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Abstract

We use a second-price common-value auction, the maximal game, to experi-

mentally study whether the Winner’s Curse (WC) can be explained by models

which retain best-response behavior but allow for inconsistent beliefs. In the

maximal game, the WC can be rationalized only by a belief that others use

weakly-dominated strategies. Yet, we find that the WC is widespread. In ad-

dition, we create environments where, regardless of beliefs, there should be a

correction of the WC. We find little evidence of such a correction. Overall, our

study suggests that the WC, at least in initial periods of play in the laboratory,

represents a more fundamental departure from NE than a mere inconsistency

of beliefs.
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1 Introduction

In a game of incomplete information, (Bayesian) Nash Equilibrium (NE) has three

components: (a) players form beliefs about the type-contingent strategies of the other

players, (b) players best-respond to these beliefs, and (c) these beliefs are consistent

with actual behavior. Common-value auctions1 are an important example of games of

incomplete information in which behavior, at least in the laboratory, systematically

deviates from NE so that at least one of the components (a)-(c) must be violated.

Experimental evidence starting with Bazerman and Samuelson (1983) and Kagel

and Levin (1986), as well as many replications by Kagel and Levin and others2 have

documented a Winner’s Curse (WC) phenomenon in common-value auctions - a

systematic overbidding relative to NE which results in massive losses in the lab.3 Two

recent papers, Eyster and Rabin (2005) and Crawford and Iriberri (2007), attempt

to explain the WC through theoretical models which retain the components of NE

that players are forming and best-responding to beliefs about others’ behavior (we

shall refer to such models as belief-based) but relax the requirement of consistency

of beliefs. Eyster and Rabin introduce the concept of Cursed Equilibrium (CE) in

which players fail to fully realize the connection between other players’ types and bids

and, as a result, succumb to the WC.4 Crawford and Iriberry use the level-k model

of behavior5 in which level-0 (L0) players bid in some pre-specified way and level-k

(Lk) players (k = 1, 2, . . .) best-respond to a belief that others are Lk−1.
6 Ultimately,

the success or failure of these theories should be judged by their ability to reconcile

deviations from NE for a large body of data from different experimental environments.

Charness and Levin (forthcoming) find that the WC is alive and well in an

1In a common-value auction, the value of the object is the same ex post to all bidders but
is unknown at the time that bidding takes place. Each bidder receives a private signal which is
correlated with the common value.

2For example, see Kagel, Harstad, and Levin (1987); Dyer, Kagel, and Levin (1989); Lind and
Plott (1991); and the papers surveyed in Kagel (1995, Section II) and Kagel and Levin (2002).

3There are also claims of the WC in the field. See Hendricks, Porter, and Boudreau (1987);
Hendricks and Porter (1988); and the papers surveyed in McAfee and McMillan (1987, Section XII),
Thaler (1988), Wilson (1992, Section 9.2), and Laffont (1997, Section 3).

4Carrillo and Palfrey (2008) use CE to explain the occurrence of trade in an experimental design
in which a no-trade theorem holds.

5This model was first suggested by Stahl and Wilson (1995) and Nagel (1995).
6CE and the level-k model can be applied to environments other than common-value auctions.
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individual-choice variant of the “acquiring a company” game, i.e. in a situation

where the WC cannot be explained by incorrect beliefs about others’ behavior.7 In

the current paper, we investigate experimentally whether belief-based models, such

as CE and the level-k model, can explain the WC in an actual auction.8 We focus

on initial periods of play as this seems like a natural starting point for evaluating

belief-based theories.

In our experiment, we use a particular second-price common-value auction, called

the maximal game, where actual behavior is likely to exhibit the WC. In the maximal

game, each player receives an i.i.d. signal and the common value of the object being

auctioned equals the highest signal. The object goes to the highest bidder who pays

the second highest bid. With signals in [0, 10], a player with signal x, can make four

qualitatively different kinds of bids, b:

(i) b < x - we call this underbidding;

(ii) b = x - we call this bidding one’s signal;

(iii) x < b ≤ 10 - we call this overbidding;

(iv) b > 10 - we call this bidding above 10.

b < x is weakly dominated (by b = x) since, under the second-price rule, one may

lose the auction at a price below one’s signal even though the value of the object is

greater than or equal to x. b > 10 is also weakly dominated but, unlike b < 10, may

result in a negative payoff. Because they are weakly dominated, b < x and b > 10

can hardly be explained by belief-based theories.

If a player believes that others will never underbid (because it’s weakly domi-

nated), x < b ≤ 10 turns out to be weakly dominated as well. Hence, the game is

two-step dominance solvable and bidding one’s signal is the unique remaining strat-

egy.9

7Although not a common-value auction, the “acquiring a company” game shares the informational
features of common-value auctions so that a WC phenomenon can arise.

8Pevnitskaya (2008) investigates whether inconsistent beliefs can explain behavior in private value
auctions.

9Note that for bidding one’s signal to be a best response, it suffices that a player believes that
others never make a weakly dominated bid, without any need for common knowledge of rationality.
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The most interesting case is x < b ≤ 10. This case constitutes a WC - subjects

are bidding above NE and, to the extent that other subjects are doing the same, may

lose money.

The maximal game is particularly suitable for testing whether the WC can be ex-

plained by belief-based models. In particular, because the game is two-step dominance-

solvable, x < b ≤ 10 is weakly dominated (by b = x) unless a player believes that

others are playing weakly-dominated strategies, i.e. are underbidding (at least for

some signals). This puts a strain on belief-based models as possible explanations

for overbidding. Therefore, to the extent that we observe the WC in the maximal

game, belief-based models are less plausible explanations than in other common-value

auctions.

It is nevertheless possible that subjects overbid because they believe that others

are underbidding. For example, we will show that this is the case for players in a CE

as well as for L1 players in the level-k model. Our treatments provide a multipronged

approach to testing this possibility. This approach does not rely on belief elicitation

which raises issues of truthful reporting and may change subjects’ cognitive processes.

In part I of our Baseline treatment, we let each subject bid in 11 two-bidder

auctions (without any feedback). In part II, each subject participates in another

11 auctions. However, this time she bids against the computer which uses her bid

function from part I. If subjects (for all signals) overbid in part I, then their best-

response in part II will be to start bidding b = x, or at least to shift their bids

downwards. If we see a downward shift of bids in part II, it suggests that subjects are

being strategic by responding to the behavior of the other player, at least when this

behavior is made salient through the fact that it is their own behavior from part I.

Such a change in behavior in part II would leave hope for belief-based models. On the

other hand, if overbidding is not corrected downwards in part II, then this seriously

undermines any belief-based explanations of overbidding in part I.

In part I of the Baseline treatment, we find that the largest proportion of bids is

of the form x < b ≤ 10 so that the WC is alive and well. More importantly, of those

subjects who (predominantly) overbid in part I, only a minority switch in part II to

(predominantly) bidding b = x or b < x. The majority continue to (predominantly)

overbid in part II without any tendency for a downward correction of bids. These
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results continue to hold when we explicitly show subjects their bid functions from

part I in part II (which we do in our ShowBidFn treatment).

In our MinBid treatment, we take a different approach to testing the validity

of belief-based explanations of the WC. This treatment differs from the Baseline

treatment only in that subjects are explicitly not allowed to underbid. In the MinBid

treatment, overbidding is weakly dominated and can hardly be explained by belief-

based models. Despite that, the frequency of overbidding in part I is similar to the

frequency of overbidding in the Baseline and ShowBidFn treatments. Moreover, the

(average) magnitude of overbidding in part I of the MinBid treatment, on the one

hand, and of the Baseline and ShowBidFn treatments, on the other, is practically

identical.

In addition, in all three treatments, b > 10 is not uncommon. Such bids fall prey

to the WC, but because they are weakly dominated, they can hardly be explained by

belief-based models.

Our experimental results cast serious doubts on any belief-based explanations

of the WC in initial periods of play in the maximal game. These results, together

with Charness and Levin (forthcoming), strongly suggest that the WC, at least in

initial periods of play in the laboratory, represents a more fundamental departure

from NE than a mere inconsistency of beliefs. More generally, our results cast doubt

on subjects forming beliefs and best-responding to them in initial periods of play in

games of incomplete information.

Finally, we also consider whether Quantal Response Equilibrium (McKelvey and

Palfrey (1995)) could explain behavior in our experiment. QRE relaxes the require-

ment for best-responding rather than the consistency of beliefs, and the maximal

game is not specifically designed to test it. Nevertheless, we find evidence which is at

odds with QRE.

We proceed as follows. In section 2, we present the maximal game and derive the

relevant theoretical predictions. In section 3, we describe our experimental design

and in section 4 we examine the experimental data. In section 5 we consider QRE.

Section 6 concludes.
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2 Theoretical Considerations

We begin by describing the maximal game. There are n bidders, each of which

privately observes a signal Xi that is i.i.d. from a distribution F (·) on [0, 10]. We

make no assumptions on F (·). Let Xmax = max({Xi}n
i=1) be the highest of the n

signals. Let xi and xmax denote particular realizations of Xi and Xmax, respectively.

Given (x1, . . . , xn), the ex-post common valuation of the bidders in the maximal game

is v(x1, . . . , xn) = xmax.

Bidders bid in a second-price auction where the highest bidder wins, earns the

common-value, xmax, and pays the second highest bid. In case of a tie, the winning

bidder is determined randomly with all tying bidders getting the object with equal

probability.

Let bi(·) denote player i’s bid function. Also, let x−i and b−i be particular profiles

of signals and bids, respectively, for players other than i. Given signal xi, a bid b

is weakly dominated for player i iff there is a bid b′, such that (i) for any x−i and

b−i, bidding b′ is no worse than bidding b, and (ii) for some x−i and b−i, bidding b′ is

strictly better than bidding b. A bid function, bi(·), is weakly dominated iff for some

xi, bi(xi) is a weakly dominated bid. We can now state our first result.

Proposition 1 b(xi) = xi is the unique bid function remaining after two rounds

of iterated deletion of weakly dominated bid functions. In the first round, all bid

functions bi(·), such that bi(xi) < xi for some xi, are deleted. In the second round,

all bid functions bi(·), such that bi(xi) > xi for some xi, are deleted.

The proof is in the appendix. Here, we give the intuition. Underbidding is weakly

dominated since, under the second-price rule, one could lose the auction at a price

below one’s signal even though the value of the object is greater than or equal to

one’s signal. Given that no one underbids, bi(xi) > xi is weakly dominated for any

xi, because, in case the highest bid among others is between xi and bi(xi), i makes

non-positive (and possibly negative) profits.

That bidding one’s signal is a NE, follows directly from proposition 1. In fact, we

can say more than that (the proof is in the appendix)10:

10Under standard assumptions on F (·), we could simply invoke proposition 1 in Pesendorfer and
Swinkels (1997), so that no proof would be necessary. However, these assumptions do not hold in
the case of the discrete distribution in our experiment.
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Proposition 2 The bid function b(xi) = xi is the unique symmetric NE (including

mixed strategies).

We have shown that overbidding is weakly dominated if one believes that others

do not use weakly dominated bid functions and that overbidding cannot be part of a

symmetric NE.11 However, overbidding can arise within the level-k model and within

CE.

First, let us consider the level-k model. In this model, level-0 (L0) players bid

in some pre-specified way and level-k (Lk) players (k = 1, 2, . . .) best-respond to

a belief that others are Lk−1. For normal-form games with finite actions in the

literature, L0 is modeled as choosing each action with equal probability. For auction

settings, Crawford and Iriberry (2007) have two versions of L0. The Random L0

(RL0), regardless of its signal, bids uniformly over all bids between the minimal and

maximal value of the object (i.e. in [0, 10] in our settings), and the Truthful L0 (TL0)

bids its signal. RLk/TLk (k ≥ 1) best-respond to RLk−1/TLk−1. Below, we show

that TL1 and RL1 can bid above their signals. First, let us consider TL1.

Proposition 3 TL1 can use any bid function bTL1(·), with bTL1(xi) ≥ xi, ∀xi.

The proof is in the appendix.12 It rests on the fact that bidding above one’s signal

cannot lead to negative profits, since the second highest price cannot be higher than

xmax (others are bidding their signals).13 Now, let us consider RL1.

Proposition 4 The bid function of RL1 is bRL1(xi) = E(Xmax|Xi = xi) ≥ xi. If

F (xi) < 1, the inequality is strict.14

The proof is in the appendix. It hinges on the fact that, because an RL0’s bid

is uninformative about its signal, RL1 cannot draw any inference about Xmax from

11In our experiment, matching of subjects is anonymous and there is no feedback, so that asym-
metric Nash Equilibria do not seem plausible.

12This proposition implies than, when all others are playing the symmetric NE, player i can bid
anything greater than or equal to her signal.

13Because the behavior of a TL1 is not uniquely determined, neither is the behavior of a TLk for
k ≥ 2. The point, however, is that a TL1 can rationalize overbidding (and even bidding above 10).

14If signals have the discrete uniform distribution on the set {0, 1, 2, . . . , 10} and there are two
bidders (this is relevant for our experiment), then bRL1(xi) = E(Xmax|Xi = xi) = x2

i +xi+110
22 . This

is greater than xi ∀xi ∈ [0, 10], strictly so if xi < 10.
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winning the auction.15

Let us turn to Eyster and Rabin’s CE. In a chi-CE (χ ∈ [0, 1]), players are assumed

to best respond to other players’ behavior in a certain sense. Each player i believes

that with probability χ each other player j chooses a bid that is type-independent,

and which is distributed according to the ex ante distribution of player j’s bids. In

addition, players believe that with probability 1−χ each other player j chooses a bid

according to player j’s actual type-dependent bid function. Thus, χ captures players’

level of “cursedness”: if χ = 0, we have a standard Bayesian Nash equilibrium, and if

χ = 1, players draw no inferences about other players’ types.16 Based on proposition

5 in Eyster and Rabin (2005), we can state:

Proposition 5 Assuming that Xi has a strictly positive pdf, the following bid func-

tion constitutes a symmetric χ-CE:

bCE(xi) = (1 − χ)xi + χE(Xmax|Xi = xi)

Note that when χ = 0, the proposed CE reduces to Milgrom and Weber’s (1982)

equilibrium for second-price common-value auctions. When χ = 1, players bid

E(Xmax|Xi = xi) because, just like RL1 players, they draw no inference from winning

the auction about others’ signals. In general, the second term in bCE(·) represents

the fact that players in a χ-CE underappreciate the information content of winning.

Note that bCE(xi) ≥ xi with strict inequality whenever χ > 0 and F (xi) < 1.

Thus, CE can also rationalize overbidding.17

15A RL2 can use any bid function b(·), such that b(xi) < E(Xmax|Xj = 0) for all xi <
E(Xmax|Xj = 0) and b(xi) = xi for all xi ≥ E(Xmax|Xj = 0). Because the behavior of RL2

is not uniquely determined, neither is the behavior of a RLk for k ≥ 3. The point, however, is that
a RL1 can rationalize bidding above the signal.

16There are versions of CE in which each player has a different χ (and thus a different level of
cursedness). Although, we could derive predictions for the maximal game in such cases, our point
is merely to show that CE, even without allowing for subject-specific χ, can lead to overbidding.

17Although the assumption of a strictly positive pdf is not satisfied for the discrete distribution in
our experiment, we suspect that the proposition nevertheless holds. However, we did not go as far
as formally proving this because our data does not support belief-based explanations of overbidding.
Therefore, we run little danger of incorrectly explaining overbidding through CE.
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3 Experimental Design

3.1 Treatments

The experiment consists of three treatments: the Baseline, ShowBidFn, and MinBid

treatments, which we now describe.

The Baseline treatment consists of two parts. In part I, subjects play the max-

imal game for 11 periods. In each period, subjects are randomly and anonymously

rematched in separate two-player auctions. Each subject’s signals for the 11 auctions

are drawn without replacement from the set {0, 1, 2, . . . , 10}.18 In a given auction,

each signal which was not received by the subject in a previous auction has an equal

chance of being drawn and is independent of the other bidder’s signal. Subjects can

bid anything between 0 ECU and 1000000 ECU.19 Subjects receive no feedback what-

soever until the experiment is over. This minimizes any effects from learning. It also

guarantees that, in any auction, each bidder’s prior over the other bidder’s signal is

the discrete uniform distribution on the set {0, 1, 2, . . . , 10} (since no subject sees any

other subject’s past signals).

Part II is similar to part I. The only difference is that each subject i bids against

the computer rather than against another subject. The computer, which “receives” a

signal just like any human bidder, mimics i’s behavior from part I by using the same

bid function that i used in part I. In particular, if the computer receives signal y, it

makes the same bid that i made in part I when she received signal y. In effect, in

part II each subject is playing against herself from part I.

Consider a subject i who overbids (for all signals) in part I.20 From proposition

1, it follows that bidding her signal is a best-response in part II. Underbidding may

not be a best-response, but it is at least a response in the right direction. If we

see i start bidding her signal or underbidding in part II, this would suggest she is

(best-)responding to a belief about the behavior of the other player, at least when the

18Our design for part I ensures that each subject will receive each of the eleven signals from the
set {0, 1, 2, . . . , 10} exactly once. In effect, we are eliciting subjects’ bid functions. This simplifies
the design of part II.

19We thought about not allowing bids above 10. However, this seemed artificial so we opted for
no such restriction.

20To be precise, overbidding is not possible for signal 10: a subject can either underbid, bid her
signal, or bid above 10. Therefore, the correct statement is “a subject i who overbids for all signals
0-9 and bids above 10 for signal 10”.
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other player is herself from part I so that the correct belief is obvious. This would at

least be consistent with belief-based models.

What if in part II subject i continues overbidding, or even starts bidding above 10?

Note that, even though bidding her signal is a best-response, continuing to overbid

in part II could also be a best-response.21 However, for this to be the case, i needs

to shift her bid function in part II, bII
i (·), downwards in a way that, for all signals

xi, none of the bids she made in part I lies in (xi, b
II
i (xi)].

22 Therefore, if i starts

bidding above 10 in part II, we can be quite sure she is not best-responding to her

behavior from part I. If i continues overbidding in part II, we would be sceptical

that she is best-responding to her behavior from part I - after all, why not simply

bid her signal instead of shifting her bid function down in a seemingly complicated

way. Nevertheless, in our data analysis we will need to verify that any continued

overbidding in part II is not part of a best-response.

Say, subject i continues overbidding in part II without best-responding. It is still

important to check whether she corrects her overbidding from part I downwards in

part II. Even if the size of such a correction is not optimal, any downward shift in

bids would suggest that i is at least responding in the right direction to her behavior

from part I. Therefore, in our analysis, we will look not only at whether overbidding

persists in part II, but also at whether there is a downward correction.

What can we conclude about belief-based models if overbidding persists without

any downward correction in part II so that subjects don’t seem to be (best-)responding

to their behavior from part I? Belief-based models, such as the level-k model and CE,

could explain overbidding in part I by relaxing the requirement that beliefs are correct.

However, such models are much less plausible explanations for overbidding in part II

given that subjects in part II are unlikely to have incorrect beliefs about their own

bidding behavior in part I (which was just a few minutes ago).23 Therefore, if in part

II overbidding persists without any downward correction even though belief-based

models are unlikely explanations, then there is little reason to think that overbidding

in part I is driven by beliefs.

21For example, if i bids 10 for all signals in part I, bidding 5 + xi

2 is a best response in part II.
22Otherwise, there’s a positive probability she wins the auction and loses money.
23For example, to invoke the level-k model, one has to assume that subjects erroneously believe

in part II that they played like a TL0/RL0 in part I. To invoke cursed beliefs, one has to assume
that subjects fail to fully recognize in part II that they bid differently for different signals in part I.
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One could still argue that for some reason subjects in part II simply ignore their

behavior from part I or perhaps are unable to recall it24, and instead form TL1/RL1

or cursed beliefs. In order to stress-test whether overbidding persists without any

downward correction in part II, we introduce our ShowBidFn treatment. This treat-

ment is the same as the Baseline treatment with the sole difference that in part II we

explicitly show subjects their bid functions from part I. In this treatment, it seems

even more implausible that a subject in part II should have incorrect beliefs about

her own behavior in part I.

Our MinBid treatment provides yet another test of the persistence of overbidding

in a context where belief-based explanations seem implausible. This treatment is the

same as the Baseline treatment with the sole difference that subjects are not allowed

to underbid. Even in part I of this treatment, any bid above one’s signal is weakly

dominated by bidding one’s signal. Hence overbidding can hardly be explained by

belief-based models.25

The MinBid treatment is very useful because we do not need to rely on indirect

evidence from part II to conclude that overbidding in part I is not belief-driven.

However, it is possible that, because bidding one’s signal is on the boundary of the set

of admissible bids, this may bias subjects towards bidding above their signals. Note,

however, that if this bias is driving overbidding in part I of the MinBid treatment

and belief-based models are driving overbidding in part I of the Baseline and the

ShowBidFn treatment, then there is no reason that the frequency and (average)

magnitude of overbidding should be similar in the MinBid treatment and in the

other two treatments.

3.2 Procedures

We conducted three sessions of the Baseline (62 subjects), two sessions of the Show-

BidFn (46 subjects) and one session of the MinBid treatment (26 subjects).26

Subjects in the experiment were students at The Ohio State University who were

24Note that a subject who overbid (for all signals) in part I need not remember her exact bid
function from part I. It suffices if she remembers that she overbid (for all signals) in part I.

25A TL1 could still overbid, but unlike in part I of the Baseline or the ShowBidFn treatment, this
would be weakly dominated.

26We also conducted a pilot session for the Baseline treatment (26 subjects).
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enrolled in undergraduate Economics classes. The sessions were held at the Experi-

mental Economics Lab at OSU and lasted around 45 minutes. At the start of each

session, the experimenter read the instructions for part I aloud as subjects read along,

seated at their computer terminals. After that, subjects did a practice quiz. Experi-

menters walked around the room checking subjects’ quizzes, answering questions and

explaining mistakes.27 After we conducted part I of the relevant treatment, we went

over the instructions for part II. After part II, subjects were paid. Subjects’ earnings

consisted of a $5 show-up fee, plus 10 ECU starting balances, plus their cumulative

earnings from the 22 auctions28, converted at a rate of $0.5 per ECU. Average earnings

were $18.53, $18.03, and $15.53 in the Baseline, ShowBidFn, and MinBid treatment,

respectively. The instructions for the Baseline treatment are in the appendix.29 In

the appendix, we also provide a printout from the screen of a subject in part II of

the ShowBidFn treatment. The screen in part I of all three treatments and part II

of the Baseline and MinBid treatments is exactly the same, but without the table

showing the subject’s bid function from part I. The experiment was programmed and

conducted with the software z-Tree (Fischbacher (2007)).

4 Results

We start by studying behavior in parts I and II within each treatment. We first

place each bid b, given a subject’s signal x, in one of the following four categories:

(i) b < x − 0.25, (ii) x − 0.25 ≤ b ≤ x + 0.25 which we simply denote by b ∼ x, (iii)

x + 0.25 < b ≤ 10, and (iv) b > 1030. That is, we count all bids within 0.25 ECU of

one’s signal as if they were precisely equal to the signal, thus avoiding too strict an

interpretation of bidding one’s signal.31 Based on this, we look at the percentages of

bids that fall in each category and at how these percentages change from part I to

27We had a strong sense that the practice quiz was very useful for ensuring that subjects under-
stood the task.

28In case a subject made losses which could not be covered by the 10 ECU starting balances, she
was paid just her $5 show-up fee.

29The instructions in the other two treatments are very similar and are available upon request
from the authors.

30Actually, for signal x=10, a bid needs to be above 10.25 in order to fall in category (iv); a bid
9.75 ≤ b ≤ 10.25 falls in category (ii). We ignore this in our notation.

31Counting only bids which are precisely equal to the signal in category (ii) (and adjusting the
other categories appropriately) does not change any of our results.
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b < x − 0.25 b ∼ x x + 0.25 < b ≤ 10 b > 10
Part I 16.1% 21.1% 41.6% 21.1%
Part II 14.2% 26.1% 37.2% 22.4%

Table 1: Percentage of bids in each category for the Baseline treatment.

part II. Extending our analysis at the individual level, we classify subjects according

to the category in which their bids predominantly fall, and we study how subjects’

behavior changes from part I to part II. After that, we turn to the question of how

behavior in part I compares between the Baseline and ShowBidFn treatments, on the

one hand, and the MinBid treatment, on the other.

4.1 Percentage of Bids in each Category

Table 1 shows the percentage of bids in each category in part I and part II in the

Baseline treatment. Based on the table, we can state our first result.

Result 1

(1) In part I, the largest percentage of bids are of the form x+0.25 < b ≤ 10 (41.6%).

(2) In part I, a considerable percentage of bids are weakly dominated, i.e. they are

of the form b < x − 0.25 or b > 10 (37.2%).

(3) In part II, the largest percentage of bids remain of the form x < b ≤ 10 (37.2%).

Point (1) shows that overbidding is widespread. Point (2) shows that subjects are

even making weakly dominated bids quite often. Point (3) suggests that overbidding

largely persists in part II.

Tables 5 and 6 in the appendix are the analogues of table 1 for the ShowBidFn

and MinBid treatment, respectively. As can be seen from the tables, result 1 also

holds for these two treatments.32

32In the MinBid treatment, weakly dominated bids occur less frequently, largely because subjects
cannot underbid.
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Part I / II Underbidders Signal-bidders Overbidders Above-10-bidders Indeterminate

Underbidders 2 0 2 1 0 5
Signal-bidders 0 5 3 1 0 9
Overbidders 1 5 14 1 4 25
Above-10-bidders 2 1 1 6 0 10
Indeterminate 2 2 3 5 1 13

7 13 23 14 5

Table 2: Transition table for the Baseline treatment.

4.2 Subject Classification

Table 1 does not reveal whether all subjects make bids in each category with the same

frequency or whether each subject bids predominantly in one of the four categories.

It also does not reveal whether the subjects who overbid in part I are the same ones

who overbid (or even bid above 10) in part II.33 To shed light on these issues, we

classify subjects (separately for each part of each treatment) in the following way:

Underbidders/Signal-bidders/Overbidders/Above-10-bidders are those who make bids

of the form b < x − 0.25/b ∼ x/x + 0.25 < b ≤ 10/b > 10 in at least 6 (out of 11)

auctions; subjects who are neither of the preceding are classified as Indeterminate.34

In light of our discussion in section 3, note that if Overbidders from part I be-

come Signal-bidders or Underbidders in part II, this would suggest that they are

(best-)responding to their behavior from part I. If, on the other hand, they remain

Overbidders or even become Above-10-bidders in part II, this would cast doubt on

any best-response behavior in part II.

Table 2 shows, for the Baseline treatment, how many subjects were in each class

in part I (last column) and part II (last row). The table also shows how subjects

switched between classes from part I to part II. For example, the entry in the first

row and the third column shows that 2 subjects who were Underbidders in part I

became Overbidders in part II. Based on the table, we can state:

33It could be that overbidding in part II comes from subjects who are best-responding to the fact
that they underbid in part I.

34We also conducted our analysis by using 7 or 8 (instead of 6) class-consistent decisions as the
cutoff for a player to be assigned to a class. This didn’t affect the analysis much apart from increasing
the number of Indeterminate subjects.
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Result 2

(1) In part I, Overbidders are the largest class (40.3%).

(2) In part I, a large percentage of subjects make a weakly dominated bid (b <

x − 0.25 or b > 10) in at least 6 (out of 11) auctions (30.7%).35

(3) Only a minority of Overbidders from part I become Signal-bidders or Underbid-

ders in part II (24%).

(4) The majority of Overbidders from part I either remain Overbidders or even

become Above-10-bidders in part II (60%).

Result 2 is in line with result 1. In addition, it shows that only a minority of

Overbidders from part I (best-)respond in part II by becoming Signal-bidders or

Underbidders.36 Instead, the majority of them remain Overbidders or even become

Above-10-bidders.

Tables 7 and 8 in the appendix are the analogues of table 2 for the ShowBidFn

and MinBid treatment, respectively. As can be seen from the tables, result 2 also

holds for these two treatments.37

It is fairly clear that the Overbidder from part I who becomes an Above-10-bidder

in part II is not best-responding in part II.38 However, we need to make sure that

subjects who are Overbidders in parts I and II are indeed not best-responding in

part II. We would also like to check whether they are at least responding in the right

direction by lowering their bids downwards.

The second column in table 3 shows, for each subject who was an Overbidder

in parts I and II of the Baseline treatment, what percent of bids in part II is a

35This percentage includes all Underbidders and Overbidders, as well as 4 Indeterminate subjects.
36The one Overbidder from part I who becomes an Underbidder in part II foregoes 7.46 ECU in

expected profits by not behaving optimally in part II. The five Overbidders from part I who become
Signal-bidders in part II forego on average only 0.53 ECU in expected profits in part II.

37In the ShowBidFn/MinBid treatment the percentage of subjects who make a weakly dominated
bid in at least 6 (out of 11) auctions is 28.3%/7.8%. In the MinBid treatment, the percentage is
smaller largely because subjects cannot underbid.

38In fact, she foregoes 29.64 ECU in expected profits by not behaving optimally in part II.
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Subject ID % of bids in part
II which are a best-
response

foregone expected
profits (in ECU) in
part II

% of x+ 0.25 < b ≤
10 from part I re-
duced in part II

% of x+ 0.25 < b ≤
10 from part I in-
creased in part II

28 45% 0.27 40% 0%
29 9% 2.77 20% 50%
38 36% 1.23 43% 57%
46 27% 6.23 14% 71%
55 18% 3.00 75% 13%
57 36% 2.59 29% 71%
59 9% 15.95 13% 75%
66 9% 4.05 20% 60%
75 9% 5.00 67% 33%
76 9% 6.00 38% 50%
80 18% 7.55 29% 57%
82 45% 2.68 57% 14%
84 9% 17.32 0% 88%
86 36% 4.09 50% 0%
Mean 23% 5.62 35% 46%

Table 3: Best-response behavior in part II for subjects who are Overbidders in parts
I and II in the Baseline treatment.

best-response to part I behavior. The third column shows how much each subject is

foregoing in expected profits from not bidding optimally in part II. From the table,

we see that subjects are seldom best-responding and are foregoing, on average, 5.62

ECU in expected profits in part II. This is 15% of average earnings in the Baseline

treatment. The fourth/fifth column of table 3 shows for what percent of bids of the

form x+0.25 < b ≤ 10 from part I, the corresponding bid in part II (i.e. the one made

for the same signal) is strictly lower/higher. As can be seen from the table, subjects

are, on average, even more likely to increase a bid of the form x+0.25 < b ≤ 10 from

part I in part II than they are to reduce it.

Figure 1 gives us another view of whether subjects who are Overbidders in parts

I and II correct their bidding downwards in part II. Here, we plot, for each signal,

the median bid in part I (circles) and part II (stars).39 Based on the figure, we see no

downward correction of bids in part II. Let us summarize our findings regarding the

(best-)response behavior in part II of subjects who are Overbidders in parts I and II:

39We plot median, rather than average, bids because averages are distorted by bids above 10
(which are sometimes very high, even up to 1000000).
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Figure 1: Median bids in parts I (circles) and II (stars) for subjects who are Over-
bidders in parts I and II of the Baseline treatment.

Result 3 For subjects who are Overbidders in parts I and II, we find that:

(1) In part II, they forego, on average, substantial expected profits (5.62 ECU).

(2) In part II, there is no evidence of a downward correction of bids.

Tables 9 and 10 in the appendix are analogous to table 3 for the ShowBidFn and

MinBid treatment, respectively; figures 4 and 5 are analogous to figure 3 for the

ShowBidFn and MinBid treatment, respectively. Based on these tables and figures,

we see that result 3 also holds for the ShowBidFn and MinBid treatments.

4.3 Baseline and ShowBidFn vs. MinBid

If overbidding in part I of the Baseline and ShowBidFn treatments is driven by a

belief that others are underbidding, we would expect a decrease in the frequency

and/or (average) magnitude of overbidding in part I of the MinBid treatment.
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b < x − 0.25 b ∼ x x + 0.25 < b ≤ 10 b > 10
Baseline and ShowBidFn 16.5% 22% 42.8% 18.7%
MinBid 0% 28.3% 60.5% 11.2%

Table 4: Percentage of bids in each category for Baseline and ShowBidFn vs. MinBid.
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Figure 2: Average bids in part I of Baseline and ShowBidFn (circles) and MinBid
(stars) (based on bids of form x + 0.25 < b ≤ 10).

Table 4 shows the percentage of bids in each category for the Baseline and Show-

BidFn treatments, on the one hand, and the MinBid treatment, on the other.40 We

see that overbidding is in fact even more frequent in the MinBid than in the other two

treatments. This is probably partially due to the fact that in the MinBid treatment

underbidding is impossible so that all bids are distributed in three, rather than four,

categories. Given this, the frequencies of overbidding seem quite comparable.

40We pool the data from part I of the Baseline and ShowBidFn treatments because part I is the
same in both treatments.
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How about the magnitude of overbidding? Figure 2 shows, for each signal, the

average bid of the form x + 0.25 < b ≤ 10 in part I of the Baseline and ShowBidFn

treatments (circles) and in part I of the MinBid treatment (stars). Average bids are

astonishingly close.41 We can summarize:

Result 4 Relative to the Baseline and ShowBidFn treatments, we find no evidence

in the MinBid treatment of:

(1) a lower frequency of bids of the form x + 0.25 < b ≤ 10;

(2) a reduction in the average size of bids of the form x + 0.25 < b ≤ 10.

This provides additional evidence that overbidding is not driven by beliefs.

5 Quantal Response Equilibrium

In Quantal Response Equilibrium (McKelvey and Palfrey (1995)), players have correct

beliefs about others’ behavior, but choose noisy best-responses. The likelihood of a

particular error depends on how costly that error is as well as on a precision parameter

λ (within the usual logit specification). When λ = 0, subjects choose randomly; as λ

goes to ∞, the probability of choosing a best-response goes to 1.

Our experiment was designed specifically to test belief-based theories in which,

unlike in QRE, subjects best-respond without noise (to possibly inconsistent beliefs).

Although we were not able to solve for QRE in the maximal game, we can still say

something about whether QRE is a plausible explanation of behavior. In particular,

for each subject given her own behavior from part I, we test the hypothesis that in

part II she is choosing randomly (i.e. has precision λ = 0) rather than choosing noisy

best-responses with λ > 0. If we fail to reject this hypothesis for many subjects, this

suggests that assuming noisy best-responses does little to organize behavior in part

II. This would make QRE with λ > 0 (the only interesting case42) a quite unlikely

41Not surprisingly, using random effects regressions, we find no statistically significant differences.
42It is theoretically elegant that QRE nests random behavior as a special case; however, QRE is

an interesting concept only if λ > 0.
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explanation of behavior in part I given that it assumes not only strictly positive

precision in best-responding, but also consistency of beliefs.

We can reject the said hypothesis (at the 5% level) for only 39%/26%/46% of

subjects in the Baseline/ShowBidFn/MinBid treatment.43 This is at odds with QRE.

6 Concluding Remarks

A recent paper by Charness and Levin (forthcoming) already challenged the robust-

ness of belief-based explanations of the WC by finding massive WC behavior in an

individual-choice variant of the “acquiring a company” game. In the current paper, we

investigate whether the WC in initial periods of play can be explained by belief-based

models within the context of an actual auction.

Our experiment is based on the maximal game which has the desirable property

that it is two-step dominance solvable. This allows us to take a multipronged approach

to investigating whether the WC could be explained by belief-based models.

First, overbidding in the maximal game can be rationalized by beliefs only if

players believe that others are playing weakly dominated strategies. This already

puts a strain on any belief-based explanations of the WC. Despite that, we find that

overbidding is widespread.

Second, even if in part I of our treatments subjects are overbidding because they

believe that others are playing weakly dominated strategies, they should still start

bidding their signals, or at least correct their bids downwards, in part II where they

are basically playing against themselves from part I. Only a minority of those subjects

who (predominantly) overbid in part I switch in part II to (predominantly) bidding

their signals or underbidding. The majority continue to (predominantly) bid above

their signals in part II without any downward correction of bids.

These results continue to hold in our ShowBidFn treatment in which we explicitly

show subjects their bid functions from part I in part II.

Finally, explicitly not allowing subjects to underbid, as we do in our MinBid

43The hypothesis is tested via a score test. In finding the likelihood of a subject’s bids in part II
(under the null of λ = 0), we needed to specify the range of all possible bids. Taking this range to
be [0, 1000000] was impractical. Instead, we took this range to be [0, A] and truncated bids in part
II at A, where A was set at 10. Setting A=15 slightly decreases the number of subjects for whom
we can reject the null.
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treatment, makes overbidding weakly dominated. Despite that, overbidding in part

I persists in the MinBid treatment with a similar frequency and the same (average)

magnitude as in the other two treatments.

Overall, our study suggests that the WC, at least in initial periods of play in the

laboratory, represents a more fundamental departure from NE than a mere inconsis-

tency of beliefs.

This begs the question: what does explain the WC? In the rich literature on over-

bidding in private-value and common-value auctions, a line of research uses models

with boundedly rational agents (with some limits on cognitive ability) and/or with

non-standard preferences. To review this research takes us beyond the scope of this

study.44 Instead, let us conclude with a few speculative remarks.

Kagel, Harstad and Levin (1987) find systematic bidding above values in private-

value sealed-bid second-price auctions, even though bidding one’s value is a dominant

strategy.45 At the same time, bidders converge almost immediately to the dominant

strategy in the strategically equivalent English auction. A plausible explanation of

this, given by the authors, is that realizing the dominant strategy in the sealed-bid

auction requires non-trivial reasoning through various contingent scenarios (regarding

the possible order of one’s value, bid, and others’ bids). In contrast, the English

auction eliminates the need for contingent reasoning: as the clock-price ascends,

simply answering correctly the question “should I stay or drop out?” leads to the

dominant strategy. In the context of their individual-choice variant of “acquiring a

company” game, Charness and Levin (forthcoming) suggest that the “origin” of the

WC also lies in an inability of subjects to engage in contingent reasoning.46 Based on

these studies, we conjecture that the WC is primarily driven by an inability to realize

that the expected value of the object should be computed contingent on winning.

This inability constitutes a departure from NE at a more fundamental level than is

present in belief-based models. The latter presuppose that subjects can form a clear

enough picture of all possible contingencies in order to form (and best-respond to) a

belief. Of course, more research is needed to verify this conjecture.

44See in Kagel (1995); and Kagel and Levin (2002, forthcoming).
45This result has been replicated several times (see Kagel (1995), Kagel and Levin (forthcoming)).
46Ivanov, Levin and Peck (forthcoming) suggest that subjects’ capacity to think about various

scenarios in the future (subjects’ foresight) plays a key role in determining whether subjects wait to
learn from others in an endogenous timing investment game.
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7 Appendix: Proofs

Proof of proposition 1

First round of deletion of weakly dominated bid functions: Under the second-price

rule, for any xi, any bid strictly below xi is weakly dominated (by bidding xi) since

one could lose the auction at a price below xi even though xmax ≥ xi. Therefore, we

can delete all bid functions, such that bi(xi) < xi for some xi.

Second round of deletion of weakly dominated strategies: Suppose that bidder i

with signal xi considers bidding b+ > xi. In the event that bidding xi wins, bidding

b+ rather than xi doesn’t matter. In the event that bidding b+ doesn’t win, bidding

b+ rather than xi also doesn’t matter.

Now consider the third possible event: that bidding xi doesn’t win but bidding

b+ does. Then, bidder i pays the highest bid among the other n− 1 players, b̂, where

b̂ ≥ xmax. The inequality holds because b̂ ≥ xi (otherwise xi would have won) and

because none of the other bidders ever underbid (by the first round of deletion of

weakly dominated bid functions). But then i would make non-positive profits by

bidding b+ whereas she would make zero profits by bidding xi. Moreover, if b̂ is

strictly above xmax, then b+ makes strictly negative profit. Therefore b+ is weakly

dominated and we can delete all bid functions, such that bi(xi) > xi for some xi.

Proof of proposition 2

A strategy for player i is a probability measure H on [0, 10]× [0,∞) with marginal

cdf on the first coordinate equal to F (·) . A pure strategy is a bid function b : [0, 10] 	→
[0,∞), such that H({x, b(x)}x ∈[0,10]) = 1. That b(x) = x is a NE, follows directly

from proposition 1. Here, we prove uniqueness among all symmetric NE.47

Assume that H is a symmetric NE. Let L = {(x, b)|x ∈ [0, 10], b < x} and

U = {(x, b)|x ∈ [0, 10], b > x}. That is L and U are the sets in [0, 10] × [0, 10]

strictly below and strictly above the 45o line, respectively. We need to show that

H(L ∪ U) = 0, or equivalently that H(L) = 0 and H(U) = 0.

47Of course, any bid function which differs from b(x) = x only on a set of measure zero will also
be a symmetric NE.
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Figure 3:

First, assume H(L) > 0. Let sk(·) be the step function, defined by sk(x) =
10
k
int(kx

10
), where int(·) gives the integer part of a real number (s3(·) is depicted in the

left graph in figure 3). Let Ak = {(x, b)|b ≤ sk(x)} ∩L, i.e. Ak is the area in L below

the sk(·) function. Note that k′ < k′′ implies A2k′ ⊂ A2k′′ and that L =
⋃

k≥1 A2k .

Therefore, H(L) = limk→∞H(A2k) > 0.48 Therefore, for some k, H(A2k) > 0.

Because A2k consists of finitely many rectangles like ABCD in figure 3 (ABCD

includes its boundaries, except for point D), it follows that at least one of these

rectangles has positive measure. Assume, without loss of generality, H(ABCD) > 0.

We will show that, for a positive measure (wrt H(·)) of points (x, b) ∈ ABCD,

bidding b given signal x is strictly worse than bidding x because there is a positive

probability that one will lose the auction to a bid strictly below x. Let g(̃b) =

H({(x, b)|(x, b) ∈ ABCD, b ≤ b̃}). Note that g(·) is a non-decreasing function

and that g(b) ≥ 0 and g(b) > g(b), where b = min({b|(x, b) ∈ ABCD}) and

b = max({b|(x, b) ∈ ABCD}).
If g(b) > 0, then {(x, b)|(x, b) ∈ ABCD, b = b} has positive measure. For any

point (x, b) in this set, bidding b given signal x is strictly worse than bidding x since

there is a positive probability of a tie at b.

Assume g(b) = 0. If g(·) is continuous, choose b∗ ∈ (b, b), such that 0 < g(b∗) <

48To see this, let B2 = A2 and Bl = Al/Al−1 for l ≥ 3. Then, H(L) = H(
⋃

l≥2 Al) =
H(

⋃
l≥2 Bl) =

∑
l≥2 H(Bl) = limk→∞

∑k
l=2 H(Bl) = limk→∞H(Ak) = limk→∞H(A2k). The

third and fifth equalities follow from the (countable) additivity of probability measures.
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g(b).49 Then {(x, b)|(x, b) ∈ ABCD, b ≤ b∗} and {(x, b)|(x, b) ∈ ABCD, b > b∗} each

have positive measure. But then for a positive measure of points (x, b) (the points in

the former set), bidding b given signal x is strictly worse than bidding x since there

is a positive probability of losing the auction to a bid b, such that b∗ < b < x.

If g(·) is not continuous, then it has a jump point50 at, say, b∗∗. Therefore,

{(x, b)|(x, b) ∈ ABCD, b = b∗∗} has positive measure. For any point (x, b) in this set,

bidding b∗∗ given signal x is strictly worse than bidding x since there is a positive

probability of a tie at b∗∗. This proves that we cannot have H(L) > 0.

The proof that we cannot have H(U) > 0 is analogous so that only a brief outline

is provided. Assume that H(U) > 0. Let Sk(·) be the step function, defined by

Sk(x) = sk(x + 10
k
) (S3(·) is depicted in the right graph in figure 3). Then, we show

analogously to above that a rectangle of the sort EFGK in figure 3, has positive

measure. Then, defining h(̃b) = H({(x, b)|(x, b) ∈ EFGH, b ≤ b̃}), we show that for

a positive measure (wrt H(·)) of points (x, b) ∈ EFGH , bidding b given signal x is

strictly worse than bidding x because there is a positive probability that one will win

the auction at a price strictly above xmax.

Proof of proposition 3

By proposition 1, bidding one’s signal is a best-response if others are TL0’s. We

now show that, if the other players are TL0’s, then bidding above one’s signal is no

worse than bidding one’s signal.

Suppose that bidder i with signal xi considers bidding, b+ ≥ xi. In the event that

bidding xi wins, bidding b+ rather than xi doesn’t matter. In the event that bidding

b+ doesn’t win, bidding b+ rather than xi also doesn’t matter.

Now consider the third possible event: that bidding xi doesn’t win but bidding

b+ does. Then, bidder i pays the highest bid among the other n− 1 players, b̂, where

b̂ = xmax. The equality follows because (i) others are bidding their signals so that b̂

equals the highest signal among them, and (ii) b̂ ≥ xi (otherwise xi wins). But then

i makes zero profits both by bidding b+ and by bidding xi.

49This can clearly be done by the intermediate value theorem.
50Any nondecreasing function, is either continuous, or has countably many jump points.
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Proof of proposition 4

Let B̂ denote the highest bid among the n − 1 subjects other than i. Given

Xi = xi, subject i chooses her bid, b, in order to maximize:

E(Payoff|Xi = xi) = prob(B̂ < b|Xi = xi)E(Xmax − B̂|Xi = xi, B̂ < b)

+
1

2
prob(B̂ = b|Xi = xi)E(Xmax − B̂|Xi = xi, B̂ = b)

= prob(B̂ < b)[E(Xmax|Xi = xi) − E(B̂|B̂ < b)]

=
bn−1

10n−1
[E(Xmax|Xi = xi) − n − 1

n
b]

The second equality follows, because (i) prob(B̂ = b|Xi = xi) = 0, (ii) others’ bids

(and B̂ in particular) are not informative about Xmax, and (iii) Xi is not informative

about others’ bids (and about B̂ in particular). The third equality uses facts about

the distribution and expectation of the first-order statistic of n − 1 iid random vari-

ables which have the uniform distribution on [0, 10]. From the last expression, it is

straightforward to verify that the unique optimal bid equals E(Xmax|Xi = xi).
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8 Appendix: Figures and Tables

b < x − 0.25 b ∼ x x + 0.25 < b ≤ 10 b > 10
Part I 17% 23.1% 44.5% 15.4%
Part II 23.3% 22.9% 35.2% 18.6%

Table 5: Percentage of bids in each category for the ShowBidFn treatment.

b < x − 0.25 b ∼ x x + 0.25 < b ≤ 10 b > 10
Part I 0% 28.3% 60.5% 11.2%
Part II 0% 32.9% 51.1% 16.1%

Table 6: Percentage of bids in each category for the MinBid treatment.
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Part I / II Underbidders Signal-bidders Overbidders Above-10-bidders Indeterminate

Underbidders 3 0 0 0 1 4
Signal-bidders 0 5 1 0 1 7
Overbidders 4 0 10 2 2 18
Above-10-bidders 0 1 0 4 0 5
Indeterminate 3 1 5 1 2 12

10 7 16 7 6

Table 7: Transition table for the ShowBidFn treatment.

Part I / II Underbidders Signal-bidders Overbidders Above-10-bidders Indeterminate

Underbidders 0 0 0 0 0 0
Signal-bidders 0 3 0 1 0 4
Overbidders 0 3 14 2 0 19
Above-10-bidders 0 1 1 0 0 2
Indeterminate 0 1 0 0 0 1

0 8 15 3 0

Table 8: Transition table for the MinBid treatment.
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Subject ID % of bids in part
II which are a best-
response

foregone expected
profits (in ECU) in
part II

% of x+ 0.25 < b ≤
10 from part I re-
duced in part II

% of x+ 0.25 < b ≤
10 from part I in-
creased in part II

128 27% 3.00 50% 17%
131 0% 10.41 29% 57%
132 0% 13.64 0% 78%
140 18% 8.05 0% 86%
141 18% 2.82 67% 22%
146 0% 6.32 0% 100%
148 9% 475.36 75% 13%
149 0% 10.50 50% 50%
152 27% 1.91 71% 29%
157 55% 2.77 60% 30%
Mean 15% 53.48 40% 48%

Table 9: Best-response behavior in part II for subjects who are Overbidders in parts I
and II in the ShowBidFn treatment.(Subject 148 has large foregone expected profits
because she bid above 10 on a couple of occasions both in part I and in part II.)
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Subject ID % of bids in part
II which are a best-
response

foregone expected
profits (in ECU) in
part II

% of x+ 0.25 < b ≤
10 from part I re-
duced in part II

% of x+ 0.25 < b ≤
10 from part I in-
creased in part II

89 0% 5.11 50% 0%
92 27% 3.18 14% 57%
95 18% 17.91 0% 100%
96 18% 6.73 22% 22%
97 9% 1.78 33% 33%
98 36% 2.73 50% 33%
99 18% 3.32 57% 14%
100 9% 12.68 0% 44%
104 18% 5.64 14% 29%
106 9% 4.36 0% 86%
107 64% 0.27 90% 0%
112 9% 3.00 50% 10%
113 0% 6.40 0% 100%
114 36% 2.50 33% 50%
Mean 19% 5.40 30% 41%

Table 10: Best-response behavior in part II for subjects who are Overbidders in parts
I and II in the MinBid treatment.
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Figure 4: Median bids in parts I (circles) and II (stars) for subjects who are Over-
bidders in parts I and II of the ShowBidFn treatment.
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Figure 5: Median bids in parts I (circles) and II (stars) for subjects who are Over-
bidders in parts I and II of the MinBid treatment.
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9 Appendix: Instructions for Baseline treatment

This is an experiment in the economics of market decision-making. The National

Science Foundation has provided funds for conducting this research.

This experiment consists of two parts and is expected to last 90 min.

The instructions are simple, and if you follow them carefully and make good

decisions, you may earn a CONSIDERABLE AMOUNT OF MONEY which will be

paid to you in cash at the end of the experiment.

You will receive a $5 show-up fee which is yours to keep. In addition, you will

receive 10 experimental currency units (ECU) starting cash balances for the exper-

iment. You will also have the opportunity to earn ECU in each of the two parts of

the experiment. ECU will be converted into dollars at a rate of $0.5 per ECU (i.e. 2

ECU are worth $1). Your total dollar earnings will equal:

$5 show-up fee + 0.5*(10 ECU starting cash balances + ECU earned in part I

and part II)

Note that your earnings in part I and part II could be negative (i.e. you could

incur a loss) in which case they will be subtracted from your 10 ECU starting cash

balances. However, you will receive your $5 show-up fee no matter what.

Caution: This is a serious experiment and talking, looking at others’ screens, or

exclaiming aloud are not allowed. Should you have any questions please raise your

hand and an experimenter will come to you.
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Part I

1. In part I of this experiment, we will create a series of auctions in which you will

act as bidders for a fictitious item. In each auction, you will be paired randomly with

another bidder. A single item will be auctioned off with the two of you as bidders.

Your pairings will vary from auction to auction and will remain anonymous.

2. In each auction, you will receive a signal (call it X) and the bidder that you are

paired with will also receive a signal (call it Y). X and Y are determined randomly and

will lie between 0 and 10. Each whole number within this interval (i.e. 0,1,2,.9,10)

has an equal chance of being drawn. In addition, the value of X has no bearing on

the value of Y: no matter what the value of X, each whole number between 0 and 10

is equally likely to be the value of Y. The value of the item that is auctioned (call it

V) is determined as THE LARGER of the two signals, X and Y.

Prior to bidding in each auction, you will learn X (but not Y); the bidder you are

paired with will learn Y (but not X).

Example 1: Suppose you learn that X=6 and the bidder you are paired with learns

that Y=4. Then the value of the item is V = 6 ECU.

Example 2: Suppose you learn that X=1 and the bidder you are paired with learns

that Y=9. Then the value of the item is V= 9 ECU.

3. Market organization:

In each auction you will submit a bid for the item. The high bidder gets the item

and makes a profit equal to the difference between the value of the item and the

second highest bid. That is, for the high bidder:

PROFITS = V - (SECOND HIGHEST BID)

If the difference is negative, it represents a loss.

If you do not make the high bid, you will earn zero profits. In this case, you

neither gain nor lose money from bidding on the item.

35



4. Your earnings for part I of the experiment will equal the sum of the profits

you made in each auction in part I. (Because your profits in any auction could be

negative, your earnings for part I could also be negative.)

5. Even though the computer will keep track of your earnings in each auction, you

will not be given any feedback about the outcome of the individual auctions during

the experiment.

6. No one may bid less than 0.00 ECU for the item, and bids must be rounded to

two digits after the decimal point. You will have 1 minute to place your bid in each

auction.

In case of a tie for the high bid, the winner is chosen randomly (50-50 chance).

The price the winner pays will be the second highest bid (which is the same as the

high bid in case of a tie).

Let us summarize the main points:

1. High bidder gets the item and earns: V - SECOND HIGHEST BID.

2. The value of the item V equals THE LARGER of two signals, X and Y. You

learn X; the bidder you are paired with learns Y. The signals are randomly and

independently drawn from {0, 1, 2, 9, 10}.
3. Your earnings for part I equal the sum of the profits you made in each auction

in part I. Any questions?

PRACTICE QUIZ

Suppose that Chris and Pat are paired for a given auction. Suppose that Chris

has signal X = 7 and Pat has signal Y = 4. Suppose that Chris bids some number

BChris and Pat bids some number BPat. In addition, suppose for now that Chris’ bid

is higher than Pat’s bid (i.e. BChris > BPat). Then:

1. The item is obtained by: a) Chris b) Pat

2. The value of the item is V =
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3. The second highest bid is: a) BChris b) BPat

4. Chris’ Profits are: a) 7-BChris b) 4-BChris c) 7-BPat d) 4-BPat e) 0

5. Pat’s Profits are: a) 7-BChris b) 4-BChris c) 7-BPat d) 4-BPat e) 0

Now suppose that Pat’s bid is higher than Chris’ bid (i.e. BPat > BChris). Then:

6. The item is obtained by: a) Chris b) Pat

7. The value of the item is V =

8. The second highest bid is: a) BChris b) BPat

9. Chris’ Profits are: a) 7-BChris b) 4-BChris c) 7-BPat d) 4-BPat e) 0

10. Pat’s Profits are: a) 7-BChris b) 4-BChris c) 7-BPat d) 4-BPat e) 0
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PART II

1. We will again create a series of auctions in which a fictitious item is sold.

Just like in part I, the value of the item (V) in each auction is determined as THE

LARGER of two signals, X and Y. X and Y are determined randomly and will lie

between 0 and 10. Each whole number within this interval (i.e. 0,1,2,.9,10) has an

equal chance of being drawn. In addition, the value of X has no bearing on the value

of Y: no matter what the value of X, each whole number between 0 and 10 is equally

likely to be the value of Y.

2. In this part of the experiment, instead of bidding for the item against another

person, you will be bidding for the item against the computer. The computer will

bid by mimicking your bidding behavior from part I of the experiment (as explained

below).

Prior to bidding in each auction, you will observe one of the two signals (X). The

computer ’observes’ the other signal (Y). Then it checks how you bid in part I when

you observed that same signal and it makes the same bid.

Example 3: Suppose that the computer observes Y=4. Then the computer checks

your bid in part I when you observed signal equal to 4 and it makes the same bid.

3. Market organization:

In each auction, you and the computer will each submit a bid for the item. If

you are the high bidder you get the item and make a profit equal to the difference

between the value of the item and the second highest bid. That is, if you are the high

bidder, you earn:

PROFITS = V - (SECOND HIGHEST BID)

If the difference is negative, it represents a loss.

If you do not make the high bid, you will earn zero profits. In this case, you

neither gain nor lose money from bidding on the item.
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4. Your earnings for part II of the experiment will equal the sum of the profits

you made in each auction in part II. (Because your profits in any auction could be

negative, your earnings for part II could also be negative.)

5. Even though the computer will keep track of your earnings in each auction, you

will not be given any feedback about the outcome of the individual auctions during

the experiment.

6. No one may bid less than 0.00 ECU for the item, and bids must be rounded to

two digits after the decimal point. You will have 1 minute to place your bid in each

auction.

In case you tie with the computer for the high bid, you win the item with 50%

chance. If you win the item, you pay a price equal to the second highest bid (which

is the same as the high bid in case of a tie).

We can summarize by saying that the rules for part II are similar to those for

part I. The difference is that now you are bidding not against another participant but

against the computer which mimics your bidding behavior from part I.

Any questions?
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10 Appendix: Screenshot from Part II of the Show-

BidFn Treatment
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