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Abstract
The paper studies 2 � 2 games when both players use a speci�c re-

inforcement learning rule applied to mixed strategies. According to this
rule, a player keeps on incrementing the probability of a pure strategy if
and only if her utility increases. We study the possible trajectories of such
a system and the asymptotic states for symmetric, zero-sum, and twin
games.

1 Introduction

The paper examines a speci�c learning rule in the class of reinforcement models
(Sutton and Barto 1998) . In reinforcement models, at each point in time,
the decision-maker observes only her past utility and chooses which action to
play according to her past performances. The model we study, we call stubborn
learning, is based on the following principles:
-at each period, the decision maker is able to shift his action of an incremental

quantity, in one direction or the other,
-he observes the utility obtained in the two past moves
-if the preceding shift induced an increase (decrease) in utility, he keeps on

going in the same direction (he reverses direction).
These principles can only be applied in situations where the agent�s strategy

space is one-dimensional. It was already applied to the Cournot duopoly by
Huck, Norman and Oechssler (2004) and independently by Tregouet (2004). It
was applied to a continuous version of the Prisoner�s Dilemma by Huck, Norman
and Oechssler (2005).
A natural application is the case when the action space is the interval [0; 1],

interpreted as the probability of chosing one of two possible actions. In the
present paper we consider 2 � 2 games (two players, two actions per player)
in mixed strategies. Note already that the above principles need then to be
completed in order to de�ne the behavior at the boundary of the strategy space;
this will be done in section 2.
The rule has two notable features, which derive directly from the stated

principles. First, the rule calls for weak cognitive capacities of the player, for
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computing as well as for memorizing. Second, in a one-player settings, the rule
induces the player to follow the familiar gradient-descent method. In a game
setting the rule describes the behavior of an adaptive agent which acts as if she
was alone.
In the interior of the strategy space, the system is essentially driven by col-

lective optimality considerations. When both players see they utilities increase,
they both continue, hence they generate locally a welfare-increasing path. On
the border of the strategy space, two logics interfer: the optimality logic and
the equilibrium logic. The precise resultant e¤ect depends on the details of the
game.
The rule is applied in this paper to three classes of generic 2 � 2 games,

namely. symmetric, zero-sum and twin games. In each of these classes, we
describe all the possible trajectories and their asymptotic behaviors.
Two examples of the obtained results are the following.
In the Prisoner�s Dilemma, the system �rst move in the direction of the

Pareto optimum. When it reaches a border of the action space, it is stuck. The
system thus escapes the curse of sub-optimal Nash equilibrium.
In Matching Pennies, the system circles around the mixed Nash equilibrium

following a slowly expanding square. When it reaches a border of the action
space, it cycles around the action space. The system thus tends to avoid the
mixed Nash equilibrium.
Our study provides all elements which can be re-used for stuying other classes

of 2� 2 games. Extension to more than two players, keeping only two strategies
per player, is also straightforward. But the extension to the case of more than
two possible pure strategies raises di¤erent problems since the strategy space of
the player is no longer one-dimensional. The rule should thus be generalized in
its de�nition and this is out of the scope of the present paper.
The next section provides the precise de�nition of the Stubborn learning

rule. Section 3 studies the behavior of the system at interior points, on the
borders and at the corners of the strategy space, according to the parameters of
the 2�2 game. Section 4 is devoted to symmetric games, Section 5 to zero-sum
games and Section 6 to twin games.

2 The learning rule

2.1 Framework: 2x2 games

In the general 2x2 game played by players 1 and 2;the payo¤s are described in
the following matrix:

1 n 2 A2 B2
A1 (a1; a2) (b1; b2)
B1 (c1; c2) (d1; d2)

Player i plays action Ai with probability �i. The strategy space is thus the
square [0; 1]� [0; 1]. The expected utility of player i is:
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ui(�1; �2) = ai�1�2 + bi�1(1� �2) + ci(1� �1)�2 + di(1� �1)(1� �2):

For each period t, denote by �1(t) and �2(t) the current strategies and byeui(t) = ui(�1(t); �2(t))
the average utility of player i. In this paper, we assume that each player is able
to observe the expected utility at each period. A more realistic variant would
assume that the player only observes the actual utility at each period.

2.2 Informal de�nition

We will now describe the learning rule followed by each player i at each period
t. At period t, the player holds in his memory the levels of utility he got and
the strategies he chose in the last two periods. From one period to the next,
the player increments his strategy by a small amount �".
The basic principle states that the agent keeps on changing his strategy in

the same direction as long as his utility is increasing, but changes in the reversed
direction if his utility is decreasing. Such a principle can be applied as long as he
is strictly inside the strategy space. The principle fails and must be completed
in two cases.
First if the agent is at a border of the strategy space and the previous prin-

ciple recommends that he goes outside, the agent cannot do it. In such a case,
we stipulate that when a player wants to chose, as his strategy, a probability
smaller than 0, he chooses the probability 0 (and likewise for 1).Hence when the
player wishes to, but cannot, cross the border, he stays on it (and he keeps in
his memory the fact that he wanted to cross the border).
Second, if the agent�s utility does not change, the previous principle is mute.

Such a case generically does not happen at interior points, but it cannot be
neglected for border points (in fact this generically can happen only at corner
points). In such a case, we stipulate that the player explores in the sense that he
chooses at random to increase or decrease his strategy. Hence the player cannot
be stuck forever at the same place.
Note that this rule is purely individual and can be used by the decision-

maker without knowledge of his natural or strategic environment. Moreover,
the rule is deterministic except in the last case.

2.3 Formal de�nition

The rule is de�ned recursively for player i at period t. The state variables are
the strategy �i(t) and the observed utility level eui(t). We introduce an auxil-
iary variable vi(t), which takes value +1 and �1 and which indicates in which
direction the player intends to increment his strategy; vi(t) = +1 (resp. �1)
means that the player wants to increase (resp. decrease) the probability �i(t).

� The player has in his memory four numbers:
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- eui(t� 2) is the level of utility he obtained at the penultimate period
- eui(t� 1) is the level of utility he obtained at the last period
- �i(t� 1) is the strategy he played at the last period
- vi(t� 1) is direction he was intending to go in the last period.

� The player computes his intended direction by:

vi(t) = S[eui(t� 1)� eui(t� 2)] � vi(t� 1)
where

S[�] =

8<: +1 if � > 0
�1 if � < 0

�1 at random if � = 0

(�at random� here means with equiprobability.) This means that the
player keeps his direction unchanged when his utility has increased and re-
verse direction when his utility has decreased. In the case when his utility
has not changed, the new intended direction is chosen at random.

� The player computes his strategy

�i(t) = H[�i(t� 1) + " � vi(t)]

where

H[x] =

8<: 0 if x < 0
x if 0 � x � 1
1 if x > 1

This computation simply states that the player implements his intended
strategy �i(t�1)+"�vi(t) whenever that is physically possible (probability
is between 0 and 1), and sticks to the border if not.

The initial conditions to be speci�ed are eui(0); eui(1); �i(1), and vi(1).
For convenience, we make the technical assumption that " = 1=N for some

integer N and that N�i(0) is an integer.It follows that N�i(t) is an integer for
all t. Consequently�, when a player reaches a border of the strategy space, he
reaches it exactly.

2.4 Payo¤ variations

In this section, we study the instantaneous di¤erential variations of the payo¤s.
The derivatives of the utility function for player i are the following:

@ui=@�1 = bi � di + Ei�2
@ui=@�2 = ci � di + Ei�1

with
Ei = ai � bi � ci + di:
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The expression of the payo¤variation depends on the current state being interior
or on the border of the strategy space.

Payo¤ variation at interior points. Denote by k(t) the indicator of co-
variant (k(t) = +1) or contravariant (k(t) = �1) evolution of the players�
strategies de�ned by.

k(t) = v1(t)v2(t):

The �rst order approximation for the utility di¤erence (omitting the period
index t) of player 1 can be written in the following way since d�2 = kd�1:

du1 =
@u1
@�1

d�1 +
@u1
@�2

d�2 = U1d�1:

Then the intended strategy variation can be expressed in a compact way:

v1(t) = v1(t� 1) � signU1(t� 1) � v1(t� 1) = signU1(t� 1):

Here, we denote:

U1 =

�
U+1 if k = +1
U�1 if k = �1

hence

U+1 =
@u1
@�1

+
@u1
@�2

= b1 + c1 � 2d1 + E1(�1 + �2)

U�1 =
@u1
@�1

� @u1
@�2

= b1 � c1 + E1(��1 + �2):

These numbers are interpreted as follow: U+1 characterizes the utility variation
of player 1 when the system moves parallel to the �rst diagonal (d�2 = d�1)
while U�1 characterizes the utility variation of player 1 when the system moves
parallel to the second diagonal (d�2 = �d�1)
The same can be computed for the second player:

du2 =
@u2
@�1

d�1 +
@u2
@�2

d�2 = U2d�2 =

�
U+2 d�2 if k = +1
U�2 d�2 if k = �1

;

where

U+2 =
@u2
@�1

+
@u2
@�2

= b2 + c2 � 2d2 + E2(�1 + �2)

U�2 = �@u2
@�1

+
@u2
@�2

= �b2 + c2 + E2(�1 � �2):

Payo¤ variation on the border of the strategy space. On the border
�1 = 0, when the �rst player does not move, the �rst order approximation for
the utility di¤erence is :

du1 =
@u1
@�2

d�2 =
�
U+1 � U�1

�
d�2; (1)

du2 =
@u2
@�2

d�2 =
�
U+2 + U

�
2

�
d�2:
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Similar expressions hold for �1 = 1 and �2 = 0 or 1.
Synthesis. Notice that, from an interior point, the system can move in the

four directions parallel to the two diagonals. From a point on a border, the
system can also move in four directions, either horizontally or vertically. The
possible utility variations can therefore be depicted with a rosace. In each of
the eight possible directions, the rosace indicates the sign of the players�payo¤
variations. For example: 266664

+� +� �+
- " %

+�  ! �+
. # &

+� �+ �+

377775
reads as follows: The upper left corner corresponds to a North-West direction.
The utility variations are positive for player 1 and negative for player 2.
Notice that the rosace is constrained by the following rule: for any player, by

cycling around the table the signs must be in turn four times positive and four
times negative (this leaves 64 possible schemes). In particular, signs in opposite
directions are opposite, hence it is su¢ cient to know the signs in four successive
directions. For the sake of simplicity the above scheme will be depicted as:24+� +� �+

+� �+
+� �+ �+

35
A game is covariant (resp. contravariant) in some direction at a given point if
the signs in the rosace are the same (resp. opposite). By convention, an asterix
� instead of a sign will mean that the sign can be + or �.

Remark 1 This learning rule di¤ers profoundly from the �gradient learning
rule�which is sometimes considered (Sutton and Barto 1998). In the gradient
case, the increment of the probability of a player only depends on the impact of
this player�s move, the other player�s move being implicitely �xed. The utility
variation for the players are then:

du1 =
@u1
@�1

d�1;

du2 =
@u2
@�2

d�2:

For instance, in an all-or-nothing version, where each player has a constant
increment, this increment is such that: �i(t) = sign Ûi(t� 1) where Ûi = U+i +
U�i . A stubborn learner follows this gradient rule only when the other agent
stays on a border. The rule di¤ers at interior points.
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3 System evolution

3.1 Partition of the strategy space

We now study the trajectories of the system which result from the two players
applying the previous rule. From the above analysis, the individual behavior
may change qualitatively when the system reaches two types of lines: the borders
of the strategy space and the �separating lines" U+1 = 0, U�1 = 0, U+2 = 0,
U�2 = 0 . Note that separating lines are parallel to the �rst or second diagonal.
When �1 and �2 are not constrained, the four separating lines de�ne at

most 9 areas in the plane (�1; �2). In some special classes of games, the number
of areas is reduced since some separting lines may coincide (in that case we
call them double separating lines). The strategy space is a square in the plane
(�1; �2), which may intersect one or several of these areas.
In the sequel, we will describe the evolution of the system at interior points

and on separating lines, borders and corners.

3.2 Evolution at an interior point

Proposition 1. At interior points, after the �rst move, only two types of tra-
jectories are possible
(i) trajectories going in concert (each player is moving in a �xed direction)

South-West, South-East, North-West or North East.
(ii) trajectories going crabwise (one player is moving in a �xed direction and

the other player alternates) North, East, South or West.
The last case happens i¤ U�1 U

�
2 � 0 and U+1 U+2 � 0:

Proof:
According to the expression of sign vi(t) given by Equation 2.4, the �rst

player moves in some direction independently of the preceding increment vi(t�
1), but according to k(t�1). Since both players act in the same way, the following
Table gives, for each value of k(t � 1), the direction of evolution of the system
in each region of constant signs for U1(t) and U2(t) (Table 2.) In this Table,
the arrows depict in the usual way the direction of evolution, for instance the
South-East arrow & means that v1(t) = +1 and v2(t) = �1.

k = +1 U+2 � 0 U+2 � 0
U+1 � 0 . -
U+1 � 0 & %

k = �1 U�2 � 0 U�2 � 0
U�1 � 0 . -
U�1 � 0 & %

(2)

Consider an initial value for k. The sign of k indicates whether U+i or U
�
i is the

relevant expression for Ui. Then Table 2 provides the direction of evolution of
(�1; �2). This leads to a new value of k. If this new value is the same as the
preceding one, the system keeps the same direction. If the sign of k has changed,
then the relevant expression for Ui changes and the Table precisely records these
changes. Except for the initial period, the system evolution can be described
qualitatively as long as the system stays inside an area of the strategy space
where U1 and U2 have constant signs. In most cases, the direction of evolution is

7



well de�ned independently of the initial value k(0). In some cases, two directions
are possible according to this initial value. The general Table 3 de�nes the one
or two possible regimes for each con�guration of parameters.

U�1 � 0
U�2 � 0

U�1 � 0
U�2 � 0

U�1 � 0
U�2 � 0

U�1 � 0
U�2 � 0

U+1 � 0
U+2 � 0

. . . if k(0) > 0
- if k(0) < 0

. if k(0) > 0
& if k(0) < 0

U+1 � 0
U+2 � 0

% % % if k(0) > 0
- if k(0) < 0

% if k(0) > 0
& if k(0) < 0

U+1 � 0
U+2 � 0

 � " - &

U+1 � 0
U+2 � 0

# �! - &

(3)
This Table has to be read as follows:
- in the four North-West regions and in the four South-East regions, the

unique arrow indicates the direction in which the system steadily evolves. For
instance the arrow . indicates that �1 and �2 are both decreasing.
-in the four North-East regions, the movement is always in the same direc-

tion, but this direction depends on the initial value of k:
-in the four South-West regions, the unique arrow depicts the average evo-

lution, since the system evolves in fact crabwise along a trend. For instance,
the North arrow " means that one move out of two goes North-East while every
other move goes North-West. QED
From this proposition follow two restrictions about the possible evolutions.

Firstly, the direction (v1; v2) is either constant or cyclic of order two. The reason
is that the direction is completely determined by the sign of k which can only
be constant ot alternate. Secondly, a cycle cannot be made of two opposite
directions (going back and forth from one state to another). The reason is that
the utility increment would change sign at each move but it only changes when
it is negative.
To summarize, only two types of trajectories are possible as long as they

do not reach a border. Either both directions are constant, hence the two
utilities increase. We will then say that the players are moving in concert. Or
one direction is constant and the other alternates, hence one player sees her
utility increase and the other player sees her utility decrease. We then say that
the players are moving crabwise. This is typically the case if the �rst player�s
strategy has a strong negative impact on the second player�s payo¤ while the
the second player�s strategy has little e¤ect on both players�payo¤s.

3.3 Evolution on a separating line

Proposition 2. When crossing a separating line (simple or double) between
two areas, only three kinds of trajectories are possible, depending on the relevant
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regimes on both sides of the line:
(i) The system continues in the interior of the new area. This happens in

all cases where the regime in the reached area drives the system away from the
separating line.
(ii) The system is scotched in the "-neighborhood of its impact point. This

happens only when the directions on both sides are strictly opposed.
(iii) The system slides along the separating line, in the "-neighborhood of

the line. This happens in the remaining cases.
Proof. Without restriction we consider a separating U�i = 0. This line is

parallel to the main diagonal. It may be the line corresponding to one player
only, U�1 = 0 or U

�
2 = 0, however for some classes of games these two lines may

be identical and we shall refer to the case U�1 = U
�
2 = 0.

Without restriction, we consider the case where the system was previously at
the North-West of the separating line. Then, the separating line can be reached
by three types of trajectories, namely&, �! and #. There is no prior restriction
on the possible types of trajectories in the area South-East of the separating
line.
Reading the Table 3, crossing the separating line U�i = 0 means shifting

from one cell to another in the same line. Each one of the three other cells can
be reached, changing the sign of U�1 only (label 1) of U�2 only (label 2), or of
both (label 3):
The following Table records the possible shifts between types of trajectories.

The numbers in the cells of this table indicates the player(s) involved in the
shift.

after
& �! % " -  � . #

# 1A 3C 1F
before & 2B 123E 2D 3G 1D 123E 1B

�! 2A 2F 3C

This Table indicates that some shifts are impossible (blank cells). Moreover
some can be considered as similar for symmetry reasons. Seven di¤erent cases
remain, denoted A to G. For convenience, we assume that at time t the system
is exactly on the separating line. Let (�1(t); �2(t)) be the point where the
trajectory �rst reaches the line U�1 = 0 and/or U�2 = 0. The preceding point,
at t� 1, thus was (�1(t)� "; �2(t) + ") The next point is denoted:

(�1(t+ 1); �2(t+ 1)) = (�1(t) + "�1(t+ 1); �2(t) + "�2(t+ 1)) :

case A . Transition from # to & . (thus through U�1 = 0) .Coming from a #
move and reaching the line, the next point, at t+1, is obtained for �1(t+1) = �1,
and �2(t + 1) = �1. Note that the point at t + 1 is still on the line U�1 = 0.
For player 2, the utility variation is positive like before. For player 1, the utility
variation is still negative, given by U+1 . Hence the next move is: �1(t+2) = +1,
and �2(t + 2) = �1. After that the system continues in the same direction. To
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sum up, the system crosses the separating line and keeps on going in concert
South East.
case B. Transition from & to # (thus through U�1 = 0) Coming from

a & move, the system crosses the border and stays in the same direction:
�1(t+1) = +1 and �2(t+1) = �1. Since it is now completely on the other side
of the line, it continues in the new direction # :
case C. Transition from �! to # (thus through U�1 = U�2 = 0). Coming

from a �! move, and reaching the line, the next point is given by �1(t+1) = +1
and �2(t + 1) = +1;which is still on the line. The utility variations (given by
U+1 and U+2 ) are still positive for player 1 and negative for player 2. Hence the
next move is: �1(t+2) = +1, and �2(t+2) = �1: Ths system is now completely
on the other side of the line and continues in the new direction#.
case D. Transition from & to  � (thus through U�1 = 0) In that case, the

system goes globally South-West, staying "-close to the separating line. The
precise path is the repetition of a pattern of six consecutive moves, starting
from the separating line:
�1(t+ 1) = +1 and �2(t+ 1) = �1,
�1(t+ 2) = �1 and �2(t+ 1) = �1,
�1(t+ 3) = �1 and �2(t+ 3) = +1,
�1(t+ 4) = �1 and �2(t+ 4) = �1,
�1(t+ 5) = �1 and �2(t+ 5) = +1,
�1(t+ 6) = +1 and �2(t+ 6) = �1.
case E Transition from & to % (thus through U�1 = 0, with or without

U�2 = 0). In that case, the system crosses the separating line, turns left and
keeps on going North-East, "-close to the separating line (on the same side of
the line).
case F Transition from �! to - (thus through U�1 = 0). In that case,

the system goes globally North-East, staying "-close to the separating line. The
precise path is the repetition of a pattern of six consecutive moves, starting from
the separating line:
�1(t+ 1) = +1 and �2(t+ 1) = +1,
�1(t+ 2) = +1 and �2(t+ 1) = �1,
�1(t+ 3) = �1 and �2(t+ 3) = +1,
�1(t+ 4) = �1 and �2(t+ 4) = +1,
�1(t+ 5) = +1 and �2(t+ 5) = +1,
�1(t+ 6) = +1 and �2(t+ 6) = �1.
case G. Transition from& to- (thus through U�1 = U

�
2 = 0). In that case,

the system is locked around the point where it crosses the line The precise cycle
is made of four consecutive moves:
�1(t+ 1) = +1 , �2(t+ 1) = �1
�1(t+ 2) = �1 , �2(t+ 1) = +1
�1(t+ 3) = �1 , �2(t+ 3) = +1
�1(t+ 4) = +1 , �2(t+ 4) = �1:
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3.4 Evolution on a border line

Proposition 3. When reaching a border form the interior of the state space,
(i) If the system was moving in concert, the trajectory is of one of two kinds

(depending on the payo¤s):
i-a). The system is stuck in an 2"-neighborhood of its impact point. This

happens when the game is contravariant on the border and the relevant player
(player 2 on a vertical border) is attracted by the border (this payer�s utility
increases in the three directions pointing to the border).
i-b) The systems slides in an "-neighborhood of the border, with an angle of

�=4 with respect to its inital direction. This happens in all other cases
(ii) If the system was moving crabwise, the system slides in an "-neighborhood

of the border in the direction corresponding to the best response of the relevant
player on this border.
Proof. Note that the trajectory on the border only depends on the signs

of payo¤ variations in three directions, because the direction orthogonal to the
border does not matter. Without loss of generality we study the vertical East
border �1 = 0. Without loss of generality we suppose that the trajectory �rst
meets the border going South-West, at t.
Case A: The system was moving in concert before reaching the border. In

that case the sign of the payo¤ variation in the South-West direction is ++.
Five subcases are possible depending on the signs of the payo¤ variations.
Case A1. 24 �� �� ��

�� ��
++ ++ ��

35
The successives moves are:

�1(t+ 1) = 0 , �2(t+ 1) = �1

which means that the system slides downward on the border.
Case A2. 24+� +� ��

�� ��
++ �+ �+

35
The successives moves are:

�1(t+ 1) = 0 , �2(t+ 1) = �1
�1(t+ 2) = +1 , �2(t+ 2) = �1
�1(t+ 3) = �1 , �2(t+ 3) = �1

which means that the system slides downward in an "-neighborhood of the
border.
Case A3 24++ ++ ��

�� ��
++ �� ��

35
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The successives moves are:

�1(t+ 1) = 0 , �2(t+ 1) = �1
�1(t+ 2) = +1 , �2(t+ 2) = +1
�1(t+ 3) = �1 , �2(t+ 3) = �1

which means that the system slides downward in an "-neighborhood of the
border. (Note that the pattern is di¤erent from the one in case A2. Here the
"speed" downward is 1/3.)
Case A4. 24�+ �+ ��

�� ��
++ +� ��

35
The successives moves are:

�1(t+ 1) = 0 , �2(t+ 1) = �1
�1(t+ 2) = 0 , �2(t+ 2) = +1
�1(t+ 3) = +1 , �2(t+ 3) = +1
�1(t+ 4) = �1 , �2(t+ 4) = �1

which means that the system is stuck in an "-neighborhood of the impact point
on the border in a 4-cycle.
Case A5 24++ +� ��

�� ��
++ �+ ��

35
The successives moves are:

�1(t+ 1) = 0 , �2(t+ 1) = �1
�1(t+ 2) = +1 , �2(t+ 2) = �1
�1(t+ 3) = �1 , �2(t+ 3) = +1
�1(t+ 4) = 0 , �2(t+ 4) = +1
�1(t+ 5) = 0 , �2(t+ 5) = �1

which means that the system is stuck in an 2"-neighborhood of the impact point
on the border in a 4-cycle.
Synthesis for case A: The following Table indicates the trajectory for each

possible case of the rosace. The horizontal lines correspond to the signs in the
South direction of the rosace. The columns corresponds to the signs in the South
East direction of the rosace. The sympol xo means that the system is scotched
around some point at the border. The sign # indicates that the system slides
down along the vertical border. A blank cell indicates that the case is impossible
(remember that the South-West direction of the rosace is ++).

S n SE ++ �+ +� ��
++ # # # #
�+ # xo
+� xo xo
�� #
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Case B: The system was moving crabwise West before reaching the border.
In that case the sign of the payo¤ variation in the South-West direction is +�.
and the sign in the North-West direction is +�. Four subcases are possible
depending on the signs of the payo¤ variations.
Case B1: 24+� �� �+

�� ��
+� ++ �+

35
The successives moves are:

�1(t+ 1) = 0 , �2(t+ 1) = +1
�1(t+ 2) = +1 , �2(t+ 2) = �1
�1(t+ 3) = �1 , �2(t+ 3) = �1

which means that the system slides downwads in a "-neighborhood of the border,
at "speed" 1:3.
Case B2 24+� +� �+

�� ��
+� �+ �+

35
The successives moves are:

�1(t+ 1) = 0 , �2(t+ 1) = +1
�1(t+ 2) = 0 , �2(t+ 2) = �1
�1(t+ 3) = +1 , �2(t+ 3) = �1
�1(t+ 4) = �1 , �2(t+ 4) = �1

which means that the system slides downwards in a "-neighborhood of the bor-
der, at "speed" 1/2.
Case B3: 24+� �+ �+

�� ��
+� +� �+

35
The successives moves are:

�1(t+ 1) = 0 , �2(t+ 1) = +1
�1(t+ 2) = +1 , �2(t+ 2) = +1
�1(t+ 3) = �1, �2(t+ 3) = +1
�1(t+ 4) = 0 , �2(t+ 4) = �1
�1(t+ 5) = 0 , �2(t+ 5) = +1

which means that the system slides upwards in a "-neighborhood of the border,
at "speed" 1/2.
Case B4 24+� ++ �+

�� ��
+� �� �+

35
13



The successives moves are:

�1(t+ 1) = 0 , �2(t+ 1) = +1
�1(t+ 2) = 0 , �2(t+ 2) = +1

which means that the system slides upwards in a "-neighborhood of the border,
at "speed" 1.
Synthesis for case B: The following Table indicates the trajectory for each

possible case of the rosace. Again, the horizontal lines correspond to the signs
in the South direction of the rosace. But the signs in the South East direction
of the rosace is imposed to �+ (remember that the signs in the South West
direction of the rosace are �+). Moreover the result does not depend on the
way the crabwise trajectory reaches the border.

S n SE �+
++ #
�+ #
+� "
�� "

From this sudy of case B, we can conclude that the trajectory on the border
always follows the direction of the best response for player 2.
QED

3.5 Evolution at a corner

Proposition: When reaching a corner, the trajectory follows one of two pat-
terns:
(i) It escapes from the corner following a neiborhood of a border. This

happens for games covariant in all directions at this corner. If the system
arrives at the corner following a border it can either make a U-turn (cases A1a
or A3 in the proof); or turn at right angle (case A1d in the proof.)
(ii) It stays in a 2"-neighborhood of the corner. This happens for all other

games.
Proof. Consider, without restriction, the corner (0; 0). Consider also provi-

sionaly that the system arrives at the corner along the border �1 = 0. From
the preeceding section, there are �ve cases to be distinguished: A1, A2, A3, B1,
and B2, which we study successively.
Case A1a: 24++ �� ��

++ ��
++ ++ ��

35
The system reaches the corner where it is blocked (it does not move for one

period, then uses a random device). Then, whatever its departing move from
the corner, the system goes back North along the border �1 = 0
Case A1b:

14



24+� �� ��
+� ��
++ ++ �+

35
The system,�rst blocked at the corner, engages in a 3-cycle around it.
Case A1c: 24�+ �� ��

�+ +�
++ ++ +�

35
The system engages �nally in a 4-cycle around the corner
Case A1c�: 24�+ �� ��

++ ��
++ ++ +�

35
The system is blocked in successive ways.
Case A1d: 24 �� �� ��

++ (��) �� (++)
++ ++ ++

35
The system turns and goes Right along the border �2 = 0
Case A1d�: 24 �� �� ��

+� (�+) �+ (+�)
++ ++ ++

35
The system is scotched in a 4-cycle around the corner.
Case A2a: 24+� +� ��

++ ��
++ �+ �+

35
For all three ways of arriving at the corner, the system is scotched around

the corner in a 5-cycle.

Case A2b: 24+� +� ��
+� �+
++ �+ �+

35
There are three ways of arriving at the corner, but each of them leads to the

same conclusion: the system is scotched around the corner in a 6-cycle.
Case A3:
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24++ ++ ��
++ ��
++ �� ��

35
The system comes to the corner and goes back along the border towards the

North.
Case B1: 24+� �� �+

+� �+
+� ++ �+

35
The system comes to the corner and is scotched around in a 3-cycle.
Case B2: 24+� +� �+

+� �+
+� �+ �+

35
The system comes to the corner and is scotched around in a 3-cycle.
Another possibility is to arrive at the corner along the diagonal. Two sub-

cases are possible: either coming crabwise or in concert.
If coming crabwise, the system in fact was sliding in an "-neighborhood of a

border. The last positions of the system were: for instance:

�1(t� 2) = 2"; �2(t� 2) = 0
�1(t� 1) = "; �2(t� 1) = "

�1(t) = 0; �2(t) = 0
�1(t+ 1) = 0; �2(t+ 1) = "

The next moves have been described in the paragraph on behavior on a bor-
der line. We have already studied what happens to the system when reachning
a corner anywhen during its sliding on a border.
If coming in concert on the diagonal, The South-West direction is an im-

provement for both players therefore the system is blocked at the corner and
the next move is random. There are 16 rosaces compatible with the South-West
direction being an improvement for both players. An exhaustive study of these
cases shows that in the four covariant rosaces the system leaves the corner North
or South, and in all other cases the system is stuck in a neighborhood of the
corner.

4 Symmetric games

4.1 Potential attractors

In a symmetric game: a1 = a2 = a, b1 = c2 = b, c1 = b2 = c; d1 = d2 = d: Hence

E1 = E2 = E = a� b� c+ d:
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The parameter E = @2u1
@�1@�2

= @2u2
@�1@�2

will be called the coupling parameter.
We restrict attention to the cases E 6= 01 . A game with E > 0 will be called
a coupling game and a game with E < 0 will be called a decoupling game. If
E > 0, when one player goes in one direction (say d�1 > 0), the other player is
all the more induced to go in the same direction ( @u2@�2

increases).
For convenience and without restriction, it can be assumed that b � c (if b <

c, an equivalent game is obtained by exchanging rows and exchanging columns).
Since the utility levels are de�ned up to increasing a¢ ne transformation, we can
�x two of the four parameters a; b; c; d. We restrict attenbtion to the case b 6= c2 .
It appears that the most convenient normalization is to set the values of b and
c:

b = +1; c = �1

so that
E = a+ d:

Then the various games to distinguish will be described in the plane (a; d).
Natural candidates for attractors of the dynamic process are Nash equilibria

and Bentham optima.

Nash equilibria.
As concern the pure equilibria (de�ned by the values of �1 and �2), three

types of games can be considered:
- If a > �1 and d < 1 or if a < �1 and d > 1, there is only one equilibrium,

respectively (1; 1) or (0; 0). Notice that the equilibrium (1; 1) is Pareto optimal
if and only if a > d and that the equilibrium (0; 0) is Pareto optimal if and only
if a < d. For instance, the Appointment game is obtained with a = 2; d = 0
(hence E = 2). Likewise, the Coupling Prisoner�s Dilemma is obtained with
a = 0; d = 0:5 (hence E = 0:5) and the Decoupling Prisoner�s Dilemma is
obtained with a = �0:5; d = 0 (hence E = �0:5).
- If a > �1 and d > 1, there are two symmetric equilibria. In this case,

E � 0. For instance, the Stag-Hunt game corresponds to: a = 1; d = 3 (hence
E = 4).
- If a < �1 and d < 1, there are two assymetric equilibria (1; 0) and

(0; 1). In that case E � 0. For instance, the Battle of Sexes corresponds to:
a = �2; d = �3 (hence E = �5)
In the last two cases, there is moreover amixed equilibrium obtained for c�1 =c�2 = (d� 1)=(a+ d).
Bentham optima
1Within the class of symmetric games, generically, E 6= 0. Note that this rules out sym-

metric and zero-sum games. Zero-sum games will be treated in the next section..
2Within the class of symmetric games, generically, b 6= c. Note that this rules out symmetric

and twin games. Twin games will be treated in another section.
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Consider the maximization of the sum W of players utilities over the whole
strategy space:

W = u1 + u2

= 2a�1�2 + (b+ c) [�1(1� �2) + �2(1� �1)] + 2d(1� �1)(1� �2)
= 2a�1�2 + 2d(1� �1)(1� �2)

dW = (b+ c� 2d)(d�1 + d�2) + 2E(�2d�1 + �1d�2)
= �2d(d�1 + d�2) + 2(a+ d)(�2d�1 + �1d�2)

d2W = 2E d�1 d�2

= 2(a+ d) d�1 d�2

From the expression of d2W , one can see that a maximum ofW is never interior.
On the borders of the square, W is an a¢ ne function, hence a maximum of W
can only be at a corner of the square.
We are �rstly interested in the global Bentham optima; where W is maxi-

mized. They are given by the the largest of three values:

2d, obtained for �1 = �2 = 0,

0, obtained for �1 = 0, �2 = 1, or �1 = 1, �2 = 0;

2a, obtained for �1 = �2 = 1,

We secondly introduce the notion of a local Bentham optimum. This is a local
maximum of the function W .; again they can onlybe found at corners. They are
given by the following conditions:
- (�1; �2) = (0; 0) is a local Bentham optimum i¤ d > 0,
- (�1; �2) = (0; 1) and (0; 1) are local Bentham optima i¤ a < 0 and d < 0,
- (�1; �2) = (1; 1) is a local Bentham optimum i¤ a > 0:
According to the payo¤s, �ve cases can be distinguished:
If 0 < a < d, (0; 0) is a global Bentham optimum and (1; 1) is a local one.
If. 0 < d < a, (1; 1) is a global Bentham optimum and (0; 0) is a local one.
If a < 0 < d. (0; 0) is a global Bentham optimum.
If d < 0 < a, (1; 1) is a global Bentham optimum.
If a; d < 0, (0; 1) and (1; 0) are both global Bentham optima.

In the same spirit, de�ne a diagonal Bentham optimum to be a (global or
local) maximum of W on a line parallel to the main diagonal. Such a line L has
equation

�1 � �2 = r:

Denote fM the point on the main diagonal

fM = (f�1;f�2) = ( d

a+ d
;
d

a+ d
):

Consider the line L0 of equation �1 + �2 = �10 + �20. Graphically, L0 is
the line parallel to the second diagonal and passing through M0. Let M be the
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intersection of L0 and L. The coordinates (�1; �2) of M are such that

�1 + �2 = �10 + �20

�1 � �2 = r:

The bilinear function W of �1 and �2 is easy to maximize on L, and one
obtains the following conclusions:

� For decoupling games (E < 0), on the line L, W has its maximum at
M . Note that M may be outside the strategy space, in which case the
diagonal maximum is on a border of the strategy space.

� For coupling games (E > 0), on the line L, W has its minimum at M .
Hence a diagonal local Bentham optimum is always on a border of the
strategy space.

The following Table summarizes the �ndings about Nash, Global and Local
Bentham optima. To read this Table: NE stands for Nash Equilibrium, GO
stands for Global Bentham optimum, and LO stands for a local Bentham op-
timum which is not global. The Table provides the coordinates of the point in
the action space. For Bentham optima, the indication �(0; 0) or (1; 1)" means
that the optimum is (0; 0) if d > a and (1; 1) if d < a.

a < �1 �1 < a < 0 0 < a

1 < d A
NE: (0,0)
GO: (0,0)
LO: none

B
NE: (0,0) and (1,1)

GO: (0,0)
LO: none

C
NE: (0,0) and (1,1)
GO: (0,0) or (1,1)
LO: (1,1) or (0,0)

0 < d < 1 D
NE: (0,1) and (1,0)

GO: (0,0)
LO: none

E
NE: (1,1)
GO: (0,0)
LO: none

F
NE: (1,1)

GO: (0,0) or (1,1)
LO: (1,1) or (0,0)

d < 0 G
NE: (0,1) and (1,0)
GO: (0,1) and (1,0)

LO: none
H

NE: (1,1)
GO: (0,1) and (1,0)

LO: none
I
NE: (1,1)
GO: (1,1)
LO: none

4.2 State transition diagram

For a symmetric game, the strategy space is a square centered on the main
diagonal, and any such square is the strategy space of some symmetric game.
Hence, in this section, we study the state transition diagram without taking
into account the border lines
There are only three separating lines, two of them are parallell, and they

de�ne six regions in the (�1; �2) plane separated by the lines of equations U
+
1 =
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Symmetric game
E?0

Figure 1: Symmetric coupling game (E > 0).

U+2 = 0, U
�
1 = 0 and U

�
2 = 0, with:

U+1 = U+2 = b+ c� 2d+ E(�1 + �2)
= �2d+ (a+ d)(�1 + �2)

U�1 = b� c+ E(�2 � �1)
= 2 + (a+ d)(�2 � �1)

U�2 = b� c� E(�2 � �1)
= 2� (a+ d)(�2 � �1)

Hence, the relative positions of these lines depend only on the sign of E. The
two corresponding diagrams are depicted in Figures 1 and 2.
By looking at the Figures 1 and 2, one can see the possible trajectories of

the system (as long as it does not reach a border of the action space). Inside
the zones de�ned by the separating lines, the system follows the arrows; (as
we discussed above, there are two possible direction of movement in the zones
where two arrows are depicted). We now discuss the trajectory of the system
when reaching a separating line.
If E > 0, this happens (up to some symmetry) in the upper part of Figure

20



U1
=0

 +

+



+ 



+

+





Symmetric game
E?0

Figure 2: Symmetric decoupling game (E < 0).
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1 when the system is moving South-East above the separating line U�2 = 0, and
would be moving North East on the other side of this line. Then, according to
the case (1) of the paragraph Evolution on separating lines, the system initially
moving South East then slides North East along the separating line.
If E < 0, this happens in two cases. Firstly, in the upper part of Figure 2

when the system is moving South West above the separating line U+1 = U
+
2 = 0

and is reaching a zone where it may be going either North-East or North-West.
But it can be easily shown that, in a symmetric game, when the system is on a
trajectory parallel to the �rst diagonal, the utility variations of the two players
are the same, and therefore the system remains on that diagonal. It follows that
in this subcase, the system is stuck (in a cycle) on the separating line.
Secondly, in the central part of Figure 2 when the system is moving South

West above the separating line U+1 = U
+
2 = 0 and would be moving North East

on the other side of this line. Then, according to the case (5) of the paragraph
Evolution on separating lines, the system initially moving South West then is
stuck (in a cycle) on the separating line.

4.3 Properties of the trajectories

The location of the state space in the plane (�1; �2) was neglected in the previous
paragraph, we now take it into account in order to exhibit the convergence
properties of the process.
It can be observed that the point M0 is at the intersection of the two lines

of equation U+1 = U
+
2 = 0 (that is L0) and �1 = �2 (that is the main diagonal).

A careful inspection shows that M0 belongs to the strategy space i¤ a > 0
and d > 0 (in the case E � 0) or a < 0 and d < 0 (case E � 0). The strategy
space lies entirely belowM0 if and only i¤ a < 0 (when E > 0) and a > 0 (when
E < 0). The strategy space lies entirely above M0 if and only if d < 0 (when
E > 0) and d > 0 (when E < 0).
The strategy space lies entirely between the lines L�1 and L

�
2 i¤ 0 � a+d � 2

(case E � 0) or �2 � a+d � 0 (case E � 0), which simply boils to �2 � a+d �
2
Finally, for the �rst player, notice that the line U+1 �U�1 = 0 is vertical, the

line U+1 + U
�
1 = 0 is horizontal, and they cross at the intersection of the lines

U+1 = 0 and U
�
1 = 0, that is the point N1:

N1 =

�
d+ 1

a+ d
;
d� 1
a+ d

�
:

Likewise, for the second player, the line U+2 � U�2 = 0 is horizontal, the line
U+2 + U

�
2 = 0 is vertical, and they intersect at the point N2:

N2 =

�
d� 1
a+ d

;
d+ 1

a+ d

�
:

When reaching a border line, the system can either stop or slide along the
border line (see section �Evolution on border lines�). The system is stuck in
cases A4 and A5.
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In case A4, the stated conditions for the system to stop on the border �1 = 0
become, for a symmetric game:

�1 < d < 1:

By symmetry, the condition is the same for the border line �2 = 0. Note that
the system is never stuck on borders �1 = 1 or �2 = 1 since the corresponding
conditions would be b = 1 < a < c = �1, which was excluded when we set the
condition b > c.
In case A5, the conditions are never met for a symmetric game.
In the next two sections, depending on the sign of E, we use the previous

results in order to describe the trajectory of the system for any initial state. The
behavior of the system when it slides along a border and meets a separating line
was not examined, but is easily considered when happening.

4.4 Convergence results

When considering the whole behavior of the system, the following result holds:
Theorem. If there exists a unique local Bentham optimum, then the sys-

tem points towards it. If this point is also a Nash equilibrium then the system
converges to it. If not, the system is stuck at the point where it �rst reached the
boundary of the action space.
If there exist two local Bentham optima, then the system points towards one

of them, depending on the initial point. If the local optimum is also a Nash
equilibrium, it converges to it. If not, the system is stuck at the point where it
�rst reached the boundary of the action space.
If there exist diagonal Bentham optima, the system points towards one of

them, depending on the initial state. If it reaches a border in the direction of a
Nash equilibrium, then it converges towards the diagonal Bentham optimum on
that border. If it reaches a border in a direction which does not point towards a
Nash equilibrium, then it is stuck on the border.
Note that, crudely expressed, this results mean that the system behavior is

driven by the notion of Bentham optimality inside the action space and by the
notion of Nash equilibrium on the border of the action space.
Proof:
We need to distinguish the nine cases, A to I. Within each case, the subcases

to be distinguished correspond to the sign of E (that is a+ d being positive or
negative), the position of M0 with regard to the action space (a and d being
positive or negative) and the position of the action space with respect to the
separating lines (here two conditions are involved: a+ d being larger or smaller
than �2, 0 and 2). Note that in some of these cases, the sign of E is given, and
in some others, it is not.
Case A: a < �1 and d > 1.
Subcase A1: �2 < a + d < 0 (hence E < 0). The action space is entirely

above M0 and between the separating lines L
�
1 and L

�
2 . According to Figure

2, the system trajectory points South-West untill it reaches a border, it then
slides along the border until it reaches the corner (0; 0).
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Subcase A2: 0 < a+d < 2 (hence E > 0). The action space is entirely below
M0 and between the separating lines L

�
1 and L

�
2 . According to Figure 1, the

system trajectory points South-West untill it reaches a border, it then slides
along the border until it reaches the corner (0; 0).
Subcase A3: 2 < a + d (hence E > 0). The action space is entirely below

M0 and intersects both separating lines L
�
1 and L

�
2 . According to Figure 1, the

system trajectory depends on the initial point. If the initial point is between the
separating lines L�1 and L

�
2 , the situartion is similar to subcase A2. If the initial

point is above L�1 , the trajectory depends on the inital direction. If the initial
direction is South-East, then the system goes South-East until it reaches the
separating line L�1 , then slides along L

�
1 until it reaches the border �1 = 0, then

slides along this border until reaching the corner (0; 0). If the initial direction
is South-West, the system goes South-West until it reaches the border �1 = 0,
then slides along this border until reaching the corner (0; 0).
Subcase A4: a + d < �2 (hence E < 0). The action space is entirely above

M0 and intersects both separating lines L
�
1 and L

�
2 . According to Figure 2, the

system trajectory depends on the initial point. If the initial point is between
the separating lines L�1 and L

�
2 , the situation is similar to subcase A1. If the

initial point is above L�1 , the trajectory depends on the inital direction. If the
initial direction is South-West, the system goes South-West until it reaches the
border �1 = 0, then slides down along this border, crosses the separating line
and reaches the corner (0; 0) where it stops. If the initial direction is North-
West, then the system goes North-West until it reaches a border, either a1 = 0,
or �2 = 1. In both cases, it slides along the border in untill it reaches the corner
(0; 1). From this corner, it slides down along the border a1 = 0, crosses the
separating line and reaches the corner (0; 0) where it is stops. (Remark that
this is one case in which the system has two opposite trajectories: sliding up or
down on a border).
To sum up, in case A, the system ultimately reaches the corner (0; 0) which

is here the unique Nash Equilibrium and the unique global Bentham optimum
Case B: �1 < a < 0 and d > 1.
Subcase B1 a+ d < 2: Identical to A2.
Subcase B2 a+ d > 2: Identical to A3.
To sum up, in case B, the system ultimately reaches the corner (0; 0) which

is here one of the two Nash Equilibria and the unique global Bentham optimum
Case C: 0 < a and d > 1. (Hence E > 0:)
Subcase C1: a+ d < 2. The action space, includes M0 and lies between the

separating lines L�1 and L
�
2 . According to Figure 1, if the initial point is below

L+, the trajectory goes South-West until it reaches a border then slides along
the boder until it rreaches the point (0; 0); if the intial point is above L2, the
trajectory goes North-East until it reaches a border then slides along the border
until it rreaches the point (1; 1).
Subcase C2: a + d > 2. The action space, includes M0 and intersects both

separating lines L�1 and L�2 . According to Figure 1, the system trajectory
depends on the initial point. If the initial point is between the separating lines
L�1 and L

�
2 , the situartion is similar to the previous subcase C1. If the initial
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point is above L�1 , the trajectory also depends on the inital direction. (i) If the
initial point is below L+ and the initial direction is South-East, then the system
goes South-East until it reaches the separating line L�1 , then slides along L

�
1

until it reaches the border �1 = 0, then slides along this border until reaching
the corner (0; 0). (ii) If the initial point is below L+ and the initial direction
is South-West, the system goes South-West until it reaches the border �1 = 0,
then slides along this border until reaching the corner (0; 0). (iii) If the initial
point is above L+ and the initial direction is South-West, then the system goes
South-West until it reaches the separating line L�1 , then slides along L

�
1 until

it reaches the border �2 = 1, then slides along this border until reaching the
corner (1; 1). (iv) If the initial point is above L+ and the initial direction is
North-West, the system goes North-West until it reaches the border �2 = 1,
then slides along this border until reaching the corner (1; 1).
To sum up, in case C, if the initial point is below the line L+, the system

goes towards the corner (0; 0) which is a (local or global) Bentham optimum
and a Nash equilibrium; if he initial point is above the line L+, the system goes
towards the corner (1; 1) which is a (local or global) Bentham optimum and a
Nash equilibrium:
Case D: a < �1 and 0 < d < 1 (hence E < 0).
Subcase D1: �2 < a + d < 0 The action space is entirely above M0 and

between the separating lines L�1 and L�2 . According to Figure 2, the system
trajectory points South-West untill it reaches a border, where it is scotched.
Subcase D2: a+d < �2 The action space is entirely aboveM0 and intersects

both separating lines L�1 and L
�
2 . According to Figure 2, the system trajectory

depends on the initial point. If the initial point is between the separating lines
L�1 and L

�
2 , the situation is similar to subcase D1: the system is scotched on

the border. If the initial point is above L�1 , the trajectory depends on the inital
situation and direction. If the initial direction is South-West, the system goes
South-West until it reaches the border �1 = 0, where it is scotched. If the initial
direction is North-West, then the system goes North-West until it reaches a
border �1 = 0 or �2 = 1. If it reaches the border �1 = 0, it is scotched. If it
reaches the border �2 = 1 then it slides along this border until it reaches the
corner (0; 1), where it is scotched.
To sum up, in case D, the system ends up being scotched on one of the

borders adjacent to the global optimum (0; 0), either directly or indirectly after
sliding along another border.
Case E: �1 < a < 0 and 0 < d < 1.
Subcase E1: a+ d > 0 (hence E > 0) The action space is entirely below M0

and between the separating lines L�1 and L
�
2 . According to Figure 1, the system

trajectory points South-West untill it reaches a border, where it is scotched.
Subcase E2: a+ d < 0 (hence E < 0) The action space is entirely above M0

and between the separating lines L�1 and L
�
2 . According to Figure 2, the system

trajectory points South-West untill it reaches a border, where it is scotched.
To sum up, in case E, the system goes South-West and is ultimately scotched

on a border.
Case F: 0 < a and 0 < d < 1 (hence E > 0)
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Subcase F1: a + d < 2 The action space, includes M0 and lies between
the separating lines L�1 and L

�
2 . According to Figure 1, if the initial point is

below L+, the trajectory goes South-West until it reaches a border where it is
scotched; if the intial point is above L2, the trajectory goes North-East until it
reaches a border then slides along the border until it rreaches the point (1; 1).
Subcase F2: a + d > 2 The action space includes M0 and intersects both

separating lines L�1 and L�2 . According to Figure 1, the system trajectory
depends on the initial point. If the initial point is between the separating lines
L�1 and L

�
2 , the situartion is similar to the previous subcase F1. If the initial

point is above L�1 , the trajectory also depends on the inital direction. (i) If the
initial point is below L+ and the initial direction is South-East, then the system
goes South-East until it reaches the separating line L�1 , then slides along L

�
1

until it reaches the border �1 = 0, where it is stuck. (ii) If the initial point is
below L+ and the initial direction is South-West, the system goes South-West
until it reaches the border �1 = 0, where it is stuck. (iii) If the initial point is
above L+ and the initial direction is South-West, then the system goes South-
West until it reaches the separating line L�1 , then slides along L

�
1 until it reaches

the border �2 = 1, then slides along this border until reaching the corner (1; 1).
(iv) If the initial point is above L+ and the initial direction is North-West, the
system goes North-West until it reaches the border �2 = 1, then slides along
this border until reaching the corner (1; 1).
To sum up, in case F, if the initial point is below the line L+, the system

goes in the direction of the corner (0; 0) which is a (local or global) Bentham
optimum but not a Nash equilibrium, and the system is stuck before reaching
this corner; if the initial point is above the line L+, the system goes towards
the corner (1; 1) which is a (local or global) Bentham optimum and a Nash
equilibrium:
Case G: a < �1 and d < 0 (hence E < 0)
Subcase G1: a + d > �2, The action space, includes M0 and lies between

the separating lines L�1 and L
�
2 . According to Figure 2, if the initial point is

below L+, the trajectory goes North-East until it reaches the separating line L+

where it stops. If the initial point is above L+, the trajectory goes South-West
and it either reaches �rst the border �1 = 0 where it is stuck, or it reaches �rst
the separating line L+, where it stops.
Subcase G2: a+ d < �2 The action space, includes M0 and intersects both

separating lines L�1 and L
�
2 . According to Figure 2, if the initial point is between

L�1 and L
�
2 , then the trajectory is as in subcase G1. If the initial point is above

L�1 , the trajectory also depends on the inital direction. (i) If the initial point is
below L+ and the initial direction is North-East, then the system goes North-
East until it reaches the border �2 = 1 then slides East along this border until
it reaches the separating line L+ where it is stuck. (ii) If the initial point is
below L+ and the initial direction is North-West, the system goes North-West
until it reaches the border �1 = 0, where it slides NorthIl+ va prendre des
virages (iii) , (iv) .
Case H: �1 < a < 0 and d < 0. (hence E < 0)
Subcase H1: a+ d > �2. This subcase is identical to G1
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Subcase H2: a+ d < �2. This subcase is identical to G2
Case I: 0 < a and d < 0.
Subcase I1: 0 < a+ d < 2 (hence E > 0) The action space is entirely above

M0 and between the separating lines L
�
1 and L

�
2 . According to Figure 1, the

system trajectory points North-East untill it reaches a border, slides along that
border and reaches the corner (1; 1).
Subcase I2: �2 < a+d < 0 (hence E < 0) The action space is entirely below

M0 and between the separating lines L
�
1 and L

�
2 . According to Figure 2, the

system trajectory points North-East untill it reaches a border, slides along that
border and reaches the corner (1; 1).
Subcase I3: a+ d > 2 (hence E > 0) The action space is entirely above M0

and intersects the separating lines L�1 and L�2 . According to Figure 1, if the
initial point is between the separating lines L�1 and L

�
2 , the situartion is similar

to the previous subcase I1. If the initial direction is South-East, the trajectory
�rst reaches the separating line L�1 then slides along that seaparating line until
it reaches the border �2 = 1 then slides along this border until it reaches the
corner (1; 1). If the intitial direction is North-East, the system reaches the
border �2 = 1 then slides along that border and reaches the corner (1; 1).
Subcase I4: a+d < �2 (hence E < 0) The action space is entirely belowM0

and intersects the separating lines L�1 and L�2 . According to Figure 2, if the
initial point is between the separating lines L�1 and L

�
2 , the situation is similar

to the previous subcase I2. If the initial direction is North-West, the trajectory
�rst reaches the border �1 = 0 and then slides North, reaches the corner (0; 1)
and then ?. If the intitial direction is North-East, the system reaches the border
�2 = 1 then slides along that border and reaches the corner (1; 1).
To sum up, the system always goes to the corner (1; 1) which is a global

optimum and the unique Nash equilibrium.

Quod Erat Demonstrandum

5 Zero-sum games

5.1 Potential attractors

In a zero-sum game: a1 = �a2 = a, b1 = �b2 = b, c1 = �c2 = c, d1 = �d2 =
d: Hence E = E1 = �E2. Without restriction (exchanging players), we can
suppose that E > 0
As concerns the pure Nash equilibria, two cases are possible:
- one pure equilibrium, which can be at any corner.
- no pure equilibrium when a � c; a � b; d � b; d � c (case E > 0) or when

a � c; a � b; d � b; d � c (case E < 0, that we rule out).
Consider the point

M0 = (�10; �20) =

�
d� c
E

;
d� b
E

�
:
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The point M0 can be located anywhere in the plane (�1; �2) even with the
constraint E > 0. Two relevant cases are possible. If M0 belongs to the action
space, then M0 corresponds to the unique mixed equilibrium. If M0 does not
belong to the action space, then the unique equilibrium is at a corner (and is
pure).
Proposition. The equilibrium is then given by the following rule:
- (0,0) if �10 � 0; �20 � 0
- (0,1) if �10 � 0; �20 � 1
- (1,1) if �10 � 1; �20 � 1
- (1,0) if �10 � 1; �20 � 0
The Bentham optima are obviously degenerated.

5.2 State transition diagram

There are only two separating lines de�ning 4 areas:
U+1 = �U+2 = b+ c� 2d+ E(�1 + �2) = 0
U�1 = U

�
2 = b� c+ E(�2 � �1) = 0

They intersect at the point M0.
The phase diagram is the following (note that at interior points the system

is always moving crabwise):

Consider for instance matching pennies, obtained for a = d = 1; b = c =
�1:The separating lines are respectively: �1 + �2 � 1 = 0 and �2 � �1 = 0
crossing at �1 = �2 = 1=2:The action space is centered around the same point.

5.3 Properties of the trajectories

We �rst examine the behavior of the system when reaching a separating line.
Without loss of generality, assume that the system is coming crabwise from the
East and intersects the separating line parallel to the �rst diagonal. According
to Figure ??, this intersection is South-West ofM0: According to the paragraph
Evolution on Separating Lines, case 2, the system turns right and continues
crabwise to the North . The important point is that the trajectory
after its turn on the separating line has made a small step away from M0,
will be stated in the next proosition. For that we need a de�nition. For a
crabwise trajectoray the associated mean line is the line joining the middle of
its constituting segments.
Proposition. When crossing a separating line, the trajectory of the system

is such that its mean line is further away from point M0 after the crossing than
before.
Proof. Consider �rst the case in which the system arrives axactly on the

separating line. (Such is the case if the payo¤s are integers and N is a multiple
of E.) According the Figure "Virage à droite", coming from A then B, the
system reaches the separating line in C. Since the segment BC is entirely in the
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Figure 3: Zero-sum game, E > 0
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initial zone, the system goes from C to D, exactly on the separating line. after
D, it goes to E, for the following reason:
The utility variations from A to B is (+;�) (positive for the �rst player and

negative for the second). The utility variation from E to F is (�;+) because E
and F are on the other side of the separating line, hence the utility variation
from F to E is (+;�). By continuity, the utility variation from C to D is (+;�)
too. Hence the system goes from D to EIt then continues from E to F . Notice
that the mean line is further away from M0, by 1=N .
Consider now the the case in which the systems does not arrive exactly

on the separating line. According to the �gure "Virage à droire bis", coming
from A and B, the system goes to C and crosses the separating line between
B and C. The utility variation from B to C is not straightforward and has to
be computed. Let B = (�1 � 1=N; �2). Then C = (�1; �2 � 1=N). The utility
variation (for player 1) U(C)� U(B) is:

(1=N)(�1 � �2)(�a+ b+ c� d) + (1=N)(�b+ c)

This variation is thus zero on the line of equation

�1 � �2 =
b� c
E

This is precisely the separating line we consider. Hence, if the middle of BC
is under the separating line, the system turns left after C and goes to D;then
turns right to E, being completely above the separating line. If the middle of
BC is above the separating line, the system turns right after C and goes to D0,
then turns left to E0:But in both cases, the mean line is further away from the
point M0 after having crossed the separating line than before.
QED
We now examine the behavior of the system when reaching a border. Without

loss of generality, assume again that the system is coming crabwise from the East
and is reaching the border �1 = 0. According to the general analysis, the system
goes North along the border (up to ") if d � c and goes South along the border
if d � c: Similar conditions hold for �2 = 0 (going West if d � b and going East
if d � b), �1 = 1 (going South if b � a and going North if b � a), and �2 = 1
(going East if c < a and going West if c > a)

5.4 Convergence result

The following result can be stated:
Theorem: (i) When the game has a pure Nash equilibrium, the system

converges towards it. (ii) When the system has no pure Nash equilibrium, the
system asymptotically cycles around the greatest square situated in the strategy
space and centered on the mixed Nash equilibrium.
Proof. Recall that M0 = (�10; �20) is the intersection of the two separating

lines.
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(i) HereM0 is outside the action space. For this part of the proof we suppose
w.l.o.g. that �10 > 0 and �20 > 1. Hence d > c and a < c; the equilibrium is at
the point (0; 1).
Four cases will be distinguished.
Case A: the action space does not intersect any separating line. For instance,

the action space lies entirely in the quarter of plane South of M0.
From any interior initial point, the system goes crabwise West until it reaches

the border �1 = 0. According to the theorem "Comportement au bord", the
system goes in the direction of the best response for player 2. This best response
is given by the sign of d � c. Because d > c the system goes North. Thus the
system goes towards the pure equilibrium.
Then, when the system is sliding along the border towards the equilibrium,

it reaches the equilibrium To prove that the system is stuck around the equi-
librium, �rst notice that the rosace is fully determined:24+� +� +�

+� �+
�+ �+ �+

35
and the same reasoning as usual shows that any trajectory ends in a cycle around
the corner.
Case B: The action space intersects only the separating line parallel to the

�rst diagonal. If the initial point is below the separating line, the system goes
West until it reaches either the border �1 = 0, or the separating line. In the �rst
case, it then slides North along the border, crosses the separating line, continues
North untill it reaches the equilibrium (0; 1). In the second case, the system
reaches the separating line, goes North until it reaches the border �2 = 1, then
goes West until it reaches the equilibrium (0; 1). If the initial point is above the
separating line, the system �rst goes North untill it reaches the border �2 = 1,
then goes West until it reaches the equilibrium (0; 1).
Case C: The action space intersects only the separating line parallel to the

second diagonal. If the initial point is below the separating line, the system goes
West until it reaches the border �1 = 0, then slides North along the border untill
it reaches the equilibrium (0; 1). If the initial point is above the separating line,
the system �rst goes South untill it reaches the separating line, then goes West
until it reaches the border line, then goes North until it reaches the equilibrium
(0; 1).
Case D: the action space intersects both separating lines.It is just a super-

position of the two former cases
(ii) Here M0 is inside the action space. It is the mixed-straegy equilibrium

of the game. By symmetry we can consider only the case where:

0 < �10 < �20 < 1=2:

These conditions imply that b < c < d. Then the largest square centered on M0

and included in the action space will be denoted by S. It has summits:

(0; �20 � �10); (2�10; �20 � �10); (2�10; �20 + �10); (0; �20 + �10).
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Two cases have to be considered according to the initial point.
Case A: If the initial point is outside S but not on a border then, when

the system reaches a separating line, it turns Right (if E > 0, which we now
suppose). Moreover, according to proposition ??, the system is one step further
away fromM0 after this turn. After zero, one or two such right-turn, the system
reaches a border. If the border is the border �20 = 0, the system goes West,
according to section describing the behavior at a border. If the border is the
border �10 = 0, the system goes North. In all cases, it turns right. Moreover,
if it reaches again a separating line while moving on a border (this is possible
if and only if the system slides along the border �20 = 0), the system continues
straight on the border.
Therefore the system asyptotically cycles in a 3"-neighborhood of S.
Case B: If the initial point is inside S, then the system turns always right

each time it reaches a separating line. Since the system is one step further away
from M0 after each turn, this holds until the system reaches the square S. In
fact, it goes even outside the square till reaching a border. But, this was already
considered in case A.

6 Twin games

6.1 Potential attractors

In a twin game: a1 = a2 = a ; b1 = b2 = b; c1 = c2 = c; d1 = d2 = d: Hence
E1 = E2 = E:Without loss of generality, it can be stated that E � 0:
The game has:
-two pure Nash equilibria if a; d � b; c.
-one pure Nash equilibrium otherwise
Consider the point

M0 = (�10; �20) =

�
d� c
E

;
d� b
E

�
:

The point M0 can be located anywhere in the plane (�1; �2) even with the
constraint E > 0. It is situated inside the strategy space when there are two
pure Nash equilibria and represents a mixed Nash equilibrium. It is situated out
of the strategy space when there is only one pure Nash equilibrium.Precisely,
the unique pure equilibrium is:
(0; 0) if �10 > 0 and �20 > 0, and one of them is > 1,
(0; 1) if �10 < 0 and �20 > 1,
(1; 1) if �10 < 1 and �20 < 1, and one of them is < 0,
(1; 0) if �10 > 1 and �20 < 0.
As concern the Bentham values, they coincide with each�player�s payo¤.

Hence, there is a global optimum at one corner (the unique Nash one or the
the Pareto-dominating in case of two) and local Bentham optimum at the other
ones.
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E1?0, E2?0

Figure 4: Twin game E > 0

6.2 State transition diagram

There are only two separating lines de�ning 4 areas:
U+1 = U

+
2 = b+ c� 2d+ E(�1 + �2) = 0

U�1 = U
�
2 = b� c+ E(�2 � �1) = 0

which croos at M0:

The state transition diagram is the following:

6.3 Trajectory properties

As can be seen, the system never reaches a separating line, except maybe on
borders.
When coming on a border line, the system is never stuck. When crossing a

separating line on a border, the system

6.4 Convergence results

We can state the following theorem:
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Theorem: (i) If there is a unique pure Nash equilibrium the system converges
towards it. (ii) If there are two pure Nash equilibria, the system converges to-
wards one of them, depending on the initial state.
Proof.
(i) The most general case is to have the two separating lines intersecting the

state space and deviding this space into 3 areas. Without loss of generality we
suppose that M0 is inside the triangle at the left of the state space, de�ned by
the three conditions:
a10 < 0
a10 + a20 > 0
a20 � a10 < 1
See Figure [TwinPureTroisZones]
In that case the unique Nash equilibrium is at the corner (1; 1).
If the initial point (�1; �2) is such that �1 + �2 < �10 + �20 and �1 >

�2. Then the system goes South-West until it reaches the border �2 = 0:
According to Proposition [Reaching a Border], it follows the border towards
the West (according to player 1�s best response) until reaching the corner (0; 0).
Then, according tp proposition [Reaching a corner] the system follows the border
�1 = 0, crosses the two separating lines and reaches the corner (0; 1). Here it
turns right ,follows the border �2 = 1, crosses a separating line and reaches the
pure Nash equilibrium (1; 1), where it is blocked.
If the initial point (�1; �2) is such that �1 + �2 < �10 + �20 but �1 < �2.

Then the system goes South West until it reaches the border �1 = 0. Then
proposition [Reaching a Border] still applies: the system makes a 3�=4 right
turn and continues North like in the previous case.
If the initial point (�1; �2) is such that �1 + �2 > �10 + �20 Then system

moves North-East until reaching one the two borders �1 = 1 or �2 = 1, follows
that border until reachning the Nash equilibrium (1; 1).
The other cases for M0 outside the state space are in fact sub-cases of

the previous ones and symmetric cases in which the pure Nash equilibrium is
another corner..
(ii) When M0 is inside the state space, there are two pure Nash equilibrium,

located (since E is supposed to be > 0) at (0; 0) and (1; 1).
If the initial point (�1; �2) is such that �1+�2 < �10+�20 the system goes

South-West, reaches a border �1 = 0 or �2 = 0, then follows the boredr towards
the pure Nash equilibrium (0; 0), where it is blocked. If the initial point (�1; �2)
is such that �1 + �2 > �10 + �20 the system likewise goes to a border, then to
the pure Nash equlibrium (1; 1).
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These principles can be illustrated in the following �utility transition dia-
gram�which is read as follows. The symbol (+�) means that utility of player 1
is increasing and utility of player 2 is decreasing. The symbol (+�; �+) stands
for the state made of the two successive utility variations: (+�) followed by
(�+). The symbol (xo; ++) stands for anyone of the four states in which the
�nal variations are (++). The symbol (00; ++) stands for the initial state in
which the �rst variations are (++).

�
(�+;+�) �! (+�;+�) � (00;+�)

&
� (xo; ++) � � � � � � � � � � � � � � � � �(xo; ��)

%
(+�;�+) �! (�+;�+) � (00;�+)

�
On this diagram, one can see the two types of trajectories which appear as

absorbing states of the transition diagram: Type 1 trajectories are the repetition
of (++) whereas Type 2 trajectories are the repetition of (�+) or of (+�).
The preceding principles allow moreover to contruct a �state transition dia-

gram�for any game. The state transition diagram gives, for each interior point
of the strategy space (�1; �2), the local direction of the movement (after the
two initial periods).266664

+� ++ �+
- " %

��  ! ++
. # &

+� �� �+

377775
24+� ++ �+
�� ++
+� �� �+
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