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Abstract. This paper studies a model in which a population of individuals is exposed
to an infectious disease. Individuals can choose to undergo privately costly treatment which,
if successful, restores the individual�s susceptibility. For extreme levels of disease prevalence,
equilibrium play is uniquely determined and socially optimal. For intermediate levels of
disease prevalence, multiple perfect foresight equilibrium paths coexist and can lead to
di¤erent steady states. Furthermore, equilibrium play may be socially suboptimal.
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1. Introduction and Literature Review
As a �eld of study, economic epidemiology has sought to understand the interplay between
individuals�incentives, constraints and behavior (at the micro level) and the population-wide
evolution of infectious diseases (i.e. the macro level). Gersovitz and Hammer (2004) o¤er the
keen observation that

�The economic approach to infectious disease is in its infancy, somewhat oddly
because many economists have long had the intuition that epidemics and infectious
diseases are quintessential manifestations of the principle of an externality, itself a
central concept in economics [...]. Furthermore, epidemiology provides ready-made
dynamic models of disease transmission and economics provides methods of valuing
the costs and bene�ts of health interventions and methods of dynamic optimization
to guide policy. Policy toward infections is of great importance. Yet only recently
have economists begun to look at these questions in a formal way.�

This quote nicely summarizes the research programme of economic epidemiology. The existing
theoretical literature in the �eld falls into two broad, conceptually di¤erent, categories. First,
there is a large and growing literature on the e¤ects and desirability of preventive measures
such as quarantines, prophylaxis, vaccines and reduced levels of promiscuity and rate of partner
change, which include contributions from Sethi (1978), Geo¤ard and Philipson (1996, 1997),
Kremer (1996), Auld (2003), Aadland and Finno¤ (2007), Francis (2004), Gersovitz and Ham-
mer (2004), Boulier et al. (2007), Brito et al. (1991), Barrett (2003), Reluga (2009) and Chen
and Cottrell (2009). Second, there is a smaller literature that considers di¤erent models of treat-
ment, including Sanders (1971), Sethi (1974), Sethi and Staats (1978) Goldman and Lightwood
(1995, 2002), Rowthorn (2006) and Toxvaerd (2009a,b).

Methodologically di¤erent from the above literature are contributions that study disease
evolution in explicitly network theoretic contexts (see Jackson, 2008 for a review). Last, there
is an important body of work on the empirics of infectious disease, such as that on prevalence
elasticity, partner choice etc. These include Ahituv et al. (1996), Philipson (2000), Auld (2006),
Gibbison (2006), Dupas (2007) and Oster (2005, 2007).
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2 Recurrent Infection and Treatment

Especially worthy of mention are the contributions by Goldman and Lightwood (1995, 2002)
and Gersovitz and Hammer (2004) who, to the best of my knowledge, were the �rst to explicitly
consider decentralized decision making and to compare the outcomes with that chosen by a
central planner. The present work seeks to contribute to this body of knowledge by taking the
natural step of allowing strategically sophisticated decision makers to non-cooperatively choose
exposure levels and thereby not only in�uence their own probability of becoming infected but
also, through their interaction with other individuals, the overall evolution of the disease.

The paper is organized as follows. In Section 2, I review the classical susceptible-infected-
susceptible model and introduce the economic extension. In Section 3, I treat the case of
centralized decision making which serves as the benchmark for subsequent analysis. In Section
4, I analyze the case of decentralized decision making. Section 5 contains a comparison of the
equilibrium outcomes of the two di¤erent setups. In the Appendix, I derive the main results of
the two di¤erent settings via dynamic programming.

2. The Classical and Economic Models

The classical susceptible-infected-susceptible model is simple to describe.1 Time is continuous
and runs inde�nitely. A population P =[0; 1] consists of a continuum of in�nitely lived individ-
uals who can at each instant t each be in one of two states, namely susceptible or infected. The
set of infected individuals is denoted by I(t) and has measure I(t), while the set of susceptible
individuals is denoted by S(t) and has measure S(t). Because the population size has been
normalized to unity, these measures can be interpreted as fractions. Henceforth, I(t) shall be
referred to as disease prevalence.

At each instant, the population mixes homogeneously. This corresponds to pair-wise random
matching where each individual has an equal chance of meeting any other individual, irrespective
of the health status of the two matched individuals. Whereas a match between two infected
individuals or two susceptible individuals does not create any new infection, a match between
an infected and a susceptible individual may. The rate at which infection is transferred in such
a match is denoted by � > 0. This parameter captures the infectivity of the disease. Coupled
with the assumption of homogeneous mixing, this means that the rate at which susceptible
individuals become infected is given by the simple expression �I(t)S(t). This means that the
rate of new infection, or disease incidence, is proportional to disease prevalence.2 Note that
while disease incidence is a �ow value, disease prevalence is a stock value.

Infected individuals recover spontaneously at rate 
 � 0. This means that the rate at which
infected individuals become susceptible is given by 
I(t). The dynamics of the model are thus
described by the following system of di¤erential equations:

_S(t) = I(t) [
 � �S(t)] (1)
_I(t) = I(t) [�S(t)� 
] (2)

I(t) = 1� S(t); I(0) = I0 (3)

Using the normalization, this system reduces to the following simple logistic growth equation:

_I(t) = I(t) [�(1� I(t))� 
] ; I(0) = I0 (4)

1See Anderson and May (1991), Daley and Gani (2001) or Keeling and Rohani (2008) for good introductions
and applications.

2The term �I(t)S(t) should be thought of as the rate at which susceptible individuals have contact with other
individuals, multiplied by the probability of the contact being with an infectious individual, multiplied by the
probability that the infection is transmitted in such a contact. See e.g. Keeling and Rohani (2008) for a detailed
derivation.
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The steady states of this system are

I� = 0; I� =
� � 

�

(5)

For � > 
, the stable steady state is endemic while for � < 
, the stable steady state involves
eradication. In other words, if the rate at which individuals become infected surpasses the rate
at which they recover, then some positive fraction of the population will always be infected.
If recovery is not possible, the entire population ends up being infected. On the other hand,
if individuals recover at a higher rate than the rate at which they become infected, then the
disease eventually dies out. This completes the description of the classical SIS model.

2.1. Extension to an Economic Model. To turn the classical model into a fully �edged
economic model, I will proceed by assigning payo¤s to the di¤erent disease states and assume
that time is discounted. Speci�cally, I will assume that individuals earn a �ow payo¤ �S per
instant while susceptible and �I < �S per instant while infected and that time is discounted
at rate � > 0. For notational simplicity, let the quantity � � �S � �I > 0 denote the health
premium. Since protective behavior is disregarded in the present analysis, the rate of infection
cannot be directly in�uenced. Instead, I assume that the rate at which agents recover (and
become immune to further infection) can be in�uenced through costly treatment. In particular,
for some treatment intensity �(t) 2 [0; 1], the rate at which the individual transitions from I(t)
to S(t) is given by �(t)�, where � > 0 is interpreted as the e¢ ciency of the treatment. The
treatment costs c > 0 per instant.

Note that unlike the classical treatment, I assume that recovery can occur exclusively
through treatment, i.e. the background rate of recovery 
 is everywhere replaced by �(t)�.
This is done for tractability. Also note that there is no disease-induced deaths in the present
analysis. Relaxing either assumption has interesting consequences that will be discussed in the
Conclusion.

Before I analyze the economic model in more detail, it should be mentioned that the clas-
sical model presented here has a number of simplifying assumptions that are inherited by the
economic version of the model. First, there is only one disease and one level (or severity) of
infection.3 In particular, this rules out the possibility of superinfection by di¤erent strains of
the disease. Second, the moment an individual is infected coincides with the onset of symptoms
such as the welfare loss brought about by infection (i.e. the incubation period has zero length),
so no infected individual acts under the mistaken belief that he or she is susceptible. Last, once
an individual becomes infected, he or she immediately becomes infectious to other individuals
(i.e. the latency period has zero length).

3. Centralized Decision Making
In the centralized or controlled model, a social planner directly controls the aggregate treatment
rate r(t) 2 [0; 1] in order to maximize aggregate, discounted expected welfare. The planner
therefore solves the following problem:4 ;5

max
r(t)2[0;1]

Z 1

0
e��tI(t)[�I � �S � r(t)c]dt (6)

s:t: _I(t) = I(t) [�(1� I(t))� �r(t)] ; I(0) = I0 (7)

3Thus the sets S(t) and I(t) are disjoint and exhaust P.
4A solution to the centralized problem exists, as does a solution to each agent�s problem in the decentralized

setting. See Seierstad and Sydsaeter (1987, Theorem 15, p. 237).
5The objective is a simpli�ed version of the objective

R1
0
e��t[I(t) (�I � r(t)c)+ (1� I(t))�S ]dt, which di¤ers

by the constant �S .
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Letting �(t) denote the current-value costate variable (or multiplier), the current-value
Hamiltonian for this optimal control problem is then given by6 ;7 ;8

HC = I(t) [�I � �S � r(t)c] + �(t)I(t) [�(1� I(t))� �r(t)] (8)

It should be noted that this Hamiltonian is convex in I(t) for all t � 0 for r(t) given. The
necessary conditions for optimality (for I(t) 6= 0) are given by

c+ ��(t) = 0 (9)

The evolution of the multiplier is governed by the di¤erential equation

_�(t) = �(t) [�+ �r(t) + �I(t)� �(1� I(t))] + [�S � �I + r(t)c] (10)

The necessary conditions for optimality means that the optimal policy is of the bang-bang
type and given by

r(t) = 0 for � ��(t) < c (11)

r(t) 2 [0; 1] for � ��(t) = c (12)

r(t) = 1 for � ��(t) > c (13)

In interpreting this result, it is useful to interpret the multiplier �(t) (which is negative).
The costate variable quanti�es the social cost of one additional infected individual and thus
���(t) is but the social value of treating one additional infected individual. With this in mind,
the optimal policy then simply states that individuals should be fully treated as long as the
social value of doing so outweighs the cost of treatment. If the social value is smaller than the
cost, then no treatment is sought. Last, in the knife�s edge case in which they coincide, any
treatment intensity will do.

It is clear that in a stationary point, it must be that either of the following types of solutions
obtain:

I(t) = 0 (14)

I(t) =
� � �r(t)

�
(15)

The eradication steady state is stable if � < �r(t) while the endemic steady state is stable
provided � > �r(t). If � < �r(t), the endemic solution becomes unstable but irrelevant and the
relevant (and stable) solution is the one with eradication. If r(t) = 0, then � < �r(t) = 0 cannot
be satis�ed. Thus I(t) = 0 is unstable and I(t) = 1 is stable. Last, if r(t) = 1, there are two
cases to consider: (i) if � < �r(t) = �, then I(t) = 0 stable and I(t) = (� � �)=� < 0 unstable
but irrelevant; (ii) if � > �r(t) = �, then I(t) = 0 is unstable and I(t) = (� � �)=� 2 (0; 1) is
stable. In conclusion, when r(t) = 1,

max

�
0;
� � �
�

�
(16)

6Note that throughout this treatment, standard optimal control notation is used and the dependence of the
optimal policy on state variables is suppressed.

7Note that an admissible pair of functions (I(t); r(t)) is such that for all t � 0, I(t) satis�es the logistic growth
equation and r(t) 2 [0; 1].

8Note that the control r(t) must be piecewise continuous and the costate variable �(t) piecewise continuously
di¤erentiable.
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is stable, while

min

�
0;
� � �
�

�
(17)

is unstable. For simplicity, assume that � < � so there is only one endemic steady state in
centralized and decentralized models.9

Corresponding to the optimal policy, the dynamic system in (I(t); �(t)) has two (boundary)
steady states as follows:

I� = 1; �� =
��
�+ �

(18)

I� = 0; �� =
�(� + c)
�+ �� � (19)

Note that the appropriate transversality condition is satis�ed10 and that these (boundary)
steady state equilibria are both locally (and globally) saddle-path stable.11

The centralized problem also admits an interior solution in which prevalence is kept at an
interior value by treating only a fraction of the infected population. This solution is given by

ÎC � �� � c(�� �)
2�c

(20)

r̂C � c(�+ �)� ��
2�c

(21)

It turns out that since the planner�s Hamiltonian is strictly convex in I(t) (for given r(t)),
this solution is not an optimum.12 In fact, this solution is dominated by one of the two extremal
solutions. To complete the characterization, the optimal path towards steady state needs to be
determined. In order to do this, note the following important result:

Lemma: The function HC is supermodular and has increasing di¤erences in (r(t); I(t)).

Proof: Since HC is de�ned on the real line, supermodularity holds trivially. To show increasing
di¤erences, suppose that ���(t) > c, in which case the optimal policy is to fully treat, i.e. set
�(t) = 1. It then follows that

d

dt
[c+ ��(t)] = ��(t) [�+ �+ �I(t)] + � [� + c] (22)

This derivative is easily veri�ed to be negative for I(t) � ÎC . Suppose now that ���(t) < c, so
that not treating at all is optimal, i.e. such that �(t) = 0. Then

d

dt
[c+ ��(t)] = ��(t) [�+ �I(t)] + �� (23)

This derivative is positive for I(t) � ÎC �
This result simply shows that if treatment is optimal at some disease prevalence, then

treatment is optimal for all lower levels of infection too, which in turn are brought about by
9 In classical model, the unique steady state is endemic if � > � and involves eradication if � < �. For � = �,

the steady state is I(t) = I(0) = I0 for all t � 0.
10Since this is an autonomous problem, the transversality condition is that limt!1 �(t)e

��t = 0.
11The eigenvalues of the Jacobian at the steady state with I� = 1 are � + � > 0 and �� < 0 respectively

while at the steady state with I� = 0 they are � + � � � > 0 and � � � < 0 respectively. For a proof of global
saddle-path stability, see Appendix.
12Neither is it a global minimum. The Hessian is neither positive nor negative semi-de�nite and thus the

interior solution is a saddle point. It is, however, the worst possible steady state.
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the policy of full treatment. Similarly, if no treatment is optimal, then disease prevalence will
increase and the policy of no treatment remains optimal in perpetuity.13

Last, increasing di¤erences in (r(t); I(t)) can also be determined from inspecting the phase
diagramme. This follows since along any optimal path,

d�(t)

dI(t)
=
_�(t)
_I(t)

> 0 (24)

De�ne the set
�C =

n
(I(t); �(t)) 2 [0; 1]� R : _I(t) _�(t) � 0

o
(25)

State-costate pairs that do not belong to the set �C are strictly suboptimal and can thus
be disregarded by the central planner. Paths that originate at points (I(t); �(t)) =2 �C are not
most rapid approach paths (MRAPs) and hence cannot be optimal.

These properties of the planner�s Hamiltonian can now be exploited to characterize the
optimal policy more succinctly. First, introduce the following partial order on the set of policies:

De�nition: Consider two policies r and r0 for t � 0. Let r � r0 if r(t) � r0(t) for all I(t) 2 [0; 1]
and t � 0.

Note that the policy belongs to the space [0; 1]1 which, with this partial (point-wise) order,
is a lattice. The following useful properties of HC can now be established:

Theorem: There is a largest and least optimal policy and each is monotone in the measure of
infectives I(t).

Proof: Follows directly from Topkis�Monotonicity Theorem �
This result has important consequences. It implies that along an optimal path, there can

be no switch between the regimes where r(t) = 0 and r(t) = 1 respectively. In other words,
optimal policies are of the most rapid approach type in which steady states are reached as fast
as possible. Furthermore, because extremal policies must be monotone in disease prevalence
I(t), the optimal policy can be described easily in terms of the state variable as follows:

Corollary: There exists some k 2 [0; 1] such that the optimal policy is given by

r(t) = 0 for I(t) > k (26)

r(t) 2 [0; 1] for I(t) = k (27)

r(t) = 1 for I(t) < k (28)

Since both steady states are locally stable, monotonicity of the optimal policy in I(t) implies
that there exists one (and only one) value of disease prevalence k 2 [0; 1] with this property.
In fact the critical level is given by k = ÎC . Thus for I0 > ÎC , the optimal path leads to the
endemic steady state I� = 1 while for I0 < ÎC , the optimal path leads to the eradication steady
state I� = 0.

The comparative statics of ÎC with respect to the di¤erent parameters are collected in the
following corollary:
13There is an alternative route to this result. Because this is an in�nite horizon autonomous problem, the

state variable I(t) is monotone in time and the multiplier is a one-to-one function of I(t), i.e. �(t) = �(I(t)).
See Kamien and Schwartz (1995, p. 179), Rowthorn (2006) or Hartl (1987) for details. Since these two extremal
steady states of the system are saddle-path stable, there is for each steady state is a unique optimal path towards
it (in a neighborhood of it). Coupled with the bang-bang property of the optimal policy, monotonicity and
continuity of the state variable imply the result.
Note that since �(t) is monotone in I(t) on the set �C , monotonicity of the optimal policy in I(t) follows

immediately from the form of the bang-bang policy above.



F. Toxvaerd 7

Corollary: The critical level ÎC is (i) increasing in � and � and decreasing in c and � and (ii)
decreasing in � for c < ��=�.

Note that the condition in part (ii) will be assumed in what follows in order to make corner
solutions feasible in the decentralized setting.

The two regimes have been delineated in terms of constraints on the multipliers. These
can be rewritten in terms of the basic parameters of the model. Speci�cally, in order for the
extremal solutions to be steady states, it must be that

c 2
�
��

�+ �
;
��

�� �

�
(29)

For completeness, the path towards steady state is given by

I(t) =
I0�(t)

et�(t)�(t)�
�
1� et�(t)

�
�I0

; �(t) � �r(t)� � (30)

where r(t) is appropriately chosen. Note that for �(t) = ��, the model reduces to that of a
simple epidemic.

Last, the speed of convergence to the steady states is of interest. For a given steady state
(I�; r�), the speed of convergence is given by

�(I�; r�) � � [�(1� 2I�)� �r�] (31)

For the endemic steady state, the speed of convergence is

�(1; 0) = � > 0 (32)

Note that this is independent of the treatment e¢ ciency � since around this steady state,
there is no treatment. For the eradication steady state, the speed of convergence is

�(0; 1) = �� � > 0 (33)

4. Decentralized Decision Making
In this section, I analyze the setting in which decision making if fully decentralized so that each
infected individual i 2 [0; 1], at each instant t � 0, decides non-cooperatively on its treatment
intensity � i(t) 2 [0; 1]. I start by considering the best response of an individual under the
assumption that all other individuals�actions are held �xed.

For some �xed level of treatment � and initial infection state Q0, the individual�s health state
evolves according to a two-state continuous-time Markov process with the following transition
rate matrix: �

��I(t) �I(t)
�� ���

�
Consider an individual agent�s best response policy and assume that all agents have perfect

foresight. Fix some path I(t) and recall that the agent cannot in�uence aggregate variables.
Let Q(t) denote the probability that the agent is infected at time t � 0. The agent then solves
the following problem:14

max
� i(t)2[0;1]

Z 1

0
e��tQ(t)[�I � �S � � i(t)c]dt (34)

s:t: _Q(t) = (1�Q(t))�I(t)�Q(t)�� i(t); Q(0) = I0 (35)

14The objective is a simpli�ed version of the objective
R1
0
e��t[Q(t) (�I � � i(t)c) + (1 � Q(t))�S ]dt, which

di¤ers by the constant �S .
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The individuals�problems are of course solved subject to the condition that the aggregate
evolution of disease prevalence is consistent with individual decisions, i.e. subject to the con-
straint

_I(t) = I(t) [�(1� I(t))� �r(t)] ; I(0) = I0 (36)

were the fraction seeking treatment at time t � 0 is given by

r(t) �
Z
i2I(t)

I(t)�1� i(t)di (37)

The associated current value Hamiltonian for this problem is then15

HD(� i(t); ��i(t)) = Q(t)[�I � �S � � i(t)c] + �(t) [(1�Q(t))�I(t)�Q(t)�� i(t)] (38)

where �(t) is the current value costate variable. In this de�nition, HD(� i(t); ��i(t)) is the
current value Hamiltonian at time t � 0 for agent i 2 [0; 1] setting treatment at � i(t), given
that other players play according to ��i(t).

The current value Hamiltonian has the following useful interpretation. It is the current value
of �ow utility from treatment intensity � i(t) given state Q(t). Increasing � i(t) reduces �current�
utility since higher costs are incurred, but also adds value through the resulting reduction in
the probability of subsequently being infected (an instant later). The shadow price �(t) simply
calculates this �future�value in current utility terms.

It is important to note that other agents� treatment decisions in�uences an individual�s
tradeo¤ through their impact on the evolution of I(t), with higher I(t) e¤ectively eroding the
value of treatment by increasing the rate at which reinfection occurs.

Next, I characterize the best response of an individual, noting that � i(t) must be piecewise
continuous and while the costate variable �(t) must be piecewise continuously di¤erentiable.16

The necessary (and su¢ cient17) conditions for optimality (for Q(t) 6= 0) are given by

c+ ��(t) = 0 (39)

This yields the following optimal bang-bang policy:18

� i(t) = 0 for � ��(t) < c (40)

� i(t) 2 [0; 1] for � ��(t) = c (41)

� i(t) = 1 for � ��(t) > c (42)

Wile this policy resembles that of the planer under centralized decision making, the costate
variable multiplies a di¤erence constraint in the individual�s problem.

Next, the evolution of the multiplier is governed by the following di¤erential equation

_�(t) = �(t) [�+ �� i(t) + �I(t)] + [�S � �I + � i(t)c] (43)

From this law of motion, the dependence of the individual�s problem on the evolution of disease
prevalence is apparent. While the individual�s �personal� state variable Q(t) does not appear
in this equation, it should be recalled that in equilibrium, it must be the case that Q(t) = I(t)
and the evolution of Q(t) therefore mirrors the evolution of I(t).
15 In the agent�s problem, an admissible pair of functions (Q(t); � i(t)) is such that for all t � 0, Q(t) satis�es

the di¤erential equation for the state variable Q(t) and � i(t) 2 [0; 1].
16Note that ���(t) is to be interpreted as the expected, discounted bene�t of treatment at time t under the

assumptions that I(t) is a constant for all s � t and that the the individual will play optimally at all future dates
s � t. Even if the actions at some point in time do not directly persist over time, the consequences (switches
between disease states) do.
17Mangasarian�s su¢ ciency conditions are easily veri�ed for the agent�s problem.
18Note that this policy is Markovian and stationary for �(t) constant, which will be the case when I(t) is

constant. In other words, history dependence of an agent�s optimal policy can only occur as a response to history
dependence in other agents�policies.
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4.1. Strategies and Equilibrium. Before presenting the characterization of the equilib-
rium set, I formally de�ne the notions of strategy and equilibrium that will be studied.

De�nition: A time t behavior strategy for player i 2 [0; 1] is given by � i(t) 2 [0; 1].

De�nition: A time t strategy for player i 2 [0; 1] is given by � i(t) = (� i(s))s�t 2 [0; 1]1.

De�nition: A time t joint behavior strategy is given by � (t) = (� i(t))i2[0;1] 2 [0; 1].

De�nition: A time t joint strategy is given by � (t) = (� i(t))i2[0;1] = (� (s))s�t 2 [0; 1]1.

Denote the set of possible time t histories by Ht, with typical element ht � fI0; � (s)gs2[0t[g.
In all generality, a time t behavior strategy is a mapping � i : Ht ! [0; 1]. It should be noted
that these strategies are conditional on being infected, i.e. they prescribe the probability of
treatment being sought by the agent if he happens to be infected. This convention obviates the
need to specify state-dependent behavior strategies in which the strategy set for a susceptible
individual is empty. Furthermore, these strategies, conditioning actions at each instant on past
history, are so-called feedback (or closed loop) strategies. Accordingly, the equilibrium notion
employed below is sequentially rational.

Next, in order to employ the tools of lattice programming to the game, I introduce a straight-
forward order on the strategy spaces of the individuals. Consider two strategies � i(t) and � 0i(t).

De�nition: Let � i(t) � � 0i(t) if � i(t) � � 0i(t) for all I(t) 2 [0; 1] and t � 0.

De�nition: Let � (t) � � 0(t) if � i(t) � � 0i(t) for all i 2 [0; 1].

It is important to emphasize that with this partial order, both the individual strategy sets
and the joint strategy set is a lattice.

Note that for � (t) � � 0(t), the path (I(s))s�t shifts downwards (weakly) for all s � t, i.e.�
I(s)0

�
s�t � (I(s))s�t (44)

where (I(s)0)s�t is the path corresponding to joint strategy �
0(t). This follows trivially since

r(t) � r(t)0.
An equilibrium from t = 0 onwards is a strategy pro�le � �(t) = (��i (t))i2[0;1] such that

no player i 2 [0; 1] can bene�t from choosing a strategy � i(t) 6= ��i (t) when all other players
j 2 [0; 1], with j 6= i play ���i(t). Formally, an equilibrium is de�ned as follows:

De�nition: An equilibrium is a strategy pro�le � �(t) = (��i (t))i2[0;1] such that for all i 2 [0; 1],
all � i(t) and all t � 0:

HD(��i (t); �
�
�i(t)) � HD(� i(t); �

�
�i(t)) (45)

To characterize the equilibrium set, it shall prove useful to begin by characterizing an interior
(mixed strategy) equilibrium. Using the interiority condition ���(t) = c with the steady state
equation _�(t) = 0 yields the following critical disease prevalence:

ÎD �
�� � �c
�c

(46)

This is the level of infection that makes the agents willing to use interior behavioral strate-
gies.19 Using this value of disease prevalence in the steady state equation _I(t) = 0 (with
Q(t) = I(t)) then yields the level of aggregate treatment necessary for steady state:

brD � c(�+ �)� ��
�c

(47)

19Note that ÎD > 0 for c < ���
�

and ÎD < 1 for c < ���
�+�

. Both these inequalities have been assumed to hold.
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At this is the level of aggregate treatment, infection remains at exactly the (constant) level
required to make agents willing to employ interior behavioral strategies. It is interesting that
for c > ��=(� + �), which is the condition ensuring that the endemic steady state exists in
either setting, it is the case that bIC > bID and correspondingly, brD > brC .

Next, note that except when ���(t) = c, the agents have corner best responses, i.e. when
���(t) = c, any � i(t) 2 [0; 1] yields the same payo¤ and hence the agents are willing to mix
over their pure behavioral strategies. In any mixed strategy equilibrium pro�le � �(t), it must
therefore be the case thatZ

i2I(t)
� i(t)di =

�
c(�+ �)� ��

�c

��
�� � �c
�c

�
(48)

But this condition is necessary, not su¢ cient for � �(t) to lead to a steady state (since it
must hold identically for all t � 0). In order to satisfy the steady state condition for I(t), the
distribution of strategies across the set of infected individuals must be constant over time. But
this can only be achieved if strategies are symmetric. Thus it must be the case that for all
i 2 [0; 1],

� i(t) =
c(�+ �)� ��

�c
(49)

It should be mentioned that there are pure strategy equilibria that achieve the same disease
prevalence ÎD as in the mixed strategy equilibrium, but these have very unappealing proper-
ties.20

Note that for all other equilibria than the one maintaining disease prevalence ÎD, it is the
case for all t � 0 that r(t) 2 f0; 1g. That is, either all susceptibles seek full treatment or they
all seek no treatment at all.

In the individual agent�s problem, the Hamiltonian is linear in both state and control variable
and thus the aggregate interior steady state cannot be discarded as is the case in the centralized
model. Having said that, it should also be emphasized that the mixed strategy equilibrium may
be very (socially) undesirable. This is because the centralized Hamiltonian is strictly convex
and therefore any interior solution will be strictly worse than one of the boundary solutions.

I will proceed by characterizing the mixed strategy equilibrium. The comparative statics of
ÎD with respect to the di¤erent parameters are collected in the following corollary:

Corollary: The critical level ÎD is (i) increasing in � and � and decreasing in c and � and (ii)
decreasing in � for c < ��=�.

The next step of the analysis is to show that the game played between the individuals
under decentralized decision making is a supermodular game. I start by showing the following
important result:

Lemma: The function HD is supermodular and has increasing di¤erences in (r(t); I(t)).

Proof: Since the function HD is de�ned on the real line, supermodularity holds trivially.
Suppose that ���(t) > c, which makes �(t) = 1 optimal. It then follows that

d

dt
[c+ ��(t)] = a�(t) [�+ �+ �I(t)] + � [� + c] (50)

20Apart from being asymmetric, the identity of the agents playing each pure strategy changes at each instant
in such equilibria. This is because the composition of the sets S(t) and I(t) evolves over time. Thus even if
all players adopt stationary pure strategies, the aggregate environment is no longer stationary, which upsets the
interior pure strategy equilibria.
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This expression is negative for I(t) � ÎD. Next, suppose that ���(t) < c, which makes �(t) = 0
optimal. In this case, it follows that

d

dt
[c+ ��(t)] = a�(t) [�+ �I(t)] + �� (51)

This expression is positive for I(t) � ÎD. This completes the proof �

An alternative route to establish that the individual�s objective function under decentralized
decision making has increasing di¤erences in (I(t); � i(t)) and (Q(t); � i(t)) is to start by noting
that

d�(t)

dI(t)
=
_�(t)
_I(t)

;
d�(t)

dQ(t)
=
_�(t)
_Q(t)

(52)

Next, following the de�nition under centralized decision making, de�ne the set

�D =
n
(Q(t); �(t)) 2 [0; 1]� R : _Q(t) _�(t) � 0

o
(53)

Clearly, state-costate pairs that do not belong to the set �D are strictly dominated strategies
and can thus be disregarded.21, 22 Next, observe that the in�uence of other players�strategies
on a given player�s payo¤s are captured entirely by the value of �i(t) and one can therefore
write �i(� (t)). It follows that

d�i(t)

d� (t)
=
d�i(t)

dI(t)

dI(t)

d� (t)
� 0 (54)

In other words, higher strategies (more treatment) causes lower infection, which in turn
causes higher marginal disutility of infection. In turn, this means that as � (t) increases, the
marginal utility of treatment ���(t) increases, thereby increasing the indi¤erence point (the
switching threshold) between non-treatment and full treatment. Thus there are strategic com-
plementarities. This property allows me to use of the methodology of supermodular games to
deduce the following important results:

Theorem: (i) optimal policies (best responses) exist for each agent i 2 P, (ii) each agent�s
strategy space is a lattice, (iii) each agent�s objective function is supermodular in own action
� i(t) and has increasing di¤erences in (� i(t); � (t)) and (� i(t); I(t)).

This result simply states that the game played under decentralized decision making ful�lls
all the formal requirements of a supermodular game. From Topkis�Monotonicity Theorem,
it then follows that the usual properties of supermodular games obtain. Namely, I have the
following:

Theorem: (i) there is a largest and least policy (best response), (ii) each best response is
monotone in the measure of infectives I(t), (iii) there exists a largest and a least equilibrium
(iv) extremal equilibria are monotone in disease prevalence I(t).

It is clear that for some constant path of I(t), there can be no switch between the regimes
where � i(t) = 0 and � i(t) = 1 respectively.

To �nd the aggregate steady states of the game, I start by considering the stationary point
of an individual�s problem. From the perspective of an individual agent, steady state obtains

21No agent will assign prositive probability to a strategy that is strictly dominated.
22Note that since �(t) is monotone in I(t) on the set �D, monotonicity of the best response in I(t) follows

immediately from the form of the bang-bang policy for the individual agent�s problem.
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when _Q(t) = _�(t) = 0, i.e. when

Q(t) =
�I(t)

�I(t) + �� i(t)
(55)

�(t) =
�(� + � i(t)c)

�+ � i(t)�+ �I(t)
(56)

From these equations, it is clear that the individual�s problem is in steady state only when
the aggregate system is in steady state, i.e. when _I(t) = 0 (i.e. is in either of the boundary
solutions or in some interior solution). Note that this dynamic system in (Q(t); �(t)) is saddle-
path stable for any combination (� i(t); I(t)).23 Last, note that the appropriate transversality
condition is satis�ed.24

It turns out that the two boundary steady states of the setting with centralized decision
making are also candidate steady states of the decentralized setting. In the endemic steady
state, it must be that

Q(t) = 1; �(t) =
��
�+ �

(57)

In the eradication steady state, it must be that

Q(t) = 0; �(t) =
�(� + c)
�+ �

(58)

The constraints on the multipliers characterizing the two boundary solutions can be rewrit-
ten in terms of the parameters of the model as follows:

c 2
�
��

�+ �
;
��

�

�
(59)

Since the largest and smallest equilibrium strategy is monotone in disease prevalence I(t),
these can be usefully characterized as follows. De�ne the following threshold values of disease
prevalence:

k0 =
n
max I(t) 2 [0; 1] : ���(t) � c with (I(s))s�t jr(t)=0

o
(60)

k00 =
n
min I(t) 2 [0; 1] : ���(t) � c with (I(s))s�t jr(t)=1

o
(61)

Then clearly these thresholds are ranked and k0 � k00. The smallest possible equilibrium
strategy (given the partial order I have imposed on the strategy sets) is given by

� i(t) =

�
0 for all I(t) � k0
1 for all I(t) < k0

(62)

The largest possible equilibrium strategy is similarly given by

� i(t) =

�
0 for all I(t) � k00
1 for all I(t) < k00

(63)

The following result follows from the monotonicity of extremal equilibria:

Corollary: The extremal equilibria are Markovian and stationary.

23The relevant eigenvalues of the Jacobian are �+ �I(t) + �� i(t) > 0 and ��I(t)� �� i(t) < 0 respectively.
24Since this is an autonomous problem, the transversality condition is that limt!1 �(t)e

��t = 0.
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In games with strategic complementarities, there are typically multiple equilibria. In the
context of the present game, multiple (monotone strategy) equilibria corresponds to the exis-
tence of multiple cuto¤ points k 2 [0; 1] that constitute equilibrium strategies. More precisely,
for any level of disease prevalence I(t) 2 [k0; k00], there exist di¤erent paths of disease preva-
lence such that for one path (I(s))s�t, the inequality ���(t) + c � 0 holds while for the other
path (I(s)0)s�t, the inequality ���(t) + c � 0 holds. These equilibria are Pareto ranked. The
following result shows this multiplicity formally:

Theorem: The game played under decentralized decision making has multiple equilibria.

Proof: To show that the equilibrium set is not a singleton, note that if I(t) equals critical
interior level ÎD, then each agent is indi¤erent and willing to mix (expecting constant I(t) = ÎD
for all t). But if they are willing to mix at I(t) = ÎD, then they will be willing to play (and
continue to play) either of the extreme actions as long as all players do so (and continue to do
so). This means that starting from I(t) = ÎD, there are two possible equilibrium paths.25 But
starting at I(t) = ÎD, if either of these equilibrium paths are expected to be followed by almost
all individuals, then no individual agent will be willing to mix because he will strictly prefer one
of the two extreme actions. This is because if � i(t) = 1 is optimal for a constant path (I(s))s�t
with I(t) = I for all t, then it is also optimal for any decreasing path (I(s))s�t with I(t) � I
for all t. Similarly, if � i(t) = 0 is optimal for a constant path (I(s))s�t with I(t) = I for all t,
then it is also optimal for any increasing path (I(s))s�t with I(t) � I for all t. But then the
indi¤erence point must be shifted (up or down, depending on continuation play) and thus there
are multiple equilibria in the sense that for a non-singleton set of initial conditions I(0) = I0,
there are multiple (distinct) equilibrium paths �

Before I proceed to compare the decentralized and centralized outcomes, I present some
straightforward comparative statics:

Proposition: Ceteris paribus, each agent�s expected discounted utility is increasing in � and
decreasing in �, c and �.

Proof: Note that the individual�s Hamiltonian is, for all t � 0, jointly concave in (Q(t); � i(t))
and in (Q(t); x) for x = �; �; c ,�I ; �S .26 Given these properties, the comparative statics re-
sults follow by recalling that the properties of the value function are then inherited by the
Hamiltonian27 �

5. Comparing the Centralized and Decentralized Setups
To compare the two settings, it�s useful to compare the centralized problem�s phase diagramme
with that characterizing the aggregate outcome under decentralization. In the centralized set-
ting, the construction is based on a straightforward application of the steady state conditions
for the state and the costate variables. In constructing the aggregate phase diagramme for the
decentralized setting, it is instructive to consider the individual agent�s steady state condition.
For the individual�s problem to be at a rest point, it must be that

Q(t) =
�I(t)

�I(t) + �� i(t)
(64)

For ���(t) < c, it is optimal not to seek any treatment and consequently the only steady
state value is Q(t) = 1. In other words, when an agent doesn�t seek any treatment, the proba-
bility of this agent being infected must tend to one. In turn, when ���(t) � c, full treatment
25This is equivalent to two distinct equilibrium outcomes in a simple 2x2 coordination game.
26The Hamiltonian is linear and thus concave I(t) (for given � i(t)) and jointly concave in (I(t); x) for x =

�; �; c ,�I ; �S .
27See Seierstad and Sydsaeter (1987, p. 217) for details.



14 Recurrent Infection and Treatment

is optimal and hence the steady state becomes

Q(t) =
�I(t)

�I(t) + �
(65)

This expression depends explicitly on I(t), which shows that whenever disease prevalence
in constant, the individual agent�s problem has a steady state corresponding to that level of
prevalence. This means that by varying disease prevalence I(t), one can trace out the points
in (I(t);���(t)) space at which the individual�s problem is in steady state (for constant I(t)).
This allows one to directly compare the centralized and the decentralized settings in the same
phase diagramme.

Note that the scenario ���(t) � c includes the special cases of full eradication Q(t) = I(t) =
0 and the mixed strategy equilibrium Q(t) = I(t) = ÎD(t). This means that for ���(t) � c,
all points on the optimal trajectory represent potential steady states. On the other hand, for
���(t) < c, the only point on the optimal trajectory that is a potential steady state corresponds
to that of total infection, i.e. where Q(t) = 1.

When tracing out the curves _Q(t) = 0 and _I(t) = 0, they have the same overall appearance.28

But these curves only bound the optimal trajectories, they do not directly represent them. It
would therefore be premature to conclude that the optimal paths are therefore qualitatively
similar under the two di¤erent settings. It turns out that there are important di¤erences as has
already been indicated by the discussion of the viability of the interior solutions.

The main di¤erence is that the optimal policy in the centralized setting has a discontinuity
(for an interior level of I(t)) corresponding to the switch between the optimal treat all and the
treat no-one policies, namely at the critical level of disease prevalence bIC . By contrast, when
tracing out the aggregate path under decentralized decision making, the aggregate path does
include the corresponding point bID. In other words, in the decentralized setting, the optimal
policy is continuous in disease prevalence I(t) (for some �xed pro�le of strategies).

While the planner�s problem is convex in I(t), the agents�problems are linear (and thus
concave) in Q(t) (and in I(t)). This means that in the decentralized problem, an interior (and
thus a mixed strategy) equilibrium exists, whereas in the centralized problem no interior optimal
solution exists.

Next, there are di¤erences in the conditions that ensure existence of certain steady states.
While the endemic (full infection) steady state is present under both models, the eradication
steady state may fail to exist under decentralized decision making even when present in central-
ized model. This is because the disutility attached to infection by the individual and a social
planner di¤er, a consequence of the externalities inherent in treatment activities. To appreciate
this, observe that controlling for a given optimal path (I(s))s�t, it is the case that

���(t) > ���(t) for I(t) 2 [0; 1) (66)

���(t) = ���(t) for I(t) = 1 (67)

These expressions show that, for a �xed path (I(s))s�t, the private value of treatment is
lower than the social value of treatment, unless the system is in the endemic steady state (at
which there are no susceptible individuals who can bene�t from the positive externalities of
treatment). This implies that even the most e¢ cient decentralized equilibrium is smaller than
the centralized equilibrium.

The su¢ cient conditions for the boundary steady states to exist are as follows: The steady
state I(t) = 1 requires c > cC1 � ��=(�+ �) in the centralized setting and c > cD1 � ��=(�+ �)
in the decentralized setting. In turn, the steady state I(t) = 0 requires c < cC0 � ��=(�� �) in
28This was also noted by Goldman and Lightwood (2002).
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the centralized setting and c < cD0 � ��=� in the decentralized setting. It is easily veri�ed that
cC1 = c

D
1 < c

D
0 < c

C
0 under the imposed parameter restrictions. In summary, both steady states

exist in both settings if

c 2
�
��

�+ �
;
��

�� �

�
(68)

Under centralized decision making, both steady states exist if

c 2
�
��

�
;
��

�� �

�
(69)

But in this range, only the full infection steady state exists under decentralized decision
making.

A. Global Saddle-Path Stability

To show global saddle-path stability of the steady states, start by de�ning the functions

F (�; I) � �(t) [�� �(1� I(t)) + �r(t) + �I(t)]
+(� + r(t)c) (70)

G(�; I) � I(t) [�(1� I(t))� �r(t)] (71)

These functions are continuous and C1 in a neighborhood of either non-interior steady state
(��; I�). Straightforward evaluation shows that

F 02(�
�; I�)G01(�

�; I�) = 0; F 01(�
�; I�)G02(�

�; I�) < 0 (72)

Also, the equation F (�; I) = 0 has a unique solution I = I(�).
Next, consider the stability of the steady state with r(t) = 0 and I(t) = 1. It is straightfor-

ward to see that ����G(�; I)F (�; I)

���� = ���� I(t)�(1� I(t))
�(t) [�� � + 2�I(t)] + �

���� (73)

is bounded for any relevant pair (�; I). Next, consider the stability of the steady state with
r(t) = 1 and I(t) = 0. Again, it is straightforward to see that����G(�; I)F (�; I)

���� = ���� I(t) [�(1� I(t))� �]
�(t) [�� � + �+ 2�I(t)] + c+ �

���� (74)

is bounded for any relevant pair (�; I). These results imply that the paths are globally saddle-
path stable. See Seierstad and Sydsaeter (1987, Theorem 19, p. 256) for details.

B. Values Along Equilibrium Paths

In order to analyze payo¤s in each disease state along the equilibrium paths, I derive the
optimality conditions via dynamic programming. Consider an individual seeking treatment at
rate � i(t) 2 [0; 1]. In an interval of time [t; t + �t], the rate at which successful treatment
is achieved for this individual is given by �� i(t)�t. The discrete-time approximation of the
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equations describing the value functions for the two disease states are then given by

VS(I(t)) = �S�t+
�I(t)�tVI(I(t+�t))

1 + ��t

+
(1� �I(t)�t)VS(I(t+�t))

1 + ��t
(75)

VI(I(t)) = max
� i(t)2[0;1]

f(�I � � i(t)c)�t

+
� i(t)��t (VS(I(t+�t)))

1 + ��t

+
(1� � i(t)��t)VI(I(t+�t))

1 + ��t
g (76)

Rearranging, dividing by �t and taking the limit �t! 0 yields

dVI(I(t))

dt
= max

� i(t)2[0;1]
f�I � �VI(I(t))

+� i(t)�
h
VS(I(t))� VI(I(t))�

c

�

i
g (77)

dVS(I(t))

dt
= �S + �I(t) [VI(I(t))� VS(I(t))]� �VS(I(t)) (78)

From the coe¢ cient of � i(t), the usual optimality condition is recovered, namely

c+ � [VI(I(t))� VS(I(t))] = 0 (79)

Next, note that by de�nition

dVI(I(t))

dt
=
dVI(I(t))

dI(t)
_I(t);

dVS(I(t))

dt
=
dVS(I(t))

dI(t)
_I(t) (80)

For any constant function I(t), the system of di¤erential equations in value functions can
be solved simultaneously to yield

�VI(I(t)) =
�I(t) (�I � � i(t)c) + ��I + �� i(t)�S � �� i(t)c

�+ �I(t) + �� i(t)
(81)

�VS(I(t)) =
�S(�+ �� i(t)) + �I(t) (�I � � i(t)c)

�+ �I(t) + �� i(t)
(82)

It is easily veri�ed that the gross bene�t of treatment equals

VI(I(t))� VS(I(t)) =
�(� + � i(t)c)

�I(t) + �+ �� i(t)
= �(t) (83)

which corresponds to the value derived using optimal control theory. For later reference, note
that in the decentralized problem, each agent faces two discrete disease states, while in the
centralized problem, the planner faces a �continuous disease state� (i.e. fraction of infected
agents).

In the eradication steady state, the payo¤s are given by

VS(0) =
�S
�
; VI(0) =

�S
�
� � + c

�+ �
< VS(0) (84)
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In the all-infected steady state, the payo¤s are given by

VI(1) =
�I
�
; VS(1) =

�I
�
+

�

�+ �
> VI(1) (85)

Turning to the centralized setup, the discrete-time approximation of the formula character-
izing the evolution of social welfare is given by

V (I(t)) = max
r(t)2[0;1]

�
I(t) (�� � r(t)c)�t+ (1 + ��t)�1V (I(t+�t))

	
(86)

Taking a �rst-order Taylor expansion yields

V (I(t+�t)) � V (I(t)) + dV (I(t))
dt

�t (87)

where higher order terms have been omitted. Rearranging, dividing by �t and taking the limit
�t! 0 yields

�V (I(t)) = max
r(t)2[0;1]

�
I(t) (�� � r(t)c) + dV (I(t))

dt

�
(88)

But by de�nition,
dV (I(t))

dt
=
dV (I(t))

dI(t)
_I(t) (89)

Hence the formula becomes

�V (I(t)) = max
r(t)2[0;1]

�
I(t) (�� � r(t)c) + dV (I(t))

dI(t)
I(t) [�(1� I(t))� �r(t)]

�
(90)

The next step is to show that

dV (I(t))

dI(t)
=

�� � r(t)c
�I(t) + �+ �r(t)� �(1� I(t)) = �(t) (91)

First, executing the maximization problem yields the equation

0 = max
r(t)2[0;1]

fI(t) (�� � r(t)c)� �V (I(t))

+
dV (I(t))

dI(t)
I(t) [�(1� I(t))� �r(t)]g (92)

This yields the familiar optimality condition

c+ �
dV (I(t))

dI(t)
= 0 (93)

With an optimally chosen policy r(t), it follows that

0 = I(t) (�� � r(t)c)� �V (I(t))

+
dV (I(t))

dI(t)
I(t) [�(1� I(t))� �r(t)] (94)

Di¤erentiating this equation with respect to I(t) and using the optimality condition then
yields

0 = (�� � r(t)c) + d
2V (I(t))

dI(t)2
_I(t)

�dV (I(t))
dI(t)

(�� �(1� I(t)) + �r(t) + �I(t)) (95)
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Last, let
dV (I(t))

dI(t)
� �(t) (96)

and note that
d2V (I(t))

dI(t)2
_I(t) =

d�(t)

dI(t)
_I(t) = _�(t) (97)

This gives the �nal equation

_�(t) = �(t) [�� �(1� I(t)) + �r(t) + �I(t)] + (� + r(t)c) (98)

Substitution then yields

�V (I(t)) = max
r(t)2[0;1]

f(�� � r(t)c)

� [1 + I(t) (�I(t) + �+ �r(t)� �(1� I(t)))]
�+ �I(t) + �r(t)� �(1� I(t)) g (99)

In the eradication steady state, social welfare is given by

�V (0) =
�� � c
�+ �� � (100)

In the all-infected steady state, social welfare is given by

�V (1) =
�� (1 + � + �)

�+ �
(101)
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