We now explore several ways to represent repeated game strategies. We start with

the conventional representation of strategies in the repeated game defined above.

3.1 Repeated Game Strategies

A private history for player i at the beginning of time t is the record of player i’s

past actions and signals, hti = (ai(0),ωi(0), ..., ai(t−1),ωi(t−1)) ∈ Ht
i := (Ai×Ωi)t.

To determine the initial action of each player, we introduce a dummy initial history

(or null history) h0i and let H
0
i be a singleton set {h0i }. A pure strategy si for player

i is a function specifying an action after any history: formally, si : Hi → Ai, where

Hi = ∪t≥0Ht
i . Similarly, a (behaviorally) mixed strategy for player i is denoted by

σi : Hi → ∆(Ai).

3.2 Path Automata and Finite State Equilibria

A path automaton Mi ≡ (Θi,bθi, fi, Ti) of player i specifies the path of play (but
not the behavior off the path of play) for player i, by specifying the following:

1. a set of states Θi

2. the initial state bθi ∈ Θi
3. (pure) action choice for each state, fi : Θi → Ai (without loss of generality,

we can assume that a pure action is played in each state1.)

4. (possibly stochastic) state transition Ti : Θi × Ωi → ∆(Θi). Specifically,

Ti(θi(t + 1)|θi(t),ωi(t)) is the probability of the next state being θi(t + 1)

given the current state θi(t), action ai(t) = fi(θi(t)), and private signal ωi(t).

A path automaton without the specification of the initial state, denoted by

mi ≡ (Θi, fi, Ti), is referred to as a path preautomaton. This concept turns

out to be useful in our analysis. For any path preautomaton mi, we denote the

corresponding path automaton with initial state θi ∈ Θi by (mi, θi) .
1Stochastic transition function can represent mixed action. For example, suppose that action

C and D are played with an equal probability at state θ. Then, we can split this state θ into two

states θC and θD and assume that in state θa, pure action a is played (a = C,D). Furthermore

we can specify the stochastic state transision function such that, in the event that θ is to be the

next stae, state θC or θD realizes with an equal probability.
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An important part of our definition above is that the transition function Ti pre-

sumes that the equilibrium action ai(t) = fi(θi(t)) is played. Hence, our path au-

tomaton does not specify the behavior after a disequilibrium action ai(t) 6= fi(θi(t))
(and therefore a path automaton only represents a part of a repeated game strat-

egy).

To represent a repeated game strategy, one need to extend the transition func-

tion to specify the state transition after a deviating action ai(t) 6= fi(θi(t)). To this
end, let us define an extended transition function T i : Θi×Ωi×Ai → ∆(Θi), where
T i(θi(t+1)|θi(t),ωi(t), ai(t)) is the probability of the next state being θi(t+1) given
the current state θi(t), an arbitrary current action ai(t), and the current private sig-

nal ωi(t). An extended automaton is denoted byM i ≡ (Θi,bθi, fi, T i). An extended
automaton specifies an action after any private history, so it induces a full repeated

game strategy. A message of the present paper is that, somewhat surprisingly, path

automata often turn out to be more useful than extended automata in the belief-

based analysis of repeated games with private monitoring. A finite path automaton

is a path automaton with a finite number of states. A finite path preautomaton

and a finite extended automaton are defined similarly.

We are interested in equilibria where each player’s behavior on the equilibrium

can be described by a finite path automaton. We call a profile of finite path preau-

tomata m = (m1, ...,mN) compatible if, for every i, there exists some state θi ∈ Θi
and some belief bi ∈ ∆(Θ−i) such that (mi, θi) is the optimal plan given his subjec-

tive belief bi. Compatibility is necessary for any profile of finite path preautomata

to be played on the equilibrium path. Note that compatibility does not guarantee

that a set of such state-belief pairs across players are consistent: it may not be

generated by some joint distribution on Θ. Suppose that there is a common prior

r ∈ ∆(Θ) = ∆(Θ1×· · ·×ΘN ) such that (mi, θi) is optimal against r(·|θi) ∈ ∆(Θ−i)
for every θi ∈ Θi in the support of r and i = 1, ..,N. Since we assume full support
(of the marginal distribution on Ωi), such profile of finite path preautomata and a

joint distribution r on Θ constitutes a (correlated) sequential equilibrium once op-

timal strategies are assigned after every off the equilibrium history.2 A finite state

equilibrium is such a correlated sequential equilibrium where on-path behavior can

be represented by finite state preautomata and a joint distribution on the product

state space.

Definition 1 A finite state equilibrium is a (correlated) sequential equilibrium of

a repeated game with private monitoring, where players’ behavior on the equilibrium

path is given by finite path preautomata mi ≡ (Θi, fi, Ti), i = 1, ..., N and a joint

probability distribution of the initial states r ∈ ∆(Θ).
2Since we assume full support, (1) there is no ambiguity regarding the definition of sequential

equilibrium although our game is an infinite horizon game and (2) every correlated sequential

equilibrium is a correlated equilibrium i.e. sequential rationality is not a restriction.
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The probability distribution r is the initial correlation device. At the beginning

of t = 0, a profile of recommended initial states bθ realizes with probability r(bθ), and
player i observes his recommended initial state bθi. In a finite state equilibrium, each
player i finds it optimal to follow path automaton (mi,bθi), given that others obey
their recommended initial states. In other words, (m, r) constitutes a correlated

equilibrium. A standard argument shows that (m, r) can always be "extended" to

obtain a sequential equilibrium:

Remark 1 The path preautomata m1, ...,mN do not specify how each player should

behave after his own deviations, but we can always find, for each player i, a repeated

game strategy σi(mi) such that (i) it specifies the same behavior as mi on the equilib-

rium path and (ii) it specifies an optimal continuation strategy for each information

set of player i.3 We will refer both (σ1(m1), ...,σN (mN ), r) and (m, r) as a finite

state equilibrium, if no confusion ensues.

Note that, in a finite state equilibrium, a player’s behavior off the equilibrium

path need not be described by a finite automata. In fact, there is an equilibrium

identified in the existing literature which has the on-path behavior described by

finite path automata, while specifying its off-path behavior requires an extended

automaton with infinitely many states:

Example 1 The following example is from Bhaskar and Obara (2002). Consider a

standard repeated prisoner’s dilemma game with almost perfect and independent pri-

vate monitoring: Ai = {C,D} ,Ωi = {c, d} , Pr (ωi = c|ai, C) = Pr (ωi = d|ai,D) =
1 − ε for any ai ∈ Ai. Suppose that player 2’s play is determined by the following
“trigger strategy" preautomatonm, Θ = {R,P}, f (R) = C, f (P ) = D,T (R|R, c) =
1, T (P |R, d) = T (P |P,ω2) = 1 for any ω2 ∈ Ω2. Let b1 be player 1’s belief that
player 2 is at state R. For a certain range of discount factor and small enough

ε > 0, it can be shown that the optimal strategy against this preautomaton can be

represented as a simple cut-off strategy (“belief-based strategy") in terms of belief:

play C if b1 > b
∗ and play D if b1 < b

∗ for some cut-off belief b∗ ∈ (0, 1) . It can be
shown that this optimal strategy can be described by a finite state automaton given

any belief. In fact, it is exactly given by the above preautomaton itself: (m,P ) is

the optimal strategy for b1 ∈ [0, b∗] and (m,R) is the optimal strategy for b1 ∈ [b∗, b]
3The strategy σi(mi) is obtained by specifying an optimal continuation strategy for each infor-

mation set of player i that is not reached on the equilibrium path (such an information set can

be reached only by player i’s own deviations). This does not change player i’s payoff, and it

does not affect other playres’ best replies either (because player i’s deviation is never detected by

other players under the full support assumption). It remains to check if σi(mi) specifies optimal

continuation strategies on the information sets that are reached on the equilbrium path. If this

were not true, player i’s payoff associated with mi could be improved by replacing the supoptimal

continuation strategy (specified by mi) with an optimal one in some information set that is reached

with a positive probability. This would imply that mi were not a best reply, contradicting our

premise that (m, r) is a correlated equilibrium.
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([0, b] is a belief-closed set, i.e. player 1’s belief never leaves [0, b] when the initial

belief is in [0, b].. So we don’t have to consider b1 above b).

However, player 1’s optimal strategy off the equilibrium path cannot be described

by a finite state automaton. Consider a history where b1 is close to 0, for example,

a history such as (...,Dd,Dd,Dd,Dd). Suppose that player 1 deviates repeatedly by

playing C (because D is the unique optimal action for b1 ∈ [0, b∗]) and observes c in
many periods. In this off the equilibrium path, player 1’s belief eventually exceeds b∗

after many realization of (Cc) , after which the optimal continuation strategy must

be (m,R). To implement such a strategy off the equilibrium path by an extended

finite state automaton, one needs to use as many number of states as the required

number of Cc to go back to (m,R). But this number can be arbitrarily large if b1
is arbitrarily close to 0. Hence there is no finite extended automaton to implement

such a strategy..

4 Private Monitoring Problem as Partially Observable

Markov Decision Process (POMDP).

In a finite state equilibrium, player i’ opponents’ equilibrium behavior is given by

finite path preautomata mj = (Θj , fj , Tj), j 6= i. Under the full support as-

sumption of private signals, player i never receives an evidence that his opponents

j 6= i deviated from their equilibrium behavior, so that he always believes that

his opponents are using their path preautomata. Hence, after any private his-

tory, player i’s information regarding the current and future behavior of player

j 6= i is summarized by his belief over his opponents’ states bi ∈ 4 (Θ−i). Belief

bi compactly summarizes the relevant information contained in a private history

hti = (ai(1),ωi(1), ..., ai(t),ωi(t)) (a much more complicated object than bi).

Furthermore, player i’s belief at time t, denoted by bi(t), can be calculated by his

previous belief bi(t−1), action ai(t−1) and signal ωi(t−1) (the dynamics of beliefs
is a controlled Markov process). This means that, in a finite state equilibrium, each

player i faces a relatively simple problem: a Markov decision problem (dynamic pro-

gramming problem) with a finite dimensional state space 4 (Θ−i). This point has

been emphasized by, for example, Bhaskar and Obara (2002), Mailath and Morris

(2002), and Phelan and Skrzypacz (2009). We go one step further and observe

that this problem corresponds to a reasonably tractable class of Markov decision

problems, known as POMDP (Partially Observable Markov Decision Process). The

present paper introduces a general technique to solve such a Markov decision prob-

lem, building heavily on a technique developed in operations research and computer

science (see, for example, Kaelbling, Littman, and Cassandra (1998)).

A crucial observation is that this decision problem is easier to solve than it

appears. An apparent difficulty in solving this problem is that the value function

Wi is defined on uncountable number of states bi ∈ 4 (Θ−i). Hence, computing

value iterationWn+1
i (bi) = ΓiW

n
i (bi) or verifying the fixed point equationW

∗
i (bi) =
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ΓiW
∗
i (bi) for all bi in principle involves uncountably many calculations (one for each

bi). This is certainly true for a general non-linear value functions. Fortunately,

however, the theory of POMDP shows that we can confine attention to piecewise

linear value functions, and for those particular value functions the computation can

be exactly done with a finite number of calculations.

Let us explain how the theory of POMDP works to verify that a given finite

path preautomata mi ≡ (Θi, fi, Ti), i = 1, ..., N , constitute a correlated sequential
equilibrium for some initial correlation device r ∈ ∆(Θ). We will focus on player

i’s decision problem, given the opponents’ finite state path preautomata m−i. The
relevant state for player i is the profile of his opponents’ state θ−i, which evolves by
the Markov transition functions Tj (j 6= i). However, the true state is not directly
observable, and player i only obtains partial information through his private signal

ωi. This is an instance of a Markov decision process with partially observable state

variable.

The joint distribution of current signal ωi and the next state θ
0
−i given the current

state and action (θ−i, ai) is given by

ri(ωi, θ
0
−i|θ−i, ai) ≡

X
ω−i

Y
j 6=i
T ∗j (θ

0
j |θj ,ωj)q(ωi,ω−i|ai, f−i(θ−i)), (1)

Using ri thus defined, we can derive player i’s posterior belief χi[ai,ωi, bi] after

current action ai and private signal ωi given her current belief bi ∈ ∆(Θ−i):

χi[ai,ωi, bi](θ
0
−i) =

Prbi,ai(ωi, θ
0
−i, )

Prbi,ai(ωi)

=

P
θ−i ri(ωi, θ

0
−i|θ−i, ai)bi(θ−i)P

θ−i qi(ωi|ai, f−i(θ−i))bi(θ−i)
.

Given any value function Wi : ∆(Θ−i)→ <, define the Bellman operator ΓiWi by

ΓiWi(bi) = (2)

max
ai∈Ai

X
θ−j

bi(θ−i)

⎡⎣X
θ−j

gi(ai, f−i(θ−i)) + δ
X
ωi

Wi(χi[ai,ωi, bi])qi(ωi|ai, f−i(θ−i))
⎤⎦ .

Call Wi (bi) a belief-based value function. The standard theory of dynamic pro-

gramming shows that the optimal value function W ∗
i (bi), which represents the max-

imum discounted payoff to player i under current belief bi, is the unique fixed point

ΓiW
∗
i =W

∗
i . Furthermore, W

∗
i can be obtained as the limit of the sequence of value

functions {Wn
i }, where Wn+1

i = ΓiW
n
i (W

0
i can be any function).

The theory of POMDP shows that the Bellman operator ΓiWi (2) has a much

simpler expression for some Wi. To explain how it works, we need to introduce

a couple of concepts. First, for any finite set of player i’s path automata Mi =

{M1
i , ...,M

K
i }, consider a path automaton such that
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1. it starts with a state where some pure action ai is played and

2. after ωi is realized, an automaton inMi, denoted by Mi(ωi), is implemented.

Such a path automaton (ai,Mi(·)) is called a one-shot extension of path

automataMi. It is a path automaton constructed by attaching an initial state to

the set of path automataMi. Let fMi denote the set of all one-shot extensions of

Mi. Note that fMi has a finite number (= |Ai||Mi||Ωi|) of elements.
Second, for any path automaton Mi of player i, let v

Miθ−i
i be player i’s payoff

associated with Mi, when the opponents’ states are θ−i. Then the expected payoff
associated with Mi under belief bi ∈ 4 (Θ−i) is given by

VMi

i (bi) =
X
θ−i

v
Miθ−i
i bi(θ−i). (3)

As an expected payoff, this function is linear in belief bi. This fact plays an impor-

tant role in what follows.

Given those concepts, the essence of POMDP can be summarized by the follow-

ing proposition. It shows that the Bellman operator ΓiWi (2) has a very simple

representation for some particular value functions Wi:

Proposition 1 (POMDP) Let Mi be a set of player i’s path automata and con-

sider value function Wi(bi) ≡ maxMi∈Mi
VMi(bi). Then, the Bellman operator for

this value function is given by

ΓiWi(bi) = max
Mi∈Mi

VMi

i (bi),

where fMi is the set of one-shot extensions ofMi.

The proof is given by a direct calculation. Here we provide an intuition. The

value function Wi(bi) ≡ maxMi∈Mi
VMi

i (bi) is simply player i’s payoff under the

constrained best reply to bi (given that player i must chose a path automata in set

Mi). Hence, the maximand on the right-hand side of the Bellman operator ΓiWi (2)

is the payoff associated with some action ai today, followed by a best path automata

inMi . Hence, ΓiWi(bi) is the payoff associated with the best one-shot extension

ofMi, given belief bi (= maxMi∈Mi
VMi

i (bi)).

Why is this proposition useful? In principle, computing ΓiWi(bi) for all bi ∈
4 (Θ−i) involves uncountably many calculations (one for each bi). However, com-
putation of max

Mi∈Mi
VMi(bi) is easy. This is simply the upper envelope of a finite

number of linear functions VMi(bi), Mi ∈ fMi, and it can be exactly calculated in a

finite number of steps.

Now let us formally explain how the theory of POMDP works. Recall that our

goal is to verify that the given finite path preautomaton profile m = (m1, ...,mN)
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can constitute a finite state equilibrium. The POMDP procedure is describes as

follows.

POMDP V alue Iteration:

• Define the initial candidate path automata asM0
i ≡ {(mi, θi)}θi∈Θi .

• In step n (n=1,2...), given the set of initial candidate path automataMn−1
i ,

compute the value function by

Wn
i (bi) = max

Mi∈Mn−1
i

VMi

i (bi),

where fMn−1
i is the set of one-shot extensions of path automataMn−1. This

can be computed in a finite number of steps, becauseWn
i is the upper envelope

of a finite number of linear functions VMi

i (bi). Then, construct the set of

candidate path automata for the nest step by "cream skimming" the one-shot

extensions:

Mn
i ≡

n
Mi ∈ fMn−1

i |Wn
i (bi) = V

Mi

i (bi) for some bi

o
.

• This defines an increasing sequence of value functions W 0
i ≤W 1

i ≤ · · ·, where,
for each n < ∞, Wn

i is a piecewise linear, convex and continuous function

(because it is the upper envelope of a finite number of linear functions). The

optimal value function is obtained as the limit W ∗
i = limn→∞W

n
i .

The monotonicity of the sequence of value function is shown by a standard

argument. It is easy to showW 0
i ≤W 1

i .
4 By the definition, operator Γi is monotone:

W 1 ≥ W 0 implies W 2 = ΓiW
1
i ≥ ΓiW 0

i = W
1
i . Proceeding inductively, we obtain

W 0 ≤W 1 ≤ .... Also the following is a standard result in POMDP.

Lemma 1 The optimal value function W ∗
i is convex and continuous.

4The proof W 0
i ≤ W 1

i : If the transition functions of candidate automata in M0
i are deter-

ministic, the proof is trivial (because M0
i ⊂ M0

i ). Here we consider the case with stochastic

transition functions. W 1
i (bi) is the payoff when (i) an optimal action a

∗
i is played today and (ii)

the continuation play after ωi is given by a best on-path automaton in M0, given the posterior

belief bi = χi[a
∗
i ,ωi, bi]. On the other hand, W

0
i (bi)’s continuation payoff is asspciated with some

on-path automataon in M0. Hence, it is the payoff when (i) some action is played today and

(ii) the continuation play after ωi is given by a probability distribution overM0 (this is given by

the possibly stochastic transition function Ti of preoutomaton mi). Since the choice of continua-

tion automata in (ii) may not be optimal, W 0
i (bi) is no greater than W

1
i (bi), which uses optimal

continuation automata inM0. Q.E.D.
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Proof. LetM∗
i be the set of optimal path automata (i.e., an element ofM∗

i is

a path automaton which is optimal for some belief bi). Then, W
∗
i (bi) is the upper

envelope of a family of linear functions VMi

i (bi), Mi ∈M∗
i . Hence it is convex and

continuous.

Remark 2 An important goal in the literature on POMDP is to design a fast com-

puter algorithm to implement the value iteration described above, and there are some

free programs ("POMDP solvers") available over the internet.

The POMDP value iteration provides a iterative procedure to find player i’s best

replies against m−j , which represents various continuation strategies the opponents
might use in the equilibrium. In each step n, a finite number of path automataMn

i

is given and the procedure search for better replies in a neighborhood ofMn
i . This

neighborhood (denoted gMn
i) is the set of one-shot extensions ofMn

i . The cream

skimming procedure is just to find undominated strategies in gMn
i (in the game with

restricted strategy spaces given by gMn
i and m−i). (Note that the cream skimming

procedure is to find strategies which can be a best reply to some joint distribution

over the opponents’ states. A standard result in game theory shows that such a

strategy is equivalent to a strategy that is not strictly dominated.) The POMDP

iteration shows that repeated search for better replies by finding undominated one-

shot extensions eventually leads to the best response.

A particularly useful implication is that verifying optimality is easy. To show

that a finite set of path automataM∗
i provides best replies to m−i, one only needs

to show that there is no better replies in the one-shot extensions of M∗
i . This is

a counterpart of the celebrated one-shot deviation principle in the repeated games

with public monitoring. We elaborate on this point in Section 5.1.

5 Finite State Equilibrium as Multiperson POMDP

So when does a given finite state path automaton m = (m1, ...,mN) constitute a

finite state equilibrium? Observe that (mi, θi) is optimal given bi ∈ 4 (Θ−i) if
and only if the discounted value generated by path automaton (mi, θi) is exactly

equal to the optimal value function W ∗
i (bi) . Hence m is compatible if and only if

W ∗
i (bi) =W

0
i (bi) for some bi for every i.

Proposition 2 A profile of path preautomata m = (m1, ...,mN) is compatible if

there exists bi ∈ ∆(Θ−i) such that W ∗
i (bi) =W

0
i (bi) for i = 1, ..., N.

Once we verify that m is compatible, then we need to find a joint distribution r

on ∆(Θ) such that (m, r) constitutes a correlated sequential equilibrium. Thus our

basic computational procedure works as follows.
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Verification Procedure:
Given finite path preautomata m = (m1, ...,mN )

1. Use the theory of POMDP to find the optimal value function W ∗
i .

2. Look for the region of beliefs where the optimal value coincides with the payoff

associated with a candidate path automaton (mi, θi):

Bθi
i ≡ {bi|W ∗

i (bi) = V
(mi,θi)
i (bi)}.

Since W ∗
i is convex and continuous and V

(mi,θi)
i is linear, Bθi

i is a (possibly

empty) closed and convex set. If this is empty for all θi, m cannot constitute

an equilibrium. Otherwise, proceed to 3.

3. Find an initial correlation device r ∈ ∆(Θ) such that ri(θi) > 0 implies

r−i(·|θi) ∈ Bθi
i 6= ∅ (ri is the marginal distribution, and r−i(·|θi) is the con-

ditional distribution of θ−i). If there is such r, then (m, r) is a finite state

equilibrium. If there is no such r, m cannot constitute an equilibrium.

We first discuss the first two steps, which concerns with the compatibility of path

automata, then discuss the third step in the next subsection. To verify compatibility,

we first need to find the optimal value function W ∗
i . One possibility is that we find

a fixed point Wn
i = ΓiW

n
i = W

∗
i in a finite number of step. We have examples of

this case in Sections 6.1 - 6.4.

It is sometimes useful to focus on a subset of beliefs. A belief-closed set Xi ∈
∆(Θ−i) for player i is the set of player i’s beliefs such that player i’s posterior belief
will never leave it if player i’s current belief is in it after any private history of

player i (including off the equilibrium history). Formally, Xi is a belief-closed set

if χi [ai,ωi, bi] ∈ Xi for any ai ∈ Ai,ωi ∈ Ωi and bi ∈ Θ. If we can find a fixed
point Wi = ΓiWi on Xi, then it must be the case that Wi (bi) = W ∗

i (bi) on Xi.

This is because player i’s dynamic programming problem is unchanged even if we

use a smaller state space Xi when the initial belief bi is in Xi. Examples of this

case are provided in Sections 6.1- 6.3. The previous case is a special case where

Xi = ∆(Θ−i), which is obviously a belief-closed set. The following proposition

summarizes this observation.

Proposition 3 A profile of path preautomata m = (m1, ...,mN) is compatible if

there exists a belief-closed set Xi ∈ ∆(Θ−i) and Wi for each i such that (1) Wi(bi) =

ΓiWi (bi) for every bi ∈ Xi and (2) Wi (b
0
i) = V

(mi,θi)
i (b0i) for some b

0
i ∈ Xi and some

θi.

11



Another possibility is thatWn
i is strictly increasing in each step (at least for some

beliefs), hence it takes (or seems to take) infinite iterations to reach the optimal value

function. Now suppose that, in such a case, there is a finite n and some belief bi

where Wn
i (bi) = V

(mi,θi)
i (bi) (= W 0

i (bi)). Even if this holds for a fairly large n,

however, there is a possibility that in a succeeding step k > n the value function

shifts upward W k
i (bi) > V

(mi,θi)
i (bi) and the optimality of automaton (mi, θi) at

belief bi is disproved. How can we verify the optimality of a candidate automaton

in a finite step, when Wn
i does not (seem to) converge to W ∗

i in any finite step?

The following proposition addresses this issue.

To state our proposition, we need to define the following concepts. Given a

profile of on-path preautomata m, we define a profile of on-path belief closed

sets for player i as

Xi = (Xi (θi))θi∈Θi ,

that satisfies ∀θi Xi (θi) ⊂ 4 (Θ−i) (Xi (θi) can be an empty set) and the following
property: For any θ0i, θ

00
i , bi,ωi,

if bi ∈ Xi(θ0i) and Ti(θ”i |θ0i,ωi) > 0, then χi[fi(θ
0
i),ωi, bi] ∈ Xi(θ”i ).

This means that player i’s posterior belief never leaves the on-path belief closed sets

as long as player i does not deviate from the specified action at each state. Let

p (Mi,Xi, bi) be the probability that the posterior belief in the next period moves

outside of Xi when the current belief is bi and a path-automaton Mi is played. For

any belief-based value functions V and W , define |V −W | ≡ supbi∈∆(Θ−i) |V (bi)−
W (bi) |.
Proposition 4 (Optimality Verification in A Finite Step) Let Xi = (Xi (θi))θi∈Θi
be any profile of on-path belief closed sets of player i with respect to m. Suppose that,

at the nth step of the POMDP value iteration, for any θi and bi ∈ Xi(θi), we have
Wn
i (bi) = V

(mi,θi)
i (bi) and

V
(mi,θi)
i (bi) ≥ max

Mi∈Mn
i

½
VMi

i (bi) + p (Mi,Xi, bi)
δn+1

1− δ
|W 1

i −W 0
i |
¾
. (4)

Then, path automaton (mi, θi) is optimal at all bi ∈ Xi (θi): W ∗
i (bi) = V

(mi,θi)
i (bi)

for any bi ∈ Xi (θi) and any θi ∈ Θi.

Remark 3 This proposition is useful when (i) Wn
i = V

(mi,θi)
i for some beliefs but

(ii) for some other beliefs the value iteration takes (or seems to take) infinite steps

to reach the optimal value function W ∗
i . The intuition of this proposition is quite

simple. The standard theory of dynamic programming shows that the value function

at the nth iteration is very close to the optimal one, for a large n. In particular, the

optimal value function is bounded above by Wn
i +

δn

1−δ |W 1
i −W 0

i |, and the condition
(4) basically says that any one-shot deviation is unprofitable, even when the player

can receive this upper bound of the optimal value off the equilibrium path.

12



Proof. Define U0i by U
0
i (bi) = V

(mi,θi)
i (bi) if bi ∈ Xi(θi) for some θi and

U0i (bi) = W ∗
i (bi) for every other belief (outside of Xi). (U

0
i (bi) is well-defined

even when bi belongs to more than one sets Xi(θi),Xi(θ
0
i), ..., because our premise

requires V
(mi,θi)
i (bi) = V

(mi,θ
0
i)

i (bi) = · · · =Wn
i (bi).) We will show that U

0
i =W

∗
i .

We first show that U0i (bi) = ΓiU
0
i (bi) if bi ∈ Xi(θi) for some θi. When we

denote player i’s current expected stage payoff given current action ai and belief bi
by ui(ai, bi) and the posterior belief in the next period by b

0
i, ΓiU

0
i (bi) is expressed

as

ΓiU
0
i (bi) = max

ai∈Ai

©
ui(ai, bi) + δE[U0i (b

0
i)|ai, bi]

ª
= ui(a

1
i , bi) + δE[U0i (b

0
i)|a1i , bi].

Since U0i can be expressed as

U0i (b
0
i) =

(
Wn
i (b

0
i) ( = V

(mi,θi)
i (b0i) ) if b

0
i ∈ Xi(θi) for some θi

W ∗
i (b

0
i) otherwise

,

we have

ΓiU
0
i (bi) = ui(a

1
i , bi) + δE[Wn

i (b
0
i) +

©
U0i (b

0
i)−Wn

i (b
0
i)
ª |a1i , bi].

≤ ui(a
1
i , bi) + δE[Wn

i (b
0
i)|a1i , bi] + p

¡
M 0
i ,Xi, bi

¢
δ|W ∗

i −Wn
i |,

whereM 0
i is any path automaton whose initial action is a

1
i . Recall that p (M

0
i ,Xi, bi)

is the probability that the posteriori b0i moves out of the profile of belief-closed
sets ( b0i /∈ Xi(θi) for any θi) under automaton M

0
i , so that it only depends on

the initial action of M 0
i . Now, by the standard theory of dynamic programming

(|W ∗
i −Wn

i | ≤ δn

1−δ |W 1
i −W 0

i |), we have

ΓiU
0
i (bi) ≤ max

ai

©
ui(ai, bi) + δE[Wn

i (b
0
i)|ai, bi]

ª
+ p

¡
M 0
i ,Xi, bi

¢ δn+1
1− δ

|W 1
i −W 0

i |.

Since the first term on the right hand side is equal to ΓiW
n
i = maxMi∈Mn

i
VMi

i (bi),

we have

ΓiU
0
i (bi) ≤ max

Mi∈Mn
i

½
VMi

i (bi) + p (Mi,Xi, bi)
δn+1

1− δ
|W 1

i −W 0
i |
¾
. (5)

By the premise of the proposition (4), this is no greater than V
(mi,θi)
i (bi). Since

U0i (bi) = V
(mi,θi)
i (bi) for bi ∈ Xi(θi), we have established that ΓiU0i (bi) ≤ U0i (bi) if

bi ∈ Xi(θi) for some θi.
Now we show ΓiU

0
i (bi) ≥ U0i (bi) if bi ∈ Xi(θi) for some θi. This follows from

the fact that, if bi ∈ Xi(θi) for some θi,

ΓiU
0
i (bi) ≥ ui(fi(θi), bi) + δE[U0i (b

0
i)|fi(θi), bi] = V (mi,θi)

i (bi) = U
0
i (bi).

13



The first equality holds because of the following reasoning. Suppose that player i

plays action fi(θi) today under current belief bi ∈ Xi(θi), and consider the case where
the posterior belief in the next period is b0i ∈ Xi(θ0i). This means that tomorrow’s
state is θ0i (for a moment, consider the case where (mi, θi) has deterministic transition
function). Therefore, the continuation payoff of automaton (mi, θi) is V

(mi,θ
0
i)

i (b0i).
By definition, this is equal to U0i (b

0
i) (because b

0
i ∈ Xi(θ0i)). Hence, ui(fi(θi), bi) +

δE[U0i (b
0
i)|fi(θi), bi] represents the value associated with automaton (mi, θi), so that

it is equal to V
(mi,θi)
i (bi). The case of stochastic transition function is similar.5

Hence, we have shown U0i (bi) = ΓiU
0
i (bi) for bi ∈ Xi(θi), for some θi.

Lastly, for bi /∈ Xi(θi) for any θi, we show ΓiU0i (bi) = U0i (bi). Clearly ΓiU0i (bi) ≤
W ∗
i (bi) = U0i (bi) if bi /∈ Xi(θi) for any θi, because U

0
i (bi) ≤ W ∗

i (bi) for every bi.

Hence, we have U1i (bi) = ΓiU
0
i (bi) ≤ U0i (bi) for all bi, and Uni would be a decreasing

sequence and limn→∞ Uni =W
∗
i by the theory of dynamic programming. Therefore,

if U1i (b
0
i) = ΓiU

0
i (b

0
i) < W

∗
i (b

0
i) (= U

0
i (bi)) for some b

0
i /∈ Xi(θi) for any θi, we would

have a contradiction W ∗
i (b

0
i) ≤ U1i (b0i) < W ∗

i (b
0
i). Hence, it must be the case that

ΓiU
0
i (bi) = U

0
i (bi) if bi /∈ Xi(θi) for any θi.

Those arguments have shown that U0i is a fixed point of Γi, so we obtainW
∗
i = U

0
i

everywhere. In particular, W ∗
i (bi) = U

0
i (bi) = V

(mi,θi)
i (bi) for any bi ∈ Xi (θi) and

any θi ∈ Θi.
An example of Proposition 4 (Example 4) is provided in Section 6.5.

5.1 A Simpler Verification Method When Off-Path Candidate Au-

tomata Are Also Given

Suppose that you have some guess about "comprehensive" path preautomata m and

a belief-closed set Xi, i = 1, ...,N that work. That is, m should include not only the

automata to be played on the equilibrium path but also all automata used off the

equilibrium path. You expect that W 0
i , which is generated from m, is a fixed point

on Xi.We can use POMDP to verify this numerically as described above. But there

is a simpler, albeit equivalent, way to verify this.

When we have such a "comprehensive" candidate m, our verification procedure

described above boils down to:

Belief-Based One-Shot Deviation Principle: Candidate preautomatonmi pro-

vides the best replies against m−i on a belief-closed set Xi, if it cannot be im-
proved upon by one-shot extensions. That is, there is no one-shot extension Mi of

5When mi has a stochastic transition function, two staes θ
0
i and θ”i may be possible for a given

posterior belief b0i (because of the stochastic transition function). Hence the same posteior belief
b0i may be contained in Xi(θ

0
i) and Xi(θ

”
i ). However, the premise in this proposition guarantees

V
(mi,θ

0
i)

i (b0i) = V
(mi,θ

”
i )

i (b0i) (=W
n
i (b

0
i)), so that we can employ the same argument as before.
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{(mi, θi)|θi ∈ Θi} and bi ∈ Xi such that VMi

i (bi) > V
(mi,θi)
i (bi) for all θi.

This statement is equivalent to ΓiW
0
i (bi) =W

0
i (bi) for all bi ∈ Xi, withW 0

i (bi) =

maxθi V
(mi,θi)
i (bi). In what follows, we show that, instead of checking ΓiW

0
i (bi) =

W 0
i (bi) for all beliefs, we only need to check this at a finite number of beliefs (this

is essentially because the maximized value function is the upper envelope of linear

functions). Let B
θi,0
i ⊂ 4 (Θ−i) be the set of beliefs where the following holds

W 0
i (bi) = V

(mi,θi)(bi).

Clearly
[
θi

B
θi,0
i covers4 (Θ−i) . Since each Bθi,0

i is an intersection of a finite number

of half spaces (and a hyperplane
P

θ−i bi(θ−i) = 1), it is a closed convex polyhedron.
Take any convex polyhedron Di such that Xi ⊂ Di. Define a finite subset of Di as
follows:

Dθi
i =

n
bi ∈ Di|bi is an extreme point of Di ∩Bθi,0

i , θi ∈ Θi
o
.

Remember that the objective function of the dynamic programming problem is

linear in beliefs. Hence, if we can verify that ΓiW
0
i (bi) =W

0
i (bi) for every bi ∈ Dθi

i ,

which is just a set of finite points, then we also obtain ΓiW
0
i (bi) = W 0

i (bi) every

where in Di ∩Bθi,0
i i.e. W 0

i is a fixed point on Di (⊃ Xi) .
Figure 1 illustrates our point. This corresponds to a two-player game, where

the candidate path pre automaton of each player has three states, θ1i , θ
2
i , and θ3i .

In the figure, Di ∩ Bθki ,0

i is denoted by Bk. Di is the set of all beliefs (= 4 (Θ−i))
in this example, and player i has candidate optimal plans

¡
mi, θ

1
i

¢
,
¡
mi, θ

2
i

¢
, and¡

mi, θ
3
i

¢
.
[
θi

Dθi
i consists of seven points b1, ..., b7, and each of them can be easily

computed. For example, b3 is a solution to the system of linear equalities⎧⎪⎨⎪⎩
V (mi,θ

1
i )(bi) = V

(mi,θ
2
i )(bi)

V (mi,θ
2
i )(bi) = V

(mi,θ
3
i )(bi)P

θ−i b(θ−i) = 1
.

Let Θbii ⊂ Θi be the set of states such that Bθi,0
i includes b

0
i ∈

[
θi

Dθi
i . Our

argument above can be summarized as follows:

Proposition 5 (Finite Verification of the Belief-Based One-Shot Devia-

tion Principle) To verify ΓiW
0
i =W

0
i = maxθi V

(mi,θi)
i on a belief-closed set Xi, it
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Figure 1:

is sufficient to check the following conditions ("no gain from one-shot deviations")

at a finite number of "extreme point" beliefs bi ∈
[
θi

Dθi
i ,

(1) for each θi ∈ Θbii , path automaton (mi, θi) transits to an optimal path au-

tomata among
©¡
mi, θ

0
i

¢
, θ0i ∈ Θi

ª
after every realization of private signal ωi (be-

cause (mi, θi) must be optimal given bi), i.e. χi[f(θi),ωi, bi] ∈ Bθ0i,0
i for any ωi and

θ0i with T
¡
θ0i|θi,ωi

¢
> 0.

(2) for any action ai ∈ Ai that is not played by any θi ∈ Θbii , no one-shot
extension (ai,Mi (·)) should generate a larger value than V (mi,θi)(bi) for any θi ∈
Θbii .

Section 6.2 provides an example of this proposition.

5.2 When Can We Find a Right Initial Correlation Device?

We show that, when a profile of path preautomata is compatible, the existence of a

right initial correlation device is guaranteed under a mild set of assumptions.

Theorem 4 Let mi ≡ (Θi, fi, Ti), i = 1, ..., N be the candidate finite path preau-

tomata, and suppose that (i) Markov chain induced by (m1, ...,mN ) on Θ has a

unique recurrent communication class6 X ⊂ Θ (ii) X contains an aperiodic state7

6A subset X ⊂ Θ is called a recurrent communication class if (i) any two points in X are

mutually reachable and (ii) no point θ /∈ X is reachable from any state within X.
7A state x∈ Θ is aperiodic if the greatest common divisor of {t > 0|Pr(θ(t) = x|θ(0) = x) > 0}
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and (iii) for all i, there is a belief b0i such that V
θ0i (b0i ) =W

∗
i (b

0
i ) for some θ

0
i ∈ Θi,

where W ∗
i is the optimal value function. Then, there is a probability distribution

μ over X such that choosing the initial states by μ and following (m1, ...,mN) is a

correlated equilibrium.

Example 2 Let us present an example of conditions (i) and (ii). This is the exam-

ple in the next section. Letmi be the path preautomaton associated with the grim trig-

ger strategy in our prisoner’s dilemma game. The state space is Θi = {R,P}, and R
and P are the cooperative and non-cooperative states respectively. The Markov chain

induced by (m1,m2) has a unique recurrent communication class X = {(P,P )}, and
(P,P ) is an aperiodic state (because {t > 0|Pr(θ(t) = (R,R)|θ(0) = (R,R)) > 0} =
{1, 2, ...}).

Remark: A similar observation is made in Phelan and Skrzypacz (2009). It

seems that, like us, PS impose some sufficient conditions on the transition of Markov

chain so that there is the unique and globally stable ergodic distribution. Since

the joint distribution on Θ converges to the stationary distribution for any initial

distribution, they can use the stationary distribution as the initial joint distribution

to check if the finite extended automata to be an equilibrium. Then they check

whether one-shot deviation constraint is satisfied at every possible subjective belief

conditional on each state (but the set of conditional subjective beliefs is larger in

their setting because they keep track of beliefs of on and off the equilibrium path).

On the other hand, we first find a belief on which a given path automaton is optimal.

Then we impose sufficient conditions for the existence of unique and globally stable

ergodic distribution on Θ and verify that path preautomaton is optimal in the limit,

i.e. when the ergodic distribution is used as a correlation device.

Proof. Let MC(Θ,m) be the Markov chain induced by (m1, ...,mN) on Θ.

The theory of Markov chain shows that there is a unique invariant distribution μ

of MC(Θ,m) and (i) its support is X and (ii) for any initial distribution of state

profile μ0 ∈ ∆(Θ), the probability distribution of state profile at time t, denoted by
μt, converges to μ.

By condition (iii) in the Theorem, each player i has a belief b0i under which

automaton (mi, θ
0
i ) is his optimal strategy. Let μ0 be the initial distribution of

Markov chain MC(Θ,m) where player i is in state θ0i and the probability of other

players’ states is given by b0i (θ−i). (More precisely, μ0(θ0i , θ−i) = b0i (θ−i) and
μ0(θ) = 0 if θi 6= θ0i .) Let μ

t be the probability distribution of θ(t), given μ0. Then

we have limt→∞ μt = μ (μ is the invariant distribution with support X). Since μ

assigns a strictly positive probability for any θ ∈ X, so does μt for all sufficiently
large t. Hence, for any θ ∈ X and any i, the conditional distributions given θi are

well defined for all large t and we have

lim
t→∞

μt(θ−i|θi) = μ(θ−i|θi) for all θ ∈ X.

is one.
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Fix any θ ∈ X and let Ht
i (θi) be the set of possible private histories leading to

state θi at time t: Formally, H
t
i (θi) is the set of private histories h

t
i such that (i)

θi(0) = θ0i , θi(t) = θi, and (ii) h
t
i realizes with a positive probability under Markov

chain MC(Θ,m) with initial distribution μ0. The above argument shows that

Ht
i (θi) 6= ∅, for all sufficiently large t. Then, the conditional probability is well

defined for all large t and expressed as

μt(θ−i|θi) = Pr(θ(t) = θ)

Pr(θi(t) = θi)

=

P
hti∈Ht

i (θi)
bi(θ−i|hti) Pr(hti)P

hti∈Ht
i (θi)

Pr(hti),
(6)

where bi(θ−i|hti) is the conditional probability of θ−i(t) = θ−i given private history
hti (this is equal to player i’s belief after h

t
i).

Since automaton (mi, θ
0
i ) is optimal for player i at t = 0, following it after any

private history which realizes with a positive probability should also be optimal.

In particular, after private history hti ∈ Ht
i (θi) player i is in state θi and therefore

following automaton (mi, θi) must be optimal after h
t
i. Note also that player i has

belief bi(·|hti) after hti. Those facts, taken together, imply that automaton (mi, θi)
is optimal under belief bi(·|hti), for any hti ∈ Ht

i (θi).

Now let Bθi
i be the set of beliefs over θ−i under which automaton (mi, θi) is

optimal for player i. Since (i) Bθi
i = {bi|W ∗(bi) = V θi

i (bi)} (ii) the optimal value
functionW ∗ is a continuous convex function and (iii) V θi

i (·) is a linear function, Bθi
i

is a closed convex set (this may be stated as a lemma elsewhere. Also note that

a direct proof, based on the linearity of expected payoff with respect to beliefs, is

easy.). Equation (6) and our argument in the previous paragraph show that μt(·|θi)
is a convex combination of the beliefs (i.e., bi(θ−i|hti), hti ∈ Ht

i (θi)) in B
θi
i . By the

convexity of Bθi
i , we have

μt(·|θi) ∈ Bθi
i for all t ≥ t.

By the closedness of Bθi
i and limt→∞ μt(·|θi) = μ(·|θi) implies

μ(·|θi) ∈ Bθi
i for all θi ∈ Xi.

This means that the joint distribution μ over initial state profile θ ∈ X induces a

correlated equilibrium.
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6 Examples

6.1 Example 1

We apply the POMDP technique to the prisoner’s dilemma model analyzed by

Sekiguchi (1997) and Bhaskar and Obara (2002). The stage payoff is given by

C D

C 1, 1 1 + g,−l
D −l, 1 + g 0, 0

Each player’s private signal is ωi = c, d, which is a noisy observation of the oppo-

nent’s action. For example, when the opponent chose C, player i is more likely

to receive the correct signal ωi = c, but sometimes an observation error provides a

wrong signal ωi = d. More precisely, we assume that exactly one player receives a

wrong signal is ε > 0 and both receive wrong signals with probability ξ > 0. For

example, when action profile is (C,C), the joint distribution of private signals is

c d

c 1− 2ε− ξ ε

d ε ξ

Hence in this model we have five parameters g, l, ε, ξ, and δ.

In Example 1, we assume that ε = (1 − r)r, ξ = r2 (independent observation

errors), r = 1/6, g = 1, l = 1, and δ = 0.9. The candidate path preautomaton

mi corresponds to the grim trigger strategy and is shown in the following figure.We

show that this preautomaton constitutes a correlated equilibrium, given some initial

distribution of states. First, we determine vθiθj , player i’s payoff under state profile

(θi, θj). This can be done by finding a solution to the system of equations⎧⎪⎪⎨⎪⎪⎩
vRR = 1 + δ

©
(1− 2ε− ξ)vRR + εvRP + εvPR + ξvPP

ª
vRP = −l + δ

©
(ε+ ξ)vRP + (1− ε− ξ)vPP

ª
vPR = (1 + g) + δ

©
(ε+ ξ)vPR + (1− ε− ξ)vPP

ª
vPP = 0 + δvPP

. (7)

The solution shows

vRR = 3.058 8, vRP = −1.176 5, vPR = 2.352 9, vPP = 0.

Let b denote player i’s belief that j is in state R, and let V θi(b) the expected

payoff to player i when his state is θi = R,P .8 Then, the graphs of V θi(b) =

bvθiR + (1− b)vθiP , θi = R,P are given in the following figure. The horizontal axis
measures b.

8 In our general notation, vθiθj = v
(mi,θi)θj
i and V θi = V

(mi,θi)

i .
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From top to bottom (on the y axis) V P (blue) and V R (black).

The initial value function in the POMDP iteration W 0 is the upper envelope of

those two linear functions (W 0(b) = max{V R(b), V P (b)}).
In the first step of POMDP, we consider one-shot extensions of path automata

{(mi, R), (mi, P )}. Let Maizz
0
(ai = C,D and z, z0 = P,R) be the one-shot ex-
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tension that (i) starts with a state with action ai, (ii) moves to state z of mi after

ωi = c, and (iii) moves to state z
0 of mi after ωi = d. For example, MCRP starts

with action C and goes to state R (to play the grim trigger strategy) after ωi = c

and moves on to P (to play permanent defection) after ωi = d. It is easy to see that

MCRP actually implements the same strategy as (mi, R) (the grim trigger strategy).

To perform the cream skimming of those one-shot extensions, looking at the

belief dynamics is useful. Let χaiωi(b) denote the posterior probability of θj = R

when the current action, signal, belief of player i are ai, ωi, and b. By Bayes’ rule

we have

χCc(b) =
b(1− 2ε− ξ)

b(1− ε− ξ) + (1− b)(ε+ ξ)
,

χCd(b) =
bε

b(ε+ ξ) + (1− b)(1− ε− ξ)
,

χDc(b) =
bε

b(1− ε− ξ) + (1− b)(ε+ ξ)
, and

χDd(b) =
bξ

b(ε+ ξ) + (1− b)(1− ε− ξ)
.

For our parameter values in this example, it can be checked that χad(b) < χac(b)

for all b and a = C,D (bad signal d always reduces the probability that the opponent

is still cooperating). Let b∗ be the point where V R and V P intersect. Since

W 0(b) =

½
V R(b) if b ≥ b∗
V P (b) if b ≤ b∗ ,

W 0(χac(b)) = V
P (χac(b)) implies W

0(χad(b)) = V
P (χad(b)). This means that, for

any b, the maximum value to achieve ΓW 0(b) in the Bellman equation (2) is not

achieved by MCPR or MDPR. Hence, for any b, ΓW 0(b) is the associated with one

of the following six automata:

MCRR,MCRP ,MCPP ,MDRR,MDRP ,MDPP .

Note thatMCRP andMDPP implement the same strategies asMR (the grim trigger

strategy) and MP (permanent defection).

Let V aizz
0
(b) be the expected payoff to player i, when he plays this automaton

Maizz
0
under belief b. This is a linear function in belief b:

V aizz
0
(b) = bvaizz

0,R + (1− b)vaizz0,P , (8)

where vaizz
0,R is the payoff under automatonMaizz

0
when the opponent plays (mj , R)

(vaizz
0,P is defined similarly).

To compute vaizz
0,θj , we can just use V R(b), V P (b) and belief functions χaiωi(b).

For example, vCzz
0,R (zz0 = RR,PP ) is determined by

vCzz
0,R = g1(C,C) + δ

³
V z(χCc(1)) Pr(ωi = c|CC) + V z

0
(χCd(1)) Pr(ωi = d|CC)

´
.
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Computation shows

vCRR,R = 3. 117 6, vCPP,R = 2. 764 7, vCRR,P = −2. 058 9, vCPP,P = −1,

vDRR,R = 1. 576 4, vDRP,R = 1.7059, vDRR,P = −1. 058 9, vDRP,P = −0.176 48.
Then, the new value function W 1(b) is the upper envelope of six linear functions

V aizz
0
(b), aizz

0 = CRR,CRP,CPP,DRR,DRP,DPP . It is given by the following
figure.
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From top to bottom (on the y axis) V P = V DPP (blue), V DRP (green dotted),

V CPP (pink dotted), V DRR (brown dotted), V R = V CRP (black), and V CRR (red).

POMDP to compute W 1

The upper envelope W 1 is almost the same as the original value function W 0

(= the upper envelope of the blue and black lines). Note that the red line (V CRR)

coincides with W 1 only for very high belief b ∈ [0.937 53, 1], and one can check
that χaiωi(b) does not lie in this region for any ai, ωi and b. This implies that

W 1(χaiωi(b)) =W
0(χaiωi(b)) for all ai,ωi, and b, which shows ΓW

1 = ΓW 0 =W 1.

Hence POMDP converged to the optimal value function W ∗ =W 1 on Θ = [0, 1] in

two steps.

Note that we can find a fixed point one step earlier if we restrict attention to a

belief-closed set Xi = [0,
14
29
(≈ 0.79167)], where 14

29
is a fixed point of χCc in (0, 1) .
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If the current belief is in Xi,then every posterior belief is in Xi given any (ai,ωi)

because there is always a positive probability that a bad signal is observed even

when C is played. Since V CRR matters only for bi = 0.93753, W 0 is the fixed point

on Xi.

Conclusion: The above figure and our computation show

1. the optimal value function W ∗ coincides with V P for b ∈ [0, 0.625]
2. the optimal value function W ∗ coincides with V R for b ∈ [0.625, 0.937 53]

Hence, when a correlation device can generate initial beliefs bR ∈ [0.625, 0.937 53]
and bP ∈ [0, 0.625], we get a correlated equilibrium where players use automataMR

(the grim trigger strategy) andMp (permanent defection). One such equilibrium is

the mixed strategy equilibrium identified by Bhaskar and Obara, in which the initial

belief is given by 0.625 (where the player is indifferent between MR and MP ).

6.2 Example 1 - A Simpler Verification

The previous section illustrates how POMDP works, but for this particular example,

there is a much simpler verification of equilibrium conditions, based on Proposition

5 (Finite Verification of the Belief-Based One-Shot Deviation Principle). Let bc =
14
29
(≈ 0.79167) be the fixed point of χCc. Then, one can see that X = [0, bc] is a

belief-closed set. The reason is the following. If we start with b ∈ XÂ{0} and
play C and observe ωi = c repeatedly, the posterior belief increases and approaches

the fixed point bc. This is because the graph of posterior belief function χCc is

increasing and cross the 45o degree line at bc from above (i.e., bc is a stable fixed

point). If current action and signal is not (C, c), the posterior belief goes down.

Finally, b = 0 is absorbing. Hence X is belief-closed.

We will show that ΓW 0 = W 0 = maxθi=R,P V
θi on X. Proposition 5 shows

that we only need check this at three points, 0, b∗(the belief at which V P and V R

cross), and bc.
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Checking ΓW 0(0) = W 0(0) is trivial, because b = 0 means that the opponent is

playing D forever and the best reply is permanent defection. To check ΓW 0(b∗) =
W 0(b∗), we check condition (1) in Proposition 5. If D is played today, the posterior

belief is always less than b∗ and the optimal continuation (according to W 0) is

permanent defection. This is exactly what automaton (mi, P ) specifies. Now

suppose C is played today. If the private signal is c, the posterior belief moves up

(it is above b∗), and the optimal continuation (according to W 0) is grim trigger. If

the private signal is d, the posterior belief goes down (it is below b∗), and the optimal
continuation (according toW 0) is permanent defection. Again, this is exactly what

automaton (mi, R) specifies. Hence condition (1) of Proposition 5 is satisfied.

Lastly, let us check ΓW 0(bc) = W 0(bc). We know χCc(b
c) = bc and calculation

shows χCd(b
c) < b∗, so condition (1) is satisfied. When D is played today, χDc(b

c)

and χDd(b
c) are both below b∗, and therefore the maximum value of one-shot ex-

tension which plays D is given by V P (bc) (permanent defection: the blue line in the

figure). Since this is less than V R(bc), the condition (2) of Proposition 5 is satisfied.

Hence, the analysis in Sekiguchi (1997) and Bhaskar and Obara (2002) can be

much simplified as above, according to our general belief-based methodology.

6.3 Example 2

Modify the stage game of the previous example as follows:

C C0 D

C 1, 1 1, 1− ε −l, 1 + g
C 0 1− ε, 1 1− ε, 1− ε −l − ε, 1 + g

D 1 + g,−l 1 + g,−l − ε 0, 0

You can interpret C 0 as C plus some monitoring activity that costs ε > 0. If a player
chooses C 0, then he can observe the other player’s action perfectly. (This violates
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our full support assumption, but the analysis below remains essentially the same

even when we assume that a player with action C 0 can observe the other player’s
action almost perfectly.) From the other player, C and C 0 are indistinguishable, i.e.
the other player observes c with probability 1−r and d with probability r whether C
or C 0 is played. We show that the grim trigger strategy still constitutes a correlated
sequential equilibrium for some initial distribution.

Let’s use the same parameter values for g, l, r and δ as before. Let V R and

V P be the value function associated with R and P as before. In the first step of

POMDP, we need to consider eight one-shot extensions this time: Mai,zi,z
0
i , ai ∈

{C,C 0,D} , zi, z0i ∈ {R,P} . Again we don’t have to consider a combination of
(zi, z

0
i) = (R,P ) . Let V ai,zi,z

0
i be the discounted payoff function associated with

Mai,zi,z
0
i .We already know that V CPP , V DRR, V DRP are dominated. We have three

new payoff functions because of C 0 : V C
0RR, V C

0RP , V C
0PP . It is easy to show that

we only need to consider V C
0RP (remember that monitoring is perfect given C 0).

How does this new function V C
0RP affect the updated value function? Suppose

that ε = 0 for the time being. ThenMC0RP dominatesMCRR andMCRP because C 0

generates the same expected payoff as C in the current period, but more informative

than C. So V C
0RP is above V CRR or V CRP . Only at b = 1, V C

0RP coincides with

V CRR because the player’s signal does not convey any information about the the

other player’s current state (which he knows to be R). Thus V C
0RP looks as follows.9

9Note that vC
0RP,R = vCRP,R and vC

0RP,P = −l = −1. Hence (with ε = 0),

V
C0RP

(b) = bv
C0RP,R

+ (1− b)vC0RP,P = 3.1176b− (1− b).
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From top to bottom (on the y axis) V P = V DPP (blue), V R = V CRP (black),

V CRR (red), and V C
0RP (green) (with ε = 0).

Now let’s set ε = 0.09. Then the green line just shifts down by ε, but still above

the blue line and the green line around 0.6 as follows.
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From top to bottom (on the y axis) V P = V DPP (blue), V R = V CRP (black),

V CRR (red), and V C
0RP (green) (with ε = 0.09).

If we magnify the range around 0.625 (the intersection of the black and the blue

line), we have the following graph.
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From top to bottom (on the y axis) V P = V DPP (blue), V R = V CRP (black),

V CRR (red), and V C
0RP (with ε = 0.09).
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The green line intersects with the black line (V CRP ) at b = 0.73492 and intersects

with the blue line (V DPP ) at b = 0.61767.

This means that MC0RP is better than MCRP or MDPP in some range of be-

liefs. Intuitively, when a player is near indifferent between playing the standard

trigger strategy and “always D" strategy, he has incentive to pay ε to get a better

information to make a more informed choice between MCRP and MDPP .

Since d is observed with probability 1
6
by the other player even when a player

plays C or C 0, posterior beliefs never exceeds 5
6
. So Xi = [0,

5
6
] is a belief-closed set.

We show that a fixed point can be found in two steps on Xi.

In the first step of POMDP, we obtain the value function W 1 = ΓW 0 as an

upper envelope of the four linear functions:V R = V CRP , V P = V DPP , V CRR and

V C
0RP . The value function is pushed up a bit around bi = 0.625 by V

C0RP . In the

second step, W 2 = ΓW 1 is an upper envelope of all linear functions that survived

in the previous step as well as new linear functions such as V aiRM , where M means

MC0RP is played upon an observation of d. But it can be shown that every such

new linear function is dominated by one of old linear functions. This is based on

the following observations. Recall V R crosses V P at b = 0.625. First, the posterior

belief may never fall in [0.61767, 0.73492] when MCRP is played in [0.625, 5
6
] or

MDPP is played in [0, 0.625] (χCc (0.625) = 0.74405,χCd
¡
5
6

¢
= 0.41667).10 Second,

the value function in [0.61767, 0.73492]matters only when C is played for some range

of beliefs [0, 0.625], but C must be still suboptimal action for such beliefs because

the continuation value is improved only slightly. Hence the value function obtained

in the second step is the same one as the one obtained in the first step because it

is the upper envelope of the same set of linear functions. Therefore we have a fixed

point W 2 = ΓW 1 =W 1.

6.4 Example 3:

Consider a repeated prisoners’ dilemma with imperfect public monitoring. The stage

payoff is given by

C D

C 1, 1 −0.6, 1.2
D 1.2,−0.6 0, 0

.

10However, the posterior belief after Cd falls in [0.6245, 0.6371] when the prior belief is very high.

For such prior beliefs, the optimal plan is MCRM rather than MCRR. This means that the value

function is moving upward strictly for high beliefs. It is not difficult to see that we don’t find a

quick convergence in this area. However, this area is outside of the belief-closed set we focus on.

This is why we focus on the belief-closed set Xi = [0,
5
6
].

where V CRR was increasing in
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Let y be a public signal, which takes the value of either G or B. Assume that the

monitoring structure is as follows:

G B

CC 3
4

1
4

CD or DC 1
2

1
2

DD 1
4

3
4

For example, the first row means that G realizes with probability 3
4
when (C,C) is

taken.

We turn this game into a game with private monitoring by introducing private

observation noise. We assume that player i observes a private signal si ∈ {g, b}
instead of y. When both players take the same action, their signals are perfectly

correlated with y, that is, they observe the true public signal with probability 1 i.e.

Pr(si = g|y = G,CC or DD) = Pr(si = b|y = B,CC or DD) = 1 for i = 1, 2.

However, when they take different actions such as (C,D) or (D,C) , their private

signals are uncorrelated with y, and g and b are observed with equal probability

independently by each player independent of realizations of y. More precisely, the

distributions of their private signals are given by Pr(si = g|y = G,CD or DC) =

Pr(si = b|y = B,CD or DC) = 1
2
(more generally we can set this equal to 1− ε ∈£

1
2
, 1
¢
to allow imperfect correlation between y and si given (C,D) or (D,C)).

Tit-for-Tat is a partial strategy in which a player plays what he observed in

the previous period. This strategy can be represented by the following two-state

preautomaton

Θi = {R,P}
fi(R) = C, fi(P ) = D

Ti(R|R, g) = Ti(R|P, g) = Ti(P |R, b) = Ti(P |P, b) = 1.
We use POMDP to show that Tit-fot-Tat can be a finite state equilibrium.

Let V zz
0

i be player i’s discounted payoff when he is in state z and the other

player is in state z0. These values can be derived by solving the following system of

equations:

V RR = 1 + δ

∙
3

4
V RR +

1

4
V PP

¸
V RP = −0.6 + δ

∙
1

4
V RR +

1

4
V RP +

1

4
V PR +

1

4
V PP

¸
V PR = 1.2 + δ

∙
1

4
V RR +

1

4
V RP +

1

4
V PR +

1

4
V PP

¸
V PP = δ

∙
1

4
V RR +

3

4
V PP

¸
So
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V RR =
4− 3δ

2 (1− δ) (2− δ)

V RP = −0.6 + δ

µ
1

4 (1− δ)
+
1

4

2 (1− δ) (1.2− 0.6) + δ

(1− δ) (2− δ)

¶
V PR = 1.2 + δ

µ
1

4 (1− δ)
+
1

4

2 (1− δ) (1.2− 0.6) + δ

(1− δ) (2− δ)

¶
V PP =

δ

2 (1− δ) (2− δ)

Assume δ = 0.9. Then

V RR = 5.9091, V RP = 3.7364, V PR = 5.5364, V PP = 4.0909.

Let bi be player i’s belief that player j is in state R and V
Z
i (bi) = biV

ZR + (1−
bi)V

ZP . V Ri and V Pi are plotted below.
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V R (black), V P (blue).

These two lines intersect at b∗ = 0.48749. W 0 is the upper envelope of these two

functions. W 1 = ΓW 0 can be obtained by consider M. In the first step of POMDP,
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we compute V aizizi easily as before.11 They are plotted below.
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V R = V CRP (black), V P = V DRP (blue), V CRR (yellow), V CPP (red),

V DRR(green), V DPP (purple).

Since the black line and the blue line still constitute the upper envelope of

these six linear functions, we have ΓW 0 = W 0 everywhere in Θ = [0, 1] in one

step. Clearly these TFT path automata constitute a sequential equilibrium when

the initial state is given by (R,R) .

11The formulas are here for the record.

v
CRR,R

= 1+ 0.9(
3

4
V
RR

+
1

4
V
RP
) = 1 + 0.9(

3

4
5.9091 +

1

4
3.7364) = 5.8293

v
CRR,P

= −0.6 + 0.9(1
2
V
RR

+
1

2
V
RP
) = −1.2 + 0.9(1

2
5.9091 +

1

2
3.7364) = 3.1405

v
CPP,R

= 1+ 0.9(
3

4
V
PR

+
1

4
V
PP
) = 1 + 0.9(

3

4
5.5364 +

1

4
4.0909) = 5.6575

v
CPP,P

= −0.6 + 0.9(1
2
V
PR

+
1

2
V
PP
) = −1.2 + 0.9(1

2
5.5364 +

1

2
4.0909) = 3.1323

v
DRR,R

= 1.2 + 0.9(
1

2
V
RR

+
1

2
V
RP
) = 1.2 + 0.9(

1

2
5.9091 +

1

2
3.7364) = 5.5405

v
DRR,P

= 0.9(
3

4
V
RP

+
1

4
V
RR
) = 0.9(

3

4
3.7364 +

1

4
5.9091) = 3.8516

v
DPP,R

= 1.2 + 0.9(
1

2
V
PR

+
1

2
V
PP
) = 1.2 + 0.9(

1

2
5.5364 +

1

2
4.0909) = 5.5323

v
DPP,P

= 0.9(
3

4
V
PP

+
1

4
V
PR
) = 0.9(

3

4
4.0909 +

1

4
5.5364) = 4.007
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Note: What would happen with Phelan and Skrzypacz approach in

this example?

There are two approaches in Phelan and Skrzypacz (2009). The first approach is

to compute M (ω) recursively and check one shot deviation incentive constraints at

boundary points of M (ω) for each state ω. The second approach is to find MI (ω)

for each state ω and apply T I to M I repeatedly until (hopefully) it converges to

some nonempty set. It turns out that both approaches fail in this example because

the extended automaton version of TFT cannot be an equilibrium for any initial

joint distribution.

• 1st approach:
M (R) = [1

2
, 1], M (P ) =

£
0, 1
2

¤
are obtained by one iteration (to be precise,

it is confirmed to be a fixed point in the second iteration). Remember that

b∗ = 0.48749, hence MDRP is not optimal at b = 1
2
. Thus one-shot deviation

constraint is clearly violated for M (P ) at μ = 1
2
.

• 2nd approach:
MI (ω) is the set of beliefs where one-shot deviation constraint at state ω is

satisfied. With the full TFT, one-shot deviation from starting at R or P

is the same as starting at P or R respectively. Hence M I (R) = [b∗, 1] and
MI (P ) = [0, b∗] by definition of b∗. Next the operator T I is applied to M I .

Basically we eliminate any belief if it leads to inconsistent belief after some

combination of action and signal in the next period. More specifically, we

eliminate μ if either χ[a, g,μ] /∈ MI (R) for any a or χ [a, b,μ] /∈ M I (P ) for

any a. Note that, for μ close to 1, χ[D, b,μ] is close to 1
2
, hence above b∗ and

not inMI (P ) . So such belief is eliminated. Let μ be the infimum of such belief

i.e. χ[D, b,μ] = μ∗. Then (μ, 1] is eliminated. A similar problem arises when

μ is close to 0. Let μ be the belief such that χ[C, b,μ] = b∗ (so χ[C, b,μ] > b∗

when μ ∈ £0,μ¤). Then £0,μ¢ is eliminated. It is straightforward to show
that all other beliefs are kept in the first iteration. Hence T I

¡
MI

¢
(R) =

[μ∗,μ] and T I
¡
M I

¢
(P ) =

£
μ,μ∗

¤
. Observe that unraveling occurs from the

second iteration on (note that χ[C, g,μ] is increasing in μ, χ[C, g, 1] = 1 and

χ[C, g,μ] > μ for all μ). In fact, it is easy to see that limn→∞
¡
T I
¢n
(MI) is

an empty set (φ,φ) .
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6.5 Example 4

Modify Example 2 as follows. The stage payoff functions remain the same:

C C 0 D

C 1, 1 1, 1− ε −l, 1 + g
C 0 1− ε, 1 1− ε, 1− ε −l − ε, 1 + g

D 1 + g,−l −1 + g, l − ε 0, 0

You can interpret C 0 as C plus some type of monitoring activity that costs ε > 0. If
a player chooses C 0, then he can (1) observe the other player’s action perfectly and
(2) make sure that the other player observes c with probability 1. (This violates our

full support assumption, but all of our theoretical results above are valid, if the full

support assumption holds for the action profiles that are played on the equilibrium

path. In Example 4, C 0 is not played on the equilibrium path.) Our goal is to show
that the grim trigger strategy still constitutes a correlated sequential equilibrium

for some initial distribution.

We use the same parameter values for g, l, r and δ as before and set ε = 0.685.

Let vzz
0
be a player’s discounted payoff when his state is z and his opponent’s state

is z0. Since C 0 is never played by the grim trigger strategy (m,R) and the perpetual

defection (m,P ) , the following values are unchanged:

vRR = 3.0588, vRP = −1.1765, vPR = 2.3529, vPP = 0.

Let’s apply POMDP.

1st step

In the first step, we compute the upper envelope of nine linear functions V CRR,

V CRP , V CPP , V DRR, V DRP , V DPP , V C
0RR, V C

0RP , and V C
0PP (again we don’t

have to consider the cases with (z, z0) = (P,R)). The last three linear functions are
new as C 0 is played in the first period. We already know that V CPP , V DRR, V DRP

are dominated. Note that a player can infer the opponent’s state perfectly when

playing C 0 : the opponent’s state is P if d is observed (by perfect monitoring) and the
opponent’s state is R if c is observed (by perfect monitoring & forcing the opponent

to observe c). Hence the optimal continuation on-path automaton is (m,R) if c is

observed and (m,P ) if d is observed. So we only need to consider V C
0RP among

three new functions. The discounted value V C
0RP associated with MC0RP is given

by V C
0RP (b) = b

¡
1− 0.685 + 0.9vCRP,R¢+ (1− b) (−1− 0.685) , which is given by

the green line below
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where V CRR is the red line, V CRP is the black line, and V CPP is the black line

as before.

It is not clear from the above graph, but the green line is not a part of the upper

envelope. If we magnify the range around 0.9, we find the following picture.
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Hence we obtain exactly the same value function W 1 as in Example 1 in the first

step of POMDP.We also have the sameM1 = {MCRP (= (m,R)) ,MDPP (= (m,P )) ,MCRR}
in the end of this step.

2nd step

Since W 1 is the same, the upper envelope we would obtain in the second step

without C 0 is exactly the same as before: W 1 itself (remember that W 1 is the fixed

point in Example 1 in the 2nd step). So the question is whether C 0 can affect this
upper envelope. This time we have three on-path automatons to choose from for the

continuation play: MCRP (= (m,R)) , MDPP (= (m,P )) and MCRR. Let’s denote

this last automaton by M1. Since M1 is optimal among these three automatons

given b = 1, we only need to consider M2 =M
C0M1P , which is a one-step extension

that starts with playing C 0 and moves to M1 given c and P given d. The discounted

value VM1 associated with M2 is given by V
M2 (b) = b

¡
1− 0.685 + 0.9vCRR,R¢ +

(1− b) (−1− 0.685) . Note that a player’s continuation value after (C 0, c) is vCRR,R,
which is larger than vCRP,R in the first step. So the value of M2 generates a larger

payoff than MC0RP . In fact, VM2 (green line) dominates V CRR as the following

picture shows.
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The green line intersects with the black line at b = 0.87742. Therefore W 2

is the upper envelope of V CRP (black), V DPP (blue) and VM2(green) and M2 =

{MCRP ,MDPP ,M2} in this step. We don’t get a convergence in the 2nd step yet.

3rd step
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In the third step, the black line and the blue line do not change. This is because

the posterior belief never falls in the area where the green line is a part of the upper

envelope (the posterior belief is very low given D, and the posterior belief given C

converges to the fixed point of χCc, which is
14
29
(≈ 0.79167)). However, the green

line moves up slightly becauseW 2 (b) > W 1 (b) at b = 1. The automaton generating

this new green line is M3 =M
C0M2P , which is one-step extension that plays C 0 and

moves to M2 given c and P given d. Now the green line intersects with the black

line at b = 0.87743. Other than that, we have exactly the same picture.

0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00
2.0

2.2

2.4

2.6

2.8

3.0

3.2

x

y

W 3 is the upper envelope of the same black and blue line, and a slightly higher

green line. We haveM3 = {MCRP ,MDPP ,M3}

...30th step

After the third step, the relative locations of the linear functions remain the

same: only the green line moves up slightly in each step, whereas the black line and

the blue line stays the same. For example, we have the following picture in the 30th

step.
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Now the green line intersects with the black line at b = 0.84933. The automaton

generating the green line is M30 that plays C
0 29 times before moving to MCRR as

long as d is not observed. The upper envelope W 30 still consists of the black, blue

and the green line andM30 = {MCRP ,MDPP ,M30}.We don’t obtain a convergence
yet and clearly this process still continues (in fact convergence is never obtained in

a finite number of steps.)

So what should we do?

We apply our Proposition 4 here. Let b∗ = 0.625 be the belief where V P and

V R crosses and b = 14
29
= 0.79167 be the fixed point of χCc. It is easy to verify that

the following collection of belief sets constitute an on-path belief closed set.

Xi(P ) = [0, b
∗], Xi(R) = [b∗, 0.79167].

We show that (4) is satisfied for any belief on this on-path closed set given

M30 and W 30 we obtained in the 30th step. . Deviating to D given bi ∈ Xi(R) or
deviating to C given bi ∈ Xi(P ) does not move the posterior belief outside of the on-
path belief closed set. The fact that these deviations do not improve the payoff was

already verified many times using the value functionW0 =W1 =, ...,=W29

¡
=W 30

¢
on this on-path belief closed set. So we can focus on a deviation to C 0, which moves
the posterior belief outside of the on-path belief closed set (to b = 1) when c is

observed.

The only relevant one-shot extension ofM30 = {MCRP ,MDPP ,M30} that start
with C 0 is M31, which plays C

0 today followed by M30. We know that the W
30 (1)
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was obtained in the 30th step, which is 3.1489.12 The value of path automaton

M31 ∈ fM30is given by

VM31 = b(1− 0.685 + 0.9W 30(1)) + (1− b)(−1− 0.685).

The value adjusting component in Proposition 4 (4) is p(M31,Xi, b)
δ31

1−δ |W1 −W0| =
b×δ× δ30

1−δ |W1 −W0|= b×0.9× 0.930

1−0.90.06 = b×0.9×0.025435, because p(M31,Xi, b) =

b. Recall that, when C 0 is chosen (by M31) and the opponent is in state R (which

happens with probability b), the opponent remains in R with probability one (hence

the posterior belief b0 = 1 is outside of the on-path belief-closed set Xi). Therefore,

VM31 + p(M31,Xi, b)
δ31

1− δ
|W1 −W0|

= b
¡
1− 0.685 + 0.9 ¡W 30(1) + 0.025435

¢¢
+ (1− b) (−1− 0.685) ,

= b (1− 0.685 + 0.9 (3.1743)) + (1− b) (−1− 0.685) .

This adjusted value function is depicted by the light green line in the following

figure.
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12The general formula is

W
n
(1) =

1− δn−1

1− δ
(1− 0.685) + δ

n−1
W

1
(1)

=
1− 0.9n−1

0.1
(1− 0.685) + 0.9n−1vCRR,R.
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Observe that the green line does not constitute a part of the upper envelope

on [0, 0.79167]. Hence (4) is satisfied at every belief on this on-path belief-closed

set. Therefore (m,R) is the optimal strategy for any bi ∈ Xi (R) and (m,P ) is the
optimal strategy for any bi ∈ Xi (P ) by Proposition 4.

7 Discussion and Comparison to Phelan and Skrzypacz

(2009)

Let Mi be the set of all path automata for player i, and define a belief-based

continuation path βi : ∆(Θ−i) →Mi. This specifies the intended path of play

for each initial belief (but it does not specify what to do after deviating from the

intended path in the future). At first glance, this may not seem to be a natural or

useful object, compared to a repeated game strategy si : Hi → Ai or a belief-based

optimal policy (action) function γi : ∆(Θ−i)→ Ai. A message of the present paper,

however, is that a belief-based continuation path βi is the right concept to focus on

in the belief-based analysis, and our method verifies the optimality of βi as follows.

Let fMi(βi) be the set of one-shot extensions of the path automata specified by βi
(i.e., βi(∆(Θ−i))). Our method presented in Section 5.1 may be rephrased as:

Belief-Based One-Shot Deviation Principle: A belief based continuation path

βi : ∆(Θ−i)→Mi is optimal if it cannot be improved upon by one-shot extensions

of βi(∆(Θ−i)). That is, there is no Mi ∈ fMi(βi) and bi such that V
Mi

i (bi) >

V
βi(bi)
i (bi).

13

A remark is in order about the dynamics of beliefs. In general, a belief-based

continuation path βi may not be dynamically coherent. In other words, βi
specifies the mapping from initial belief (at t = 0) to intended path of play, and

the relationship between the posterior belief in peirod t > 0 and the continuation

path may be different form βi. Suppose we start with initial belief bi and an

automaton βi(bi), and suppose that the continuation path automaton at time t

(specified by bi(t)) is Mi and the posterior belief is bi(t). In general, there is no

guarantee that Mi = βi(bi(t)) (if this is always true, we say that βi is dynamically

coherent). In other words, when the relationship between belief and continuation

path at t = 0 is given by βi, the relationship at time t > 0 may be different

from βi. Checking dynamic coherence is a demanding task. One advantage of our

approach above is that the optimal belief-based continuation path βi, identified by

13Recall that V
Mi
i (bi) is the expected payoff to player i under belief bi, when player i employs

on-path automaton Mi.
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the simple procedure given above, automatically satisfies dynamic coherence. To

state this claim formally, we need to extend our definition of belief-based optimal

continuation path, because for some beliefs there could be multiple best continuation

paths. So let βi : ∆(Θ−i) ⇒ Mi be the correspondence to represent the best

continuation paths. The dynamic coherence of correspondence βi is defined in an

obvious way (see the proof of the following lemma). Then we have the following.

Lemma 2 The optimal belief-based continuation path correspondence βi is dynam-

ically coherent.

Proof. Suppose we start with initial belief bi and an automaton Mi ∈ βi(bi),

and suppose that, after some on-path history hti the continuation path automaton

is M 0
i and the posterior belief is bi(t). Now suppose βi is not dynamically coherent

and M 0
i /∈ βi(bi(t)). This means that Mi specifies a suboptimal actions after h

t
i,

which happens with a positive probability. This contradicts the optimality of Mi.

Now we compare our approach with the method proposed by Phelan and Skrzy-

pacz (2009). Rather than focusing on path automata, they consider extended au-

tomata (which specify actions on and off the equilibrium path). They start with

candidate extended preautomaton (= extended automaton without an initial state)

mi, with state space Θi. They check the optimality of mi by the following iterative

procedure, which closely examine the dynamics of beliefs.

Phelan-Skrzypacz Procedure14:

1. (Step 0): Determine the set of beliefs at which one-shot deviations from

extended automaton (mi, θi) are not profitable, and denote it by Q
0
i (θi).

(Remark: This does not guarantee that (mi, θi) is optimal at belief bi ∈
Q0i (θi), because it only guarantees that player i has no incentive to deviate

today. It maybe the case that player i can be better off by deviating form

(mi, θi) tomorrow. To cope with this problem, Phelan and Skrzypacz examine

the dynamics of beliefs and move on to the next step.)

2. Step k ≥ 1: Eliminate from Qk−1i (θi) the following beliefs bi: there is a current

action-signal pair (ai,ωi) for which (i) the next state is θ
0
i (ii) the posterior

belief is b0i and (iii) b
0
i /∈Qk−1i (θ0i). Denote the resulting set byQki (θi) (Remark:

Qki (θi) is the set of beliefs where deviating from extended automaton (mi, θi)

at t = 0, 2, ..., k is not profitable. )

3. Compute the limit Q∞i (θi). If it is non-empty, then (mi, θi) is optimal for

belief bi ∈ Q∞i (θi).
14 In their notation, Q0i (θi) =M

I
i (ωi) and Q

k
i (θi) = (T

I)k(MI
i )(ωi).
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In short, Phelan-Skrzypacz method recursively computes, for each step k, the set

of beliefs where deviating from extended automaton (mi, θi) at t = 0, 2, ..., k is not

profitable. Our method based on the Belief-Based One-Shot Deviation Principle,

derived from the theory of POMDP, is much simpler.

Another difference between our approach and theirs is the following. Phe-

lan and Skrzypacz start with candidate strategies (extended preautomata), which

specify behavior on and off the equilibrium path. In contrast, we start with candi-

date on-path behavior and use POMDP to find optimal off-path behavior. Hence

their method requires an educated guess about optimal off-path behavior, while our

method resorts to POMDP to find it out. Also their method describes optimal

off-path behavior in terms of strategy (extended automaton), but our method de-

scribes optimal off-path behavior in terms of belief-based continuation path βi. As

Bhaskar-Obara example (2002) shows, the latter is often much simpler than the for-

mer. (The optimal belief-based continuation path in this example is simply given

by a two-state path preautomata, while describing it by extended automata requires

infinitely many states.)
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