1 MPMC Comparative Statics

- Let us consider comparative statics, assuming that the optimal policy has a cutoff structure.
- Let $\mathfrak{F}^{(t)} \equiv \{M_k, 1 \leq k \leq t : \phi_k = 1\} \cup M_0 \text{ and } \mathcal{A}^{(t)} \equiv \{M_k, 1 \leq k \leq t : \overline{c}_k \in [l, \overline{a}_k]\} \cup M_0 \text{ denote the sets of feasible and allowable mergers not larger than } M_t.$
- The optimal cut-offs $(\overline{a}_1,...,\overline{a}_{\widehat{K}})$ are recursively defined as the smallest solutions to the following set of equations:

$$\begin{array}{rcl} \underline{\Delta CS}_1 & \equiv & \Delta CS(1,\overline{a}_1) = 0, \\ \underline{\Delta CS}_k & \equiv & \Delta CS(k,\overline{a}_k) = E_{\mathfrak{F}^{(k-1)}} \left[\Delta CS \left(M^* \left(\mathfrak{F}^{(k-1)}, \mathcal{A}^{(k-1)} \right) \right) \mid \\ & \Delta \Pi \left(M^* \left(\mathfrak{F}^{(k-1)}, \mathcal{A}^{(k-1)} \right) \right) \leq \Delta \Pi(k,\overline{a}_k) \right] \text{ for } 2 \leq k \leq \widehat{K}. \end{array}$$

1.1 Feasibility Probabilities

• Recall that merger M_k is feasible if $\phi_k = 1$ and infeasible if $\phi_k = 0$. Let $r_k \equiv \Pr(\phi_k = 1)$.

Claim 1 Consider an increase in the probability of merger M_j 's feasibility from r_j to $r'_j > r_j$, assuming that M_j is initially approved with positive probability (i.e., $j \leq \hat{K}$). Then, $\Delta CS_i' = \Delta CS_i$ for any weakly smaller merger M_i , $i \leq j$, and $\Delta CS'_i > \Delta CS_i$ for any larger merger M_i , i > j, that is approved with positive probability.

- Idea?
- Let \mathcal{A} denote the optimal approval policy when $\Pr(\phi_j = 1) = r_j$ and \mathcal{A}' the optimal approval policy when $\Pr(\phi_j = 1) = r'_j$.
- From the recursive definition of the cutoffs, it follows immediately that a change in r_j does not affect the cutoffs for any smaller merger M_i , i < j, nor the cutoff of merger M_j itself. Hence, $\Delta CS_i' = \Delta CS_j$ for all $i \leq j$.
- Consider now the cutoff for merger M_{j+1} . We can rewrite the cutoff condition as

$$\begin{split} \underline{\Delta CS}_{j+1} &= \Pr(\phi_j = 1 | \Delta \Pi \left(M^* \left(\mathfrak{F}^{(j)}, \mathcal{A}^{(j)} \right) \right) \leq \Delta \Pi(j+1, \overline{a}_{j+1})) \\ &\times E_{\mathfrak{F}^{(j)}} \left[\Delta CS \left(M^* \left(\mathfrak{F}^{(j)}, \mathcal{A}^{(j)} \right) \right) | \\ &\Delta \Pi \left(M^* \left(\mathfrak{F}^{(j)}, \mathcal{A}^{(j)} \right) \right) \leq \Delta \Pi(j+1, \overline{a}_{j+1}) \text{ and } \phi_j = 1 \right] \\ &+ \left[1 - \Pr(\phi_j = 1 | \Delta \Pi \left(M^* \left(\mathfrak{F}^{(j)}, \mathcal{A}^{(j)} \right) \right) \leq \Delta \Pi(j+1, \overline{a}_{j+1}) \right] \\ &\times E_{\mathfrak{F}^{(j)}} \left[\Delta CS \left(M^* \left(\mathfrak{F}^{(j)}, \mathcal{A}^{(j)} \right) \right) | \\ &\Delta \Pi \left(M^* \left(\mathfrak{F}^{(j)}, \mathcal{A}^{(j)} \right) \right) \leq \Delta \Pi(j+1, \overline{a}_{j+1}) \text{ and } \phi_j = 0 \right]. \end{split}$$

• Note first that the optimal policy must be such that

$$E_{\mathfrak{F}^{(j)}}\left[\Delta CS\left(M^*\left(\mathfrak{F}^{(j)},\mathcal{A}^{(j)}\right)\right)\mid M_{j+1}=(j+1,\overline{a}_{j+1}),\right.$$

$$\Delta\Pi\left(M^*\left(\mathfrak{F}^{(j)},\mathcal{A}^{(j)}\right)\right)\leq \Delta\Pi(M_{j+1}), \text{ and } \phi_j=1\right]$$

$$>E_{\mathfrak{F}^{(j)}}\left[\Delta CS\left(M^*\left(\mathfrak{F}^{(j)},\mathcal{A}^{(j)}\right)\right)\mid M_{j+1}=(j+1,\overline{a}_{j+1}),\right.$$

$$\Delta\Pi\left(M^*\left(\mathfrak{F}^{(j)},\mathcal{A}^{(j)}\right)\right)\leq \Delta\Pi(M_{j+1}), \text{ and } \phi_j=0\right].$$

To see this, consider the case where $\phi_j = 1$ and $\Delta\Pi\left(M^*\left(\mathfrak{F}^{(j)},\mathcal{A}^{(j)}\right)\right) \leq \Delta\Pi(j+1,\overline{a}_{j+1})$. Two cases can arise: (i) $M^*\left(\mathfrak{F}^{(j)},\mathcal{A}^{(j)}\right) \neq M_j$ and (ii) $M^*\left(\mathfrak{F}^{(j)},\mathcal{A}^{(j)}\right) = M_j$. In case (i) the outcome is the same as when M_j were not feasible $(\phi_j = 0)$. In case (ii), merger M_j will be implemented. If merger M_j were not feasible, we would instead obtain the expected consumer surplus of the next most profitable allowable merger. By the optimality of the approval policy, $\Delta CS(M_j)$ must weakly exceed (and, generically, strictly) the expected consumer surplus of the next most profitable allowable merger.

• Next, note that we can rewrite the conditional probability as

$$\begin{split} & \Pr(\phi_{j} = 1 | \Delta \Pi \left(M^{*} \left(\mathfrak{F}^{(j)}, \mathcal{A}^{(j)} \right) \right) \leq \Delta \Pi(j+1, \overline{a}_{j+1})) \\ = & \Pr\left(\Delta \Pi \left(M^{*} \left(\mathfrak{F}^{(j)}, \mathcal{A}^{(j)} \right) \right) \leq \Delta \Pi(j+1, \overline{a}_{j+1}) | \phi_{j} = 1 \right) r_{j} \\ & \times \left\{ \Pr(\Delta \Pi \left(M^{*} \left(\mathfrak{F}^{(j)}, \mathcal{A}^{(j)} \right) \right) \leq \Delta \Pi(j+1, \overline{a}_{j+1}) | \phi_{j} = 1 \right) r_{j} \\ & + \Pr(\Delta \Pi \left(M^{*} \left(\mathfrak{F}^{(j)}, \mathcal{A}^{(j)} \right) \right) \leq \Delta \Pi(j+1, \overline{a}_{j+1}) | \phi_{j} = 0) (1-r_{j}) \right\}^{-1} \\ = & \left\{ 1 + \frac{\Pr(\Delta \Pi \left(M^{*} \left(\mathfrak{F}^{(j)}, \mathcal{A}^{(j)} \right) \right) \leq \Delta \Pi(j+1, \overline{a}_{j+1}) | \phi_{j} = 0)}{\Pr(\Delta \Pi \left(M^{*} \left(\mathfrak{F}^{(j)}, \mathcal{A}^{(j)} \right) \right) \leq \Delta \Pi(j+1, \overline{a}_{j+1}) | \phi_{j} = 1)} \left(\frac{1-r_{j}}{r_{j}} \right) \right\}^{-1}. \end{split}$$

Hence, an increase in r_j induces an increase in the conditional probability $\Pr(\phi_j = 1 | \Delta \Pi\left(M^*\left(\mathfrak{F}^{(j)}, \mathcal{A}^{(j)}\right)\right) \leq \Delta \Pi(j+1, \overline{a}_{j+1})).$

- But this implies that an increase in r_j induces an increase in the RHS of the cutoff condition for merger M_{j+1} . Hence, $\Delta CS'_{j+1} > \Delta CS_{j+1}$.
- Consider now the induction hypothesis that $\underline{\Delta CS'_{k'}} > \underline{\Delta CS_{k'}}$ for all $j < k' < k \leq \hat{K}$. In particular, $\underline{\Delta CS'_{k-1}} > \underline{\Delta CS_{k-1}}$. We claim that this implies that $\underline{\Delta CS'_k} > \underline{\Delta CS_k}$.
- To see this, note that we can decompose the effect of the increase in r_j on the conditional expectation of the next-most profitable merger into two steps:
 - 1. Increase the feasibility probability from r_j to $r'_j > r_j$, holding fixed the approval policy \mathcal{A} .

- 2. Change the approval policy from \mathcal{A} to \mathcal{A}' .
- Consider first step (1). For the same reason as before, the increase in the feasibility probability must raise the conditional expectation

$$E_{\mathfrak{F}^{(k-1)}}\left[\Delta CS\left(M^*\left(\mathfrak{F}^{(k-1)},\mathcal{A}^{(k-1)}\right)\right)\mid \Delta\Pi\left(M^*\left(\mathfrak{F}^{(k-1)},\mathcal{A}^{(k-1)}\right)\right) \leq \Delta\Pi(k,\overline{a}_k)\right]$$

by the optimality of the approval policy A.

• Consider now step (2). The outcome under the two policies differs only in the event where $M^*\left(\mathfrak{F}^{(k-1)},\mathcal{A}^{(k-1)}\right) \notin \mathcal{A}'$. Let $M_i = M^*\left(\mathfrak{F}^{(k-1)},\mathcal{A}^{(k-1)}\right)$. Under policy \mathcal{A} , the outcome in this event is $\Delta CS(M_i)$. Under policy \mathcal{A}' instead, the expected outcome is

$$E_{\mathfrak{F}^{(i-1)}}\left[\Delta CS\left(M^*\left(\mathfrak{F}^{(i-1)},\mathcal{A}'^{(i-1)}\right)\right)\mid \Delta\Pi\left(M^*\left(\mathfrak{F}^{(i-1)},\mathcal{A}'^{(i-1)}\right)\right)\leq \Delta\Pi(k,\bar{c}_i)\right].$$

But as $M_i \notin \mathcal{A}'$, we must have

$$E_{\mathfrak{F}^{(i-1)}}\left[\Delta CS\left(M^*\left(\mathfrak{F}^{(i-1)},\mathcal{A}'^{(i-1)}\right)\right)\mid \Delta\Pi\left(M^*\left(\mathfrak{F}^{(i-1)},\mathcal{A}'^{(i-1)}\right)\right)\leq \Delta\Pi(k,\overline{c}_i)\right]\\ > \Delta CS(M_i).$$

- As the expected consumer surplus increases at each step, we must have $\Delta CS'_k > \Delta CS_k$.
- This completes the idea of the proof.
- The following limiting result holds even when the optimal approval policy does not have a cutoff structure:

Claim 2 Consider a sequence of feasibility probabilities $\{r_1^t, r_2^t, ..., r_K^t\}_{t=0}^{\infty}$. If, for every $i \leq k$, $r_i^t \to 0$ as $t \to \infty$, then any merger M_j , $j \leq k+1$, with $\Delta CS(M_j) > 0$ will be approved (i.e., $M_j \in \mathcal{A}^t$) for t sufficiently large.

- The claim implies in particular that $\underline{\Delta CS_j^t} \to 0$ as $t \to \infty$ if $r_i^t \to 0$ for every i < j. In the limit as $r_i^t \to 0$ for every merger M_i , $1 \le i \le K$, any CS-increasing merger will thus be approved as there is no "merger choice" in the limit.
- The idea behind the claim is simple: the only reason to commit not to approve a CS-increasing merger M_j is that the firms may instead propose an alternative merger that, while less profitable, raises CS by more. But such a preferable alternative merger must be a smaller merger. Hence, if the feasibility probabilities of all smaller mergers are sufficiently small, it is optimal to approve the CS-increasing merger M_j as the expected CS-level of the next most profitable merger is sufficiently close to zero.

1.2 Changes in Market Structure

1.2.1 Firm 0's Marginal Cost

• What happens as we change firm 0's marginal cost c_0 ?

Claim 3 Consider a reduction in firm 0's marginal cost from c_0 to $c'_0 < c_0$. Assuming that bargaining is efficient, this induces a decrease in all post-merger marginal cost cutoffs: $\overline{a}'_k < \overline{a}_k$ for every $1 \le k \le \hat{K}$.

- Idea?
- A change in firm 0's marginal cost does not affect the outcome (consumer surplus, profits) after any merger M_k , $k \geq 1$, but it does affect the pre-merger outcome. In particular, we have $Q^{0'} > Q^0$ so that $\gamma \equiv CS^{0'} CS^0 > 0$. Let $\eta \equiv \Pi^{0'} \Pi^0$ denote the induced change in pre-merger aggregate profit. (Whether η is positive or negative depends on how efficient firm 0 is relative to the rest of the industry.)
- For any merger M_k , we thus have $\Delta CS(M_k)' = \Delta CS(M_k) \gamma$ and $\Delta \Pi(M_k)' = \Delta \Pi(M_k) \eta$. This implies that the CS-difference and aggregate profit difference between any two mergers M_i and M_j are the same before and after the change in c_0 , i.e., $\Delta CS(M_i)' \Delta CS(M_j)' = \Delta CS(M_i) \Delta CS(M_j)$ and $\Delta \Pi(M_i)' \Delta \Pi(M_j)' = \Delta \Pi(M_i) \Delta \Pi(M_j)$.
- Consider first merger M_1 . We have $\Delta CS(1, \overline{a}'_1)' = \Delta CS(1, \overline{a}'_1) \gamma = 0$. Hence, $\Delta CS(1, \overline{a}'_1) > \Delta CS(1, \overline{a}_1) = 0$, implying that $\overline{a}'_1 < \overline{a}_1$.
- Consider now merger M_2 . In particular, consider the marginal merger $(2, \overline{a}_2)$. If $\Delta CS(2, \overline{a}_2)' = \Delta CS(2, \overline{a}_2) \gamma \leq 0$, it follows trivially (from our general characterization of minimum acceptable CS-levels) that $\overline{a}_2' < \overline{a}_2$. Suppose now instead that $\Delta CS(2, \overline{a}_2)' = \Delta CS(2, \overline{a}_2) \gamma > 0$. Let $(1, \widetilde{a}_1)$ be such that $\Delta \Pi(1, \widetilde{a}_1) = \Delta \Pi(2, \overline{a}_2)$. Thus, $\Delta \Pi(1, \widetilde{a}_1)' = \Delta \Pi(2, \overline{a}_2)'$ so that the set of M_1 -mergers that are less profitable than $(2, \overline{a}_2)$ is the same as before. As regards the effects on CS, we distinguish between three cases:
 - 1. If M_1 is such that $\bar{c}_1 > \bar{a}_1$, the merger will be blocked both before and after the change in c_0 . Hence, the change in CS is the same in both cases.
 - 2. If M_1 is such that $\overline{a}_1 \geq \overline{c}_1 > \overline{a}'_1$, the merger will be approved initially but blocked after the decrease in c_0 . Hence, in that case, the initial increase in CS is less than γ , while it is zero after the decrease in c_0 .
 - 3. If M_1 is such that $\overline{c}_1 \leq \overline{a}'_1$, the merger will be approved both before and after the change in c_0 . Hence, $\Delta CS(M_1)' = \Delta CS(M_1) \gamma$.

We thus have

$$\begin{split} E_{\mathfrak{F}^{(1)}}\left[\Delta CS\left(M^*\left(\mathfrak{F}^{(1)},\mathcal{A}'^{(1)}\right)\right)' \mid \Delta\Pi\left(M^*\left(\mathfrak{F}^{(1)},\mathcal{A}'^{(1)}\right)'\right) \leq \Delta\Pi(2,\overline{a}_2)'\right] \\ > & E_{\mathfrak{F}^{(1)}}\left[\Delta CS\left(M^*\left(\mathfrak{F}^{(1)},\mathcal{A}^{(1)}\right)\right) \mid \Delta\Pi\left(M^*\left(\mathfrak{F}^{(1)},\mathcal{A}^{(1)}\right)\right) \leq \Delta\Pi(2,\overline{a}_2)\right] - \gamma \\ = & \Delta CS(2,\overline{a}_2) - \gamma \\ = & \Delta CS(2,\overline{a}_2)'. \end{split}$$

Hence, $\overline{a}_2' < \overline{a}_2$.

- Suppose now that $\overline{a}'_j < \overline{a}_j$ for every $j < k \leq \hat{K}$ (Induction Hypothesis). We want to show that this implies that $\overline{a}'_k < \overline{a}_k$. (This holds trivially if $\Delta CS(k, \overline{a}_k)' = \Delta CS(k, \overline{a}_k) \gamma \leq 0$. Let us thus suppose that $\Delta CS(k, \overline{a}_k)' = \Delta CS(k, \overline{a}_k) \gamma > 0$.)
- From the argument given above, we know that the set of mergers that are less profitable than (k, \overline{a}_k) is the same before and after the change in c_0 . Consider now $M^* (\mathfrak{F}^{(k-1)}, \mathcal{A}^{(k-1)})$, conditional on $\Delta \Pi(M^* (\mathfrak{F}^{(k-1)}, \mathcal{A}^{(k-1)})) \leq \Delta \Pi(k, \overline{a}_k)$. We distinguish between three cases:
 - 1. If $M^*\left(\mathfrak{F}^{(k-1)},\mathcal{A}^{(k-1)}\right)=M_0$ so that $\Delta CS(M^*\left(\mathfrak{F}^{(k-1)},\mathcal{A}^{(k-1)}\right))=0$, then $M^*\left(\mathfrak{F}^{(k-1)},\mathcal{A}^{(k-1)\prime}\right)=M_0$ and thus $\Delta CS(M^*\left(\mathfrak{F}^{(k-1)},\mathcal{A}^{(k-1)\prime}\right))=\Delta CS(M^*\left(\mathfrak{F}^{(k-1)},\mathcal{A}^{(k-1)\prime}\right))=0$. (This is the case where the next most profitable merger will be blocked both before and after changing c_0 .)
 - 2. If $M^*\left(\mathfrak{F}^{(k-1)},\mathcal{A}^{(k-1)}\right)\neq M_0$ and $M^*\left(\mathfrak{F}^{(k-1)},\mathcal{A}^{(k-1)}\right)\in\mathcal{A}'$, then $\Delta CS(M^*\left(\mathfrak{F}^{(k-1)},\mathcal{A}^{(k-1)'}\right))=\Delta CS(M^*\left(\mathfrak{F}^{(k-1)},\mathcal{A}^{(k-1)}\right))-\gamma$. (This is the case where the next most profitable merger is the same under both policies and will be approved both before and after changing c_0 .)
 - 3. If $M^*\left(\mathfrak{F}^{(k-1)},\mathcal{A}^{(k-1)}\right)\neq M_0$ and $M^*\left(\mathfrak{F}^{(k-1)},\mathcal{A}^{(k-1)}\right)\notin\mathcal{A}'$, then $\Delta CS(M^*\left(\mathfrak{F}^{(k-1)},\mathcal{A}^{(k-1)'}\right))>\Delta CS(M^*\left(\mathfrak{F}^{(k-1)},\mathcal{A}^{(k-1)}\right))-\gamma$. (This is the case where the next most profitable merger under policy \mathcal{A} would not be approved under policy \mathcal{A}' .)
- We thus have

$$\begin{split} E_{\mathfrak{F}^{(k-1)}}\left[\Delta CS\left(M^*\left(\mathfrak{F}^{(k-1)},\mathcal{A}'^{(k-1)}\right)\right)' \mid \Delta\Pi\left(M^*\left(\mathfrak{F}^{(k-1)},\mathcal{A}'^{(k-1)}\right)'\right) \leq \Delta\Pi(k,\overline{a}_k)'\right] \\ > & E_{\mathfrak{F}^{(k-1)}}\left[\Delta CS\left(M^*\left(\mathfrak{F}^{(k-1)},\mathcal{A}^{(k-1)}\right)\right) \mid \Delta\Pi\left(M^*\left(\mathfrak{F}^{(k-1)},\mathcal{A}^{(k-1)}\right)\right) \leq \Delta\Pi(k,\overline{a}_k)\right] - \gamma \\ = & \Delta CS(k,\overline{a}_k) - \gamma \\ = & \Delta CS(k,\overline{a}_k)'. \end{split}$$

Hence, $\overline{a}'_k < \overline{a}_k$.

Claim 4 Consider a reduction in firm 0's marginal cost from c_0 to $c'_0 < c_0$. Assuming that bargaining results in the merger that maximizes the increase in bilateral profit (i.e., the equilibrium of the offer game), this induces a decrease in all post-merger marginal cost cutoffs: $\bar{a}'_k < \bar{a}_k$ for every $1 \le k \le \hat{K}$.

- Idea?
- The key difference to the case of efficient bargaining is that the reduction in c_0 affects different mergers partners differently. Let $\eta_k \equiv [\pi_0^{0'} + \pi_k^{0'}] [\pi_0^0 + \pi_k^0]$ denote the induced change in pre-merger joint profit of firms 0 and k. The key observation is that the profit of a more efficient firm falls by a larger amount than that of a less efficient as price falls. That is, η_k is decreasing in k.
- The argument as to why $\overline{a}'_1 < \overline{a}_1$ is unaffected by this.
- Consider now the (marginal) merger $M_2 = (2, \overline{a}_2)$. Let $(1, \widetilde{a}_1)$ be such that $\Delta\Pi(1, \widetilde{a}_1) = \Delta\Pi(2, \overline{a}_2)$, and $(1, \widetilde{a}'_1)$ be such that $\Delta\Pi(1, \widetilde{a}'_1)' = \Delta\Pi(2, \overline{a}_2)'$. We have

$$\begin{array}{lcl} \Delta\Pi(1,\widetilde{a}_{1})' & = & \Delta\Pi(1,\widetilde{a}_{1}) - \eta_{1} \\ & < & \Delta\Pi(1,\widetilde{a}_{1}) - \eta_{2} \\ & = & \Delta\Pi(2,\overline{a}_{2}) - \eta_{2} \\ & = & \Delta\Pi(2,\overline{a}_{2})' \\ & = & \Delta\Pi(1,\widetilde{a}_{1}')', \end{array}$$

where the inequality follows from $\eta_1 > \eta_2$. Hence, $\tilde{a}'_1 < \tilde{a}_1$. That is, before the reduction in c_0 , any merger M_1 with $\bar{c}_1 \geq \tilde{a}_1$ induced a smaller increase in bilateral profit than merger $M_2 = (2, \bar{a}_2)$. After the reduction in c_0 , this is still true, but now – in addition – any merger M_1 with $\tilde{a}_1 > \bar{c}_1 \geq \tilde{a}'_1$ also induces a smaller increase in bilateral profit than merger $M_2 = (2, \bar{a}_2)$. That is, there are now more and (in an FOSD sense) more efficient mergers M_1 that are less profitable than $M_2 = (2, \bar{a}_2)$. Since the induced CS-increase of merger M_1 is the greater, the lower is \bar{c}_1 , we thus have again that

$$\begin{split} E_{\mathfrak{F}^{(1)}}\left[\Delta CS\left(M^*\left(\mathfrak{F}^{(1)},\mathcal{A}'^{(1)}\right)\right)' \mid \Delta\Pi\left(M^*\left(\mathfrak{F}^{(1)},\mathcal{A}'^{(1)}\right)'\right) \leq \Delta\Pi(2,\overline{a}_2)'\right] \\ > & E_{\mathfrak{F}^{(1)}}\left[\Delta CS\left(M^*\left(\mathfrak{F}^{(1)},\mathcal{A}^{(1)}\right)\right) \mid \Delta\Pi\left(M^*\left(\mathfrak{F}^{(1)},\mathcal{A}^{(1)}\right)\right) \leq \Delta\Pi(2,\overline{a}_2)\right] - \gamma \\ = & \Delta CS(2,\overline{a}_2) - \gamma \\ = & \Delta CS(2,\overline{a}_2)'. \end{split}$$

Hence, $\overline{a}_2' < \overline{a}_2$.

• Under the induction hypothesis that $\overline{a}'_j < \overline{a}_j$ for every $j < k \leq \hat{K}$, a similar argument can be used to show that $\overline{a}'_k < \overline{a}_k$.