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Abstract

I investigate the mechanisms through which idiosyncratic investment
risk generates a fat tail of the wealth distribution. I set up a continuous
time OLG model with a bequest motive and portfolio selection to show that
idiosyncratic investment risk generates a Pareto tail in the wealth distrib-
ution. I calibrate my model to the U.S. economy and show that the wealth
distribution in the simulated economy matches the Gini coe¢ cient and has
a Lorenz curve close to that of U.S. Extending the model to allow for the
age-dependent death rates generates both realistic age cohort distribution
and fat-tailed wealth distribution.
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1. Introduction

The wealth distribution in U.S. has a fat tail. Wol¤ (2004), using 2001 Survey
of Consumer Finances (SCF), documents that the top 1% of population holds
33:4% of the wealth in the economy. The wealth distribution is right-skewed.
The median wealth is $73:5 K (2001 USD), while the mean wealth is $380:1 K
(2001 USD). The mean of the wealth distribution is larger than the median. In
this data, the Gini coe¢ cient is 0:826. Among these three features of the wealth
distribution: a fat tail, skewness to the right, and a high Gini coe¢ cient, the fat
tail is the most challenging one for the macroeconomists.
A standard tool of modern macroeconomics, the basic heterogeneous agent in-

complete market model with idiosyncratic labor income shocks, such as Aiyagari
(1994) and Huggett (1996), does not replicate the fat tail of the wealth distribu-
tion. The agent�s precautionary saving to self-insure the labor income risk is not
strong enough to generate the concentration of the wealth distribution.1

Researchers have tried di¤erent methods to tackle this challenge. Quadrini
(2000) and Cagetti and De Nardi (2006, 2009) introduce entrepreneurship into the
heterogeneous agent model and match the fat tail of wealth distribution. Similarly,
Benhabib and Zhu (2008) and Benhabib, Bisin, and Zhu (2009) introduce the
idiosyncratic investment risk into the heterogeneous agent model. Speci�cally
these models produce a Pareto tail of the wealth distribution and then match the
fat tail. Castaneda, Diaz-Gimenez, and Rios-Rull (2003) use a labor e¢ ciency
process with a large dispersion and match the fat tail. Krusell and Smith (1998)
use a speci�c stochastic process of time discount factors and match the fat tail.
Introducing a portfolio selection problem into Benhabib, Bisin, and Zhu (2009),

I set up a heterogeneous agent model with within lifetime idiosyncratic investment
risk to replicate these three features of wealth distribution. I prove that the
stationary wealth distribution in the model has a Pareto tail and theoretically
derive the Pareto exponent. Thus it is not di¢ cult for the model to produce the
fat tail of wealth distribution in a simple calibration exercise. This way I show
that the stochastic investment return is the main cause of these features.
Household wealth su¤ers from idiosyncratic investment risk. Households own

housing, stocks, and private equity which are main channels of idiosyncratic invest-
ment risk. Wol¤ (2004), using 2001 SCF, documents that 67:7% of the households

1One common feature of these models is that the bounded risk aversion con�nes the wealth
accumulation to be bounded. See Schechtman and Escudero (1977).
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own principal residence. 16:8% own other real estate. 11:9% own unincorporated
business equity. 21:3% of the household directly hold stock. In the composi-
tion of household wealth, the gross value of housing (including principal residence
and other real estate) accounts for 38% of the gross assets and the net value of
unincorporated business equity accounts for 17:2% of the gross assets.
The returns of these assets have a large dispersion. Case and Shiller (1989)

document that individual housing prices have large standard deviation of annual
percentage change, close to 15% a year. Flavin and Yamashita (2002), using
the 1968-1992 waves of Panel Study of Income Dynamics (PSID), show that the
housing prices have a large idiosyncratic component. The standard deviation of
return of housing, at the level of the individual house, is about 0:14. Moskowitz
and Vissing-Jorgensen (2002) �nd investment in private equity to be extremely
concentrated, and therefore risky. About 75% of all private equity is owned by
households for whom it constitutes at least half of their total net worth. Their
estimates of the entrepreneurial returns show that substantial risk exists even
conditional on survival.2

The model is a continuous time OLG model. The economy is populated by a
continuum of agents with measure 1. The agent has �nite life. When an agent
dies, he gives birth to one child. The agent has a "joy of giving" bequest motive.
Each agent has a portfolio selection problem. The agent can invest wealth in a risk
free public account and a private investment project with idiosyncratic return risk.
The value of private investment follows a Geometric Brownian motion with jump.
The agent has constant labor income at any time. After analytically deriving the
agent�s policy functions, I do a simple calibration exercise to simulate the wealth
distribution. The simulation results show that the model has a fat tail of the
wealth distribution and produces a Gini coe¢ cient and a Lorenz curve close to
those of the U.S. wealth distribution.
Using the model I discuss the e¤ects of capital income taxes and estate tax

on wealth inequality and social welfare. I also illustrate that my model could
be extended to include age-dependent death rates to generate a fat-tailed wealth
distribution and a realistic demographic distribution.

2Using the 1989 SCF, they �nd that the median of the capital gain distribution is 6.9% per
year, while the �rst quartile is 0 and the third quartile is 18.6% per year.
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1.1. Literature review

Huggett (1996) sets up a life cycle model with idiosyncratic earnings shock to
study the wealth distribution. De Nardi (2004) incorporates bequest motive and
inheritance of earnings ability into a life cycle model to investigate the wealth dis-
tribution. Quadrini (2000) incorporates the death rate into a dynasty model and
takes into account inheritance of earnings ability. Cagetti and De Nardi (2006,
2009) and Castaneda, Diaz-Gimenez, and Rios-Rull (2003) use probabilities of
retiring and dying to mimic the life cycle pattern in dynasty models. Within
these works Quadrini (2000) and Cagetti and De Nardi (2006, 2009) include the
idiosyncratic investment risk into the model. Another strand of literature which
emphasizes investment risk includes Benhabib and Zhu (2008) and Benhabib,
Bisin, and Zhu (2009). Benhabib and Zhu (2008) is a dynasty model with prob-
ability of death, while Benhabib, Bisin, and Zhu (2009) is a life cycle model. In
Benhabib, Bisin, and Zhu (2009) the agent only draws the uncertain rate of return
at the beginning of life. Table 1.1 summarizes the model structure of these works
in the literature.

Table 1.1: Model structure of literature
Model Life cycle/Dynasty Investment risk
Huggett (1996) Life cycle No
De Nardi (2004) Life cycle No
Krusell and Smith (1998) Dynasty No

Quadrini (2000)
Dynasty
with probability of death

Yes

Cagetti and De Nardi (2006, 2009)
Dynasty
with p. of retiring and death

Yes

Castaneda et al. (2003)
Dynasty
with p. of retiring and death

No

Benhabib and Zhu (2008)
Dynasty
with probability of death

Yes

Panousi (2008)
Dynasty
with probability of death

Yes

Benhabib et al. (2009) Life cycle
Yes
Draw at age 0

Table 1.1 shows that no research has investigated the impacts of the within
lifetime idiosyncratic investment risk on wealth inequality in a life cycle environ-
ment.
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De Nardi (2004) uses the "joy of giving" bequest motive and death rate to
increase the concentration of wealth. The mechanism of the combination of the
"joy of giving" bequest motive, estate tax, and death rate to generate the Pareto
tail of the wealth distribution is also illustrated by Benhabib and Bisin (2006).
Levy (2003) formulates a general stochastic process of wealth accumulation by

capital investment and analyze the conditions required to ensure convergence to
the empirically observed Pareto wealth distribution. Using the Forbes 400 lists
during 1988-2003, Klass et al. (2006) �nd that the top end of the wealth distrib-
ution follows a Pareto distribution with an average exponent of 1.49. Champer-
nowne (1953) employs the same mechanism to study the income distribution.
Panousi (2008) studies the stationary wealth distribution in a heterogeneous-

agent economy with uninsurable entrepreneurial risk. However the right tail of
the wealth distribution of Panousi (2008) is much thinner than that of the U.S.
wealth distribution.3

Benhabib and Zhu (2008) incorporate two kinds of uncertainty�investment risk
and death risk�to produce the Pareto tails of wealth distribution. Benhabib and
Zhu (2008) analytically solve the density function of the wealth distribution: a
double Pareto distribution. In this paper I emphasize the investment risk during
lifetime itself is enough to produce the Pareto tail. In section 6 I introduce the age-
dependent death rate into the model; however this is only to produce a realistic
age distribution.
The framework of this paper follows Benhabib, Bisin, and Zhu (2009). Ben-

habib, Bisin and Zhu (2009) studies the impacts of the inheritance of the in-
vestment ability on wealth inequality. The agent draws an interest rate and labor
income at the beginning of his life. And during his lifetime, there is no uncertainty
of the investment return and labor income. The agent in this paper su¤ers from
the investment return uncertainty during his life. However, there is no stochastic
draw of labor income in this model. Benhabib, Bisin, and Zhu (2009) theoret-
ically show that the wealth distribution has a fat tail and use the tail index to
characterize the fatness of the tail. This paper, following Benhabib, Bisin, and
Zhu (2009), theoretically shows that the wealth distribution has a Pareto tail and
derives the equation that the Pareto exponent satis�es.
The rest of the paper is organized as follows. Section 2 presents the basic

model. I derive the Pareto tail of the wealth distribution in section 3. Section

3Angeletos (2007) concentrates on the aggregate variables of the economy with uninsured
idiosyncratic investment risk.
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4 contains the simulated economy. Section 5 studies comparative statics and
welfare. I introduce the age-dependent death rate into the basic model in section
6. Section 7 concludes the paper. Most of the proofs and the derivation are in
Appendix.

2. Model

The agent lives from age 0 to age T . At the end of life, each agent gives birth
to one child. There are a continuum of measure 1 of agents in the economy. In
the benchmark model, the agent has the certain life span. This helps to highlight
the mechanism for the idiosyncratic investment risk to produce the Pareto tail of
wealth distribution.
Agents can invest in a risk-free account and an individual investment oppor-

tunity. The rate of return in the risk-free asset is r. The individual investment is
a risky asset. Its price follows a Geometric Brownian motion with jump

dP (s)

P (s)
= �ds+ �dz(s) + �dq(s)

where z(s) is a standard Brownian motion and q(s) is a Poisson process with
arriving intensity �. � is the mean return without jump. � is the standard
deviation of the return without jump. � is the jump size. The investment risk is
idiosyncratic and the agents are not permitted to pool their investment risk.
At any time during his life the agent supplies one unit of labor inelastically.

The wage rate is !. Thus the agent receives labor income !. At any time the alive
agent also receives the lump-sum transfer � from the government. Agent chooses
to invest a fraction �(t) of his wealth w(t) in the risky asset. Agent obtains utility
from consumption, c(t), and the bequest he leaves to his child. The agent has a
�joy-of-giving�bequest motive. His utility functions on consumption and on the
after-estate-tax bequest have the same Constant Relative Risk Aversion (CRRA)
form. Let � denote the bequest motive intensity. The agent�s utility maximization
problem is

J(w; t) = max
c(s);�(s)

fEt
Z T

t

c(s)1�

1�  e
��(s�t)ds+ �

[(1� �)w(T )]1�
1�  e��(T�t)g
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s:t: dw(s) = [(r � �)w(s) + ((�� ~�)� (r � �))�(s)w(s)� c(s) + ! + �]ds
+��(s)w(s)dz(s) + ��(s)w(s)dq(s)

where � is the capital income tax on risk-free asset. ~� is the capital income tax
on risky asset. � is the estate tax.  is the coe¢ cient of relative risk aversion and
is assumed to greater than or equal to 1. � is the time discount rate.
Let h(t) denote the agent�s human wealth which is the discounted sum of future

labor income and lump-sum transfer.

h(t) =

Z T

t

(! + �)e�(r��)(s�t)ds

=
1� e�(r��)(T�t)

r � � (! + �)

Solving the agent�s utility maximization problem, we have

Proposition 1. The agent�s policy functions are

c(t) = a(t)�
1
 (w(t) + h(t))

and
�(t)w(t) = �(w(t) + h(t))

where � solves

(�� ~�)� (r � �)� �2�+ ��(1 + ��)� = 0 (2.1)

and

a(t) =

�
e�(T�t) � 1

�
+
�
�(1� �)1�

� 1
 e�(T�t)

�
where � is a function of parameters expressed in Appendix 8.1.

The amount of wealth invested in the risky asset is a constant fraction of the
agent�s total wealth. The fraction is independent of age. The bequest motive
intensity, �, and the estate tax, �, do not in�uence the portfolio selection. We can
divide the terms in equation (2.1) into three parts which are related to di¤erent
factors in�uencing the portfolio decision. The �rst part is the risk premium be-
tween the risky asset and the risk free asset, (�� ~�)� (r � �). The second part,
��2�, re�ects the volatility caused by the Brownian motion in the return of the
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risky asset. The third part, ��(1+ ��)�, re�ects the in�uence of the jump in the
return of the risky asset.
The optimal consumption is a linear function of the total wealth of the agent,

which is the sum of the physical wealth and the human wealth. The function
of a(t), which determines the consumption propensity, is a deterministic function
of age t. The three main factors in�uencing a(t) are the time discount rate, the
average rate of return of wealth, adjusted by the volatility of the risky asset, and
the bequest motive intensity. The terms in the big bracket of the expression of
a(t) are a weighted average of two terms of � 1

�
and (�(1� �)1�)

1
 . Here � 1

�
> 0

since we assume that  � 1. Note that � is independent of � and �. The stronger
the bequest motive intensity is, the lower the consumption propensity is. But the
relationships of the time discount rate and the average rate of return of wealth on
the consumption propensity are ambiguous, since the in�uences of � on the term
� 1
�
and the weight (1� e�(T�t)) are on the two opposite ways.
From the stochastic di¤erential equation of (w(t) + h(t)), we know that the

total wealth, (w(t)+h(t)) is positive. And since � is positive so is �(t)w(t). Thus
the agent always has a positive investment in the private project. There is no
market for trading the private investment opportunity. But the agent can save
and borrow money through the risk free account. The young and the poor borrow
money to smooth the consumption.

2.1. Wealth accumulation within life

Let x(t) be the agent�s total wealth, i.e. the sum of physical wealth and human
wealth, at age t.

x(t) = w(t) + h(t)

Using Proposition 1 we can derive

dx(t) = e(t)x(t)dt+	x(t)dz(t) + ��x(t)dq(t)

where e(t) = (r � �) + ((� � ~�)� (r � �))�� a(t)�
1
 and 	 = ��. Thus x(t) is

a Geometric Brownian motion with jump. The mean of the total wealth accumu-
lation rate, e(t), is age-dependent. This gives the life cycle wealth accumulation
pattern. We have the explicit form expression of x(t),

x(t) =

�
a(t)

a(0)

� 1


exp[�t+	z(t)](1 + ��)q(t)x(0) (2.2)
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where � = (r��)�(�+�)+((��~�)�(r��))�


� 1
2
(2 � )�2�2 + �


(1 + ��)1�. For an

individual with starting wealth x(0), the logarithm of his total wealth at age t is
a mixture of normal distributions. The tail of the distribution of x(t) conditional
on x(0) is thinner than that of any Pareto distribution, since E[xv(t)jx(0)] is �nite
for any v � 0.4
The wealth of generations in a lineage is connected through bequest. At the

end of life the agent�s human wealth is zero, i.e. h(T ) = 0. Thus w(T ) = x(T ).
By formula (2.2) w(T ), the end-of-life wealth, which is also the before-estate-tax
bequest, is a function of the starting wealth of the agent. The child of the dying
agent receives the bequest subtracting the estate tax, i.e. a fraction of (1� �) of
the before-estate-tax bequest. The newborn�s endowment includes two parts: the
endowment from his father, i.e. the bequest, and the natural endowment, i.e. the
human wealth. The sum of after-estate-tax bequest and the human wealth at age
0, h(0), is the starting total wealth of the newborn.

2.2. Intergenerational connection

Let x1, x2, x3, � � � , xn, � � � be the starting wealth of the generation 1, 2, 3, � � � ,
n, � � � of a lineage. In the Appendix I derive the equation of wealth accumulation
process across generations,

xn+1 = �n+1xn + h(0) (2.3)

where the random variable �n+1 is given by

�n+1 =

�
�(1� �)
a(0)

� 1


exp[�T +	z(T )](1 + ��)q(T ) (2.4)

This equation re�ects the wealth connection of the two consecutive generations in
a lineage. From equation (2.4) we know that the bequest motive intensity, �, and
the estate tax, �, in�uence �n+1, but do not in�uence the stochastic part of �n+1.
This is because the bequest motive intensity, �, and the estate tax, �, in�uence the

4Note that

E[xv(t)jx(0)] =
�
a(t)

a(0)

� v


exp

�
t[�v +

1

2
	2v2 + ((1 + ��)v � 1)�]

�
xv(0):
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Figure 2.1: Illustration of Bequest Movement through Lineage

propensity to consume but the stochastic part of the wealth accumulation is only
determined by the portfolio selection, while the portfolio selection is independent
of the bequest motive intensity, �, and the estate tax, �, by Proposition 1.
Suppose that the generation 0 of a lineage is born at time 0. Then the gen-

eration 1, 2, 3, � � � , n, � � � are born at time T , 2T , 3T , � � � , nT , � � � respectively.
The movement of the bequest could be illustrated in Figure 2.1. The bequest
movement is governed by equation (2.3) while the wealth accumulation within life
time is governed by equation (2.2) in section 2.1. The wealth connection of other
lineages are similar.

2.3. Government budget

The government collects revenue through capital income taxes and estate tax. The
government then gives lump-sum transfer, �, to all of the alive agent and �nance
the government expenditure, G. The government expenditure, G, is exogenously
given. The government budget constraint is

� +G = ~�K + �B +
�Esw(T )

T

where K and B are the per capita risky asset and per capita risk free asset
respectively. The �rst two terms are the capital income tax on the risky asset and
on the risk free asset respectively. The third term is the estate tax.
Given the capital income tax rate, the estate tax rate, and government ex-

penditures, the lump-sum transfer is determined in the stationary distribution.
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For the aggregate variables, the government budget balance is a linear equation
for the lump-sum transfer, �. Solving this equation we can �nd the government
transfer, �. See Appendix 8.4.

3. Pareto tail

Following Benhabib, Bisin, and Zhu (2009), I prove that the wealth distribution
of the whole economy has a Pareto tail in this section. This theoretical result
gives us the con�dence that the wealth distribution of the model economy might
have a fat tail. I do the simulation exercise in section 4 to show that this model
actually replicates the fat tail observed in the U.S. data.

3.1. The distribution of starting wealth

In section 2.2 I show that the starting wealth of the agents follows

xn+1 = �n+1xn + h(0) (3.1)

By the theorem of Sornette (2006),5 Goldie (1991), and Kesten (1973), this
equation permits a stationary distribution of xn, with a Pareto upper tail, if there
exists a � > 1 such that6

E��n+1 = 1

The above theorem also points out that in the stationary distribution the Pareto
exponent is �, i.e.

P (x(0) > x) � x�� as x! +1
In equation (3.1) �n+1 is the fraction of the total initial wealth passed on as

a bequest after lifetime accumulation and consumption are taken into account.
From the expression of �n+1 in equation (2.4) we know that low bequest motive
intensity and high estate tax can help to keep E�n+1 < 1. At the same time
human wealth h(0) acts as a re�ecting barrier. The combination of these two
forces generates a mean reverting mechanism with a non-trivial stationary wealth
distribution.
But a mean reverting mechanism does not necessarily guarantee a fat tail of

the stationary distribution. The mechanism to produce the Pareto tail is the

5See page 374 of Sornette (2006).
6Note that by Holder�s inequality, this condition implies that E�n+1 <

�
E��n+1

� 1
� = 1.
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multiplicative stochastic term. Some realizations of �n+1 are greater than 1, while
some realizations of �n+1 are smaller than 1. In the group of agents who draw the
good realizations of �n+1 (the realizations greater than 1), the rich bene�t more
from the good luck. Even though the logarithm of �n+1 is a mixture of normal
distributions, the distribution of �n+1 itself is not enough to generate a Pareto tail
in wealth.7 The multiplicative mechanism ampli�es the dispersion of �n+1 and
generates the Pareto tail of the distribution of wealth.
From the equation (2.4) we know � solves

�


ln

�
�(1� �)
a(0)

�
+ T

�
(��+

1

2
	2�2) + ((1 + ��)� � 1)�

�
= 0 (3.2)

As in Benhabib, Bisin, and Zhu (2009), we have

Proposition 2. The higher the bequest motive �, or the lower the estate tax �,
the smaller is �.

A smaller � implies a fatter tail. Thus the impacts of � and � on � are in
line with our intuition about the role of bequest on wealth inequality: the more
persistent the bequest process, the higher is the inequality in wealth distribution.

3.2. Wealth distribution conditional on age

The newborn draws a realization of his starting wealth from the distribution
presented in section 3.1. Stochastic wealth accumulation is governed by the normal
random variable z(t) and Poisson random variable q(t) of equation (2.2) in section
2.1. These two kinds of uncertainty determine the total wealth distribution of an
individual at age t, which is also the stationary total wealth distribution of age
cohort t. By the linear relationship of the total wealth and the physical wealth,
we have Proposition 3.

Proposition 3. The stationary wealth distribution in every age cohort has a
Pareto tail with the same Pareto exponent as that of the starting wealth distrib-
ution,

P (w(t) > w) � w�� as w ! +1

7Any order moment of �n+1 is �nite. The tail of �n+1 is thinner than that of any Pareto
distribution. Also see the remarks following equation (2.2) in section 2.1.
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3.3. Wealth distribution of the whole economy

The wealth distribution of the whole economy is a weighted average of the wealth
distribution of all age cohorts. Let Ft(w) be the cumulative distribution function
of wealth in age cohort t, then the wealth distribution function F (w) of the whole
economy is

F (w) =
1

T

Z T

0

Ft(w)dt

Proposition 4. The stationary wealth distribution in the whole economy has a
Pareto tail with the same Pareto exponent as that of the starting wealth distrib-
ution,

P (W > w) � w�� as w ! +1

Following Benhbib, Bisin, and Zhu (2009), I show that the wealth distribution
of the whole economy has a Pareto tail. The main di¤erence between Benhabib,
Bisin, and Zhu (2009) and this paper is that this paper incorporates within life
idiosyncratic investment risk into the model. And I show that the results of Pareto
tail in Benhabib, Bisin, and Zhu (2009) still hold in my model.
Here each age cohort has equal size. In the data the unequal cohort distribution

also contributes to the wealth inequality. In section 6 I introduce age-dependent
death rate into the benchmark model and show that the model can produce not
only a fat tail of wealth distribution but also a realistic age cohort distribution.

4. Simulated economy

In the previous section, I theoretically show that idiosyncratic investment risk
would produce a Pareto tail of wealth distribution. However this theoretical result
only predicts the tail of the distribution. In this section I simulate the wealth
distribution to investigate inequality not only of the rich but also of the poor.

4.1. Parameters and calibration

All of the parameters in the model are divided into two groups: for the parameters
in the �rst group, I choose the values in the reasonable region. For the parameters
in the second group, I calibrate the values through the model by targeting some
variables in U.S. data.
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The parameters in the �rst group include the length of life, T , the time discount
rate, �, the coe¢ cient of relative risk aversion, , the rate of return of the risk-
free asset, r, the mean return of the risky asset without jump, �, the standard
deviation of the return of the risky asset without jump, �, the capital income tax
rate on risk-free asset, � , and the capital income tax rate on risky asset, ~� .
The rest of the parameters are in the second group. I calibrate the intensity of

the bequest motive intensity, �, to cause the ratio of bequest to wealth close to
the U.S. data, around 0:3%. I set the estate tax rate close to the e¤ective estate
tax rate in U.S. I set the arrival intensity of the jump in the return of the risky
asset � = 0:0001 and the size of jump in the return of the risky asset � = 180 to
replicate the large dispersion of wealth changes in PSID, and to match the ratio
of aggregate capital income to aggregate labor income in U.S. The labor income
! is chosen close to the average household labor income in U.S. And government
expenditure G is chosen to match the ratio of the government expenditure to GDP
in U.S. The target is 4% which is much lower than that in U.S. data, since in the
model government only collect capital income taxes and estate tax. Given the
government expenditure, the government lump-sum transfer, �, is determined by
the balance of government budget. The ratio of the government transfer to labor
income, �

!
= 0:011.

Table 4.1: Calibration of Parameters
Parameter What�s it? Value Target

T length of life 60 chosen
� time discount rate 0:03 chosen
 risk aversion 3:5 chosen
r risk-free interest rate 0:03 chosen
� mean equity return, no jump 0:08 chosen
� s.d. of equity return, no jump 0:28 chosen
� capital income tax rate 0:006 chosen
~� capital income tax rate 0:006 chosen
� bequest motive intensity 2 bequest/wealth
� estate tax rate 0:2 e¤ective estate tax rate in U.S.
� arriving intensity of jump 0:0001 household wealth change in PSID
� size of jump 180 aggregate capital income

aggregate labor income

! labor income 50000 average household labor income in U.S.
G government expenditure 2000 about 4% of GDP

The following table shows that the distribution of household wealth change
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in PSID has large dispersion. This justi�es the assumption that there is a jump
component in the return of the private project.

Table 4.2: The Times of Wealth Change8

Percentiles
Periods P90 P95 P99
2001-2003 3:8 8:6 47:8
2003-2005 3:5 8:5 28:9
2005-2007 3:4 8:3 69:3

4.2. Aggregate economy

In the model economy the ratio of aggregate capital income to labor income is
0:502. And the aggregate saving in the risk free account B is positive. From the
comments after the Proposition 1, we know that each agent invests in the private
project. Thus the aggregate risky asset is positive in the economy. Each agent
selects his own portfolio, depending on age and wealth. But we can see from Table
4.3 that the aggregate risky asset accounts for 69:4% of the total wealth in the
economy.

Table 4.3: Aggregate Variables
capital inc:=labor inc: B K K=(B +K)

Model 0:502 107738 244658 0:694

4.3. Wealth distribution

I report the Gini coe¢ cient and the Lorenz curve of the simulated wealth distri-
bution9 and compare them with those of the U.S. data in Table 4.4. The Gini
coe¢ cient and the quintiles of U.S. data are from the 2007 SCF.

8To calculate the real change rate I use the yearly in�ation rate from 2001-2006 in the 2009
Statistical Abstract of the United States.

9In the simulated economy E�n+1 = 0:0621. Note that E�n+1 < 1 is a necessary condition
for the existence of a stationary wealth distribution with �nite mean.
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Table 4.4: Gini and Quintiles of Wealth
Qu intiles

Economy Gini F irst Second Third Fourth F ifth
U:S: 0:816 �0:2 1:1 4:5 11:2 83:4
Model 0.803 -7.3 3.7 10.2 19.7 73.7

The simulated results show that my model replicates the Gini coe¢ cient of the
wealth distribution in U.S. But the Lorenz curve deviates from that of the U.S.
data to some extent. The model economy produces more negative wealth than
the data. In U.S. data the negative wealth accounts for only �0:2% of the total
wealth, while in the model economy the negative wealth accounts for �7:3% of
the total wealth. Without the borrowing constraint the poor agent could short
his human wealth to smooth consumption. This produces large negative wealth
in the model. The same phenomenon happens in Huggett (1996) when an agent
can borrow to a limit.
To see more closely the fat tail of the wealth distribution in the model, I report

the percentiles of the top tail. I also report the Pareto exponent of the wealth
distribution in the model. Instead of estimating the Pareto exponent from the
simulated data, I calculate the Pareto exponent from equation (3.2).

Table 4.5: Pareto Tail and Top Percentiles of Wealth
Pareto Percentiles

Economy exp onent 90th� 95th 95th� 99th 99th� 100th
U:S: 1:49 11:1 26:7 33:6
Model 1.95 10.8 12.4 34.7

The simulated data match the top 1% of the wealth distribution in the data
very well. For the 90% � 95% the model almost replicates the percentage of
wealth in the data. For the 95% � 99% of the wealth distribution, the model
underestimates the percentage of the wealth. This causes the wealth holding of
the �fth quintile of the model to be lower than that of the data, shown in Table
4.2.
Quadrini (2000) introduces the entrepreneurship into the heterogeneous agent

model and replicates the extreme concentration of wealth on the top tail. He
incorporates the �nancial market friction and the entrepreneurial risk into his
model. But he emphasizes the role of �nancial market friction on the higher
wealth accumulation pattern of entrepreneurs: To bene�t from the high return
of entrepreneurial activities the agents have to accumulate much wealth to avoid
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the borrowing constraint. Cagetti and De Nardi (2006, 2009) also emphasize this
mechanism in their works. The mechanism that I emphasize here is the second one
that Quadrini (2000) uses. The entrepreneurial risk itself is enough to generate
the extreme concentration of wealth.

4.4. Age cohorts

The life cycle structure of the model permits us to investigate the wealth accumu-
lation and distribution along the age cohorts. Huggett (1996) investigates wealth
accumulation and wealth concentration within age groups. But Hugget (1996)
does not consider idiosyncratic investment risk. Benhabib, Bisin, and Zhu (2009)
study a life cycle model with idiosyncratic investment risk. But Benhabib, Bisin,
and Zhu (2009) do not take into account investment risk within lifetime.
I calibrate the lenth of life, T = 60. And I assume that age 0 in the model

corresponds to age 20 in the data. Thus the life span in the model corresponds to
20� 80 in the data.
Figure 4.1 shows that the mean wealth of age cohorts has a hump shape as

in U.S. data. The hump shape of wealth accumulation comes from the relative
strength of high rates of return of assets and the low bequest motive intensity. The
composite rate of return of the risk free asset and the risky asset is higher than
the time discount rate. This e¤ect causes the agent to accumulate wealth. But
the low intensity of the bequest motive intensity causes the agent to decummulate
wealth when the agent approaches the end of life.
In section 3.2 I theoretically show that wealth distribution of each cohort has a

Pareto tail. Figure 4.2 shows that the simulated data mimic the whole pattern of
the wealth dispersion by age in the U.S. data. The wealth dispersion �rst increases
for the young age cohorts and then decreases for the old age cohorts. The reason
for this pattern in the model is that the wealth accumulation by age has a hump
shape and the stochastic term is multiplicative.

4.5. Consumption distribution

I also investigate the distribution of consumption. I report the Gini coe¢ cient
and the Lorenz curve of consumption and compare them with those of the U.S.
data in Tables 4.6 and 4.7.10 As in Castande et al. (2003) and Cagetti and De

10The U.S. data are from Castaneda et al. (2003) who use the 1991 CEX.
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Nardi (2007), the model predicts a fat tail of consumption distribution. Note that
this pattern is not found in the data because CEX data has top-coding.

Table 4.6: Gini and Quintiles of Consumption
Qu intiles

Economy Gini F irst Second Third Fourth F ifth
U:S: (Nondurables) 0:32 6:87 12:27 17:27 23:33 40:27
U:S: (Nondurables+)� 0:30 7:19 12:96 17:80 23:77 38:28

Model 0.248 11.9 14.9 16.8 19.4 37.0
� includes imputed services of consumer durables.
Table 4.7: Top Percentiles of Consumption

Pareto Percentiles
Economy exp onent 90th� 95th 95th� 99th 99th� 100th

U:S: (Nondurables) 9:71 10:30 4:83
U:S: (Nondurables+)� 9:43 9:69 3:77

Model 1.95 6.7 6.7 12.1
� includes imputed services of consumer durables.

5. Comparative statics and welfare

After investigating the implications of the benchmark model, I discuss how the
parameters of the economy in�uence wealth inequality and welfare.

5.1. Risk aversion

From Table 5.1 we see that the higher the risk aversion, the thinner the tail and
the higher the Gini coe¢ cient. The reason is that high risk aversion implies that
the agent invests a smaller fraction of his wealth in the risky asset. This causes a
lower volatility of the wealth accumulation process and a lower inequality of the
stationary wealth distribution.

Table 5.1: The E¤ect of Risk Aversion
 1:5 2 2:5 3 3:5
� 1:414 1:587 1:724 1:840 1:945
Gini 0:869 0:853 0:839 0:821 0:803
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5.2. Taxes

In section 3.1 we know that the lower the estate tax � is, the smaller the Pareto
exponent � is. A smaller � implies a fatter tail of wealth distribution. Castaneda
et al. (2003) study the steady-state implications of abolishing estate taxation.
They �nd that abolishing estate taxation brings about very little change in wealth
inequality. Cagetti and De Nardi (2009) study the e¤ect of abolishing estate tax-
ation on the stationary wealth distribution in di¤erent policy change experiments.
They also �nd that in each experiment abolishing estate taxation has little e¤ect
on the wealth inequality.
From the calculation results in Appendix 8.8 we see that the higher the capital

income tax on risk free asset is, the fatter the tail is. The lower the capital income
tax on risky asset is, the fatter the tail is. The reason is that in both cases
agents shift away from the risk free asset and toward the risky asset. The wealth
accumulation process becomes more volatile.
For the e¤ects of taxes on Gini of the wealth distribution I do the experiments

by simulation. In the experiment the government adjusts the lump-sum transfer
to keep the expenditure while the government changes the taxes.
From the simulation results in Appendix 8.9 we see that a higher the capital

income tax on a risk-free asset causese higher inequality. The reason is that the
agent invests more in the risky asset when the net return on the risk free asset
is low. Consistent with our intuition, the higher the estate tax, the lower the
inequality.

5.3. Welfare

The capital income taxes and estate tax in�uence the wealth accumulation of
individuals and the wealth distribution in the society. To study the in�uence
of the capital income tax and the estate tax on welfare, I de�ne the egalitarian
welfare object function as

U =

Z
J(w(0); 0)dv(w(0))

where J(w(0); 0) is the indirect utility function of agent at age 0, and v(w(0) is
the stationary distribution of the starting physical wealth.
Cagetti and De Nardi (2009) study the welfare change along the transition

path after government abolishes estate tax. I only study the e¤ect of the taxes on
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the welfare in the stationary distribution. In the experiment government adjusts
the lump-sum transfer to keep the expenditure constant when government changes
the taxes.
From the simulation results in Appendix 8.10 we see that the higher the capital

income tax on risk free asset, the higher the welfare. The higher the capital income
tax on risky asset, the lower the welfare. The higher the estate tax, the higher
the welfare.

6. Age-dependent death rate

In order to replicate the demographic structure of the U.S. economy, I introduce
age-dependent death rate to the basic model. Let �(t), t 2 [0; T ] be the agent�s
death rate. Suppose that there is a perfect life insurance market in the economy.
In Appendix 8.7, I show that the newborn�s endowment process follows

xn+1 = �n+1xn + h(0)

and the agent�s starting wealth has a stationary distribution with a Pareto upper
tail. The Pareto exponent, �, of the distribution solves�

�(1� �)
a(0)

��

Z T

0

exp

�
[��+

1

2
	2�2 + ((1 + ��)� � 1)�]t

�
�(t)dt = 1 (6.1)

Equation 6.1 shows that the death rate can a¤ect the tail of the wealth distri-
bution. This �nding is consistent with the simulation work of De Nardi (2004).
As in section 3.2 we have

Proposition 5. The stationary wealth distribution in every age cohort has a
Pareto tail with the same Pareto exponent as that of the starting wealth distrib-
ution.

Let Ft(w) be the cumulative distribution function of wealth in age cohort t.
Now the wealth distribution function F (w) of the whole economy is

F (w) =

Z T

0

Ft(w)�(t)dt

Thus we have
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Proposition 6. The stationary wealth distribution in the whole economy has a
Pareto tail with the same Pareto exponent as that of the starting wealth distrib-
ution.

For the proofs of Proposition 5 and Proposition 6 see Appendix 8.7.

7. Conclusion

Idiosyncratic investment risk plays a very important role in causing wealth in-
equality. Multiplicative shock generates a fat tail of the wealth distribution.

References

[1] Aiyagari, S. R. (1994), "Uninsured Idiosyncratic Risk and Aggregate Saving",
Quarterly Journal of Economics, Vol. 109, 659-684.

[2] Angeletos, G. (2007), "Uninsured Idiosyncratic Investment Risk and Aggre-
gate Saving", Review of Economic Dynamics, Vol. 10, 1-30.

[3] Benhabib, J. and A. Bisin (2006), "The Distribution of Wealth: the Inter-
generational Transmission and Redistributive Policies", memo, New York
University.

[4] Benhabib, J.; A. Bisin and S. Zhu (2009), "The Distribution of Wealth and
Fiscal Policy in Economies with Finitely Lived Agents", memo, New York
University.

[5] Benhabib, J, and S. Zhu (2008), "Age, Luck, and Inheritance", memo, New
York University.

[6] Cagetti, M. and M. De Nardi (2006), "Entrepreneurship, Frictions, and
Wealth", Journal of Political Economy, Vol. 114, 835-870.

[7] Cagetti, M. and M. De Nardi (2007), "Estate Taxation, Entrepreneurship,
and Wealth", NBER working paper 13160.

[8] Cagetti, M. and M. De Nardi (2009), "Estate Taxation, Entrepreneurship,
and Wealth", American Economic Review, Vol. 99, 85-111.

23



[9] Case, K. and R. Shiller (1989), "The E¢ ciency of Market for Single-Family
Homes", American Economic Review, Vol. 79, 125-137.

[10] Castaneda, A.; J. Diaz-Gimenez and J. V. Rios-Rull (2003), Journal of Po-
litical Economy, Vol. 111, 818-857.

[11] Champernowne, D. G. (1953), "A Model of Income Distribution", Economic
Journal, Vol. 63, 318-351.

[12] De Nardi, M. (2004), "Wealth Inequality and Intrgenerational Links", Review
of Economic Studies, Vol. 71, 743-768.

[13] Flavin, M. and T. Yamahita (2002), "Owner-Occupied Housing and the Com-
position of the Household Portfolio", American Economic Review, Vol. 92,
345-362.

[14] Goldie, C. (1991), "Implicit Renewal Theory and Tails of Solutions of Ran-
dom Equations", Annals of Applied Probability, Vol. 1, 126-166.

[15] Huggett, M. (1996), "Wealth Distribution in Life-Cycle Economies", Journal
of Monetary Economics, Vol.38, 469-494.

[16] Kesten, H. (1973), "Random Di¤erence Equations and Renewal Theory for
Products of Random Matrices", Acta Mathematica, Vol. 131, 207-248.

[17] Klass, O.; O. Biham; M. Levy; O. Malcai and S. Solomon (2006), "The
Forbes 400 and the Pareto Wealth Distribution", Economics Letters, Vol. 90,
290-295.

[18] Krusell, P. and A. Smith (1998), "Income and Wealth Heterogeneity in the
Macroeconomy", Journal of Political Economy, Vol. 106, 867-896.

[19] Levy, M. (2003), "Are Rich People Smarter?", Journal of Economic Theory,
Vol. 110, 42-64.

[20] Moskowitz, T. and A. Vissing-Jorgensen (2002), "The Returns to Entrepre-
neurial Investment: A Private Equity Premium Puzzle?", American Eco-
nomic Review, Vol. 92, 745-778.

[21] Panousi, V. (2008), "Capital Taxation with Entrepreneurial Risk", memo,
Federal Reserve Board.

24



[22] Quadrini, V. (2000), "Entrepreneurship, Saving, and Social Mobility", Re-
view of Economic Dynamics, Vol. 3, 1-40.

[23] Schechtman, J. and V. Escudero (1977), "Some Results on "An Income Fluc-
tuation Problem"", Journal of Economic Theory, Vol. 16, 151-166.

[24] Sornette, D. (2006), "Critical Phenomena in Natural Sciences", 2nd Edition,
Springer, Berlin.

[25] U.S. Census Bureau, The 2009 Statistical Abstract of the United States.

[26] Wol¤, E. (2004), "Changes in Household Wealth in the 1980s and 1990s in the
U.S.", in Edward N. Wol¤, Editor, International Perspectives on Household
Wealth, Elgar Publishing Ltd., forthcoming.

8. Appendix

8.1. Proof of Proposition 1.

Proof: Hamilton-Jacobi-Bellman equation of this problem is

(� + �)J(w; t) = max
c(t);�(t)

fc(t)
1�

1� 
+Jw(w; t)[(r � �)w(t) + ((�� ~�)� (r � �))�(t)w(t)� c(t) + ! + �]

+
1

2
Jww(w; t)�

2�(t)2w(t)2

+Jt(w; t)

+�J(w + ��(t)w(t); t)g

We have the F.O.C.
c(t)� = Jw(w; t)

Jw(w; t)((�� ~�)� (r � �)) + Jww(w; t)�2�(t)w(t) + ��Jw(w + ��(t)w(t); t) = 0
Guess

J(w; t) =
a(t)

1�  (w(t) + h(t))
1�

and
�(t)w(t) = �(w(t) + h(t))
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We have
c(t) = a(t)�

1
 (w(t) + h(t))

and
(�� ~�)� (r � �)� �2�+ ��(1 + ��)� = 0

Plugging these expressions into the HJB, we have

1


a(t)

1

�1 _a(t) + �a(t)

1
 + 1 = 0

where � = (1�)(r��)�(�+�)


+1�


�
((�� ~�)� (r � �))�� 1

2
�2�2 + �

1� (1 + ��)
1�
�
.

Using the boundary condition

a(T ) = �(1� �)1�

we have

a(t) =

�
e�(T�t) � 1

�
+
�
�(1� �)1�

� 1
 e�(T�t)

�
And we have

d(w(t) + h(t)) = [(r � �) + ((�� ~�)� (r � �))�� a(t)�
1
 ](w(t) + h(t))dt

+��(w(t) + h(t))dz(t) + ��(w(t) + h(t))dq(t):

�

8.2. Derivation of equation (2.3)

We know w(T ) = x(T ). From formula (2.2) we have

w(T ) =

�
�(1� �)1�

a(0)

� 1


exp[�T +	z(T )](1 + ��)q(T )x(0)

Let wn(T ) be the wealth of the agent at age T of generation n. Thus

xn+1 = (1� �)wn(T ) + h(0)

=

�
�(1� �)
a(0)

� 1


exp[�T +	z(T )](1 + ��)q(T )xn + h(0)
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�

8.3. Proof of Proposition 2

Proof: Following Benhabib, Bisin and Zhu (2009), I prove this proposition by
combining two results of monotonicity. The �rst one is that E��n+1 is increasing
in �n+1 when � > 1. The second one is that E��n+1 is increasing with � in the
neighborhood of �̂ such that E��̂n+1 = 1 since by Lemma 2.2 of Goldie (1991),
E(��̂n+1 log �n+1) > 0. Then the results of the proposition follows the fact that
�n+1 is an increasing function of � and is a decreasing function of �. �

8.4. Procedure to solve the equilibrium �

We compute the aggregate starting wealth in the stationary distribution.

Esx(0) =
h(0)

1� E�n+1

where Es(�) is the expectation with respect to the stationary distribution. We
compute the aggregate total wealth X

X =
1

T

Z T

0

Esx(t)dt

=
1

T

Esx(0)

a(0)
1


0@ 1
�+���

+ (�(1� �)1�)
1


� + ���� � e(�+���)T �
1
�
+ (�(1� �)1�)

1


� + ���� � e�T +
1

�(� + ���)

1A
The aggregate human capital, H, is

H =
1

T

Z T

0

h(t)dt

=
! + �

r � �

�
1� 1� e

�(r��)T

T (r � �)

�
Compute the aggregate risky asset, K

K = �X
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Compute the aggregate risk free asset, B

B = W �K
= X �H �K
= (1� �)X �H

From government budget balance, we have

� = ~�K + �B +
�Esw(T )

T
�G (8.1)

Note that h(0) is a linear function of �. The �rst three terms on the right hand
side of equation (8.1) are linear functions of �. Thus we can solve � from linear
equation (8.1). �

8.5. Proof of Proposition 3.

Proof: By the linear relationship of the total wealth and the physical wealth, we
only need to prove that the proposition holds for the total wealth.
Let mn(t) =

1

ln
�
a(t)
a(0)

�
+ �t+ n ln(1 + ��). Thus

P (x(t) > xjq(t) = n; x(0) = y) = 1� �
�
lnx� (ln y +mn(t))

	
p
t

�
where � is the cumulative distribution function of a standard normal distribution.

P (x(t) > xjx(0) = y) =
+1X
n=0

e��
�n

n!
P (x(t) > xjq(t) = n; x(0) = y)

Now I prove that if the distribution of x(0), F0(x), has the property that
1�F0(x) = P (x(0) > x) � x�� as x! +1, then the distribution of x(t) has the
property that P (x(t) > x) � x�� as x! +1.
Note that there exists c > 0 such that

lim
x!+1

P (x(0) > x)

x��
= c
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and

P (x(t) > x)

=

Z +1

0

P (x(t) > xjx(0) = y)dF0(y)

=

Z +1

0

+1X
n=0

e��
�n

n!
P (x(t) > xjq(t) = n; x(0) = y)dF0(y)

=
+1X
n=0

e��
�n

n!

Z +1

0

�
1� �

�
lnx� (ln y +mn(t))

	
p
t

��
dF0(y)

=
+1X
n=0

e��
�n

n!

Z +1

0

P (x(0) > y)f(y;x;mn(t);	
p
t)dy

where f(y;x;mn(t);	
p
t) = 1

y
1p
2�	2t

exp
�
� (ln y�(lnx�mn(t)))

2

2	2t

�
.

Thus we have

P (x(t) > x)

x��
=

+1X
n=0

e��
�n

n!

Z +1

0

P (x(0) > y)f(y;x;mn(t);	
p
t)
1

x��
dy

and

lim
x!+1

P (x(t) > x)

x��
=

+1X
n=0

e��
�n

n!
lim

x!+1

Z +1

0

P (x(0) > y)f(y;x;mn(t);	
p
t)
1

x��
dy
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Note that

j
Z +1

0

P (x(0) > y)f(y;x;mn(t);	
p
t)
1

x��
dy � c exp

�
�

�
mn(t) +

1

2
	2t�

��
j

= j
Z x̂

0

P (x(0) > y)f(y;x;mn(t);	
p
t)
1

x��
dy

+

Z +1

x̂

P (x(0) > y)f(y;x;mn(t);	
p
t)
1

x��
dy � c exp

�
�

�
mn(t) +

1

2
	2t�

��
j

�
Z x̂

0

P (x(0) > y)f(y;x;mn(t);	
p
t)
1

x��
dy

+j
Z +1

x̂

P (x(0) > y)f(y;x;mn(t);	
p
t)
1

x��
dy � c exp

�
�

�
mn(t) +

1

2
	2t�

��
j

�
Z x̂

0

P (x(0) > y)f(y;x;mn(t);	
p
t)
1

x��
dy

+ j
Z +1

x̂

P (x(0) > y)

y��
y��f(y;x;mn(t);	

p
t)
1

x��
dy � c exp

�
�

�
mn(t) +

1

2
	2t�

��
j

�
Z x̂

0

P (x(0) > y)f(y;x;mn(t);	
p
t)
1

x��
dy

+ j
Z +1

x̂

�
P (x(0) > y)

y��
� c
�
y��f(y;x;mn(t);	

p
t)
1

x��
dyj

+ j
Z +1

x̂

cy��f(y;x;mn(t);	
p
t)
1

x��
dy � c exp

�
�

�
mn(t) +

1

2
	2t�

��
j

�
Z x̂

0

P (x(0) > y)f(y;x;mn(t);	
p
t)
1

x��
dy

+

Z +1

x̂

jP (x(0) > y)
y��

� cjy��f(y;x;mn(t);	
p
t)
1

x��
dy

+ c�

�
ln x̂� (lnx�mn(t)�	2t�)

	
p
t

�
exp

�
�

�
mn(t) +

1

2
	2t�

��
Now pick a large x̂ such that jP (x(0)>y)

y�� �cj < "
3
exp

�
��
�
mn(t) +

1
2
	2t�

��
. For this

speci�c x̂, when x is su¢ ciently large we have
R x̂
0
P (x(0) > y)f(y;x;mn(t);	

p
t) 1
x��dy <
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"
3
and c�

�
ln x̂�(lnx�mn(t)�	2t�)

	
p
t

�
exp

�
�
�
mn(t) +

1
2
	2t�

��
< "

2
. Thus

j
Z +1

0

P (x(0) > y)f(y;x;mn(t);	
p
t)
1

x��
dy�c exp

�
�

�
mn(t) +

1

2
	2t�

��
j < "

3
+
"

3
+
"

3
= "

when x is su¢ ciently large. Thus

lim
x!+1

Z +1

0

P (x(0) > y)f(y;x;mn(t);	
p
t)
1

x��
dy = c exp

�
�

�
mn(t) +

1

2
	2t�

��
Thus

lim
x!+1

P (x(t) > x)

x��
= c

+1X
n=0

e��
�n

n!
exp

�
�

�
mn(t) +

1

2
	2t�

��
:

�

8.6. Proof of Proposition 4.

Proof: By the linear relationship of the total wealth and the physical wealth, we
only need to prove that the proposition holds for the total wealth.
For the stationary distribution of the total wealth of the whole economy we

have

P (X > x) =
1

T

Z T

0

P (x(t) > x)dt

Thus

lim
x!+1

P (X > x)

x��

=
1

T
lim

x!+1

Z T

0

P (x(t) > x)

x��
dt

=
1

T
lim

x!+1

Z T

0

 
+1X
n=0

e��
�n

n!

Z +1

0

P (x(0) > y)f(y;x;mn(t);	
p
t)
1

x��
dy

!
dt

=
1

T

+1X
n=0

e��
�n

n!
lim

x!+1

Z T

0

�Z +1

0

P (x(0) > y)f(y;x;mn(t);	
p
t)
1

x��
dy

�
dt

by the results in section 8.5.
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For any x̂ 2 (0;+1) and t 2 (0; T ]Z +1

0

P (x(0) > y)f(y;x;mn(t);	
p
t)
1

x��
dy

=

Z x̂

0

P (x(0) > y)f(y;x;mn(t);	
p
t)
1

x��
dy +

Z +1

x̂

P (x(0) > y)f(y;x;mn(t);	
p
t)
1

x��
dy

Now pick a su¢ ciently large x̂ such that P (x(0)>y)
y�� � c < ".Z +1

x̂

P (x(0) > y)f(y;x;mn(t);	
p
t)
1

x��
dy

=

Z +1

x̂

P (x(0) > y)

y��
y��f(y;x;mn(t);	

p
t)
1

x��
dy

=
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�
P (x(0) > y)

y��
� c
�
y��f(y;x;mn(t);	

p
t)
1

x��
dy

+

Z +1

x̂

cy��f(y;x;mn(t);	
p
t)
1

x��
dy

< (c+ ")

Z +1

0

y��f(y;x;mn(t);	
p
t)
1

x��
dy

= (c+ ") exp

�
�

�
mn(t) +

1

2
	2t�

��
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And when x is su¢ ciently largeZ x̂

0

P (x(0) > y)f(y;x;mn(t);	
p
t)
1

x��
dy

�
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ThusZ +1

0

P (x(0) > y)f(y;x;mn(t);	
p
t)
1

x��
dy < (c+"+x̂�) exp

�
�

�
mn(t) +

1

2
	2t�

��
Since exp

�
�
�
mn(t) +

1
2
	2t�

��
is bounded for t 2 (0; T ], there exits M > 0 such

that Z +1

0

P (x(0) > y)f(y;x;mn(t);	
p
t)
1

x��
dy < M

Thus by bounded convergence theorem we have
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Thus

lim
x!+1

P (X > x)

x��
=

1

T
lim

x!+1

Z T

0

P (x(t) > x)

x��
dt

=
1

T
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where
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e��
�n

n!
exp
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1

2
	2t�

��
by the results in section 8.5. �

8.7. Age-dependent death rate

Agents have a portfolio selection problem among a risky asset, a risk-free asset,
and life insurance. The agent purchases life insurance, P (t), during the lifetime
and leaves bequest, Z(t), to his child.
De�ne

G(t) =

Z T

t

�(s)ds

and

�(v; t) =
�(v)

G(t)

The conditional death rate is

u(t) =
�(t)

G(t)

There is a perfect life insurance market. Thus the price of the life insurance is
u(t). Thus

Z(t) = w(t) +
P (t)

u(t)

Consumer�s problem is

J(w; t) = max
c;P;�

fEt
Z T

t

�(v; t)[

Z v

t

c(s)1�

1�  e
��(s�t)ds+�

[(1� �)Z(v)]1�
1�  e��(v�t)]dvg
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Using integration by parts, I rewrite the agent�s problem,

J(w; t) = max
c;P;�

Et
R T
t

�
G(s) c(s)

1�

1� + �(s)� [(1��)Z(s)]
1�

1�

�
e��(s�t)ds

G(t)

s:t: dw(s) = [(r � �)w(s) + ((�� ~�)� (r � �))�(s)w(s)� c(s)� P (s) + ! + �]ds
+��(s)w(s)dz(s) + ��(s)w(s)dq(s)

De�ne human wealth h(t) as

h(t) =

Z T

t

(! + �)e�
R s
t [(r��)+u(v)]dvds

Proposition 7. 11The agent�s policy functions are

c(t) = a(t)�
1
 (w(t) + h(t))

P (t) = u(t)

 �
a(t)

�(1� �)1�

�� 1


(w(t) + h(t))� w(t)
!

and
�(t)w(t) = �(w(t) + h(t))

where a(t) =
��
1 + (�(1� �)1�)

1
 �
� R T

t
e
R s
t (���(v))dvds+ (�(1� �)1�)

1


�
in which

� = (1�)(r��)�(�+�)


+ 1�


�
((�� ~�)� (r � �))�� 1

2
�2�2 + �

1�E(1 + ��)
1�
�
.

As in section 2.1 let
x(t) = w(t) + h(t)

Thus
dx(t) = f(t)x(t)dt+	x(t)dz(t) + ��dq(t)

where f(t) = (r� �)+u(t)+ ((�� ~�)� (r� �))�� [1+ (�(1� �)1�)
1
 u(t)]a(t)�

1


11I put this proof on my webpage to shorten the Appendix. For the proof of this Proposition
please visit my webpage
http://homepages.nyu.edu/~sz436/
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and 	 = ��. The explicit form solution of x(t) is

x(t) =

�
a(t)

a(0)

� 1


exp[�t+	z(t)](1 + ��)q(t)x(0) (8.2)

where � = (r��)�(�+�)+((��~�)�(r��))�


� 1
2
(2� )�2�2 + �


(1 + ��)1�.

Now let t1, t2, t3,� � � , tn,� � � be the born time of generation 1, 2, 3,� � � , n,� � � .
Let

x1 = x(t1); x2 = x(t2); x3 = x(t3); � � � ; xn = x(tn); � � �
Thus

xn+1 = �n+1xn + h(0)

where

�n+1 =

�
�(1� �)
a(0)

� 1


exp[�(tn+1 � tn) + 	(z(tn+1)� z(tn))](1 + ��)q(tn+1)�q(tn)

(8.3)
For �xed tn+1, �n+1 is a random variable. But tn+1 � tn follows the density
function of �(�). Thus �n+1 is a compound random variable. By Sornette, the
agent�s starting wealth has a stationary distribution with a Pareto upper tail, if
there exists a � > 1 such that

E��n+1 = 1

Thus by the formula 8.3 � solves�
�(1� �)
a(0)

��

Z T

0

exp

�
[��+

1

2
	2�2 + ((1 + ��)� � 1)�]t

�
�(t)dt = 1

The proof of Proposition 5 is the same as the proof in section 8.5, since the
equations (8.2) and (8.2) has the same form.
The proof of Proposition 6 is almost the same as the proof in section 8.6. The

only di¤erence is that here we apply the Lebesgue dominated convergence theorem
in the place where we apply the bounded convergence theorem in section 8.6. �
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8.8. The dependence of Pareto exponent on taxes

� = 0
�n~� 0:006 0:007 0:008 0:009
0:006 1.938 1.953 1.968 1.983
0:007 1.927 1.941 1.956 1.972
0:008 1.916 1.931 1.945 1.960
0:009 1.906 1.920 1.934 1.949

� = 0:1
�n~� 0:006 0:007 0:008 0:009
0:006 1.941 1.956 1.971 1.987
0:007 1.930 1.945 1.960 1.975
0:008 1.920 1.934 1.949 1.964
0:009 1.910 1.924 1.938 1.952

� = 0:2
�n~� 0:006 0:007 0:008 0:009
0:006 1.945 1.960 1.975 1.991
0:007 1.934 1.949 1.964 1.979
0:008 1.924 1.938 1.953 1.967
0:009 1.914 1.927 1.942 1.956

� = 0:3
�n~� 0:006 0:007 0:008 0:009
0:006 1.949 1.964 1.980 1.995
0:007 1.939 1.953 1.968 1.983
0:008 1.928 1.942 1.957 1.972
0:009 1.918 1.932 1.946 1.960
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8.9. The dependence of Gini on taxes

� = 0
�n~� 0:006 0:007 0:008 0:009
0:006 0.805 0.810 0.815 0.820
0:007 0.812 0.818 0.823 0.828
0:008 0.821 0.823 0.830 0.836
0:009 0.825 0.830 0.836 0.844

� = 0:1
�n~� 0:006 0:007 0:008 0:009
0:006 0.804 0.810 0.815 0.819
0:007 0.812 0.818 0.822 0.828
0:008 0.817 0.823 0.829 0.835
0:009 0.825 0.830 0.836 0.844

� = 0:2
�n~� 0:006 0:007 0:008 0:009
0:006 0.804 0.808 0.813 0.821
0:007 0.809 0.814 0.822 0.827
0:008 0.819 0.822 0.829 0.835
0:009 0.823 0.827 0.834 0.842

� = 0:3
�n~� 0:006 0:007 0:008 0:009
0:006 0.801 0.809 0.812 0.816
0:007 0.809 0.814 0.820 0.825
0:008 0.816 0.821 0.825 0.833
0:009 0.821 0.826 0.834 0.838
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8.10. The dependence of welfare on taxes (welfare�1011)

� = 0
�n~� 0:006 0:007 0:008 0:009
0:006 -1.360 -1.366 -1.372 -1.379
0:007 -1.336 -1.340 -1.347 -1.353
0:008 -1.309 -1.313 -1.321 -1.328
0:009 -1.282 -1.288 -1.294 -1.301

� = 0:1
�n~� 0:006 0:007 0:008 0:009
0:006 -1.355 -1.360 -1.367 -1.373
0:007 -1.329 -1.335 -1.341 -1.347
0:008 -1.303 -1.308 -1.316 -1.322
0:009 -1.275 -1.283 -1.289 -1.296

� = 0:2
�n~� 0:006 0:007 0:008 0:009
0:006 -1.348 -1.353 -1.360 -1.368
0:007 -1.321 -1.328 -1.333 -1.341
0:008 -1.296 -1.302 -1.308 -1.315
0:009 -1.268 -1.274 -1.282 -1.288

� = 0:3
�n~� 0:006 0:007 0:008 0:009
0:006 -1.338 -1.344 -1.351 -1.358
0:007 -1.312 -1.318 -1.325 -1.332
0:008 -1.286 -1.291 -1.299 -1.306
0:009 -1.258 -1.264 -1.272 -1.279
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