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Abstract

This paper o¤ers a micro-founded theory of time variation in the volatility of aggregate

economic activity based on rational inattention. I consider a dynamic general equilibrium model

in which �rms are limited in their ability to process information and allocate their limited

attention across aggregate and idiosyncratic states. According to the model, a decrease in

the volatility of aggregate shocks causes the �rms optimally to allocate less attention to the

aggregate environment. As a result, the �rms�responses, and therefore the aggregate response,

becomes less sensitive to aggregate shocks, amplifying the e¤ect of the initial change in aggregate

shock volatility. As an application, I use the model to explain the Great Moderation, the well-

documented signi�cant decline in aggregate volatility in the U.S. between 1984 and 2006. The

exercise is disciplined by measurements of the changes in aggregate and idiosyncratic volatilities.

The model can account for 90% of the observed decline in aggregate output volatility. 67% of

the decline is due to the direct e¤ect of the drop in the volatility of aggregate technology shocks

and the other 23% captures the volatility ampli�cation e¤ect due to the optimal attention

reallocation from aggregate to idiosyncratic shocks. A version of the model without rational

inattention can capture the former e¤ect but not the latter.
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1 Introduction

There was a well-documented decline in U.S. macroeconomic volatility lasting from the mid-1980s

until 2006, followed by a renewed high macroeconomic volatility since 2007. This paper aims

to explain the Great Moderation and to help understand the return to increased macroeconomic

volatility.

During the Great Moderation, the volatility of aggregate output in the U.S. declined by 50%.

The leading explanations of the Great Moderation include better monetary policy, structural

changes such as better inventory management, and lower volatility of shocks hitting the economy.

The �rst two explanations have proven to account only for part of the decline in macroeconomic

volatility.1

As for the �good luck�hypothesis, one can explain a 50% decline in output volatility in a standard

RBC model only to the extent that the volatility of aggregate technology shocks declines by the

same amount.2 This opens the question of whether aggregate TFP volatility has in fact experienced

such a decline. TFP series compiled by Basu, Fernald, and Kimball (2006) at an annual frequency

covering the period 1949 - 1996 show only a 15% decline in the volatility of TFP innovations during

the Great Moderation. Quarterly series by Fernald (2009) covering a longer time period 1949 -

2006 and using a di¤erent methodology exhibit a 34% decline.3

This clearly poses a problem for the �good luck�hypothesis using a standard RBC model. If

pure technology shocks have experienced at most a 34% decline in volatility, a RBC model can

explain only a 34% decline in output volatility. This paper o¤ers a mechanism that breaks this

linear relationship between aggregate TFP shock volatility and output volatility. I propose an

imperfect information setting in the form of rational inattention, in which changes in the volatility

of aggregate shocks are ampli�ed. Benchmark calibration of the model shows that a 34% decline

in aggregate TFP shock volatility can generate a 46% decline in output volatility.

Rational inattention captures the idea that agents in the economy base their decisions not on

the true state of the economy but on the perceived state, which is conditioned on their information

set (Sims, 2003). Limited in their ability to process information, agents choose the optimal nature

and precision of signals to reduce their uncertainty regarding the true state of the economy. One

can think about the problem as a signal extraction problem, where the signal�s noise properties

are endogenously determined. In other words, the precision of the signals received as well as their

1Ahmed, Levin, and Wilson (2004), Arias, Hansen, and Ohanian (2006) and Stock and Watson (2003) compare
hypotheses and conclude that in recent years the U.S. economy has to a large extent simply been hit by smaller
shocks.

2See Arias, Hansen and Ohanian (2006) for a discussion of aggregate TFP volatility changes and the Great
Moderation. Standard RBC models are characterized by an almost linear relationship between the volatility of
aggregate technology shock and the volatility of aggregate output. This relationship is exactly linear up to a �rst
order approximation and very close to linear for higher order appoximations.

3Basu, Fernald, and Kimball (2006) correct for aggregation issues, variable capacity utilization, deviations from
constant returns to scale and imperfect competition. Fernald (2009) builds a quarterly series of total factor produc-
tivity that corrects only for variable capacity utilization.
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statistical properties are choice variables. The restriction on the ability to process information limits

how precise the signals can be. In the case where there is more than one state that agents in the

economy are interested in tracking, the information processing problem becomes one of attention

allocation: how to allocate information (attention) across multiple states, or in signal extraction

terminology, how to allocate precision across multiple signals. This allocation will depend on the

relevance of each state in the objective function as well as the properties of their stochastic processes,

such as their relative persistence and volatility. More information will be allocated to variables with

a higher variance or lower persistence for a given variance.4

This paper applies this �attention allocation�problem to an otherwise standard RBC model with

heterogenous �rms and explores the transmission mechanism of shocks in the economy. The focus

of the paper is the relationship between the volatility of aggregate technology and the volatility of

aggregate outcomes such as output, labor, investment and consumption. Firms�pro�ts depend on

both aggregate and idiosyncratic state variables. Bounded in their ability to process information,

they have to decide how to allocate the information �ow across states. Given a higher relative

volatility of the idiosyncratic state, �rms will allocate more attention to the idiosyncratic environ-

ment and hence be more responsive to idiosyncratic shocks and less responsive to aggregate shocks.

This leads to a dampening and delay in the response of endogenous variables to an innovation in

the aggregate shock.

As the relative volatility of idiosyncratic versus aggregate states changes, so does the optimal

allocation of attention. In the face of a decline in aggregate TFP shock volatility (�good luck�,

in the terminology of the Great Moderation literature), �rms will reallocate their attention away

from the aggregate environment since the relative volatility of the idiosyncratic environment has

increased. This leads to an additional moderating e¤ect. Hence, the decline in the volatility of

aggregate outcomes is bigger than the decline in the volatility of the aggregate shock. This is

in stark contrast with the full information version of the model, which is the standard rational

expectations RBC model.

Evidence on plant-level data compiled by Davis, Haltiwanger, Jarmin and Miranda (2006) show

that �rm-level employment growth rate volatility has declined during the Great Moderation period

by 9%, as compared to the 40-50% decline in its aggregate counterpart (Figure 1).5. Using indirect

inference, I estimate a similar (9%) decline in the volatility of idiosyncratic TFP, which combined

with the 34% decline in aggregate TFP volatility, this implies an increase in the idiosyncratic-to-

aggregate volatility ratio.6

In the benchmark calibration this model can account for 90% of the decline in aggregate output

volatility experienced by the U.S. in the past 30 years. 67% of the decline is due to direct e¤ect of

the drop in the volatility of aggregate technology shocks and the other 23% captures the volatility

ampli�cation e¤ect due to the optimal attention reallocation from aggregate to idiosyncratic shocks.

4See Maćkowiak and Wiederholt (2009a)
5Figure 1 reports the 10-year window rolling standard deviations for �rm-level and aggregate employment growth

rates. The rolling standard deviations are normalized to 1 for the baseline year 1980.
6See Section 5.1 for details on the indirect inference exercise.
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This paper presents the idea that the reduction in macroeconomic volatility in the mid-1980s has

not been solely due to smaller aggregate shocks, but also to an increase in the relative volatility

of idiosyncratic shocks as compared to aggregate shocks, which via an attention re-allocation has

altered equilibrium behavior.

While I focus on the Great Moderation as the most obvious case study in the time variation

of aggregate volatility, it is important to note that this mechanism is more general than the ap-

plication in this paper. By allowing the idiosyncractic environment to play a role for aggregate

dynamics, rational inattention in this model o¤ers a new relationship between microeconomic and

macroeconomic volatility. Because the idiosyncratic environment serves as a diversion of attention,

changes in idiosyncratic volatility can a¤ect aggregate dynamics without any change in the aggre-

gate technology shock process. In order to expose the role of idiosyncratic shocks for aggregate

dynamics more directly, I ask whether changes in the idiosyncratic state volatility alone can pro-

duce changes in aggregate volatility. My calibrated model shows that a hypothetical 25% increase

in the volatility of the idiosyncratic state alone can produce an 11% decline in the volatility of

aggregate output.

Starting with the �nancial crisis of 2007, there has been a renewed high degree of macroeconomic

volatility. To the extent that there has been an increase in the volatility of the underlying aggre-

gate shocks in the economy, this model predicts a reallocation of attention towards the aggregate

environment by agents in the economy. This will in turn amplify initial changes in the volatility of

aggregate shocks. Hence, the current increase in macroeconomic volatility might be partially due

to more volatile aggregate shocks and partially due to more attention being reallocated towards

the macroeconomic environment.

There have been several applications of rational inattention in the literature. Máckowiak and

Wiederholt (2009a) study the response of prices to aggregate nominal shocks versus idiosyncratic

shocks in a partial equilibrium framework. They show how the attention allocation mechanism of

�rms under rational inattention leads to prices being more responsive to idiosyncratic shocks and

less responsive to aggregate nominal shocks. This paper di¤ers from Máckowiak and Wiederholt

(2009a) in two dimensions. First, I apply this mechanism in a general equilibrium real business

cycle framework to study how rational inattention a¤ects the transmission mechanism of aggregate

technology shocks. Second, this paper discovers a new outcome of rational inattention, which is a

volatility ampli�cation e¤ect. One main contribution of this paper is that I conduct a disciplined

quantitative exercise of whether the Máckowiak and Wiederholt (2009a) mechanism can explain

the Great Moderation.

Applications of rational inattention in a dynamic general equilibrium setting include Paciello

(2008), Luo and Young (2009) and Máckowiak and Wiederholt (2009b). Paciello (2008) and

Máckowiak and Wiederholt (2009b) explore the di¤erential response of prices to various aggre-

gate and idiosyncratic shocks.7 Rational inattention is shown to account for the sluggish response

7The main di¤erence between Mackowiak and Widerholt (2009b) and Paciello (2008) and is that the latter considers
only two aggregate shocks, whereas the former includes idiosyncratic shocks as well.
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of prices to monetary shocks on one hand and their quicker adjustment to neutral technology shocks

on the other.

Luo and Young (2009) introduce rational inattention in a stochastic growth model with perma-

nent technology shocks and explore the extent to which rational inattention can enrich the weak

internal propagation mechanism of shocks in RBC theory. This paper overlaps with theirs in that

we both study the propagation mechanism of technology shocks in an RBC framework. It di¤ers

on the question of interest as well as in the solution method employed. I explore the second mo-

ment e¤ects of rational inattention in an RBC framework, with the Great Moderation being the

main case study. I also solve for a competitive equilibrium, which allows for a solution of rational

inattention models with multiple state variables and accounts for general equilibrium e¤ects on the

propagation of shocks.

The paper is organized as follows: section 2 introduces the tools from information theory that are

applied in my rational inattention setting. Section 3 introduces the benchmark model. In section

4, I study a simple version of the model that has an analytical solution to illustrate the main

mechanism in the paper. Section 5 presents the calibration procedure and the numerical results

for the benchmark model. In section 6, I distinguish between the roles of rational inattention

(decision making under information processing constraints and one state variable) and attention

allocation (rational inattention with multiple state variables). I show that simply restricting the

ability to process information without having the problem of allocating information does not lead

to a volatility ampli�cation e¤ect. Section 7 examines whether changes in the volatility of the

idiosyncratic environment alone can lead to changes in aggregate volatility. Section 8 concludes.
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Figure 1. Source: Longitudinal Business Database (LBD), Davis, Haltiwanger, Jarmin and

Miranda (2006).
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2 Information Processing Constraints

In this section I introduce concepts from Information Theory that are used to quantify information

�ow and discuss how one can model a constraint in processing information. The rate of information

�ow is measured as the rate in uncertainty reduction, where the uncertainty regarding a random

variable is measured by its entropy. Consider a random variable X, whose probability density

function is f(X). The entropy of X equals �E [log(f(X)] : It�s important to note that uncertainty
about a random variable does not depend on its realizations but on the probability distribution of

those realizations. Given the Gaussian setting of the model that will follow, I consider the entropy

of a normally distributed variable. If X is normally distributed, then its entropy equals

H(X) =
1

2
log2(2�eV ar(X))

Hence, the uncertainty regarding a normally distributed variable is summarized by its variance.

Conditional entropy measures the conditional uncertainty of random variable X given another

random variable Y . When X and Y follow a joint normal distribution, the conditional entropy

becomes

H(XjY ) = 1

2
log2(2�eV ar(XjY ))

Having quanti�ed the uncertainty of a random variable, information �ow is then de�ned as the rate

at which this uncertainty is reduced. More speci�cally:

I(X;Y ) = H(X)�H(XjY )

That is, the rate of information �ow between two random variables equals the di¤erence between

prior uncertainty and the posterior uncertainty. In the case that the two variables are independent

from each other, the reduction in uncertainty will be zero, since knowing Y gives no information

regarding X and hence the prior and posterior uncertainty will be the same. Constraints in the

ability to process information are modelled as limits in the rate at which uncertainty about a

random variable can be reduced. Formally, an information processing constraint is de�ned as:

I(X;Y ) � �

where � is the capacity of the channel through which information is processed, which places an

upper bound on the rate of uncertainty reduction through this channel. The channel is referred to as

the device through which individuals process information (e.g. their brain) and the capacity refers

to a technological constraint on the maximum amount of information that can be processed through

this channel (Sims, 1988, 2003, 2006). As Sims (2006) notes, it�s important to distinguish between

various economic environments where such a description of uncertainty and limited information

is logically consistent. Information processing constraints measured as limits to the capacity of

a Shannon channel, as de�ned above, are consistent with an environment where information is
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publicly available and the only cost to making use of this information is the human information-

processing capacity cost.

3 The model economy

In this section I develop a dynamic general equilibrium model representing an economy populated

by households and �rms. Given the availability of data on �rm-level volatility, I will focus on the

decision making process of �rms facing a constraint in their information processing capabilities.

There is a continuum of �rms that produce a homogenous product using labor and capital and

face a decreasing returns to scale production function as well as �rm-speci�c technology shocks.

Households are assumed to make their consumption, labor and investment decisions under perfect

information. That is, they don�t face constraints in their information processing capacity. This

assumption is made for tractability purposes.

3.1 Firms

This part of the model is similar to Restuccia and Rogerson (2004) as well as Bartelsman (2006)

with the main features of the model being diminishing returns to scale and heterogenous production

units as in Hopenhayn (1992) and Hopenhayn and Rogerson (1993). The main di¤erence between

this model and the above papers is that I abstract from the entry and exit decision of �rms.

The assumption of decreasing returns to scale allows me to pin down �rm-level employment

and capital, which will then form the basis of comparison with the �rm-level dynamics we see in

the data. There are two approaches to obtaining a non-degenerate distribution of �rm size, the

�rst being a single-good model where �rms operate under decreasing returns to scale and perfect

competition, and the second being a model with di¤erentiated products and imperfect competition,

which yields a non-degenerate distribution in size due to curvature in preferences. To avoid concerns

about price setting and to keep the model as close as possible to the standard RBC model, I use

decreasing returns to scale to get a non-degenerate distribution of �rm size.8

The production technology each �rm faces is

yit = eateaitk�itl
�
it ; �+ � < 1 (1)

where at and ait are the common and idiosyncratic components of �rm-speci�c TFP respectively.

In an environment of heterogeneous �rms and decreasing returns to scale there may be a motive for

entry and exit of �rms. To avoid keeping track of this dimension I assume that in equilibrium there

is no entry or exit. One can think of various institutional barriers that could make such movements

very costly for a �rm. In this model �rms are not heterogenous in the products they produce but

rather in the idiosyncratic TFP levels they face. They di¤er in their production levels as well as in

8A non-degenerate distribution of �rm size is important in order to explore the role of the idiosyncratic environ-
ment.
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the level of labor and capital they hire. Common and idiosyncratic components of �rm-level TFP

follow exogenous stochastic processes de�ned by

at = �Aat�1 + "t (2)

ait = �Iait�1 + ut (3)

where "t � N(0; �2"), ut � N(0; �2u); and both variables are iid over time.

Pro�ts in each period are

�(kit;lit;wt;rt) = eateaitk�itl
�
it � wtlit � rtkit (4)

where the wage and rental rate in the economy are taken as given by the �rm.

The �rm has to choose the level of capital and labor inputs that maximizes its pro�ts subject

to the informational constraints it faces. Formally �rm i in period t chooses k�it and l
�
it to solve the

following problem

max
fkit;litg

"
E

1X
�=t

~���(ki� ;li� ;w�;r� ; a�;ai� )jsti

#
where sti = fsi;1;si;2;::::::si;tg is the history of realizations of the signal process for �rm i up until time

t: The stochastic process of the signals that the �rm chooses is an endogenous variable. Knowing

how its signals a¤ect its information set and hence its optimal input demand decisions, each �rm

chooses the precision of the signals it receives. The endogeneity of the signals�noise is the main

di¤erence between rational inattention in this model and signal extraction.9 In order to ensure the

stationarity of the attention allocation problem, I assume that the �rm in at period 0 receives an

in�nite sequence of past signals s0i = fsi;�1; :::::si;�2;si;�1;si;0g: Formally the problem of �rm i in

period 0 is

max
fsitg2S

E

" 1X
t=0

~�t�(k
�
it;l

�
it;wt;rt; at;ait)

#
(5)

subject to

I(fwt;rt; at;aitg; fsitg) � � (6)

where I(:) stands for the average �ow of information between the states the �rm is trying to track

and the signals it chooses to receive regarding those states, and � is the maximum amount of

information the �rms can process per period. Without any further constraints on the structure

of signals, the problem that �rms face in period 0 implies that �rms choose the joint distribution

of signals and state variables, which captures all the information signals contain about the state

vector. This obviously makes the solution quite di¢ cult due to the curse of dimensionality. To avoid

such a problem I impose restrictions on the set of signals and take a quadratic approximation of the

objective function to allow for a much easier solution to the �rm�s problem. I make the following

assumptions on the set S: First, signals today do not contain any information about future shocks.

9See Sims (2003) for a discussion on signal extraction models and rational inattention.
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Second, the vector of signals that a �rm receives can be partitioned into a subset of signals regarding

only the aggregate state (wt; rt; at) and another subset of signals regarding the idiosyncratic state

ait, so that sit = (sAit; s
I
it)
0 , where fsAit; wt; rt; atg; fsIit; aitg are independent (this can be true only

if fwt; rt; atg; faitg are independent, which is assumed to be the case). The partition assumption
implies that paying attention to the aggregate state and the idiosyncratic state are two separate

activities. Third, fsAit; sIit; wt; rt; at;aitg follows a stationary Gaussian process. Gaussianity of the
signals implies Gaussianity of the posterior distribution, which can be shown to be optimal when the

optimization problem is quadratic (Sims, 2006). Given the tractability of a log-quadratic Gaussian

(LQG) setting, I take a log-quadratic approximation of the objective function. The question of how

good such an approximation is will be addressed in the calibration section of the paper. All the

noise in the signals is assumed to be idiosyncratic, which is consistent with the idea that errors in

tracking the state of the economy come from constraints in the ability to process information, not

constraints in the availability of information (Sims 2003, 2006).10

The problem is set such that �rms are assumed to choose the nature of their signals in period 0:

This is not a restriction since it is optimal for the �rm to choose its signal structure once and for all.

Given the log-quadratic approximation of the pro�t function, the objective function of the �rm will

depend only on conditional variances. In addition, given the stationary Gaussian environment that

the �rms operate in, conditional variances are independent of realizations and constant over time.

In period zero, the �rm correctly anticipates future conditional variances and has no incentive to

reallocate attention.11

3.1.1 Perfect Information

Before solving the imperfect information problem, I summarize the solution to the �rm�s problem

under perfect information, which will be used in the attention allocation problem of each �rm.

Proposition 1 Under perfect information, that is, when �rms perfectly observe fat; ait; wt; rtg
every period, the log-linearized decision rules for the �rm are

l̂Fit =
1

1� �� � [at + ait � (1� �)ŵt � �r̂t] (7)

k̂Fit =
1

1� �� � [at + ait � �ŵt � (1� �)r̂t] (8)

and aggregate labor and capital follow

L̂t =
1

1� �� � [at � (1� �)ŵt � �r̂t] (9)

K̂t =
1

1� �� � [at � �ŵt � (1� �)r̂t] (10)

Proof. See Appendix F.
10The above mentioned assumptions also appear in Maćkowiak and Wiederholt (2009a,b) and Paciello (2007).
11See Maćkowiak and Wiederholt (2009a)
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It is important to emphasize that under perfect information, the aggregate economy looks

exactly like the representative agent RBC model with DTRS technology on �rms� side, where

the aggregates depend only on aggregate technology shocks and idiosyncratic shocks disappear.

Solving for the full-information equilibrium is important in drawing out the main di¤erences rational

inattention introduces to aggregate behavior, which are that idiosyncratic volatility matters for

aggregate behavior and that aggregate volatility responds more than one-for-one to a change in the

volatility of aggregate TFP.

3.1.2 Rational Inattention

I start by taking a log-quadratic approximation of the pro�t function expressed in terms of log

deviations from steady state. Denoting �̂(at;ait;k̂it; l̂it;ŵt; r̂t) = �(eat ; eait ; �Kek̂it ; �Lel̂it ; �weŵt ; �rer̂t);

where bars denote steady state values and carats denote percentage deviations from steady state,

the second order Taylor approximation of �̂ around (0,0,0,0,0,0) is given by

~�(at;ait;k̂it; l̂it;ŵt; r̂t) ' �̂(0; 0; 0; 0; 0; 0; 0) + �̂1at + �̂2ait + �̂3k̂it + �̂4 l̂it + �̂5ŵt + �̂6r̂t

+ �̂11
2 a

2
t +

�̂22
2 a

2
it +

�̂33
2 k̂

2
it +

�̂44
2 l̂

2
it +

�̂55
2 ŵt +

�̂66
2 r̂t

+�̂12atait + �̂13atk̂it + �̂14at l̂it + �̂15atŵt + �̂16atr̂t

+�̂23aitk̂it + �̂24ait l̂it + �̂25aitŵt + �̂26aitr̂t

+�̂34k̂it l̂it + �̂35k̂itŵt + �̂36k̂itr̂t + �̂45 l̂itŵt + �̂46 l̂itr̂t + �̂56ŵtr̂t

Using the approximated pro�t function, the optimal capital and labor inputs that the �rm

chooses are

l̂�it = �LaE[atjsti] + �LI E[aitjsti] + �LwE[wtjsti] + �Lr E[rtjsti] (11)

k̂�it = �Ka E[atjsti] + �KI E[aitjsti] + �KwE[wtjsti] + �Kr E[rtjsti] (12)

where fk�it; l�itg stand for optimal capital and labor input under rational inattention.12

For comparison the solution of �rm i in period t under full information is:

l̂Fit = �La at + �
L
I ait + �

L
wwt + �

L
r rt (13)

k̂Fit = �Ka at + �
K
I ait + �

K
wwt + �

K
r rt (14)

12Coe¢ cients in the capital and labor input choices are as follows: �La = (�34�13
�33

� �14); �LI = (�34�23
�33

� �24);
�Lw = (�34�35

�33
� �45); �Lr = (�34�36

�33
� �46); �Ka = �34

�33
(�34�13

�33
� �14) � �13

�33
; �KI = �34

�33
(�34�23

�33
� �24) � �23

�33
; �Kw =

�34
�33
(�34�35

�33
� �45)� �35

�33
; and �Kr = �34

�33
(�34�36

�33
� �46)� �36

�33
: Equations (13) and (14) are identical to equations (7)

and (8).
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where fkFit ; lFitg stand for the optimal choices of labor and capital under full-information. As one can
see from the equations above, l̂�it = E

h
l̂Fit jsti

i
and k̂�it = E

h
k̂Fit jsti

i
: A �rm operating under imperfect

information chooses inputs on the basis of the perceived states (E[atjsti]; E[aitjsti]), whereas a �rm
operating under full information chooses inputs on the basis of the actual state (at; ait): Anytime

the input choices di¤er from those prevalent under full information, there is a loss in pro�ts. This

loss can be measured by subtracting from �̂(at; ait; k̂
�
it; l̂

�
it; ŵt; r̂t) the equivalent expression under

full information �̂(at; ait; k̂Fit ; l̂
F
it ; ŵt; r̂t), which simpli�es the attention allocation problem without

a¤ecting the solution since the perfect information pro�ts are independent of the signal choice.

The loss function is given by

L � �̂(at; ait; k̂
�
it; l̂

�
it; ŵt; r̂t)� �̂(at; ait; k̂Fit ; l̂Fit ; ŵt; r̂t)

which can be simpli�ed to

L =
�̂33
2
(k̂�it � k̂Fit )2 +

�̂44
2
(l̂�it � l̂Fit )2 + �̂34(k̂�it � k̂Fit )(l̂�it � l̂Fit )

using (13), (14) and the fact that �̂3 = �̂4 = 0: Here �̂44 = �Y �2 � �w�L, �̂33 = �Y �2 � �r �K and

�̂34 = �Y ��. The �rst term of the loss function measures the loss in pro�ts due to the suboptimal

capital choice, whereas the second term measures the loss due to suboptimal labor decision. The

last term in captures how the mistake in one variable a¤ects the cost of a mistake in the other

variable.

The attention allocation problem can now be stated as

min
fsitg

E

( 1X
t=0

�t
�
�̂33
2
(k̂�it � k̂Fit )2 +

�̂44
2
(l̂�it � l̂Fit )2 + �̂34(k̂�it � k̂Fit )(l̂�it � l̂Fit )

�)
(15)

subject to

l̂Fit =
1

1� �� � (at + ait � (1� �)ŵt � �r̂t) (16)

k̂Fit =
1

1� �� � (at + ait � �tŵt � (1� �)r̂t) (17)

l̂�it = E
h
l̂Fit jsti

i
(18)

k̂�it = E
h
k̂Fit jsti

i
(19)

I(fwt;rt; at;aitg; fsitg) � � (20)

The result that the input choices under rational inattention are linear projections of the optimal

choices under perfect information is due to the objective function being quadratic. Given the
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assumption that signals regarding idiosyncratic and aggregate states are orthogonal, the information

�ow can be expressed as the sum of information �ow that aggregate signals reveal for aggregate

states, and the information �ow that idiosyncratic signals reveal for idiosyncratic states. Formally,

I(fwt;rt; at;aitg; fsitg) = I(fwt;rt; atg; fsAitg) + I(faitg; fsIitg)

where sAit and sIit represent the set of signals regarding the aggregate and idiosyncratic states

respectively. In this model there is only one idiosyncratic state whose true realization �rms would

like to track, namely the idiosyncratic component in �rm-level TFP. On the other hand there are

multiple aggregate states that �rms are interested in tracking. In the multiple state case there is

an additional constraint that needs to be satis�ed


A � 
AjSA

where 
A is the prior variance-covariance matrix of the aggregate state vector and 
AjSA is the

posterior variance-covariance of the same aggregate vector conditional on the set of signals received.

That is, the di¤erence between the prior and posterior variance-covariance matrix must be positive

semi-de�nite. This constraint is otherwise called the non-subsidization constraint, which places a

restriction on the precision of signals. Without this constraint, the decision-maker can improve the

precision of one signal by erasing information (forgetting) about another variable (which can be

achieved without violating the constraint on information processing capacity, equation (20). One

can think of this condition as a type of irreversibility constraint on the amount of information

acquired about a particular state variable. Further details on how information �ow is derived can

be found in appendix D.

3.2 Households

The household sector is represented by a representative consumer which has access to perfect infor-

mation and a complete set of Arrow Debreu contingent securities. By perfect information I mean

that the household knows the whole history of the relevant states including period t realizations.

Households maximize expected discounted utility given by

maxE0

1X
t=0

�t

"
C1�t � 1
1�  � � L

1+ 
t

1 +  

#

where Ct is aggregate (average) consumption, Lt is the household�s supply of labor,  is the

coe¢ cient of relative risk aversion,  is the inverse labor supply elasticity and � captures the level

of disutility of labor. Households make their decisions subject to the following budget constraint

Ct +Kt+1 = wtLt + (1 + rt � d)Kt +�t (21)

12



where wt and rt are the wage and rental rate respectively, d is the depreciation rate of capital and

�t is the dividend yield from households�ownership of �rms. Labor is assumed to be homogeneous.

The transversality condition is

lim
T!1

E0[�
T
t=0(1 + rt+1)

�1]KT+1 = 0 (22)

Knowing the history of {wt; rtg including the period t realization, households choose period t�s
consumption, labor supply and next period�s capital holdings {Ct;Kt+1;Ltg: First order conditions
obtained from the household�s problem are as follows

C�t wt = �L t (23)

C�t = �E[C�t+1(1 + rt+1 � d)] (24)

3.3 Equilibrium

The set of conditions to be satis�ed in equilibrium include �rst order conditions for the household

problem

C�t wt = �L t (25)

C�t = �E[C�t+1(1 + rt+1 � d)] (26)

the resource constraint:

Ct +Kt+1 � (1� d)Kt = Yt (27)

labor and capital market equilibrium, where the prevalent wage and rental rate are determined

Ls(wt; rt; at) =

Z
i
Ld(sti) (28)

Ks(wt; rt; at) =

Z
i
Kd(sti) (29)

market clearing condition Yt =
R
yitdi; and processes for the aggregate and idiosyncratic compo-

nents of �rm-level TFP, which are assumed to follow an AR(1) with parameters to be calibrated

using aggregate and �rm speci�c data sets

ait = �Iait�1 + uit (30)

at = �Aat + "t (31)Z
aitdi = 0

13



4 Special Case: No Capital and White Noise Disturbances

In order to illustrate the main mechanism in the model here I solve a labor-only version of the

incomplete information model where disturbances follow a white noise process. The main di¤erences

from the benchmark case are that households cannot save, the production function is yit = eateait l�it;

and the model is static. Such a setting allows for an analytic solution, which clari�es the main

mechanism in the paper.

4.1 Full Information

The equilibrium amount of aggregate hours employed in production, the wage rate and the level of

consumption in the economy under full information are

L̂Ft =
1� 

1 +  � � + � at (32)

ŵFt =
 + 

1 +  � � + � at (33)

ĈFt =
1 +  

1 +  � � + � at (34)

The solution under full information shows, once again, that the aggregate variables in the econ-

omy are determined only by the aggregate component of TFP and that no characteristic of the

idiosyncratic environment matters for aggregate dynamics. In the following subsection it will be

analytically shown how macroeconomic dynamics under rational inattention do depend on the

idiosyncratic environment and how this leads to a volatility ampli�cation e¤ect.

4.2 Attention Allocation Problem

In this section I assume that the common and idiosyncratic components of �rm-level TFP follow

Gaussian white noise processes with respective variances �a and �ai.

Each �rm�s attention allocation problem becomes

min
fsitg

E

" 1X
t=0

�t
�33
2
(l̂�it � l̂Fit )2

#
(35)

subject to

l̂Fit =
1

1� � (at + ait � ŵt) (36)

l̂�it =
1

1� � (E
�
atjsti

�
+ E

�
aitjsti

�
� E

�
ŵtjsti

�
) (37)

I (fŵt; at;aitg ; fsitg) � � (38)
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There are three variables of interest to the �rms, namely the aggregate and idiosyncratic compo-

nent of TFP as well as the average wage in the economy. I start with the guess that in equilibrium

the wage rate satis�es w = 'at and solve the attention allocation problem as a function of such

a guess. Instead of tracking three variables, the �rms track only the aggregate and idiosyncratic

component of TFP. Given the guess on the wage rate, which linearly depends on the realization of

the aggregate TFP at, tracking fŵt; at;aitg is the same problem as tracking fat;aitg :
Given the quadratic nature of the objective function and the Gaussian white noise process

assumed for the states, one can prove that the optimal signals that �rms choose take the form of

"the true state + white noise".13 Hence, we have

s1it = at + uit (39)

s2it = ait + "it (40)

where uit � N(0; �2u) and "it � N(0; �2"):

After receiving the signals regarding the two exogenous states, �rms form their posteriors using

Bayes�Rule

E(atjs1it) =
�2a

�2a + �
2
u

s1it

E(aitjs2it) =
�2ai

�2ai + �
2
"

s2it

These posteriors are substituted in the �rm�s objective function and the attention allocation problem

becomes

min
�2a
�2u
;
�2
ai
�2"

8<:
�
1� '
1� �

�2
�2a

240@ 1
�2a
�2u
+ 1

1A2 + 1
�2a
�2u

35+ � 1

1� �

�2
�2ai

240@ 1
�2ai
�2"
+ 1

1A2 + 1
�2ai
�2"

359=; (41)

subject to
1

2
log2

�
1 +

�2a
�2u

�
+
1

2
log2

�
1 +

�2ai
�2"

�
� � (42)

Each �rm minimizes its losses due to imperfect information by choosing the signal-to-noise

ratios f�
2
a
�2u
;
�2ai
�2"
g.

13Given that at is assumed to follow a white noise process , wt is also white noise with a variance of �2�2a:
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Optimal signal-to-noise ratios for each signal are

�2a
�2u

=

8>>><>>>:
0 if (1� ')2 �2a

�2ai
� 2�2�

(1� ') �a�ai 2
� � 1 if (1� ')2 �2a

�2ai
2 (2�2�; 22�)

22� � 1 if (1� ')2 �2a
�2ai

� 22�

�2ai
�2"

=

8>>><>>>:
22� � 1 if (1� ')2 �2a

�2ai
� 2�2�

2�

(1�') �a
�ai

� 1 if (1� ')2 �2a
�2ai

2 (2�2�; 22�)

0 if (1� ')2 �2a
�2ai

� 22�

For each signal there are two possible corner solutions: one in which the �rm chooses to allocate

no attention (information �ow) at all and one where it chooses to allocate all of the attention at

its disposal. Zero information �ow allocated to a signal implies that the signal-to-noise ratio of

that signal is zero. That is, the �rm chooses to receive an in�nitely noisy signal regarding that

particular state. When a particular signal receives all of the information �ow, its signal-to-noise

ratio represents the maximum precision that the signal can have given the limits on the ability to

process information.

The guess regarding the average wage rate in the economy implies a guess regarding the average

equilibrium labor employed in the economy via the general equilibrium e¤ects from the household

equilibrium conditions. Hence we have

Lt =
'� 
 + �

at (43)

as the implied guess for aggregate labor.

Using the results above, I solve for the �xed point, in which the aggregate response of labor to

aggregate shocks equals the initial guess (43)

'� =

8>>>>>>><>>>>>>>:

 if

r
�2ai
�2a

> (1� )2�

 +
1+ ��+�

 
1�  +�

 +

r
�2ai
�2a
2��

!
if

r
�2ai
�2a

< (1���+�)2��
1��+( +�)(1�2�2�)

( +�)(1�2�2�)+(1��)
1��+( +�)(1�2�2�) if

r
�2ai
�2a

< (1���+�)2��
1��+( +�)(1�2�2�)

Using the assumptions on the signals and the derived information �ow constraint, the interior

solution to the attention allocation problem is as follows14

L̂t = L̂Ft

0@1� 1

1� 

s
�2ai
�2a
2��

1A (44)

14See appendix for details on these derivations.
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Ĉt = ĈFt

0@1� �

1 +  

s
�2ai
�2a
2��

1A (45)

ŵt = ŵFt

0@1�  + �

 + 

s
�2ai
�2a
2��

1A (46)

where fLFt ; CFt ; wFt g are the full information solutions for labor, consumption and wage rate re-
spectively, as de�ned in equations (32), (33) and (34).

The solution under rational inattention di¤ers from the full information solution in two impor-

tant ways. First, rational inattention leads to dampened responses of all aggregate variables to

a change in aggregate TFP. Second, the responses of all aggregate variables to an innovation in

aggregate TFP are a function of aggregate and idiosyncratic TFP volatility. The latter is the key

result of this model. Endogeneizing the information set in a rational inattention sense introduces a

�rst-order e¤ect of aggregate and idiosyncratic shock volatilities. The key parameter for this result

is the relative volatility of idiosyncratic to aggregate shocks, �2ai=�
2
a: As this ratio increases, idio-

syncratic TFP is relatively more volatile compared to aggregate TFP, which leads to a reallocation

of attention (information �ow) towards the idiosyncratic state at the cost of less attention being

allocated to the aggregate state. The less information allocated to aggregate TFP, the stronger the

dampening of the responses of macroeconomic aggregates to an aggregate TFP shock. It is impor-

tant to note that even though the model is solved using log-linearization methods, endogeneizing

the information set leads to a �rst-order e¤ect of aggregate and idiosyncratic TFP volatilities on the

impulse responses of endogenous variables. In this way I can isolate the second-moment e¤ect on

equilibrium outcomes originating only from the imperfect information part of the model. The result

that the response of macroeconomic variables to aggregate TFP is a function of relative volatility

leads to another result, which I will call the volatility ampli�cation e¤ect. A 1% change in aggregate

TFP volatility leads to more than a 1% change in the volatility of macroeconomic aggregates. A

standard RBC model solved using higher order approximations to account for potential second-

moment e¤ects has almost no volatility ampli�cation, i.e. a 1% change in aggregate TFP volatility

leads to an approximately 1% change in macroeconomic volatility. Hence, the two main results that

imperfect information in the form of rational inattention delivers are a dampening in the response

of all macroeconomic aggregates to an innovation in aggregate TFP, and an ampli�cation in the

response of macroeconomic volatility to a change in aggregate TFP volatility. The �rst result is the

usual result of imperfect information settings. Inability to see the true state of the economy with

no error leads to a smoother response and potentially a delay, as shown below in the numerical

solution for more generalized stochastic processes. The ampli�cation in volatility occurs because a

decline in the volatility of the aggregate TFP shock has the direct e¤ect of lowering the volatility

of the aggregate outcome, as well as the indirect e¤ect of inducing agents to pay less attention to

aggregate shocks, leading to an additional moderating e¤ect.

In order to see this ampli�cation e¤ect analytically, I compute the elasticity of each aggregate
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variable�s volatility with respect to the volatility in aggregate TFP: �var(X)
�2a

=
�
@var(X)
@�2"

��
�2"

var(X)

�
:

The volatility elasticities for each aggregate variable with respect to �2a are

�
var(Y )
�2a

=
1

1� �
1+ 

r
�2ai
�2a
2��

> 1 (47)

�
var(L)
�2a

=
1

1� 1
1�

r
�2ai
�2a
2��

> 1 (48)

These elasticities are the main concern of this paper. In the white noise case, this ampli�cation

e¤ect is determined by the relative volatility of the idiosyncratic versus the common component

of TFP, the information processing capacity, the risk aversion coe¢ cient, the degree of decreasing

returns to scale and the elasticity of labor supply. As the relative volatility increases, more attention

is allocated to the idiosyncratic state, and �rm-level actions respond less to aggregate states. This

leads to a higher volatility ampli�cation. As the capacity to process information increases, the more

the economy moves towards full-information since more capacity is available to allocate to each

state. Hence, the higher the information processing capacity, the lower the volatility ampli�cation.

In order to explain the relationship between behavioral and technological parameters a¤ecting

volatility ampli�cation, I run the following thought experiment: suppose the economy experiences

a decrease in the volatility of the common component of TFP. On the labor demand side of the

economy, that is �rms, the fall in aggregate volatility will lead to a reallocation of attention away

from the aggregate states and towards the idiosyncratic state. This in turn will lead �rms to respond

less to aggregate shocks. After aggregating all �rms�responses, this leads to a lower volatility in

aggregate labor demand. On the supply side of the labor market, that is households, a fall in the

volatility of the common component of TFP will lead to a decline in labor supply volatility. Given

that the labor market must be in equilibrium, the change in volatilities for labor demand and

supply of labor must be the same. This implies that wage volatility must change in equilibrium.

This change in wage volatility introduces general equilibrium e¤ects in the attention allocation

problem. One can show that for a risk aversion coe¢ cient less than one ( < 1); the higher the

CRRA, the bigger the change in wage volatility required to restore labor market equilibrium for any

given change in common TFP volatility. In this experiment, the bigger the fall in wage volatility,

the bigger the fall in the volatility of the aggregate state that each �rm wants to track. Hence, there

is another round of attention reallocation in favor of idiosyncratic variables and the same process

repeats itself. To see how the labor supply elasticity and returns to scale a¤ect aggregate output

volatility, one can use the following equations governing household labor supply and the resource

constraint: Yt = at+ �Lt = at+
�
 (Wt� Ct), so that a given change in wage volatility will lead to

higher changes in the volatility of output the closer production technology is to constant returns

to scale (higher �) and the higher the Frisch elasticity of labor supply (lower  ): Thus, higher �

and lower  increase the volatility ampli�cation e¤ect.

At the unique interior solution the optimal amount of information allocated to the aggregate
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shock is

�A =
1

2
log2

�
1

1� � +  + �

�
�a
�ai
(1� �)(1� ) + 2��( + �)

��
+
1

2
� (49)

and the amount of information allocated to the idiosyncratic state is:

�I = �� �A (50)

Equation (49) shows that the amount of attention allocated to each variable depends on pref-

erence and technology parameters as well as the ratio of aggregate versus idiosyncratic volatility.

Below I consider an experiment, designed to mimic the Great Moderation, in which preference and

technology parameters do not change over time, while changes in the volatility of each shock a¤ect

the allocation of attention across states.

5 Numerical Solution of the Benchmark Model

This section provides the numerical solution to the benchmark model with serially correlated shocks

presented in Section 3, which is a dynamic stochastic general equilibrium model similar to the

standard RBC model with the exception of rational inattention on the part of �rms. I explore

how accounting for an endogenous information set a¤ects the transmission mechanism of aggregate

technology shocks to the economy.

5.1 Calibration

The period in the model is set to one quarter. Parameters that govern preferences and production

technology are calibrated such that they match long-run values of postwar US aggregates. I follow

standard calibration procedure as explained in Cooley and Prescott (1995) and Prescott (1986).

Using steady state equations, � is chosen to match an annual real rate of return of 4%, which

implies a value of 0.99 for �: The depreciation rate of 0.02 �xes the investment to capital ratio.

Choosing a value of 1 for the coe¢ cient of relative risk aversion reconciles the long-run observations

for the US economy of constant per-capita leisure and steadily increasing real wages (Cooley, 1995).

There has been an extensive empirical literature trying to estimate the curvature of the pro�t

function, which captures the decreasing returns to scale in the production function. Important

papers include Thomas (2002), Thomas and Khan (2007), Cooper and Haltiwanger (2005), Fuentes,

Gilchrist and Rysman (2006), and Hennessy and Whited (2005). The estimated curvature ranges

from 0.5 to 0.9. In the benchmark model I follow Thomas and Khan (2007) and set the labor share

to 0.64 and capital share to 0.245.

The parameter  determining the inverse of the Frisch elasticity of labor is set at 0.1 following

Gali et al. (2005), who takes this value from micro estimates of the elasticity of labor supply with

respect to the real wage. The parameter controlling the level of disutility of labor � is then chosen

such that households spend 1/3 of their time working.15. Parameters governing the persistence

15This number comes from microeconomic evidence on time allocation studies, such as Ghez and Becker (1975).
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and standard deviation of the aggregate TFP shock are obtained using the quarterly series on

TFP computed by Fernald (2007). I �t equation (31) to the detrended data for both the pre and

post-1984 periods and obtain an autocorrelation coe¢ cient of 0.98 for both periods and standard

deviations of 0.0092 for 1960-1983 and 0.006 for 1984-2005 respectively. This implies a 34% decline

in the volatility of the innovations in aggregate TFP and a 15% decline in the volatility of TFP

itself.

5.1.1 Idiosyncratic TFP process

I use the evidence on plant-level data compiled by Cooper and Haltiwanger (2006) and Davis,

Haltiwanger, Jarmin and Miranda (2006) to determine the parameters governing the process of

�rm-level productivity. There is only one moment in the model that can be exactly matched to

the data and that is the standard deviation of �rm-level employment growth rate. On the other

hand, assuming an AR(1) process for the idiosyncratic TFP process, there are two parameters

to be pinned down: the autocorrelation coe¢ cient and the standard deviation. Given that both

parameters cannot be pinned down, I �x the persistence parameter to di¤erent values and compute

the implied standard deviation for the TFP process by matching the model�s implications to the

data.

There is little consensus on the persistence of idiosyncratic TFP shocks. Ideally this parameter

should be estimated using �rm-level panel data accounting for both common and idiosyncratic

components to �rm-level TFP. Unfortunately, no annual �rm-level data set with the information

needed to compute TFP is available for the US. The best available persistence estimates can be

found in Cooper, Haltiwanger and Wallis (2007), who explicitly model a common and idiosyn-

cratic component to �rm-level shocks and estimate idiosyncratic level shock parameters indirectly

by matching various moments in the data. Given di¤erent model speci�cations, the persistence

parameters vary from 0.33 to 0.89.
I match the model�s predictions for �rm-level employment dynamics with moments from �rm-

level employment growth rate data provided by Cooper and Haltiwanger (2006) and Davis, Halti-

wanger, Jarmin and Miranda (2006). The moments available from these studies are 10-year window

rolling standard deviations of �rm-level employment growth rates. The �rm-level data in these

studies is annual, whereas my model economy is quarterly. I aggregate the model to an annual

frequency and obtain the �rm-level growth rate in employment. Given the log-linearized version of

the model and the additive form of the �rst order conditions, I can exactly pin down the volatil-

ity parameter of the idiosyncratic TFP process once I make an assumption on the persistence of

the idiosyncratic TFP. The indirect inference exercise is done using the full-information version of

the model. Inferring the parameters of the idiosyncratic process assuming perfect information has

two advantages. First, it saves computational time and second, equilibrium �rm-level responses to

idiosyncratic shocks under rational inattention match almost perfectly the behavior under perfect

information, since �rms under my benchmark calibration optimally allocate close to 95% of their

information �ow to tracking the idiosyncratic state.
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The �rst order condition with respect to labor for �rm i in the full information model is as

follows

Lit =
1

1� �� � [at � (1� �)wt � �rt + ait]

where at is the aggregate TFP shock, whose parameters I take as given from Fernald (2007), and

ait is the idiosyncratic TFP.

Under full information, the equilibrium behavior of wt and rt is independent of the idiosyncratic

TFP. Assuming aggregate and idiosyncratic TFP are AR(1) processes, their dynamics can be

expressed as MA(1): at = �Aat�1 + "t can be represented as at = aA(L)"t and ait = �Iait�1 + uit

can be represented as at = aI(L)uit , where lag polynomials aI(L) and aA(L) are functions of their

respective auto-correlation coe¢ cients. As a result, the model�s decision rules can also be expressed

as MA processes, which yields the following representation of the �rst order condition above

Lit =
1

1� �� �
�
aA(L)"t � (1� �)W (L)"t � �R(L)"t + a(L)uit

�
There are two unknown parameters in this decision rule, namely the persistence and standard

deviation of the idiosyncratic TFP process. Given that the only �rm-level moment available to me is

the standard deviation of �rm-level employment growth rate, I experiment with di¤erent persistence

parameters suggested from the literature and then back out the implied standard deviation.

The �rm-level data are in the form of 10-year window rolling standard deviations of �rm-level

employment growth rates

�it =

 
1

10

5X
s=�4

(git+s � �gi)2
!1=2

where git is the �rm-level growth rate in employment and �gi is its 10-year average. I compute the

model-equivalent measure and calculate the implied idiosyncratic TFP volatility. For each sub-

period (before and after 1984), I simulate the model 100 times with each simulation consisting of

300 periods. I then aggregate the model to an annual frequency and compute a time-series of the

rolling standard deviation for the �rm-level employment growth rate. I average the 10-year window

rolling standard deviation for each sub-period and compute the implied idiosyncratic TFP. Table

1 reports the implied idiosyncratic standard deviation as well as the implied ratio of idiosyncratic-

to-aggregate volatility for di¤erent assumed persistence parameters for the idiosyncratic shock.
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Table 1. Implied standard deviation for the Idiosyncratic TFP shock

pre 1984 post 1984 % change

Average standard deviation

( �rm-level employment growth rate data)
0.4996 0.4730 -9.46

Idiosyncratic TFP persistence �I = 0:95

Implied �u 0.1746 0.1653 -9.46

Implied ratio �u
�"

19.036 27.510 44.51

Idiosyncratic TFP persistence �I = 0:5

Implied �u 0.1537 0.1456 -9.47

Implied ratio �u
�"

16.763 24.226 44.52

Idiosyncratic TFP persistence �I = 0:3

Implied �u .1435 .1359 -9.47

Implied ratio �u
�"

15.645 22.610 44.52

The results show that in order to match the annual data on �rm-level volatility, the implied

standard deviation for innovations of idiosyncratic TFP prior to 1984 ranges between 0.15 and 0.17,

which is 15-19 times higher than the standard deviation for aggregate TFP for the pre-1984 period.

The implied standard deviation for the post-1984 era ranges between 0.13 to 0.16, which is 22-25

times than that of aggregate TFP over this period. The ratio of idiosyncratic-to-aggregate TFP

volatility has increased, despite a decline in both idiosyncratic and aggregate TFP volatility, because

the decline in aggregate TFP volatility has been substantially higher than that of idiosyncratic

TFP. This is the key stylized fact that will enable the calibrated model with rational inattention

to generate a volatility ampli�cation e¤ect when applied to the Great Moderation episode. For the

benchmark model below, I choose the persistence parameter for the idiosyncratic TFP process to

be equal to that of the aggregate TFP process, �I = 0:95: By setting the persistence parameter

equal across the two processes I can focus on the relative volatility ratio as the main variable that

determines the allocation of attention.

5.1.2 Calibrating the upper bound on information �ow �

The value of � , the maximum information processing capacity, has implications for the per period

loss of pro�ts for each �rm due to imperfect tracking of state variables as well as for the marginal

value of information. As Sims (2003, 2006) shows, the Log-Quadratic-Gaussian setting is a good

approximation when the marginal value of information �ow is low and a bad approximation when

the marginal value of information �ow is high. Hence, � is chosen in such a way as to imply a

low marginal value of information. More speci�cally, as in Máckowiak and Wiederholt (2009a,b),

one can �x the marginal value of information and let � be determined endogenously, or �x � and
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let the marginal value of information be determined within the model. In both cases the marginal

value of information must be a reasonably low number. I pick the latter strategy, because my goal

is to evaluate the e¤ect of changes in the stochastic processes of underlying shocks keeping �xed

the information processing technology. In the benchmark calibration, � = 4:7 bits, which implies a

marginal value of information of 0.04% of a �rm�s steady state output and an expected per-period

loss in pro�ts of 0.07% of a �rm�s steady state output. I think these are reasonably low numbers.

Table 2 summarizes the benchmark calibration.

Table 2. Benchmark Parameters

Parameter Description Values

� discount factor 0.99

 coe¢ cient of relative risk aversion 1

 the inverse of labor supply elasticity 0.1

d depreciation rate 0.02

� capital�s share in output 0.256

� labor�s share in output 0.64

� the level of disutility of labor 2.95

� upper bound on information �ow (bits) 4.7

�A persistence parameter for aggregate TFP process 0.95

�I persistence parameter for idiosyncratic TFP process 0.95

�" (pre-1984) standard deviation of the innovation in aggregate TFP 0.0092

�" (post-1984) standard deviation of the innovation in aggregate TFP 0.006

�u (pre-1984) standard deviation of the innovation in idiosyncratic TFP 0.1746

�u (post-1984) standard deviation of the innovation in idiosyncartic TFP 0.1653

5.2 Results

Figure 2 displays impulse responses of aggregate variables to a one standard deviation positive

shock to aggregate TFP under perfect information and rational inattention. All impulse responses

presented in the paper represent percentage deviations from the nonstochastic steady state. For

a given volatility of aggregate TFP, rational inattention leads to a dampening and delay in the

responses of output, labor, consumption and investment to an innovation in aggregate TFP as

compared to perfect information. This is due to a combination of reasons. First, agents in the

economy are limited in their ability to process information, which implies imperfect tracking of

the true state vector in the economy. The degree of this imperfection depends on how tight the

information capacity constraint is. The tighter the constraint, the less precise the signals and

the more dampening and delay will be observed. Existing studies on RBC models with rational

inattention (e.g. Luo and Young 2009) have found signi�cant departures from perfect information

outcomes for a very low maximum bound on information �ow (around .30 bits per time period,

which is a quarter). In this model, a low information �ow devoted to tracking the aggregate shock
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is an optimal outcome, which is the second explanation for the �ndings in Figure 1. Agents in

this economy are endowed with 4.7 bits per period of information �ow, but they optimally choose

to allocate only 5% of this information �ow to aggregate conditions. Hence, with most of the

information �ow allocated to the idiosyncratic environment, agents in the economy have a smooth

and delayed response to an innovation in aggregate TFP.
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Figure 2. Impulse Response to an aggregate TFP shock.

Because �rms optimally devote most of their attention to idiosyncratic outcomes, their response

to idiosyncratic shocks under rational inattention is almost identical to that under perfect informa-

tion, as shown in Figure 3. Labor and capital inputs are a¤ected equally by the idiosyncratic shock.

Hence, the impulse responses for both labor and capital to an innovation in the idiosyncratic TFP

shock will be the same.
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Figure 3. Impulse response of �rm level input choices to an innovation in idiosyncratic TFP

Next I calculate the second moments implied by the benchmark model using the pre-1984 es-

timated aggregate and idiosyncratic TFP volatilities. I simulate the model 200 times, with each

simulation consisting of 300 periods. I apply the HP �lter to the simulated data and compute the

moments presented in Table 3. Major di¤erences between the perfect information and rational

inattention models are observed in the volatility of aggregate variables. Note that given the sim-

plifying assumption that the household sector in the economy has full information, there is little

di¤erence in the volatility of consumption. However, investment, hours and output are markedly

less volatile under rational inattention as compared to the perfect information RBC model. This

is expected given the low information �ow agents in the economy allocate to the aggregate envi-

ronment and the consequent dampening. Another e¤ect of rational inattention in an otherwise

standard RBC setting is that the delay in the response of aggregate variables leads to stronger

autocorrelations and cross-correlations.
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Cross Correlation of Output with :
(Full Information)

Variable  SD (%) x(4) x(3) x(2) x(1) x x(+1) x(+2) x(+3) x(+4)
C 0.62 0.50 0.59 0.69 0.78 0.85 0.54 0.28 0.07 0.09
I 11.61 0.12 0.28 0.48 0.72 0.99 0.78 0.59 0.41 0.27
L 1.72 0.10 0.26 0.46 0.71 0.99 0.78 0.60 0.43 0.29
Y 2.39 0.21 0.36 0.55 0.76 1.00 0.76 0.55 0.36 0.20

Cross Correlation of Output with :
(Rational Inattention)

Variable  SD (%) x(4) x(3) x(2) x(1) x x(+1) x(+2) x(+3) x(+4)
C 0.6 0.59 0.68 0.75 0.82 0.87 0.66 0.45 0.25 0.06
I 7.84 0.26 0.44 0.63 0.82 0.98 0.87 0.74 0.60 0.46
L 0.8 0.48 0.66 0.82 0.92 0.93 0.80 0.66 0.52 0.37
Y 1.75 0.37 0.53 0.70 0.86 1.00 0.86 0.70 0.53 0.37

Table 3. Business Cycle Statistics - Perfect Information vs Rational Inattention

5.2.1 Comparing Two Di¤erent TFP Volatility Regimes: Great Moderation as a Case
Study

Figure 4 plots the impulse responses of aggregate variables to an innovation in aggregate TFP

under di¤erent TFP-volatility regimes and di¤erent information structures. The "high volatility"

impulse responses correspond to an economy with aggregate TFP calibrated to the US data prior

to 1984. The "low volatility" impulse responses correspond to an economy with TFP calibrated

to the post-1984 period. Following the evidence of Fernald (2009), I assume that TFP innovations

are 34% less volatile post 1984. As the economy moves from high to low aggregate TFP volatility,

the impulse responses of output and hours experience a bigger change under rational inattention as

compared to full information. As the economy is hit by less volatile aggregate TFP shocks, �rms

optimally choose to reallocate their attention towards tracking idiosyncratic TFP, and therefore

respond less to innovations in aggregate TFP. This is the mechanism that leads to the volatility

ampli�cation e¤ect.
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Figure 4. Impulse Responses to an aggregate TFP shock across di¤erent TFP volatility regime

and information structures

The magnitude of this ampli�cation e¤ect, which is the main result of this paper, is summarized

in Table 4. I simulate the models 200 times, with each simulation consisting of 300 periods. I

then HP �lter the simulated data and compute the volatility of output, hours, consumption and

investment. For the model under rational inattention, a 34% decline in the standard deviation of

the innovation to aggregate TFP leads to a 46% decline in the volatility of aggregate output, a 72%

decline in the volatility of hours, a 33% decline in the volatility of consumption and a 50% decline in

the volatility of investment. Under perfect information, when aggregated, the model collapses to a

standard RBC model with decreasing returns to scale. In that case a 34% decline in aggregate TFP

volatility leads to only 34% decline in the volatility of all macroeconomic variables. Hence, the model

under rational inattention di¤ers from the full information model in two ways. First, it ampli�es

changes in the volatility of aggregate TFP. Second, the response to changes in the volatility of TFP

is di¤erent across aggregate variables. It is stronger for hours and weaker for consumption. The lack

of volatility ampli�cation for consumption is because for simplicity households are assumed to have

in�nite information processing capacity, i.e. perfect information about the state of the economy.

The reason why volatility of hours responds more than that of output under rational inattention but

not under perfect information can be explained as follows. Under perfect information both labor

and output depend on the true state of technology (aggregate TFP). Under rational inattention
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hours depend on the perceived state of technology (E[atjst] ), whereas output is determined by
the true state of technology as well as hours employed in production according to the production

function. Changes in the volatility of aggregate TFP lead to bigger changes in the volatility of the

perceived state, as the latter is a function of attention allocation. Because output is a function of

these two states (at and E[atjst]), in percentage terms its volatility will change by more than the
change in TFP volatility and by less than the change in hours volatility. See Appendix C for the

proof.

Table 4. Great Moderation: Data versus RBC and Rational Inattention (RI)
( percent standard deviations )

Series Output Hours Consumption Investment

Data (1961 - 2006) 1.55 1.78 0.78 4.56

Data (1961 - 1983) 1.90 2.01 0.92 5.41

Data (1983 - 2006) 0.94 1.44 0.56 3.15

Data (late/early) 0.49 0.72 0.61 0.58

Rational Inattention (pre 1984) 1.75 0.80 0.60 7.84

Rational Inattention (post 1984) 0.95 0.33 0.40 3.92

RI (late/early) 0.54 0.28 0.67 0.50

RBC (pre 1984) 2.39 1.72 0.62 11.61

RBC (post 1984) 1.58 1.14 0.41 7.65

RBC (late/early) 0.66 0.66 0.66 0.66

�"(pre1984) = 0:0092; �"(post1984) = 0:006;
�"(post1984)
�"(pre1984)

= 0:66

6 Shutting Down the Idiosyncratic Channel: Rational Inattention

versus Attention Allocation

In this section I explore the extent to which allowing for idiosyncratic volatility matters for aggregate

dynamics. There are two dimensions of rational inattention that are important for this paper. First,

�rms have imperfect information about the state vector due to their limited ability to process

information. Second, the presence of the idiosyncratic shocks forces the �rms to allocate attention

to tracking the idiosyncratic state, at the cost of less information being allocated to the aggregate

environment. Changes in the volatility of idiosyncratic and/or aggregate shocks do not a¤ect

the total precision of �rms�signals, but do a¤ect the way precision is allocated across signals. The

direction in which the relative volatility of the shocks changes determines the direction of attention

reallocation. In the case where there is no idiosyncratic volatility to compete for attention, all

information processing capacity will be allocated to improving the precision of signals regarding

the aggregate state. In this case a change in the volatility of aggregate shocks does not change

28



the amount of information �ow that goes to tracking the true state of the economy. In such an

environment there is no volatility ampli�cation e¤ect.

6.1 Rational Inattention Problem for the Firm

To illustrate the importance of idiosyncratic volatility to my results, I examine an alternative model

in which �rms face only aggregate shocks, but are still subject to imperfect information in the form

of a capacity constraint on per period information �ow. My setting is the standard RBC model

with an information processing constraint placed on the side of the representative �rm.

minE

" 1X
t=0

�t(
�̂33
2
(k̂�t � k̂Ft )2 +

�̂44
2
(l̂�t � l̂Ft )2 + �̂34(k̂�t � k̂Ft )(l̂�t � l̂Ft ))

#
(51)

subject to

l̂Ft =
1

1� �� � (at � (1� �)ŵt � �r̂t) (52)

k̂Ft =
1

1� �� � (at � �tŵt � (1� �)r̂t) (53)

l̂�t = E
h
l̂Ft jsti

i
(54)

k̂�t = E
h
k̂Ft jsti

i
(55)

I(fwt;rt; ag; fsitg) � � (56)

If we remove the most important shock (idiosyncratic shock) and hold � constant, �rms will

have enough information �ow to track the aggregate shock almost perfectly and the results under

rational inattention and perfect information will be indistinguishable. There will be no delay or

dampening in the responses of hours, output and investment to an innovation in aggregate TFP, and

there will be no volatility ampli�cation. This is only due to the fact that �rms have an abundance

of information processing ability on their hands.

To make the exercise interesting, suppose instead that agents are endowed with much less

information processing capacity than in the benchmark model. In particular, suppose � equals

0.23 bits, which is the amount of information �ow per period allocated to aggregate shocks in the

benchmark model. In this case rational inattention will lead to dampened and delayed responses in

aggregate outcomes to the aggregate technology shock, but there will be no volatility ampli�cation.

This is due to the fact that changes in underlying shock volatility do not lead to changes in the

information �ow allocated to that shock (since it is the only shock). To make this point clear, I set

� = 0:23 in the imperfect information model with only aggregate shocks and compare its volatility
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ampli�cation e¤ects (if any) with the benchmark and the RBC models. Table 5 shows that even

when the model under Rational Inattention with only aggregate shocks is calibrated to yield less

volatility than the RBC model, it still maintains a linear relationship between the volatility of the

aggregate shock and the volatility of aggregate outcomes. That is, a 34% decline in the volatility

of the aggregate technology shock leads to 34% decline in the volatility of aggregate variables just

as in the standard perfect information RBC model.

Table 5. Rational inattention (RI) without the attention allocation problem
versus standard RBC model.
( percent standard deviations )

Series Output Hours Consumption Investment

Data (1961 - 2006) 1.55 1.78 0.78 4.56

Data (1961 - 1983) 1.90 2.01 0.92 5.41

Data (1983 - 2006) 0.94 1.44 0.56 3.15

Data (late/early) 0.49 0.72 0.61 0.58

Rational Inattention (pre 1984) 1.75 0.80 0.60 7.84

Rational Inattention (post 1984) 1.15 0.53 0.39 5.13

RI (late/early) 0.66 0.66 0.66 0.66

RBC (pre 1984) 2.39 1.72 0.62 11.61

RBC (post 1984) 1.58 1.14 0.41 7.65

RBC (late/early) 0.66 0.66 0.66 0.66

�"(pre� 1984) = :0092; �"(post� 1984) = :006; �"(post�1984)�"(pre�1984) = :66

7 Can Changes in the Volatility of the Idiosyncratic Environment

Cause Changes in the Macroeconomic Environment ?

In this section I ask whether changes in the idiosyncratic shock process alone can generate changes

in the dynamics of macroeconomic aggregates. In the following numerical exercise I examine how

an economy under rational inattention responds to an increase in the volatility of idiosyncratic

shocks. The "low volatility" impulse responses correspond to an economy with idiosyncratic TFP

calibrated to US data prior to 1984. The "high volatility" impulse responses correspond to an

economy with idiosyncratic TFP being hypothetically 25% more volatile. Everything else is kept

unchanged.

Figure 5 plots the impulse responses of output and hours to an innovation in aggregate TFP

when the economy moves from a low-volatility to a high-volatility idiosyncratic environment under

rational inattention and perfect information. Under perfect information, the response of variables
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to an innovation in aggregate TFP is the same under high or low idiosyncratic volatility. That is,

under perfect information, the nature of the idiosyncratic environment plays no role for aggregate

dynamics. On the other hand, under rational inattention, the volatility of the idiosyncratic envi-

ronment matters for the aggregate dynamics. The more volatile the idiosyncratic shock, the more

dampened the response of aggregate variables to an innovation in aggregate TFP, as shown in the

right hand column in Figure 6.
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Figure 5. Impulse response of output and hours to an innovation in aggregate TFP across

di¤erent idiosyncratic volatility regimes

Table 6 shows the magnitude of the decline in aggregate volatility due to an hypothetical

25% increase in the standard deviation of the innovations in the idiosyncratic TFP. The perfect

information case as expected is not a¤ected by changes in the idiosyncratic environment. However,

the rational inattention case o¤ers a role for the idiosyncratic environment in aggregate dynamics.

Changes in idiosyncratic volatility change the allocation of attention, which a¤ects the equilibrium

behavior of agents in the economy. In other words, the transmission mechanism of aggregate shocks

in the economy is a function in part of the stochastic properties governing idiosyncratic shocks.

Keeping all other benchmark parameters unchanged, an increase of 25 % in the standard deviation

of idiosyncratic shocks leads to a 11% decline in volatility of aggregate output and a 36% decline

in that of aggregate hours.

31



Table 6. 25% increase in idiosyncratic TFP volatility
no change in aggregate TFP volatility
( percent standard deviations )

Series Output Hours Consumption Investment

RI low 1.75 0.80 0.60 7.84

RIhigh 1.56 0.51 0.6 6.69

RIhigh=RIlow 0.89 0.64 1.00 0.85

RBC low 2.39 1.72 0.62 11.61

RBChigh 2.39 1.72 0.62 11.61

RBChigh=RBClow 1.00 1.00 1.00 1.00

�u(high) = :2242; �u(low) = :1746; �"(high) = �"(low)

Reconciling a contemporaneous increase in idiosyncratic volatility and a decrease in macroeco-

nomic volatility is of particular importance when looking at another established fact during the

Great Moderation episode, which is the increased household-level consumption and income volatil-

ity (Gottschalk and Mo¢ tt (2002),Comin, Groshen, and Rabin (2006), Hyslop (2001)). Increased

household level volatility in the mid 1980s in the face of a decline in macroeconomic activity during

the same period has stirred considerable research.

Augmenting the benchmark model with rational inattention in the side of the consumers as

well as �rms, could potentially reconcile the contemporaneous increase in household level volatility

and the decline in macroeconomic volatility. I will pursue this extension of my model in my future

research.

8 Comparative statics: changing structural parameters

8.1 Changing the upper bound on information �ow

Rational inattention theory relies on the assumption that agents in the economy are limited in

information processing ability and face an upper bound on the maximum information �ow that

can be processed. As the maximum amount of information that agents in the economy can process

(�) increases, the model under rational inattention approaches that of full information. Figure 6

shows the relative response of aggregate hours and output to an innovation in aggregate TFP under

rational inattention as compared to perfect information16. This ratio approaches 1 as the capacity

to process information (�) increases.

16 I report results in this section using the labor-only model of section 4.2 to save computational time. Preliminary
experiments suggest that qualitative results carry over to the benchmark model with capital. Future drafts will report
results for the benchmark model.
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Figure 6. Output and Hours time-0 response relative to perfect information, static model.

Figure 7 displays computed volatility elasticities for output and hours for the labor-only model.

The elasticity of the volatility of hours with respect to the volatility of the aggregate TFP shock

is higher than that for output. Both elasticities approach the perfect information outcome of unit-

elasticity if the upper bound in the information processing capacity is higher than 6 bits per

quarter. Both �gures 6 and 7 illustrate the fact that as the upper bound on per period information

�ow increases, the model under rational inattention approaches the perfect information model.
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Figure 7. Volatility elasticities for Hours and Output, labor-only model

8.2 Di¤erent household preferences

Here I explore the implications of the form of household preferences for volatility ampli�cation.

I compare the results for the benchmark separable preferences versus the preferences assumed
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in Greenwood-Hercowitz-Ho¤man (GHH, 1988).17 The speci�cation of preferences determines the

dynamics on the labor supply side of the economy and hence a¤ects the feedback mechanism

between imperfect information on the side of the �rms and the household sector. The GHH

preference function is as follows:

U(Ct; Lt) =
(Ct �  L�t )1��

1� � ;  > 0; � > 1

Whereas the preferences in the benchmark model are:

U(Ct; Lt) =
C1�t � 1
1�  � � L

1+ 
t

1 +  

The main di¤erence between these two types of preferences is the equilibrium labor supply.

Under GHH preferences, labor supply is independent of consumption, due to the absence of wealth

e¤ects. Both preference speci�cations lead to a volatility ampli�cation e¤ect, but of di¤erent

magnitude. In the numerical experiments, I calibrate the two di¤erent models such that they yield

the same steady state equilibrium. I �nd that the ampli�cation is smaller in magnitude for GHH

preferences. The absence of wealth e¤ects leads to less reallocation of attention in response to a

change in the volatility of aggregate shocks. The intuition is the following: when the economy

faces a decline in the volatility of aggregate shocks, this will lead �rms in all cases to reallocate

attention away from the aggregate environment, which will be re�ected in the weights they put

on various shocks in their demand for inputs. Such changes in the input demand by �rms will

have to be matched by changes in the input supply of households. Under GHH preferences labor

supply responds di¤erently to changes in labor demand than under the benchmark preference

speci�cation. In particular, the change in labor supply is accomplished only through a change in

the wage rate rather than consumption. For preference speci�cations with wealth e¤ects and hence

a negative covariance between consumption and labor supply, a larger change in the wage rate

will be required to match a given change in the demand for labor by �rms. This leads to bigger

volatility ampli�cation for preference speci�cations which allow for wealth e¤ects.

9 Conclusion

In a standard RBC model there is an almost linear relationship between the volatility of aggregate

TFP shocks and the volatility of aggregate variables such as output, employment and investment.18

This paper shows that endogenizing the information set in an otherwise standard RBC model breaks

this linear relationship. Following the literature on rational inattention, agents in this economy are

assumed to be constrained in their ability to process information and face the decision of how to

17 I consider Cobb-Douglas preferences as well. Results show that ampli�cation is similar for separable and Cobb-
Douglas preferences.
18This relationship is exactly linear up to a �rst order approximation and very close to linear for higher order

appoximations.
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allocate this limited information �ow across many state variables of interest. The trade-o¤ they

face in terms of allocating limited attention across aggregate and idiosyncratic states is the key

aspect of the model that leads to a non-linear relationship between the volatility of aggregate TFP

and macroeconomic variables. The observed 34% decline in TFP volatility from the pre-1984 to the

post-1984 period can generate a 46% decline in output volatility when agents rationally reallocate

attention away from aggregate shocks and towards idiosyncratic shocks.

Hence, rational inattention with attention allocation implies that equi-proportional changes in

the volatility of aggregate shocks are not necessary to generate a given magnitude of change in

the volatility of macroeconomic variables. One of the key variables that determines the extent of

this non-linear relationship between TFP volatility and output volatility is the relative volatility of

aggregate versus idiosyncratic shocks. This variable determines how much attention is allocated to

each state variable, with more information �ow being directed towards the nosier variable. Hence,

a relatively more noisy idiosyncratic environment would lead to more attention being allocated

towards idiosyncratic states at the cost of less information being allocated to aggregate shocks.

The contribution of this paper is to bring forth the importance of endogenous information sets

as well as the interaction between the aggregate and idiosyncratic environment in determining

macroeconomic volatility. There are several extension of this model that I intend to work in the

future.

First, this model can be extended to allow for rational inattention on the side of consumers as

well as �rms. This would be particularly interesting since this model could reconcile two established

facts regarding the 1984-2006 period, that of increasing household level earnings volatility and

declining macroeconomic volatility (Gottschalk and Mo¢ tt (2002), Comin, Groshen, and Rabin

(2006), Hyslop (2001)). As shown in Section 7 of the paper, the attention allocation mechanism can

lead to a contemporaneous increase in idiosyncratic volatility and a decline in aggregate volatility.

A second extension of this model would be to allow for monetary shocks as another aggregate

shock in the economy. The reason for this is to address the observed decline in in�ation volatility

that the U.S. has experienced during 1984-2006. This would be complementary to the Máckowiak

and Wiederholt (2009b) DSGE model of rational inattention where they allow for technology and

monetary policy shocks.

Third, this model can be extended to allow for a time variation in the volatility of the struc-

tural innovations. This would have implications for the time-variation in the share of information

allocated across shocks.
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Appendices

A DATA

Data on macroeconomic aggregates are taken from Federal Reserve Economic Data (FRED) dataset

and Bureau of Labor Statistics (BLS) The data series include seasonally adjusted, quarterly, billions

of chained 2000$, real gross national product, real personal consumption expenditures of durable,

non-durable goods and services, real private �xed investment, hours and employment.

B Non-stochastic steady state

In the deterministic steady state there are no technology shocks : ait = at = 0: Given that

technology is the only source of heterogeneity in the model, in this case all �rms are exactly the

same.

From the household �rst order conditions we have:

�C�w = ��L (57)

1 = �(1 + r � d) (58)

For the representative �rm (due to lack of heterogeneity in the deterministic steady state) we

have:

w = � �K� �L���1 (59)

r = � �K��1 �L� (60)

From the aggregate resource constraint and the production function we have:

�C = �Y + d �K (61)

�Y = �K� �L� (62)

There are 6 equations and 6 unknowns, so I can solve for
�
�Y ; �C; �K; �L;w; �r

	
:

39



C Why volatility ampli�cation is stronger for aggregate hours of

work than aggregate output

Suppose Yt = g(zt; Lt); where zt = eat and g(:) is any production function: After log-linearizing

output around zt = 1; Lt = �L we have:

Ŷt =
gz(1; �L)
�Y

at +
gL(1; �L)
�Y

L̂t

Under rational inattention L̂t = f(�u�" )at: Assume for simplicity that at = "t: Then we have:

Ŷt =
�
gz(1;�L)
�Y

+ gL(1;�L)
�Y

f(�u�" )
�
"t: The volatilities of labor and output are

V ar(Lt) = f(
�u
�"
)2�2"

and

V ar(Ŷt) =

�
gz(1; �L)
�Y

+
gL(1; �L)
�Y

f(
�u
�"
)

�2
�2"

The elasticities of V ar(Lt) and V ar(Ŷt) with respect to �2" are :

�
var(L)
�2"

= 1 +
2f�2"(:)�

2
"

f(:)

and

�
var(Y )
�2"

= 1 +
2f�2"(:)�

2
"

gz(1;�L)
gL(1;�L)

+ f(:)

Given that gz(1;�L)
gL(1;�L)

is always positive,

�
var(Y )
�2"

< �
var(L)
�2"

D Derivation of the information �ow constraint

In this subsection I will derive the information rate for one and two-dimensional discrete parameter

Gaussian processes using frequency-domain methods.

D.1 Information rate of discrete parameter one-dimensional Gaussian processes

Let X = fx(t)g; Y = fy(t)g be one-dimensional, real-valued, discrete parameter , wide-sense sta-
tionary and stationarily correlated processes. The information rate between these two processes

can be written as follows

IX;Y = �
1

4�

Z �

��
log(1� jrXY (!)j2)d!
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where

jrXY (!)j2 = f
jfXY (!)j

2

fXX (!)fY Y (!)
;fXY (!) 6=0

0;fXY (!)=0

where, fXX(!) and fY Y (!) are spectral densities of process X and Y respectively, and fXY (!) is

the cross-spectral density. jrXY (!)j2 is also called the coherence between the processes at frequency
!; which is the frequency-domain analog of the correlation coe¢ cient.

As an example of this, assume that X and Y can be expressed as in�nite-order moving average:

X =
P1

l=0 dl"t�l = D(L)"t and Y =
P1

l=0m
L
l "t�l +

P1
l=0 n

L
l �

L
t�l(L)"t = ML(L)"t + NL(L)�Lt ;

where D(L);ML(L); NL(L) are in�nite lag polynomials and f"tg; f�Lt g are Gaussian mutually in-
dependent white noise processes with �2" and unit variance respectively and independent of each

other. Spectral density functions for X1 and Y1 are:

fXX(!) =
�2"
2�
D(e�i!)D(ei!)

fY Y (!) =
�2"
2�
ML(e�i!)ML(ei!) +

1

2�
NL(e�i!)NL(ei!)

and the cross-spectral density is

fXY (!) =
�2"
2�
D(e�i!)ML(ei!)

where D(e�i!) = do+d1e
�i!+d2e�2i!+ :::dT e

�Ti!+ ::; D(ei!) = do+d1e
i!+d2e

2i!+ :::dT e
Ti!+ ::;

ML(e�i!) = mL
o + mL

1 e
�i! + mL

2 e
�2i! + :::mL

T e
�Ti! + ::; ML(ei!) = mL

o + mL
1 e

i! + mL
2 e
2i! +

:::mL
T e

Ti! + :: and NL(e�i!) = nLo + nL1 e
�i! + nL2 e

�2i! + :::nLT e
�Ti! + ::; NL(ei!) = nLo + nL1 e

i! +

nL2 e
2i!+ :::nLT e

Ti!+ ::: Using the spectral and cross-spectral densities, the information rate between

these two one-dimensional processes becomes:

IX;Y = �
1

4�

Z �

��
log(

1

1 + �2"M
L(e�i!)ML(ei!)

NL(e�i!)NL(ei!)

)d!

where �2"M
L(e�i!)ML(ei!)

NL(e�i!)NL(ei!)
is also de�ned as the signal-to-noise ratio. Hence, one can express the

information rate between two moving average Gaussian processes in terms of their moving average

coe¢ cients. This information �ow constraint will be used in the dynamic version of the model with

labor only as the input choice to be made by the �rms.

D.2 Information rate of discrete parameter multi-dimensional Gaussian processes19

The multidimensional case of the problem applies to the benchmark model in the paper, where the

�rms�optimal input choices are those of capital and labor.

Let X = fx1(t); x2(t); :::xn(t)g; Y = fy1(t); y2(t); :::ym(t)g be n and m-dimensional, real-valued,
19Derivations in this section follow the book "Information and information stability of random variables and

processes" by M. S. Pinsker (1964)
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discrete parameter , wide-sense stationary and stationarily correlated processes respectively. The

information rate between these two processes can be written as follows:

IX;Y = �
1

4�

Z �

��
log

detA ~X ~Y (!)

detA ~X(!) detA ~Y (!)
d!

where detAX(!) = det jjfxixj (!)jji;j=1;:::::;n; detAY (!) = det jjfyiyj (!)jji;j=1;:::::;m; detAXY (!) =
det jjfxiyj (!)jji;j=1;:::::;n+m and detA ~X(!) is a non-vanishing principal minor of highest order �r

0 of

the determinant detAX(!); detA ~Y (!) is a non-vanishing principal minor of highest order �s
0 of the

determinant detAY (!); and detA ~X ~Y (!) is the principal minor of order
0r + s0 of the determinant

detAXY (!) which contains detA ~X(!) and detA ~Y (!): f12(!) refers to the cross-spectrum between

variable �1�and �2�.

The model in this paper requires the computation of the information rate between two-dimensional

Gaussian processes. The information �ow relevant in the model is the information �ow between

the full information pro�t maximizing decisions of capital and labor, and the actual decisions under

limited information. In turn, this can be interpreted as the information rate between the variable

the �rms are trying to track (the pro�t maximizing decisions) and the signals they get regarding

the pro�t maximizing decisions, which are the actual decisions.

We have I(flFitg; fkFitg; fl�itg; fk�itg) = I(flFAt g; fkFAt g; fl�At g; fk�At g)+I(flFIit g; fkFIit g; fl�Iit g; fk�Iit g);
where subscript F stands for full information optimal decisions and subscript � stands for actual
decisions for capital and labor, and where A stands for aggregate components while I stands for

the idiosyncratic components. The equality above comes from the fact that common and idiosyn-

cratic components of the �rm-level productivity shock are independent from each other. Hence, I

can separate the aggregate from the idiosyncratic component in each decision rule20. In order to

compute the information �ow, I use the moving average representation of decision rules for capital

and labor derived under full and incomplete information. The following derivation involves the

information �ow pertaining to the aggregate component of the decision rules.

lFAt = D(L)"t; k
FA
t = E(L)"t ; l

�A
it = ML(L)"t + NL(L)�Lit; k

�A
it = MK(L)"t + NK(L)�Kit ;

where "t � WN(0; �2"); �
L
it and �Kit � WN(0; 1);where f"tg; f�Litg and f"tg; f�Kit g are pairwise

independent from each other but {�Litg; f�Kit g do not need to be independent. This setting applies
to an environment where there is a single agent (the �rm�s decision maker) that chooses the optimal

pair of labor and capital inputs. The objective of the �rm is to track the full information pro�t-

maximizing levels of labor and capital using an optimal set of signals. Since there is only one

decision maker within the �rm that jointly chooses labor and capital inputs, it is reasonable to

assume that information processing will lead to optimal signals being correlated. This paper allows

for this possibility, which expands the set of choice variables for the �rm when they solve their

attention allocation problem. Firms now will choose not only the extent of the noise in each signal

but also their correlation across signals.

After calculating the spectral and cross-spectral densities as well as using the de�nition for

20This same procedure is followed in Maćkowiak and Wiederholt (2009a)
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information �ow for multi-dimensional Gaussian processes I obtain:

I(flFAt g; fkFAt g; fl�At g; fk�At g) =

� 1
4�

R �
�� log

1

1+
�2"M

L(e�i!)ML(ei!)

(1��2)NL(e�i!)NL(ei!)
+

�2"M
K�i!)MK (ei!)

(1��2)NK (e�i!)NK (ei!)
� �2"�

1��2
ML(e�i!)MK (ei!)

NL(e�i!)NK (ei!)
� �2"�

1��2
ML(ei!)MK (e�i!)
NL(ei!)NK (e�i!)

d!

where � = E(�Lit�
K
it ):

By looking at the pro�t-maximizing decision rules for each �rm , the idiosyncratic component

for both labor and capital input decisions is the same, namely the idiosyncratic TFP component.

In this case the �rm chooses to receive only one signal whose noise will be a choice variable.

lFIit = kFIt = A2(L)ut ; l
�I
it = k�Iit = S(L)uit+T (L) it; where uit �WN(0; �2u);  it �WN(0; 1);

I(flFIit g; fkFIit g; fl�Iit g; fk�Iit g = �
1

4�

Z �

��
log

1

1 + �2uS(e
�i!)S(ei!)

T (e�i!)T (ei!)

d!

E Algorithm

The algorithm used here to solve the model is similar to Paciello (2008).

Step 1:
Under both types of information structures, I solve the model by log-linearizing around the de-

terministic steady-state. It is well-known that under full-information log-linearization, eliminates

second-moment e¤ects. However, under incomplete information with information processing con-

straints, there are �rst-order e¤ects of the volatility of underlying shocks, even though the model

is log-linearized.

Full Information
Under full-information the following equations must hold in equilibrium:

 L̂t + Ĉt = ŵt

Ĉt = E(Ĉt+1 �
r̂t+1

)

Ŷt =
�C
�Y
Ĉt +

�K
�Y
(K̂t+1 � (1� d)K̂t)

l̂Fit =
1

1� �� � (at + ait � (1� �)ŵt � �r̂t)

k̂Fit =
1

1� �� � (at + ait � �ŵt � (1� �)r̂t)
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ait = �Iait�1 + uit; uit �WN(0; �2u)

at = �Aat + "t; "t �WN(0; �2")

The �rst two equations come from household problem, the third one the resource constraint,

the third is from the resource constraint, the fourth and the �fth equations are optimal labor and

capital decisions taken by �rms under full-information, and the last two equations are the assumed

processes for the common and idiosyncratic components of �rm-level TFP. Given the assumption

of decreasing returns to scale one can determine optimal hours of work and capital, unlike the

case of constant returns to scale, where only the capital-to-labor ratio can be pinned down. Part

of step 1 involves making a guess for the deviation of capital and labor decisions under rational

inattention from the pro�t-maximizing decisions (under full information)21. The guess takes the

following form: guessL = l�it � lFit and guessK = k�it � kFit
Using the guess I compute the implied dynamics for the model for the aggregate variables.

The set of equations that must hold in equilibrium for the aggregate dynamics under rational

inattention are the following:

 L̂t + Ĉt = ŵt

Ĉt = E(Ĉt+1 �
r̂t+1

)

Ŷt =
�C
�Y
Ĉt +

�K
�Y
(K̂t+1 � (1� d)K̂t)

yt = at + �lt + �kt

at = �Aat + "t; "t �WN(0; �2")

Obtaining the average wage and rental rate I can compute the pro�t-maximizing decision rules

for capital and labor, which are used in solving the attention allocation problem:

lFAt =
1

1� �� � (at � (1� �)wt � �rt)

and

kFAt =
1

1� �� � (at � �wt � (1� �)rt)

One can express all variables as moving averages. For instance, at = A1(L)"t; wt = W (L)"t;

21This step is similar to formulating a guess regarding the actual labor and capital decisions under rational inat-
tention.
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rt = R(L)"t: Substituting these moving average representations into lFAt and kFAt I obtain: lFAt =

D(L)"t; k
FA
t = E(L)"t; where D(L) = 1

1���� (A1(L) � (1 � �)W (L) � �R(L))"t and E(L) =
1

1���� (at��W (L)�(1��)R(L))"t: The idiosyncratic part of the pro�t-maximizing decision rules is
simply lFIit = kFIit = 1

1����ait =
1

1����A2(L)uit; where A2(L)uit is a moving average representation

of the idiosyncratic component of the �rm-level TFP shock.

Step 2. Having obtained the pro�t -maximizing decision rules for capital and labor I can now
solve the attention allocation problem that �rms face. Each �rm minimizes the losses it incurs due

to incomplete information, subject to an information processing constraint.

Loss = 1
2E[�33(kit � k

F
it )
2 + 2�34(kit � kFit )(lit � lFit ) + �44(lit � lFit )2] =

1
2E[�33(k

A
it � kFAit )2 + �33(kIit � kFIit )2 + �44(lAit � lFAit )2 + �44(lIit � lFIit )2

+2�34(k
A
it � kFAit )(lAit � lFAit ) + 2�34(kIit � kFIit )(lIit � lFIit )] =

1
2E[�33(k

A
it � kFAit )2 + �44(lAit � lFAit )2 + 2�34(kAit � kFAit )(lAit � lFAit )]

+1
2E[�33(k

I
it � kFIit )2 + �44(lIit � lFIit )2 + 2�34(kIit � kFIit )(lIit � lFIit )]

where
lFAt = D(L)"t

kFAt = E(L)"t

l�Ait =ML(L)"t +N
L(L)�Lit

k�Ait =MK(L)"t +N
K(L)�Kit

(63)

where "t � WN(0; �2"); �
L
it and �

K
it � WN(0; 1);where f"tg; f�Litg andf"tg; f�Kit g are pairwise

independent and E(�Lit�
K
it ) = �:

lFIit = kFIt = A2(L)ut

l�Iit = k�Iit = S(L)uit + T (L) it
(64)

where uit � WN(0; �2u);and  it � WN(0; 1): Lag polynomials D(L) and E(L) come from step

1 given the initial guess whereas the moving average coe¢ cients on the actual decisions are what

the �rms choose.

Information �ow can also be expressed as the sum of information �ow between idiosyncratic

variables and information �ow between aggregate variables.
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I(flFitg; fkFitg; fl�itg; fk�itg) = I(flFAt g; fkFAt g; fl�At g; fk�At g) + I(flFIit g; fkFIit g; fl�Iit g; fk�Iit g)

= � 1
4�

R �
�� log

1

1+
�2"M

L(e�i!)ML(ei!)

(1��2)NL(e�i!)NL(ei!)
+

�2"M
K�i!)MK (ei!)

(1��2)NK (e�i!)NK (ei!)
� �2"�

1��2
ML(e�i!)MK (ei!)

NL(e�i!)NK (ei!)
� �2"�

1��2
ML(ei!)MK (e�i!)
NL(ei!)NK (e�i!)

d!

� 1
4�

R �
�� log

1

1+
�2uS(e

�i!)S(ei!)
T (e�i!)T (ei!)

d!

The attention allocation problem becomes:

maxfmK ;mL;nK ;nL;s;tg
1
2(

1
1���� )

2f�2"�33
PT

l=0(m
K
l � el)2 + �33

PT
l=0(n

K
l )

2+

�2"�44
PT

l=0(m
L
l � dl)2 + �44

PT
l=0(n

L
l )
2 + 2�34�

2
"

PT
l=0(m

K
l � el)(mL

l � dl)+

2�34�
PT

l=0 n
K
l n

L
l

�2u(�44 + �33 + 2�34)
PT

l=0(sl � a2l)2+

(�44 + �33 + 2�34)
PT

l=0(tl)
2g

subject to

� 1
4�

R �
�� log

1

1+
�2"M

L(e�i!)ML(ei!)

(1��2)NL(e�i!)NL(ei!)
+

�2"M
K�i!)MK (ei!)

(1��2)NK (e�i!)NK (ei!)
� �2"�

1��2
ML(e�i!)MK (ei!)

NL(e�i!)NK (ei!)
� �2"�

1��2
ML(ei!)MK (e�i!)
NL(ei!)NK (e�i!)
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� 1
4�

R �
�� log

1

1+
�2uS(e

�i!)S(ei!)
T (e�i!)T (ei!)

d! � �

where fmK ;mL; nK ; nL; s; tg are the lag polynomial coe¢ cients in equations (63) and (64).
As previously derived, the information �ow is a function of moving average coe¢ cients, which

also appear in the loss function. As an example, consider the choice of mL; nL :

( 1
1���� )

2�2"�44(m
L
l � dl) + �34�2"(mK

l � el) =

� �
4�

��Z
�

@

0B@log 1

1+
�2"M

L(e�i!)ML(ei!)

(1��2)NL(e�i!)NL(ei!)
+

�2"M
K�i!)MK (ei!)

(1��2)NK (e�i!)NK (ei!)
� �2"�

1��2
ML(e�i!)MK (ei!)

NL(e�i!)NK (ei!)
� �2"�

1��2
ML(ei!)MK (e�i!)
NL(ei!)NK (e�i!)
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l
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( 1
1���� )

2(�44 + 2�34�n
K
l )n

L
l =

� �
4�

R �
��

@

0B@log 1

1+
�2"M

L(e�i!)ML(ei!)

(1��2)NL(e�i!)NL(ei!)
+

�2"M
K�i!)MK (ei!)

(1��2)NK (e�i!)NK (ei!)
� �2"�

1��2
ML(e�i!)MK (ei!)

NL(e�i!)NK (ei!)
� �2"�

1��2
ML(ei!)MK (e�i!)
NL(ei!)NK (e�i!)

1CA
@nLl

where � is the shadow price of information. The complete solution of the attention allocation

stage consists of 6T+1 equations and 6T+1 unknowns, which are solved numerically. Once this

stage is solved I obtainfl�itgfk�itg; which are the actual decisions under rational inattention. As
a next step I compute the di¤erence between these decision rules and pro�t maximizing decision

rules. If l�it � lFit 6= guessL and k�it � kFit 6= guessK I update the guess by the following rule:

guessLnew = �guessL + (1� �)(l�it � lFit )

and

guessKnew = �guessK + (1� �)(k�it � kFit )

F Perfect Information Case

In this section I compute the equilibrium dynamics of the full-information version of the model in

which �rms know the entire history of state variables, including their period t realization. Under full

information the model collapses to a standard RBC model with DRTS technology in the production

function. Hence, the perfect information solution is not only important in comparing the two

di¤erent information structures but also because it nests a well known benchmark, that of a standard

RBC model.

The household part of the economy is the same as in the benchmark model. Given that there

are no adjustment costs to the �rm of changing the number of workers or capital, their problem is

static.

The �rm�s problem is:

max
lit;kit

n
eateaitk�itl

�
it � wtlit � rtkit

o
(65)

The implied �rst order conditions are:

wt = �eateaitk�itl
��1
it (66)

rt = �eateaitk��1it l�it (67)

Which implies :
wt
rt
=

�
�

�

�
kit
lit

(68)
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All �rms have the same capital-to-labor ratio. The DRTS assumption allows me to pin down

�rm-speci�c levels of labor and capital demand:

lit =

�
�eateait(�wt�rt

)�

wt

� 1
1����

(69)

kit = lit(
wt
rt

�

�
) (70)

The market clearing conditions are Kt =
R
kitdi, Lt =

R
litdi, Yt =

R
yitdi;

R
aitdi = 0:

The resource constraint is:

Ct +Kt+1 � (1� d)Kt = Yt (71)

Log-linearized version of the Perfect Information Model
Given that the imperfect information model will be solved in a Linear Quadratic Gaussian

framework, I need the log-linearized FOC of the perfect information case to make a consistent

comparison as well to build a quadratic loss function. The log-linearization is done around the

non-stochastic steady state (see Appendix A).

The log-linearized set of �rst order conditions for the household and �rms are:

 L̂t + Ĉt = ŵt (72)

Ĉt = E

�
Ĉt+1 �

r̂t+1


�
(73)

ŵt = at + ait + �k̂
F
it + (� � 1)l̂Fit (74)

r̂t = at + ait + (�� 1)k̂Fit + �l̂Fit (75)

k̂Fit � l̂Fit = ŵt � r̂t (76)

ŷFit = at + ait + �k̂
F
it + �l̂

F
it (77)

l̂Fit =
1

1� �� � (at + ait � (1� �)ŵt � �r̂t) (78)

k̂Fit =
1

1� �� � (at + ait � �Ŵt � (1� �)r̂t) (79)
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Ŷt =
�C
�Y
Ĉt +

�K
�Y

�
K̂t+1 � (1� d)K̂t

�
(80)

Aggregate Equilibrium Conditions under Perfect Information
By aggregating the �rm-speci�c �rst order conditions we obtain 6 equations, three of which are

equations (72), (73) and (80), and 6 unknowns fLt;Kt+1; Ct; Yt; wt; rtg:

Ŷt = at + �K̂t + �L̂t (81)

L̂t =
1

1� �� � (at � (1� �)ŵt � �r̂t) (82)

K̂t =
1

1� �� � (at � �Ŵt � (1� �)r̂t) (83)
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