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Abstract

This paper gives a complete characterization of neutrally stable strategies for sender–receiver games in
the style of Lewis, or Nowak and Krakauer [Lewis, D., 1969. Convention: A Philosophical Study. Harvard
Univ. Press, Cambridge, MA; Nowak, M., Krakauer, D., 1999. The evolution of language. Proc. Nat. Acad.
Sci. USA 96, 8028–8033]. Due to the dynamic implications of neutral stability, the replicator dynamics
of this model does not necessarily lead to the rise of an optimal signaling system, where every state of the
world is bijectively linked to one signal and vice versa, but it can be trapped in suboptimum situations where
two (or more) signals are used for the same event, or two (or more) events are associated with one and the
same signal.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The idea to use game theoretic methods for analyzing phenomena of natural language dates
back relatively early into the history of game theory. In his book “Convention: A philosophical
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study” David K. (1969) put forward the concept of Nash equilibrium to explain the conventional
character of natural languages.

Lewis’ contribution addressed a long-standing debate in Philosophy. W.V. Quine and others
had argued that natural languages cannot be like the well–understood cases of central con-
ventions, since we could not have agreed on them without the use of any, even rudimentary,
communication device (see, for example, Quine, 1936, 1960, and White, 1956). Lewis, who had
gotten into contact with the theory of games through T.C. Schelling, defended the view that lan-
guages are conventions; however not in the sense of centrally organized institutions, but in the
sense of self-enforcing agreements. Provided that everybody is doing his or her part of a conven-
tion, no individual agent has an incentive to deviate—in the language of game theory, this is a
Nash equilibrium. These equilibria, Lewis argues, are supported by agents proceeding by prece-
dent and basing their choices on a system of mutually interacting higher-order expectations.
Once established, therefore, such equilibria would persist without the need of any centrally coor-
dinating authority. Interestingly, this led Lewis to one of the first notions of common knowledge.
Aumann and Heifetz (2002) write: “Lewis (1969) was the first to define common knowledge,
which of course is a multi-person, interactive concept; though verbal, his treatment was entirely
rigorous.”

To make his point of view more precise, Lewis (1969) introduces a simple coordination game
that can be used to explain the conventional character of signaling systems. In this game, there
are two types of players, senders and receivers. A strategy for a sender is a mapping from events
(potential objects of communication) to signals, and a strategy for a receiver is a mapping from
signals to events. A combination of strategy choices such that the sender’s strategy is a bijective
mapping from the set of events into the set of available signals and the receiver’s strategy is the
inverse of this mapping is a Nash equilibrium of this game—in fact it is even a strict Nash equi-
librium. Lewis calls such equilibria conventional signaling systems. But this game also admits
other, non-strict Nash equilibria, where two (or more) events are mapped to the same signal, or
where two (or more) signals are mapped to the same event. Lewis claims that due to its salient
properties, however, a conventional signaling system eventually will prevail.

What seems to lie behind Lewis’ line of reasoning is the idea of some dynamic process that
operates in a population of individual agents. But without explicitly formulating such a dynamics,
Lewis’ argument for the rise of a conventional signaling system hardly goes beyond an ad hoc
assertion.

Besides his notion of common knowledge, Lewis’ important conceptual innovation is to have
given an interpretation of the meaning of arbitrary signs as an equilibrium property of a game.
Yet, this is only half of a reply to the critique of Quine and others. It does not explain how
a convention of language can come into being in the first place. Of course, this can only be
answered in a dynamic, or evolutionary framework.

Wärneryd (1993) takes up Lewis’ model exactly with this perspective. He considers a sym-
metrized version of this game, where individual agents are assumed to find themselves in the
roles of senders and receivers with equal probabilities. Wärneryd shows that conventional sig-
naling systems in the sense of Lewis are not only the only evolutionarily stable strategies of
this game, but also the only weakly evolutionarily stable strategies. In the literature weak evolu-
tionary stability is also referred to as neutral stability (see, for example, Maynard Smith, 1982,
or Bomze and Weibull, 1995). Evolutionary stability implies asymptotic stability in the replica-
tor dynamics (Taylor and Jonker, 1978), whereas neutral stability implies Lyapunov stability in
the replicator dynamics (Thomas, 1985; see also Bomze and Weibull, 1995). Wärneryd suggests
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these dynamic implications as a foundation for the rise of a conventional signaling system in the
sense of Lewis by some trial-and-error process.

However, Wärneryd’s characterization of neutrally stable strategies does not take into account
the mixed strategies of this game. But in a dynamic, population based setting, mixed strategies
necessarily arise as the non-monomorphic states of the population, where it is composed of dif-
ferent types of otherwise identical agents who use different pure strategies. It is not difficult to
find mixed strategies of this game that are neutrally stable, but not evolutionarily stable. A com-
plete treatment of the evolutionary aspects of this model, therefore, has to be complemented by
an analysis of neutral stability that also takes into account the possibility of mixed strategies.

As a model in mixed strategies, Lewis’ sender–receiver game is equivalent to the sender–
receiver games that have been studied in the context of the origins of language by Hurford (1989),
and in a series of articles by M.A. Nowak and others; for example, Nowak and Krakauer (1999),
Nowak et al. (1999), or Trapa and Nowak (2000).

From computer simulations with this model in the style of a replicator dynamics Nowak and
Krakauer (1999) conjecture that event-to-signal relations where one signal is used for two (or
more) events can be stable in an evolutionary context. Trapa and Nowak (2000) show that for
the model in mixed strategies it is also true that a strategy is evolutionarily stable if and only if
every event is bijectively linked to one signal and vice versa. Hence, a strategy where one signal
is used for two (or more) events cannot be evolutionarily stable in the strict sense. But this still
leaves the question whether we can identify some other selection criterion that can help us to
explain why an evolutionary dynamics can be blocked in a suboptimum state where ambiguities
in concept-to-sign mappings persist in the population. Neutral stability, as it turns out, provides
one possible explanation.

This paper does two things. First, it gives a complete characterization of neutrally stable
strategies for a population-based version of the sender–receiver game studied in Lewis (1969)
and Wärneryd (1993). Second, it explores the consequences of neutral stability for the long run
behavior of the replicator dynamics of this model. Section 2 introduces the model. Section 3
discusses the properties of Nash equilibria and reviews the results on evolutionary stability. Sec-
tion 4 derives a complete characterization (necessary and sufficient conditions) for a neutrally
stable strategy. Section 5 is concerned with the long-run behavior of the replicator dynamics.
Section 6 discusses related literature and concludes with some comments on extensions of the
model and future work.

2. The model

The basic idea of Lewis’ (1969) sender–receiver game is that there is an agent who is informed
about the state of the world—but who is not directly called for action—and an agent who is not
informed about the state of the world, but who has to take an action that determines the payoffs
for both agents in a perfectly symmetric way. The informed agent has access to a set of arbitrary
signs, one of which she can send to the uninformed agent before he takes the payoff relevant
action. For each event there is exactly one action that has to be taken, such that every action can
be identified with the particular event by which it is called for. If the uninformed agent takes
the “correct” action, then this yields a payoff of 1 for both players, and 0 otherwise. Taking this
action can be interpreted as understanding the state of the world, and players can be referred to
as sender and receiver according to their role in latent communication.

Suppose that there are n events that potentially become the object of communication, and that
there are m available signals. A sender’s strategy can be represented by a matrix
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P ∈ Pn×m = {
P ∈ R

n×m+ : ∀i, pij = 1 for some j = j ′(i) and

pij = 0 ∀j �= j ′(i)
}
, (1)

where pij = 1 if event i is mapped to signal j , and zero otherwise. A receiver’s strategy can be
represented by a matrix

Q ∈Qm×n = {
Q ∈ R

m×n+ : ∀j, qji = 1 for some i = i′(j) and

qji = 0 ∀i �= i′(j)
}
, (2)

where qji = 1 if signal j is associated with event i and 0 otherwise. There are mn elements in
Pn×m, and nm elements in Qm×n. Note that P and Q can be seen as special cases of stochastic
matrices, since their row elements add up to 1.

The payoff function for both the sender and the receiver can be written as

π(P,Q) =
n∑

i=1

m∑
j=1

pij qji = tr(PQ). (3)

In the sequel, tr(PQ) is also referred to as the communicative potential of a pair (P,Q). Equa-
tions (1)–(3) describe an asymmetric game between a sender and a receiver.

When we study language as a social phenomenon, we do not find agents who are either only
senders or only receivers. Being a sender or being a receiver are rather social roles that agents
adopt depending on their relative position in various situations of interaction with other agents.
Formally we can capture this by looking at the symmetrized version of the asymmetric game. We
assume that each individual agent finds herself or himself in the role of the sender or the receiver
with equal probabilities. A strategy of the symmetrized game, then, is a pair of a sender and a
receiver matrix,

(P,Q) ∈Pn×m ×Qm×n, (4)

and the payoff function is given by

F
[
(P,Q), (P ′,Q′)

]= 1

2
tr(PQ′) + 1

2
tr(P ′Q). (5)

Note that this payoff function is symmetric,

F
[
(P,Q), (P ′,Q′)

]= F
[
(P ′,Q′), (P,Q)

]
,

giving rise to a so-called doubly symmetric or partnership game. A game is called doubly sym-
metric if all players have the same strategy set and payoff function, and if in addition to that
this payoff function is symmetric (for more on partnership games and symmetrized games, see
Hofbauer and Sigmund, 1998; or Cressman, 2003). In the sequel,

Gn,m = {
Pn×m ×Qm×n,F

[
(P,Q), (P ′Q′)

]}
(6)

refers to this game. Abstracting from notation, Gn,m is the game studied in Wärneryd (1993).
With each pair (Pl,Ql) ∈Pn×m ×Qm×n we identify a particular type of agent who performs

this strategy whenever he or she is called for playing the game Gn,m. Note that there are L =
mn × nm elements in Pn×m ×Qm×n. A state of the population, then, is a vector of type frequen-
cies,

x = (x1, x2, . . . , xL) ∈ SL =
{

x ∈ R
L+:

L∑
l=1

xl = 1

}
.
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For every vector of type frequencies x ∈ SL, the population’s average strategy is

(
P̄x, Q̄x

)=
L∑
1

xl(Pl,Ql).

This can be written as

(
P̄x, Q̄x

)=

⎡
⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎝

p̄11 . . . p̄1j . . . p̄1m

...
...

p̄i1 . . . p̄ij . . . p̄im

...
...

p̄n1 . . . p̄nj . . . p̄nm

⎞
⎟⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎜⎝

q̄11 . . . q̄1i . . . q̄1n

...
...

q̄j1 . . . q̄j i . . . q̄jn

...
...

q̄m1 . . . q̄mj . . . q̄mn

⎞
⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎦ ,

where

p̄ij =
∑

l:pl
ij =1

xl and q̄j i =
∑

l:ql
ji=1

xl. (7)

That is, p̄ij is the sum of all type frequencies whose i, j th entry in P is equal to 1, and anal-
ogously for q̄j i . Note that

∑m
j=1 p̄ij = 1, for all i, and

∑n
i=1 q̄j i = 1, for all j . The average

strategy profile, therefore, is a pair of two stochastic matrices,

(P̄ , Q̄) ∈ P�
n×m ×Q�

m×n,

where

P�
n×m =

{
P ∈ R

n×m+ :
m∑

j=1

pij = 1, ∀i

}
, and

Q�
m×n =

{
Q ∈ R

m×n+ :
n∑

i=1

qji = 1, ∀j

}
.

The game

Γn,m = {
P�

n×m ×Q�
m×n,F

[
(P,Q), (P ′,Q′)

]}
(8)

can be considered as the mixed-strategies version of the game Gn,m. Formally, Γn,m is equivalent
to the sender–receiver game considered in Nowak et al. (1999) and Trapa and Nowak (2000).

3. Nash strategies and evolutionary stability

In the tradition of evolutionary game theory, a Nash equilibrium is interpreted as an equi-
librium composition of the population. Following a usual convention, a strategy played in a
symmetric Nash equilibrium—that is, a strategy that is a best response to itself—is called a Nash
strategy. A strategy is called a strict Nash strategy if it is a unique best response to itself.

Let B(P ) and B(Q) be the set of best responses to P and respectively Q in the asymmetric
game,

B(P ) = {
Q ∈Q�

m×n: tr(PQ) � tr(PQ′) ∀Q′ ∈Q�
m×n

}
, and

B(Q) = {
P ∈P�

n×m: tr(PQ) � tr(P ′Q) ∀P ′ ∈P�
n×m

}
.

Note that both B(P ) as well as B(Q) are always non-empty.
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Lemma 1. A pair (P,Q) ∈P�
n×m ×Q�

m×n is

(a) a Nash strategy of the game Γn,m if and only if P ∈ B(Q) and Q ∈ B(P ); and it is
(b) a strict Nash strategy of Γn,m if and only if P is the unique element in B(Q) and Q is the

unique element in B(P ).

Proof. (a) Suppose that P /∈ B(Q). Then there is some P ′ ∈P�
n×m, P ′ �= P , such that tr(P ′Q) >

tr(PQ). Consider (P ′,Q) as an alternative strategy. Then tr(P ′Q) + tr(PQ) > tr(PQ) +
tr(PQ). But this cannot be true if (P,Q) is a Nash strategy. For (b), suppose that P ∈ B(Q)

and Q ∈ B(P ), but that there is some P ′ ∈ B(Q) with P ′ �= P . Then tr(P ′Q) + tr(PQ) =
tr(PQ) + tr(PQ), but this cannot be true if (P,Q) is a strict Nash strategy. �

Supplementing Lemma 1 with a characterization of best responses in the asymmetric game
allows us to characterize the Nash strategies of the symmetrized game Γn,m.

Lemma 2 (Best-response properties). Let P̄ ∈P�
n×m and Q̄ ∈Q�

m×n. If Q ∈ B(P̄ ), then∑
i∈argmaxi (p̄ij� )

qj�i = 1 and qj�i = 0 ∀i /∈ argmaxi (p̄ij� );

if P ∈ B(Q̄), then∑
j∈argmaxj (q̄j i� )

pi�j = 1 and pi�j = 0 ∀j /∈ argmaxj (q̄j i� ).

Remark 1. For fixed P̄ ,

max
Q

(
tr(P̄Q)

)= max
qji

(∑
j

∑
i

p̄ij qji

)
=
∑
j

max
i

(p̄ij );

analogously for the roles of P and Q reversed.

Proof. The proof is given for fixed P̄ ; perfectly analogous reasoning holds true for fixed Q̄. As
the elements in Q are row-wise bounded to add up to 1, it is convenient to think of the operator
tr(P̄Q) as multiplying the j th column in P̄ with the j th row of Q, and then summing over all j .
Finding a Q that maximizes tr(P̄Q) then amounts to choosing optimal weights qji for their cor-
responding elements p̄ij such that

∑
i p̄ij qji is maximal for every j (in the sequel I will often

refer to pij as the “corresponding element” of qji , and vice versa.) Fix, for example, the j�th
column of P̄ . Suppose first that it contains a unique maximal element, say p̄i�j� . Then in order to
maximize

∑
i p̄ij�qj�i it is the unique optimal solution to put “full weight” to p̄i�j�—that is, to

set qj�i� equal to 1. If, on the other hand, the j�th column of P̄ contains more than one maximal
element, then all the vertex solutions, where full weight is put to any of the maximal elements in
the j�th column of P̄ , as well as any of their convex combinations fulfill the task of maximizing∑

i p̄ij�qj�i . For any pij� that is not a maximal element in the j�th column of P̄ , the correspond-
ing element in Q, qj�i , has to be equal to zero—which concludes the proof of Lemma 2. But no
matter how the total mass of 1 is distributed to the elements of the j�th row of Q, there is no way
of doing better than to “extract” from the j�th column of P̄ the value of its maximum. Summing
over all j gives the claim of the remark. �
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Example 1. Let

P1 =
(1 − x x 0

0 0 1
0 0 1

)
, Q1 =

(1 0 0
1 0 0
0 1 − y y

)
, x, y ∈ (0,1).

Then the set of best responses to P1 and Q1 is given by

B(P1) =
{(1 0 0

1 0 0
0 1 − y′ y′

)
: y′ ∈ [0,1]

}

and respectively

B(Q1) =
{(1 − x′ x′ 0

0 0 1
0 0 1

)
: x′ ∈ [0,1]

}
.

Note that B(P1) as well as B(Q1) include the two vertex solutions where y′ and respectively x′
are either 0 or 1. For any Q ∈ B(P1), tr(P1Q) = 2, the sum of the column maxima of P1. And
for any P ∈ B(Q1), tr(PQ1) = 2, the sum of the column maxima in Q1. We see that P1 is
a best response to Q1, and that Q1 is a best response to P1. The pair (P1,Q1) therefore is a
Nash strategy of the game Γ3,3. Indeed, it can be checked easily that in this example any pair
[B(Q1),B(P1)] constitutes a Nash strategy of the game Γ3,3, including the cases where both the
P matrix and Q matrix contain a zero-column, which is shown in the following example.

Example 2.

(P2,Q2) =
[(1 0 0

0 0 1
0 0 1

)
,

(1 0 0
1 0 0
0 0 1

)]
.

These examples illustrates two important properties of Nash strategies:

• There can be two (or more) events that are linked to the same signal, or two (or more) signals
that are associated with the same event.

• And there can be a zero-column in P or in Q, or in both P and Q.

In linguistics, the phenomenon that two or more objects of communication are linked to the
same signal is called homonymy, whereas synonymy refers to a situation where the same object
is linked to more than one signal.

Trapa and Nowak (2000) focus on a particular class of Nash strategies, which is defined by
the condition that neither P nor Q contains any zero-column. The pair (P1,Q1) is of that type.
Other examples are:

Example 3.

(P3,Q3) =
[(0.3 0.7 0

0.3 0.7 0
0 0 1

)
,

(0.6 0.4 0
0.6 0.4 0
0 0 1

)]
.
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Example 4.

(P4,Q4) =
[(0.5 0.5 0

0 0.5 0.5
0.5 0 0.5

)
,

(0.5 0 0.5
0.5 0.5 0
0 0.5 0.5

)]
.

Lemma 3. (See Trapa and Nowak, 2000.) Let (P,Q) ∈ P�
n×m ×Q�

m×n and assume that neither
P nor Q contains any column that consists entirely of zeros. Then (P,Q) is a Nash strategy if
and only if there exist real numbers p1, . . . , pn and q1, . . . , qm such that

(a) for each j , the j th column of P has its entries drawn from {0,pj }, and pij = pj if and only
if qji = qi ; and

(b) for each i, the ith column of Q has its entries drawn from {0, qi}, and—as a matter of
consistency—qji = qi if and only if pij = pj .

Proof. A possible way to see this is by crosswise exploitation of the best-response properties
between P and Q. If pij is positive, then by the contrapositive of Lemma 2 this means that qji is
a maximal element of its respective column. Since by assumption no column can consist of zero
elements only, this means that qji necessarily has to be positive, but if qji is positive, this in turn
implies that pij is a maximal element of the respective column in P . So the support of one matrix
has to be the same as the support of the transpose of the other matrix, and every non-zero element
is equal to the maximum of its respective column. Sufficiency follows from Lemma 2. �

Here, instead, I want to draw attention to the role of zero-columns. The difficulty with zero-
columns is that they destroy the property that in a Nash strategy the support of one matrix has
to coincide with the support of the transpose of the other matrix (see Example 2). Another con-
sequence of the presence of zero-columns in a Nash strategy is that a non-zero element is not
automatically a maximal element of its respective column in P or respectively Q.

Example 5.

(P5,Q5) =
[( 1 − x x 0

1 − x − ε x − ε 2ε

0 0 1

)
,

(1 0 0
1 0 0
0 0 1

)]
, x ∈ (0,1).

As long as ε � 0, (P5,Q5) is indeed a Nash strategy.
Note that it is generally true that whenever we start with a Nash strategy that has a zero-

column, say in Q, then in order to preserve the Nash property, it is irrelevant how we assign the
entries in the corresponding row of P as long as we preserve the column maxima of P . But even
in the presence of zero-columns, the properties of best responses still imply conditions on the
entries of P and Q that can be interpreted in the sense of some minimal consistency criteria.

Lemma 4 (Minimal consistency). Let P ∈ P�
n×m and Q ∈Q�

m×n.

(a) If Q ∈ B(P ), then:

qj�i� �= 0 ⇒ pi�j� = max
i

(pij∗), pi�j� �= 0 or pij∗ = 0∀i;
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(b) if P ∈ B(Q), then:

pi�j� �= 0 ⇒ qj�i� = max
j

(qji∗), qj�i� �= 0 or qji∗ = 0∀j.

Proof. If for some Q ∈ B(P ), qj�i� �= 0, then by the contrapositive of Lemma 2, pi�j� ∈
argmaxi (pij∗). This maximum can be zero. But if it is zero, then, of course, all the elements
in that column are zero. Analogous reasoning holds true for the roles of P and Q reversed. �

On the level of the population’s average strategy profile, a zero-column in P̄ means that there
is a signal that remains perfectly idle across the whole population. A zero-column in Q̄ means
that there is an event that is never possibly inferred by any resident type, which we can interpret
in the sense that nobody in this population has a concept of the relevant event.

Lemma 4 then reads as follows: If there is some resident type who infers event i� from sig-
nal j� (q̄j�i� �= 0), then there is either at least some type who uses signal j� to communicate
event i�, and there cannot be more agents who use signal j� in order to communicate another
event; or, if this is not the case, then signal j� remains idle throughout the whole population.
Analogously, if there is some resident type who uses signal j� in order to communicate event i�

(p̄i�j� �= 0), then there is either some type who infers event i� from signal j�, and there cannot
be more agents who link signal j� to another event; or, if this is not the case, then there is nobody
in this population who has a concept of event i�.

An apparent feature of this model is that there is an abundance of Nash equilibria. The most
central refinement concept in evolutionary game theory is that of an evolutionarily stable strategy
(see Maynard Smith, 1982; Hofbauer and Sigmund, 1998; Cressman, 2003).

Definition 1. A strategy (P,Q) ∈ P�
n×m ×Q�

m×n is evolutionarily stable if

(i) it is a Nash strategy, and if
(ii) whenever F [(P,Q), (P,Q)] = F [(P ′,Q′), (P,Q)] for some (P ′,Q′) ∈ P�

n×m ×Q�
m×n \

{(P,Q)}, then

F
[
(P,Q), (P ′,Q′)

]
> F

[
(P ′,Q′), (P ′,Q′)

]
.

A strict Nash strategy necessarily is an evolutionarily stable strategy. For symmetrized asym-
metric games, evolutionary stability also implies the strict Nash property, so that for this class
of games, evolutionary stability and the strict Nash property indeed coincide (this follows from
Selten, 1980).

From Lemma 2 it is easily seen that for a strict Nash strategy—that is, a pair (P,Q) such that
P is the unique best-response to Q and vice versa—there has to be exactly one 1 in each column
of P and respectively Q, such that qji = 1 whenever pij = 1. Note that strict Nash strategies
do only exist in the case where m = n. Consequently, (P,Q) is an evolutionarily stable strategy
of the game Γn,n if and only if P is a permutation matrix and Q the transpose of P (Trapa and
Nowak, 2000). For m = n there are therefore exactly n! evolutionarily stable strategies.

4. Neutrally stable strategies

Evolutionary stability is a rather strict concept. A game might have no evolutionarily stable
strategy; for example in our case if m �= n. Maynard Smith (1982) introduces a weaker notion
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of stability in an evolutionary context, where the strict inequality in Definition 1 is replaced by a
weak inequality sign.

Definition 2. A strategy (P,Q) ∈ P�
n×m ×Q�

m×n is neutrally stable if

(i) it is a Nash strategy, and if
(ii) whenever F [(P,Q), (P,Q)] = F [(P ′,Q′), (P,Q)] for some (P ′,Q′) ∈ P�

n×m × Q�
m×n,

then

F
[
(P,Q), (P ′,Q′)

]
� F

[
(P ′,Q′), (P ′,Q′)

]
.

In the literature neutral stability is sometimes also referred to as weak evolutionary stability
(for example, Thomas, 1985; for a clarification of terms, see Bomze and Weibull, 1995). Though
formally a static concept, evolutionary stability implicitly carries the idea that a strategy can
protect itself against the invasion of mutant strategies, in the sense that it can drive out other
strategies. Neutral stability, instead, is more apt to express the condition that a strategy can protect
itself from being driven out by other, potentially intruding, strategies.

Due to the symmetry of the payoff function, there is a more convenient way to state neutral
stability.

Lemma 5. A strategy (P,Q) ∈ P�
n×m ×Q�

m×n is a neutrally stable strategy if

(i) P ∈ B(Q) and Q ∈ B(P ), and if in addition to that
(ii) whenever P ′ ∈ B(Q) and Q′ ∈ B(P ) this implies that

tr(PQ) � tr(P ′Q′).

Proof. Point (i) is just the condition that the pair (P,Q) be a Nash strategy (Lemma 1). Point (ii):
As F [(P,Q), (P ′,Q′)] = F [(P ′,Q′), (P,Q)], the inequality in the definition of neutral stability
can be written as

F
[
(P ′,Q′), (P,Q)

]
� F

[
(P ′,Q′), (P ′,Q′)

]
.

By the supposition this condition this can be written as

F
[
(P,Q), (P,Q)

]
� F

[
(P ′,Q′), (P ′,Q′)

]
,

which means that

tr(PQ) � tr(P ′Q′). �
For evolutionary stability, of course, an analogous statement holds true, only with the weak

inequality sign replaced by a strict inequality sign.
Hence, if we want to check for neutral stability of a particular Nash strategy (P,Q) ∈

P�
n×m ×Q�

m×n, all we have to do is to compare its communicative potential tr(PQ) with the com-
municative potential of any alternative best reply, tr(P ′Q′), where P ′ ∈ B(Q) and Q′ ∈ B(P ).

In pure strategies, non-strict Nash strategies are always of the form such that each of the two
matrices P and Q has at least one zero-column (Example 2 is such a case). Wärneryd (1993)
shows that a zero-column in both the sender and the receiver matrix is in general sufficient to
destroy neutral stability.



Author's personal copy

C. Pawlowitsch / Games and Economic Behavior 63 (2008) 203–226 213

Lemma 6. (See Wärneryd, 1993.) Let (P,Q) ∈ P�
n×m ×Q�

m×n be a Nash strategy. If each of the
two matrices, P and Q, contains at least one column that consists entirely of zeros, then (P,Q)

cannot be a neutrally stable strategy.

Proof. Just note that if a pair (P,Q) is not neutrally stable with respect to all the pure strategies
of a game, then it is also not neutrally stable with respect to all the mixed strategies. �

The intuition behind this is straightforward: An invading strategy that does not alter the exist-
ing links between events and signals, but that connects the previously idle signal to the event that
before has never been potentially understood, is not doing worse against the resident type, but is
doing strictly better against itself.

To see this in more detail for (P2,Q2) from Example 2, consider as an alternative best reply
the pair (P ′,Q′) with

P ′ =
(1 0 0

0 1 0
0 0 1

)
and Q′ =

(1 0 0
0 1 0
0 0 1

)
. (9)

Clearly, P ′ ∈ B(Q2) and Q′ ∈ B(P2). But

tr(P ′Q′) = 3 > 2 = tr(P2Q2),

and therefore (P2,Q2) cannot be a neutrally stable strategy.
However, for the game in mixed strategies, there are neutrally stable strategies that are not

evolutionarily stable. An example of this is the pair (P1,Q1) in Example 1. Its communicative
potential is tr(P1,Q1) = 2. From B(P1) we can see that for every element Q′

1 ∈ B(P1) the sum
of its column maxima is 2. Therefore, with whatever sender matrix P ′

1 we multiply any particular
Q′

1 ∈ B(P1), the resulting communicative potential tr(P ′
1Q

′
1) can never exceed 2. The same is

true for the roles of P and Q reversed. There is consequently no alternative best reply (P ′
1,Q

′
1)

whose communicative potential tr(P ′
1,Q

′
1) exceeds the communicative potential of the original

Nash strategy tr(P1Q1). Thus, the pair (P1,Q1) is a neutrally stable strategy. Note, however, that
there are alternative best replies to (P1,Q1) that have exactly the same communicative potential
as (P1,Q1)—for example, a pair (P ′

1,Q
′
1) that is of the same form as (P1,Q1), but with a

different x′ ∈ (0,1), x′ �= x, or a different y′ ∈ (0,1), y′ �= y. This is exactly why (P1,Q1) is just
a neutrally stable strategy, but not an evolutionarily stable strategy.

An obvious characteristic of (P1,Q1) as opposed to (P2,Q2) is that it contains no zero-
column. However, the absence of zero-columns does not guarantee neutral stability.

As we have seen above, (P3,Q3) and (P4,Q4) are Nash strategies. They have no zero-
column, but they also fail to be neutrally stable. (This can also be seen by taking the pair (P ′,Q′)
from Eq. 9 as an alternative best reply.) What destroys neutral stability in the case of (P3,Q3)

and (P4,Q4) is the fact that P and Q contain columns that have multiple maximal elements that
are strictly between 0 and 1. Other instances of Nash strategies that fail to be neutrally stable are
sender–receiver pairs where one of the two matrices, P or Q, contains a column with multiple
maximal elements strictly between 0 and 1, and the other matrix contains a zero-column.

Example 6.

(P6,Q6) =
[(1 0 0

0 1 0
0 1 0

)(1 0 0
0 1 − β β

0 1 − β β

)]
, β ∈ (0,1).
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Interestingly, if one of the two matrices contains a column with multiple maximal elements
that are strictly between 0 and 1, by the Nash property alone, the opposite matrix is already
bound to contain also a column with multiple maximal elements strictly between 0 and 1, or a
zero-column.

Lemma 7. Let (P,Q) ∈P�
n×m ×Q�

m×n be a Nash strategy. If P [Q] contains at least one column
that has multiple maximal elements strictly between 0 and 1, then

(a) Q [P ] contains at least two columns that have multiple maximal elements strictly between 0
and 1, or a zero-column; and

(b) (P,Q) cannot be a neutrally stable strategy.

A proof of Lemma 7 is given in Appendix A. We then have as a necessary condition for a
neutrally stable strategy that at least one of the two matrices P or Q has no zero-column, and
that neither P nor Q contains a column with multiple maximal elements that are strictly between
0 and 1. These conditions are, of course, also necessary for evolutionary stability. But for neutral
stability they also can be shown to be sufficient.

Lemma 8. Let (P,Q) ∈P�
n×m ×Q�

m×n be a Nash strategy. If P [Q] has no zero-column and no
column with multiple maximal elements that are strictly between 0 and 1, then

(a) Q [P ] has no column with multiple maximal elements that are strictly between 0 and 1; and
(b) (P,Q) is a neutrally stable strategy.

A proof is given in Appendix A. In combination with Lemma 6 and Lemma 7, this yields a
complete characterization of neutrally stable strategies.

Theorem 1. Let (P,Q) ∈ P�
n×m ×Q�

m×n be a Nash strategy. (P,Q) is a neutrally stable strategy
if and only if

(i) at least one of the two matrices, P or Q, has no zero-column, and
(ii) neither P nor Q has a column with multiple maximal elements that are strictly between 0

and 1.

We can interpret this in the sense that in a neutrally stable strategy there can be some
but not too much ambiguity. One signal can be linked to two or more events—homonymy,
but if this is the case, then these events cannot be communicated by any other signal. One
event can be linked to two or more signals—synonymy, but if this is the case, then these
signals cannot be used to communicate any other event. In addition to that, there cannot be
any idle signal as long as there is an event that is never potentially understood, and vice
versa.

For the interpretation of Γn,m as a population game, Theorem 1 has several important impli-
cations. Let Uε(x) be an open ε-neighborhood of x relative to the simplex SL,

Uε(x) = SL ∩ {x′ ∈ RL: |x′ − x| < ε}, ε > 0. (10)
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Proposition 1.

(a) If x is a state in the relative interior of SL, then (P̄x, Q̄x) cannot be a neutrally stable
strategy.

(b) If for some x ∈ SL, (Px,Qx) is a neutrally stable strategy, then there is no 0 < ε < 1 such
that Uε(x) contains an x′ �= x for which (P̄x′ , Q̄x′) is an evolutionarily stable strategy.

A proof is given in Appendix A. In words, part (b) of Proposition 1 means that evolutionarily
stable strategies are always at opposite vertices relative to neutrally stable strategies.

As a additional remark it shall be pointed out here that for the case where m = n neutrally
stable strategies do not constitute neutrally stable sets (see Thomas, 1985; and for a more general
treatment, see also Cressman, 2003). This is the case, since the sets of neutrally stable strategies
of this model, which lie along particular boundary faces, are not closed at the vertices. Consider,
for example, the pair (P1,Q1) from Example 1. As long as x or y is strictly between 0 and 1,
the pair (P1,Q1) is a neutrally stable strategy. But if both, x and y, are either 0 or 1, (P1,Q1) is
no longer a neutrally stable strategy—even though it is still a Nash strategy.

5. The replicator dynamics

The replicator dynamics (Taylor and Jonker, 1978) translates the idea that over time different
types expand, or contract, according to the difference of their performance with respect to the
average performance in the population.

If we assume that individual agents are matched randomly to play the game Gn,m, the average
performance of type l is given by

fl(x) =
L∑

l′=1

xl′F
[
(Pl,Ql), (Pl′ ,Ql′)

]
, (11)

and the average performance in the population is given by

f̄ (x) =
L∑

l=1

xlfl(x). (12)

In a biological context, fl(x) is usually interpreted as the fitness of type l, and f̄ (x) as the average
fitness in the population. For the model discussed here, the fitness of type l can be written as its
payoff from play against the population’s average strategy,

fl(x) = F
[
(Pl,Ql),

(
P̄x, Q̄x

)]= 1

2
tr
(
PlQ̄x

)+ 1

2
tr
(
P̄xQl

)
, (13)

and the average fitness in the population can be written as the payoff of the population’s average
from play against itself,

f̄ (x) = F
[(

P̄x, Q̄x

)
,
(
P̄x, Q̄x

)]= tr
(
P̄xQ̄x

)
. (14)

The replicator dynamics then can be written as

ẋl

xl

= fl(x) − f̄ (x), l = 1, . . . ,L, (15)

where ẋl denotes the derivative of xl with respect to time. A state of this system is a vector of
L type frequencies, x ∈ SL. A state x� ∈ SL for which ẋ�

l = 0 for all l is called a rest point
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of the dynamics. Of course, if x� is a rest point, then the performance of every pure strategy
that occurs with some positive frequency has to be equal to the average performance in the
population. Every population state that corresponds to a Nash strategy, therefore, is a rest point of
the replicator dynamics. A rest point x� ∈ SL is said to be locally asymptotically stable if after a
small perturbation in the state variables, which stays within sufficiently small boundaries around
the rest point, the dynamics eventually will lead back to this point; it is said to be Lyapunov stable
if every neighborhood Uε(x

�) contains a neighborhood Uε′(x�) such that for all initial states in
Uε′(x�) the dynamics does not leave Uε(x

�) as time proceeds.
The replicator dynamics can be interpreted in terms of both biological as well as cultural

transmission of strategies from one generation to the next. Agents who communicate more suc-
cessfully, it can be argued, are more successful in getting food, escaping dangers, finding mates,
etc. Therefore, they have a direct or indirect advantage in reproduction. Assuming that parents
directly transmit their P ’s and Q’s to their kids, the P ’s and Q’s of agents who communicate
more successfully will therefore reproduce with a higher rate. Or, in terms of cultural evolution,
agents who communicate more successfully are more likely to be imitated, and therefore their
communicative strategies will spread with a higher rate.

Given its high dimensionality, it is generally not possible to solve explicitly for the replicator
dynamics of this model. One way out of this is by computer simulations. Hurford (1989) and
Nowak and Krakauer (1999) take that route. Here, instead, we want to see how far we can go
with analytical methods.

In language evolution, we are not so much interested in any particular solution path, but in
the qualitative regularity patterns of a linguistic trait that can be expected to arise in the long
run, if any. A possible way to approach this question—and here we follow Wärneryd (1993)—is
to exploit the dynamic implications that are dormant in the static refinement concepts of Nash
equilibrium. For the replicator dynamics there are quite good results; in particular for games with
a symmetric payoff function.

For games with a symmetric payoff matrix, the replicator dynamics constitutes a gradient
system, which has several important implications for its qualitative behavior (see, for example,
Hofbauer and Sigmund, 1998; or Cressman, 2003):

(a) The average fitness/payoff function is a strict Lyapunov function for the replicator dynamics;
(b) every orbit converges to some rest point; and
(c) the locally asymptotically stable rest points coincide with the evolutionarily stable strategies,

and are given by the locally strict maxima of the average payoff function.

In combination with the static analysis of evolutionary stability, this directly tells us that for
the replicator dynamics of the sender–receiver game at hand there are exactly n! locally asymp-
totically stable rest points at those vertices of the simplex SL for which P̄x is a permutation matrix
and Q̄x is the transpose of P̄ . No other rest point can be asymptotically stable as a point. Yet
this does not imply that the replicator dynamics will almost always converge to an evolutionarily
stable strategy.

As already pointed out in Wärneryd (1993), neutrally stable strategies are Lyapunov stable
in the replicator dynamics (see Thomas, 1985; and Bomze and Weibull, 1995). We have seen
above that evolutionarily stable strategies are always at opposite vertices of the populations space
relative to neutrally stable strategies that are not evolutionarily stable. This means that once the
replicator dynamics has come sufficiently close to a neutrally stable strategy—which corresponds
to a polymorphic population state—it will stay close to this state and it will not converge to an
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evolutionarily stable strategy. Indeed we can make this more precise by having a closer look at
the local properties of neutrally stable strategies.

Lemma 9. Let x ∈ SL be a composition of the population such that (P̄x, Q̄x) ∈ P�
n×m ×Q�

m×n

is a neutrally stable strategy that is not evolutionarily stable. Then there exists some ε� > 0 such
that for all x′ in Uε�(x) the following implication is true: If x′ is a rest point of the replicator
dynamics, then (P̄x′ , Q̄x′) is also a neutrally stable strategy, but not an evolutionarily stable
strategy.

A proof is given in Appendix A. We then have the following proposition:

Theorem 2. Let x ∈ SL be a composition of the population such that (P̄x, Q̄x) ∈ P�
n×m ×Q�

m×n

is a neutrally stable strategy that is not evolutionarily stable. Then there exists some ε� > 0
such that for all x′ in Uε�(x) the replicator dynamics converges to a neutrally stable, but not
evolutionarily stable strategy.

Proof. Let x ∈ SL be a state that corresponds to a neutrally stable strategy that is not evolution-
arily stable strategy. As x is Lyapunov stable, every neighborhood Uε(x) contains a neighbor-
hood Uε′ such that for all initial states in Uε′ the replicator dynamics does not leave Uε(x) as time
proceeds. It then suffices to consider Uε�(x), where ε = ε� is chosen according to Lemma 9. As
the dynamics does not leave Uε�(x) and all rest points within Uε�(x) are neutrally stable, but due
to the gradient property, every orbit converges to some rest point, it necessarily converges to a
neutrally stable strategy. �

Thus, whenever the composition of the population is sufficiently close to a properly neutrally
stable strategy—that is, a neutrally stable strategy that is not evolutionarily stable—then the
replicator dynamics will indeed converge to such a properly neutrally stable strategy.

Bomze (2002) shows that for games with a symmetric payoff function and pairwise interaction,
neutral stability does indeed coincide with Lyapunov stability in the replicator dynamics. We can
therefore exclude that in addition to neutrally stable strategies there are other rest points that are
Lyapunov stable.

6. Interpretation and conclusions

A consequence of Theorem 2 is that the replicator dynamics will not almost always converge
to an evolutionarily stable strategy, where every event is bijectively linked to one signal and vice
versa. Instead, it can be blocked in a suboptimum state where ambiguities in event-to-signal or
signal-to-event mappings persist in the population.

This phenomenon is also reflected in the computer simulations reported in Nowak and
Krakauer (1999). For 5 events and 5 signals, the emerging signaling system has the property
that two events share the use of one signal while another signal remains idle. The authors cor-
rectly conclude that such a strategy can be stable in an evolutionary context. Here we have seen
that it is not evolutionary stability in its strict sense, but rather evolutionary stability in its weak
form, neutral stability, that accounts for this type of limiting behavior.

Wärneryd (1993) cannot fully explore the consequences of neutral stability, since he does
not take into account the mixed strategies of this game. If we consider pure strategies only, then
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neutral stability will indeed coincide with evolutionary stability. But if we want to give a dynamic
argument in terms of the replicator dynamics, we are bound to consider mixed strategies as well.

Komarova and Niyogi (2004) discuss neutrally stable strategies—or in the terminology that
they use, weakly evolutionarily stable strategies—of a sender–receiver game in the style of
Nowak et al. (1999) and Trapa and Nowak (2000). However, they base their characterization
of neutrally stable strategies on a characterization of Nash strategies that assumes that neither P

nor Q contains any zero-column (Lemma 3; Trapa and Nowak, 2000). Apart from the fact that
it is not clear how this restriction translates into a meaningful assumption on the strategies of
individual types, this just means to assume away one of the peculiarities of this model—the fact
that there can be a zero-column in a neutrally stable strategy, either in P or in Q, but not in both
P and Q.

The present paper captures both the possibilities of mixed strategies and of zero-columns. We
have seen that in a neutrally stable strategy, there can be two (or more) events that are linked
to one and the same signal, or two (or more) signals that are associated with one and the same
event, but that there cannot be two (or more) events that are linked to two (or more) signals
in parallel, and that there cannot be a signal that remains idle in the presence of an event that is
never potentially understood. As a consequence, the replicator dynamics can, but does not almost
always lead to the rise of an optimally designed signaling system—a conventional signaling
system in the sense of Lewis (1969). This is not a refutation of Lewis’ point that a conventional
signaling system will always prevail due to its salient properties. What it tells us is that replication
alone—though it can lead to the rise of a conventional signaling system—is not strong enough
to guarantee this outcome for almost all initial conditions. However, the results presented here
crucially depend on some implicit assumptions. First and foremost that there is an infinitely large
population; second assumptions that are implicitly present in the normal-form description of the
base game.

The replicator dynamics as well as the notions of neutral and evolutionary stability presuppose
that there is an infinitely large population, where the weight of any individual agent vanishes. In
this framework, expected payoff directly translates into offspring and there are no effects of
random drift.

The specific normal-form description of the base game defines a strategy as a deterministic
program that tells individuals which signal to send if they observe a particular event, and what
to do if they receive a particular signal, independently of any previous communicative success or
failure. This seems to imply a truly evolutionary context. Taking the potential of communication
over all possible events as the payoff of the game can be interpreted in the sense that every
individual is exposed to all relevant events according to their objective frequencies. As being
a sender or being a receiver is not a physical characteristic of any individual, but a social role,
it then also makes sense to assume that any individual agent of the given linguistic community
encounters all events according to their respective frequencies—once in the role of the sender,
and once in the role of the receiver (for treatment of asymmetric contests see, for example,
Taylor, 1979; or Schuster et al., 1981). Throughout, the symmetry of the payoff function (which
is already present in the asymmetric game) presupposes cooperation or reciprocity.

Besides that there is a further simplifying assumption as reflected in the fact that all events
that potentially become the object of communication enter the payoff function with the same
weight. Weights of events can be thought of as representing event frequencies together with
their relative importance. Formally, the introduction of different weights of events amounts to
multiplying every row in the sender matrix with the respective weight. Assuming that all weights
are indeed different, this destroys the possible sources of multiplicity of best responses in terms
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of the receiver matrix: Clearly, whenever in the position of the sender there are, say, two events
that are linked to the same signal, but if one of these events is more important, then it will
always be the unique best response for the receiver to associate this signal with the event that
is relatively more important. As a consequence this eliminates the possibility of homonymy in
a neutrally stable strategy. Analogously, introducing different “costs” of signals, eliminates the
source of synonymy in a neutrally stable strategy. It is therefore more accurate to state our results
in the form that evolution can lead to homonymous use of a signal for objects that are equally
important, and to synonymous meaning of signals that are of the same costs.

Tightly related with the concept of an infinitely large population is the assumption that there
is no local or any other structure of the population. Agents are matched randomly to interact with
other agents. The importance of events and costs of signals could change with the environment.
People migrating to different neighborhoods typically leads to so-called bottleneck or founder
effects through random drift. In general, drift is an integral feature of evolution in small popula-
tions. There is good evidence that in the beginning of language, small populations size and drift
played a crucial role (see, for example, Cavalli-Sforza, 1997).

To get a better understanding for the factors that drive language evolution, it will be interesting
to look at extensions of the model with small or locally structured populations that allow us to
take into account the effects of drift or changing conditions of the environment.
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Appendix A. Proofs

Proof of Lemma 7. Let (P,Q) ∈ P�
n×m ×Q�

m×n be a Nash strategy, and suppose that the i�th
column of Q contains more than one maximum element that is strictly between 0 and 1. As Q is
a best response to P , and as maxj (qji�) �= 0, by Lemma 4, whenever j� ∈ argmaxj (qji�), that is,
whenever qj�i� is a maximal element of the i�th column of Q, then pi�j� is a maximal element of
the j�th column in P . But since qj�i� �= 1, any such pi�j� cannot be the unique maximal element
of the j�th column in P (by the contraposition of best-response properties.) Since P also has
to be a best response to Q, the sum over all pi�j such that j ∈ argmaxj (qji�) has to be equal
to 1—which means in particular that at least some pi�j for which j ∈ argmaxj (qji� ) has to be
positive. As by assumption, argmaxj (qji�) has at least two elements, this implies that P has at
least two columns with multiple maximal elements strictly between 0 and 1, or a zero-column,
which proves the first part of the lemma.

For part (b) we have to show that there is some P ′ ∈ B(Q) and some Q′ ∈ B(P ), such that

tr(P ′Q′) > tr(PQ).

Without loss of generality, assume that j�� ∈ argmaxj (qji�) such that pi�j�� �= 0. As Q is a best
response to P , it must be true that the sum over all qj��i such that i ∈ argmaxi (pij��) equals 1.
Of course, i� ∈ argmaxi (pij��), but since by assumption, qj��i� ∈ (0,1), there must be some be
some other element pi��j�� that is a maximal element of the j��th column of P , with j�� �= j�,
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such that qj��i�� ∈ (0,1). Since pi��j�� �= 0, and P is a best response to Q, by Lemma 4, qj��i��

is a maximal element of the i��th column of Q. For later use note that∑
j∈argmaxj (qji∗ )

∑
i

pij qji = 1, (16)

which comes from the fact that all elements in the i�th row of P for which j ∈ argmaxj (qji∗)
are maximal elements of their respective columns and that any Q that is a best response to P

“extracts” from every column of P exactly the value of its maximum.
Now take as a candidate Q′ the original Q but exchange the entries in its j��th row such that

q ′
j��i�� = 1, and q ′

j��i = 0 ∀i �= i��,

and for some other j� ∈ argmaxj (qji∗) j� �= j�� exchange the entries in its j�th row such that

q ′
j�i� = 1 and q ′

j�i = 0 ∀i �= i�.

As pi�j� is a maximal element of the j�th column of P , and pi��j�� is a maximal element of
the j��th column of P —which we know from above—it is easily checked that Q′ is indeed a
best response to P .

As an alternative P ′ take the original P but exchange the entries in its i��th and respectively
i�th row such that

p′
i��j�� = 1 and p′

i��j = 0 ∀j �= j��,

p′
i�j� = 1 and p′

i�j = 0 ∀j �= j�.

As qj�i� is a maximal element of the i�th column of Q, and qj��i�� is a maximal element of the
i��th column of Q, P ′ is indeed a best response to Q.

What remains to be done, then, is to compare tr(P ′Q′) to tr(PQ). Since p′
i�j�q

′
j�i� = 1 and

p′
i��j��q

′
j��i�� = 1, we have that∑

j∈argmaxj (qji∗ )

∑
i

p′
ij q

′
ji � 2 > 1 =

∑
j∈argmaxj (qji∗ )

∑
i

pij qji , (17)

where the last inequality comes from Eq. (16). As pi��j�� = pi�j�� �= 0, it is easily checked that∑
j

∑
i

p′
ij q

′
ji = tr(P ′Q′) > tr(PQ) =

∑
j

∑
i

pij qji,

which proves the claim of the lemma. �
Proof of Lemma 8. Let (P,Q) ∈P�

n×m ×Q�
m×n be a Nash strategy, and suppose that P has no

zero-column as well as no column with multiple maximal elements that are strictly between 0
and 1. Then for every fixed column of P there are only three possible cases: its maximum is
either (i) unique and equal to 1; or (ii) unique, but not equal to 1; or (iii) equal to 1, but not
unique. In order to show that (P,Q) is a neutrally stable state, by Lemma 5, we have to show
that for any P ′ ∈ B(Q) and any Q′ ∈ B(P ),

tr(P ′Q′) � tr(PQ).

(i) Suppose that pi�j� = 1 is the unique maximal element in the j�th column of P . Since Q is
a best response to P , qj�i� = 1. As Q has no elements that are greater than 1, this automatically
implies that qj�i� is a maximal element of the i�th column of Q. As the elements in each row of
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P add up to 1, pi�j = 0 whenever j �= j�. As there are no zero-columns in P , any pi�j = 0 can
never be a maximal element of its respective column in P . Therefore, as Q is a best response to
P , qji� = 0 whenever j �= j�, which means that qj�i� = 1 is not only a but the unique maximal
element of the i�th column of Q.

We now turn to Q′ ∈ B(P ) and P ′ ∈ B(Q). As pi�j� = 1 is the unique maximal element in
the j�th column of P ,

q ′
j�i� = 1 = qj�i� , ∀Q′ ∈ B(P ).

Note that this, of course, means that q ′
j�i = 0 = qj�i for all i �= i�, for all Q′ ∈ B(P ). On the

other hand, as qj�i� = 1 is the unique maximal element in the i�th column of Q, we also have
that

p′
i�j� = 1 = pi�j� , ∀P ′ ∈ B(Q).

Summing over all i, we have that∑
i

p′
ij�q

′
j�i = 1 =

∑
i

pij�qj�i , (18)

for any P ′ ∈ B(Q) and for any Q′ ∈ B(P ). Figure 1(1) illustrates this case.
(ii) Synonymy. Suppose that 0 < pi�j� < 1 is the unique maximal element in the j�th column

of P . As Q is a best response to P , we have that qj�i� = 1, which means that qj�i� is a maximal
element of the i�th column of Q. However, as pi�j� �= 1, but the sum over all pi�j such that
j ∈ argmaxj (qji�) has to be exactly equal to 1, qj�i� = 1 cannot be the unique maximal element
in the i�th column of Q, and there must be some j �= j� with j ∈ argmaxj (qji� ) such that
pi�j �= 0. As Q is a best response to P , whenever qji� �= 0, which is indeed the case for all
j ∈ argmaxj (qji�), then pji� is a maximal element of its respective column in P ; as P has
no zero-column, the respective element in the i�th row of P is strictly between 0 and 1. As
P has no multiple maximal elements that are strictly between 0 and 1, we have that for all
j ∈ argmaxj (qji� ), 0 < pi�j < 1 is indeed the unique maximal element of its respective column
in P .

As the elements in each row of Q are bound to sum up to 1, for all j ∈ argmaxj (qji� ), qji = 0
whenever i �= i�; and as for all j /∈ argmaxj (qji� ), pi�j = 0, but P has no zero-column, qji� = 0
whenever j /∈ argmaxj (qji�).

We now turn to Q′ ∈ B(P ) and P ′ ∈ B(Q). As for all j ∈ argmaxj (qji� ), 0 < pi�j < 1 is the
unique maximal element of its respective column in P ,

j ∈ argmaxj (qji�) ⇒ q ′
ji� = 1 = qji� , and

q ′
ji = 0 = qji, ∀i �= i�; ∀Q′ ∈ B(P ).

As the i�th column of Q has multiple maximal elements, we only have that∑
j∈argmaxj (qji� )

p′
i�j = 1 =

∑
j∈argmaxj (qji� )

pi�j , ∀P ′ ∈ B(Q).

However, summing over all i and over all j ∈ argmaxj (qji�) we have that∑
j∈argmaxj (qji� )

∑
i

p′
ij q

′
ji = 1 =

∑
j∈argmaxj (qji� )

∑
i

pij qji, (19)

for any P ′ ∈ B(Q) and for any Q′ ∈ B(P ). Figure 1(2) illustrates this case.
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(1) One event exclusively linked to one signal.

(2) Synonymy: α ∈ (0,1), α′ ∈ [0,1].

(3) Homonymy: β ∈ [0,1], β ′ ∈ [0,1].
Fig. 1. Proof of Lemma 8.

(iii) Homonymy. Suppose that the j�th column of P has multiple maximal elements that are
equal to 1. As Q is a best response to P , the sum over all qj�i such that i ∈ argmaxi (pij�) has to
be equal to 1, and qj�i = 0 whenever i /∈ argmaxi (pij�).

As the elements in each row add up to 1, for all i ∈ argmaxi (pij�), if j �= j�, then pij = 0.
Since by assumption P does not contain any zero-column, a zero-element in P can never be
a maximal element of its respective column in P . Therefore, as Q is a best response to P ,
for all i ∈ argmaxi (pij�), if j �= j�, then qji = 0, which implies that for all i ∈ argmaxi (pij�),
qj�i is a maximal element of its respective column in Q. As Q may contain zero-columns, the
respective element in Q is not necessarily positive, which means that it is not necessarily the
unique maximal element of its respective column in Q. However, if for some i� ∈ argmaxi (pij�),
qj�i� �= 0, then it will be the unique maximal element of its respective column in Q.

We now turn to Q′ ∈ B(P ) and P ′ ∈ B(Q). As the j�th column of P has multiple maximal
elements equal to 1, we only have that∑

i∈argmaxi (pij� )

q ′
j�i = 1 =

∑
i∈argmaxi (pij� )

qj�i , and
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q ′
j�i = 0 = qj�i , ∀i /∈ argmaxi (pij�), ∀Q′ ∈ B(P ).

On the other hand, whenever qj�i� �= 0 for some i� ∈ argmaxi (pij�), which, as we have just seen,
means that it its a unique maximal element of its respective column in Q, then p′

i�j� = 1, for any
P ′ ∈ B(Q). Summing over all i we have that∑

i

p′
ij�q

′
j�i �

∑
i

pij�qj�i = 1, (20)

for any P ′ ∈ B(Q) and for any Q′ ∈ B(P ). Figure 1(3) illustrates this case.
Taking all three cases together, we see that the maximum of any column in Q is either unique

or equal to 1 or 0. Combining Eqs. (18), (19), and (20) and summing over all j , we have that∑
j

∑
i

p′
ij q

′
ji = tr(P ′Q′) � tr(PQ) =

∑
j

∑
i

pij qji,

for any Q′ ∈ B(P ) and any P ′ ∈ B(Q), which shows that (P,Q) is a neutrally stable strat-
egy. �
Proof of Proposition 1. (a) If every pure strategy is present somewhere in the population, then
all elements in P̄ and in Q̄ are necessarily positive, and trivially then neither P̄ nor Q̄ can
have any zero-column. By Lemma 3 (Trapa and Nowak, 2000) this implies that there exist real
numbers 0 < pj < 1, j = 1, . . . ,m and 0 < qi < 1, i = 1, . . . , n such that pij = pj∀i = 1, . . . , n

and qji = qi∀j = 1, . . . ,m. From Theorem 1 we directly see that a Nash strategy of that form
cannot be neutrally stable.

The claim of (b) is immediate for a neutrally stable strategy that is also evolutionarily stable,
as those strategies can only be at vertices of the simplex. Suppose that (P̄x, Q̄x) is a neutrally
stable strategy that is not evolutionarily stable. From Theorem 1 we know that at least P̄x or
Q̄x has no zero-column. Without loss of generality, let P̄x be that matrix. As (P̄x, Q̄x) is not
evolutionarily stable, P̄x has at least one column with a unique maximal element that is strictly
between 0 and 1, or a column with multiple maximal elements equal to 1—that is, a case of (ii)
or respectively (iii) as treated in the proof of Lemma 8. A case of (ii), as can be seen from the
proof of Lemma 8, implies that Q̄x has a column with multiple maximal elements equal to 1. In
a case of (iii), P̄x itself has a column with multiple maximal elements equal to 1. If p̄i�j�(x) = 1,
then this means that for all l such that xl �= 0, pl

i�j� = 1. If there is a column in Px with multiple
maximal elements equal to 1, then this implies that no type that is present in x can be of the form
where P is a permutation matrix; analogously for Q̄x . There is therefore no ε ∈ (0,1) such that
Uε(x) contains a state x′ for which (P̄x′ , Q̄x′) is a pair of permutation matrices and therefore it
also cannot be an evolutionarily stable strategy. �
Proof of Lemma 9. Let (P̄x, Q̄x) ∈ P� ×Q� be a neutrally stable strategy that is not evolution-
arily stable, and assume, without loss of generality, that P̄x is the matrix that has no zero-column.
If x′ ∈ Uε(x), then |p̄ij (x

′)− p̄ij (x)| < ε, and an analogous expression holds true for any generic
entry qji in the corresponding receiver matrices Q̄x and Q̄x′ . Let maxi\max(p̄ij ) be the value of
the second highest entry of the j th column in P̄x , and define an analogous expression for Q̄x . To
prove the claim of the lemma if suffices to choose ε� such that

ε� �
(
maxi (p̄ij ) − ε�

)− (
maxi\max(p̄ij ) + ε�

)
⇔ ε� � maxi (̄pij ) − maxi\max(p̄ij )

3
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holds true for every column j in P̄x , and such that an analogous condition holds true for Q̄x .
That is,

ε� = min

{
min

j

[
maxi (p̄ij ) − maxi\max(p̄ij )

3

]
,min

i

[
maxj (q̄j i) − maxj\max(q̄j i)

3

]}
.

A state x′ ∈ SL is a rest point of the replicator dynamics if and only if all types present at
x′ get the same payoff from communication with the population’s average sender–receiver pair
(P̄x′ , Q̄x′), that is,

tr(PlQ̄x′) + tr(P̄x′Ql) = tr(P̄x′Q̄x′) + tr(P̄x′Q̄x′) ∀l s.t. x′
l �= 0.

The idea of the proof now is the following: Given the restrictions imposed by ε�, all the types
present at x′ that have already been present at x, of which there is a fraction of at least 1−ε�, will
continue to play a best response to the new population’s average sender–receiver pair (P̄x′ , Q̄x′).
For x′ to be a rest point, then, all the new types present at x′ also have to play a best response to
(P̄x′ , Q̄x′). Starting with x and given ε� this implies a particular form of the P and Q matrices
used by individual types. It is then just a matter of applying Theorem 1 to see that (P̄x′ , Q̄x′) is
indeed of the form of a neutrally stable strategy.

As in the proof of Lemma 8, since P̄x has no zero-column, the maximal element of each single
column in P̄x is either (i) unique and equal to 1, (ii) unique, but not equal to 1, or (iii) not unique,
but equal to 1.

(i) Let p̄i�j� (x) = 1 be the unique maximal element of the j�th column in P̄x . From the proof
of Lemma 8 we know that in this case q̄j�i� (x) = 1 is the unique maximal element in the i�th
column of Q̄x . Claim (i) now is that for any (P̄x′ , Q̄x′) where x′ ∈ Uε�(x) is to be a rest point of
the replicator dynamics we also have that p̄i�j�(x′) = 1 and that q̄j�i� (x

′) = 1.
By construction of ε�, p̄i�j�(x′) is also the unique maximal element of the j�th column in P̄x′ .

As q̄j�i� (x) = 1, all types present at x′ that have already been present at x—we will call them
the “old types” and index them by “o”—will continue to exploit this maximum. Therefore,∑

i

p̄ij� (x′)qo
j�i �

∑
i

p̄ij� (x′)q̄j�i(x
′).

The expression above holds with equality if and only if q̄j�i� (x
′) = 1. If this is the case, then∑

i

po
ij� q̄j�i(x

′) �
∑

i

p̄ij� (x′)q̄j�i(x
′).

Suppose for the moment that for evaluating the payoff of types against the new population’s
average sender–receiver pair we can restrict attention to summation over all i of j�. We then can
conclude that p̄i�j� = 1 as well; otherwise the old types would always extract a strictly higher
payoff than all the other types present at x′, which cannot be true if x′ is to be a rest point. What
remains to be done, then, for this case is to show that q̄j�i(x

′) has to be indeed equal to 1.
If q̄j�i (x

′) �= 1, then there is some type present at x′ who does not extract from the j�th
column of P̄x′ the value of its maximum. What this new type loses in this particular column of
P̄x′ relative to the old types is at least ε�. On the other hand, if a new type does not set qj�i�

equal to 1, but sets another entry in its j�th row of Q equal to 1, this will also generate a positive
entry in the respective position of Q̄x′ that has been 0 in Q̄x . If some of the new types puts a 1
to the corresponding element in its sender matrix this can lead to a situation where∑

i

po
ij� q̄j�i(x

′) �
∑

i

pn
ij� q̄j�i(x

′),
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where n indicates this new type. However, by construction of ε� the difference between the left-
hand side and the right-hand side of the above expression is always strictly smaller than ε�.
Therefore, if a new type deviates from qj�i� = 1, all else being equal, this will always reduce his
payoff relative to the old types.

(ii) If p̄i�j� (x) is the unique maximal element of the j�th column of P̄x that is strictly be-
tween 0 and 1, we have seen in the proof of Lemma 8 that in this case the i�th column of Q̄x is a
column with multiple maximal elements equal to 1, as well as that for any j ∈ argmax[q̄j i� (x)],
p̄i�j (x) is strictly between 0 and 1 and that it is the unique maximal element of its respective
column in P̄x .

Claim (ii) now is that for any rest point x′ ∈ Uε�(x), for all j ∈ argmax[q̄j i� (x)], q̄j i� (x
′) = 1,

and that the sum over all p̄i�j (x
′) such that j ∈ argmax[q̄j i� (x)] is equal to 1. The proof now is

analogous to the previous case, only that we have to keep track of summation over all i and over
all j ∈ argmax[q̄j i� (x)].

By construction of ε�, the relevant elements in the i�th row of P̄x′ are also the unique maximal
elements of their respective columns in P̄x′ . All the old types will exploit these maxima. That is,∑

j∈argmax[q̄j i� (x)]

∑
i

p̄ij�(x′)qo
j�i �

∑
j∈argmax[q̄j i� (x)]

∑
i

p̄ij� (x′)q̄j�i(x
′).

If the expression above holds with equality, that is, if q̄j i� = 1 for all j ∈ argmax[q̄j i� (x)],
then 1 is the multiple maximum of the i�th column in Q̄x′ . Since the sum over all p̄i�j (x) such
that j ∈ argmax[q̄j i� (x)] is equal 1,∑

j∈argmax[q̄j i� (x)]

∑
i

po
ij� q̄j�i(x

′) �
∑

j∈argmax[q̄j i� (x)]

∑
i

p̄ij� (x′)q̄j�i(x
′).

If restrict attention to summation over all i and over all j ∈ argmax[q̄j i� (x)], we can conclude that
the sum over all p̄i�j (x

′) such that j ∈ argmax[q̄j i� (x)] has to be equal to 1 as well. Otherwise
the old types would always extract a strictly higher communicative potential from the relevant
sub-matrix in Q̄x′ than all the other types present at x′. What remains to be done is to show that
for all j ∈ argmax[q̄j i� (x)], q̄j i� (x

′) is indeed equal to 1.
If for some j ∈ argmax[q̄j i� (x)] q̄j i� (x

′) �= 1, this means that there is some new type in x′
who refrains from exploiting the maximum of the respective column in P̄x′ . What this deviant
type loses from this column in P̄x′ relative to the old types is at least ε�. But, by the same
argument as in case (i) above, the extra payoff that such a deviation can generate by putting some
weight to an element in Q̄x′ that has been zero in Q̄x is always strictly smaller than ε�. Hence,
any deviation from q̄j i� (x

′) = 1 for all j ∈ argmax[q̄j i� (x)], all else being equal, would always
reduce the payoff of a new type relative to the old types.

(iii) For the case where the j�th column of Px has multiple maximal elements equal to 1, we
have seen in the proof of Lemma 8 that for any i ∈ argmax[p̄ij� (x)], if q̄j�i �= 0 then q̄j�i will be
the unique maximal element in its respective column in Qx .

By a similar line of reasoning as in the cases above one can show that in this case for any
i ∈ argmax[p̄ij� (x)], if q̄j�i(x) �= 0 then p̄ij� (x′) = 1, and that the sum over all q̄j�i (x

′) such
that i ∈ argmax[p̄ij� (x′)] has to be equal 1 as well. Otherwise, all else being equal, there would
always be a new type that has a lower payoff than the old types.

Taking all 3 cases together, it can be seen that the old types can indeed never lose in terms of
their payoff against the new population’s average sender–receiver pair (P̄x′ , Q̄x′) relative to the
new types. Given the additive structure of the payoff function, we can therefore indeed treat the
three cases separately, and than sum over all j . Then, for x′ in Uε�(x) to be rest point, the patterns
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of the new population’s average sender and receiver matrices as claimed in (i) to (iii) have to be
true. If these conditions are satisfied, all types present at x′ will indeed play a best response to the
new population’s average sender–receiver pair P̄x′ , Q̄x′ , the condition for a Nash strategy. From
Theorem 1 it then follows that (P̄x′ , Q̄x′) is indeed of the form of a neutrally stable strategy. �
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