
Strikes and Slowdown in a Theory of

Relational Contracts �

Robert Gary-Boboy and Touria Jaaidanez

8 February 2011

Abstract

We propose a model of strikes in a relational (or self-enforcing) contracts frame-
work. The employer has private information about �rm pro�tability, proposes a wage
and a bonus, and can outsource part of the production in each period. The union
can either go on strike or reduce the workers�s e¤ort (i.e., decide a slowdown or work-
to-rule) as a response to a low wage or a low bonus. We construct perfect public
equilibria in which strikes (or slowdown) appear randomly on the equilibrium path,
during �nite-duration spells triggered by the occurrence of a low-pro�tability state.
Equilibria exhibit money-burning (i.e., con�ict) and wage-compression as in the recent
literature on relational contracts; they are �rst-best ine¢ cient. We discuss some em-
pirical implications of the model and applications to the public sector. An important
advantage of our theory is that it allows for equilibrium regime changes, induced by
changes in the environment: strikes may disappear and be replaced by other forms of
con�ict that are less easily observable. This has consequences for the empirical work
on strikes.
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1 Introduction

The theory of strikes is apparently outdated. True, in the past 10 or 15 years, the number

of days lost to strikes has steadily decreased in the United States, and the UK record has

been low in comparison with the European Union average1; but strikes have not disappeared

from continental Europe, their frequency has not decreased in India, and it seems that the

number of wildcat strikes is quickly growing in China2. With the advent of the public debt

crisis and the spreading of budgetary austerity, strikes could soon become a very signi�cant

problem in the Public Sector of many developed economies3. So, this topic may become

fashionable again.

Labor disputes typically occur in ongoing, long-run relationships between an employer

and the workers�union. Many strikes seem to be the result of a con�ict situation that has

been built up by past responses of the employer to changes in the environment4. It is very

likely that strikes are only the "tip of the iceberg": that is, the visible part of the �rm-union

cooperation enforcement problem. Indeed, many internal con�icts never result in a strike

that would be recorded by outside observers. Workers can use various forms of resistance and

slowdown to obtain improvements of working conditions and pay. Resistance phenomena are

less easily observable, but are likely to cause ine¢ ciencies as severe as strikes. For instance,

Krueger and Mas (2004) and Mas (2006) have shown that disappointed workers can cause a

deterioration in the quality of produced goods and signi�cant drops in some indirect measures

of e¤ort in general, even if labor strife is not recorded by outside observers.

Since the mid 1980�s, the theory of strikes has been based mainly on models of bar-

gaining under asymmetric information (see e.g., Kennan and Wilson (1989), (1993), Ausubel

et al. (2001)). These models provide a powerful way of rationalizing labor disputes, but they

cannot be easily extended to study dynamics, while the observed number of days lost to

strikes is a time series exhibiting much randomness. In addition, there are good reasons to

1Hale (2008).
2O¢ cial statistics are not available. See however, e.g., The Economist (2010), and Albert Shanker Institute

(2008).
3The Economist (2011).
4In the US, for instance, strikes are more likely the greater is uncompensated in�ation over the previous

contract period. See Vroman (1989).
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think that labor disputes can be understood in the framework of Relational (or Implicit)

Contract Theory5.

The present paper proposes a simple way of integrating strikes in a theory of re-

lational (or implicit) contracts between an employer and a workers� union, based on an

in�nitely repeated game with imperfect monitoring6. In this framework, con�ict is the un-

avoidable consequence of informational asymmetries. But the various avatars of con�ict,

that is, strikes, slowdown, low morale, dismissals, resignations, etc., are not by themselves

essential ingredients of the theory. Strikes, for instance, would have a nonzero incidence

only under certain parameter con�gurations, while con�ict is still present, but takes another

form. This is important for the empirical work on labor disputes, because many aspects of

con�ict are not recorded in the data and therefore, the impact of factors causing strikes, as

well as the real causal impact of labor strife in general, are hard to identify.

The proposed model explains the incidence of strikes, as well as the employer�s out-

sourcing (or worker replacement) decisions. It also extends the theory to account for worker

resistance phenomena, such as slowdown and "work-to-rule". In our model, strikes appear

as random equilibrium phenomena. We show that high-e¤ort and high-pay cooperative

agreements between the union and the employer can be supported as Public Perfect Nash

equilibria of a repeated game, if players are patient enough, but only at the cost of random

reversions to ine¢ cient sequences of actions, in which strikes and rigid wages, or slowdown

and outsourcing may take place. In equilibrium, the union simply goes on strike when the

proposed wage is too low and the real state of nature, being private information of the em-

ployer, is never revealed to the union. This type of union behavior is rational in a repeated

interaction framework: it creates the necessary incentives for cooperation in good times.

In the proposed model, strikes are not retrospective punishments in�icted on the employer

when the real state of nature is disclosed, or partially revealed. In contrast, they are merely

the response to a disappointing wage (or bonus) o¤er. But the main result is probably that

this theory can explain changes of regime, in which strikes disappear. Our theory suggests

that strikes vanish because they are replaced by other forms of con�ict that are less easily

5On the latter theory, see e.g., Bull (1987), Malcomson and MacLeod (1989), Levin (2003).
6On this notion, see Fudenberg et al. (1994), Mailath and Samuelson (2006).
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observable. This happens when some structural parameters change, like, for instance, the

cost of outsourcing.

The modern theory of strikes has �rst been developed with the help of Contract

Theory, in static form (see e.g., Hayes (1984), and Card (1990)). Extensions of these ideas

have been proposed by Cramton and Tracy (1992) and others, using games with incomplete

information7. These models typically describe a 3-year contract-period. Bargaining over the

wage rate takes place at the beginning of the time interval, and strikes are an ine¢ cient delay,

incurred before an agreement is signed. These models typically lack a dynamic element. It

is intuitively clear that past contractual wages play a rôle in current contract negotiations,

and that the current wage matters for the next contract. Changing circumstances in the

input and output markets, unexpected in�ation, and all sorts of business-cycle phenomena

can randomly force players to renegotiate, at any moment8.

To the best of our knowledge, Robinson (1999) is the only contribution that proposed

a model of labor disputes cast in an in�nite-horizon, repeated-game, asymmetric-information

framework, before the present paper. There are important di¤erences in our respective ways

of modelling the problem. Robinson (1999) adapts Green and Porter�s (1984) oligopoly

model, and models strikes as retrospective punishments: in each period t, the union receives

a noisy signal of period t � 1�s true state of nature, and the union strikes for T periods if

it is su¢ ciently likely that the �rm has lied about the state of nature in the past period.

Our model, we believe, is more realistic: the true state of nature is never disclosed to the

union; the union simply reacts to the employer�s pay decisions: disappointing wages trigger

reversion to an ine¢ cient mode of play. Another important di¤erence is the presence of the

workers�e¤ort variable. There is no e¤ort (or slowdown) and no outsourcing (or partial lock-

out) in Robinson (1999), who makes the simpler assumption that the employer can replace

the work force entirely, at a �xed cost9.

7Again, see Ausubel et al. (2001)). The ability of bargaining models to reproduce a number of empirical
facts about strikes is discussed in the papers of Kennan and Wilson (1989), and Card (1990).

8For a discussion of �within-contract strikes", see Harrison and Stewart (1994).
9There are a number of other questionable assumptions in Robinson�s (1999) pionneering paper. He

assumes that the employer is risk-averse and that the union is risk-neutral; he needs an upper bound on
the player�s discount factor to construct cooperative equilibria of his repeated game. We do not need these
assumptions.
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Principal-Agent theory has been extended to repeated interaction settings to study

worker moral hazard and e¢ ciency wages (e.g., Malcomson and Spinnewyn (1988), McLeod

andMalcomson (1989), (1998)), but this literature does not encompass strikes. The literature

on subjective performance evaluation and self-enforcing contracts has then used the repeated

game model to derive constraints on compensation systems (see e.g., Baker et al. (1994)).

MacLeod (2003) models con�ict in a rather abstract way as a form of money burning, but

suggests interpretations in terms of possible employee behavior that can be the source of

social costs, such as work-to-rule. Levin (2003) obtains related results in a repeated game

context; in his analysis, con�ict takes the form of worker resignation in termination contracts;

he does not explore other forms of resource-consuming con�ict. In these contexts, optimal

contracts exhibit a property of �wage compression": we obtain the same kind of property

here10. It can be noted that the �stationary contracts" emphasized by Levin (2003) cannot

be used in our model, because the rate at which value can be transfered from the Principal

(Employer) to the Agent (Union) depends on the privately observed state of nature. Our

model shows that wage compression and money burning can be generated as equilibrium

phenomena in simple repeated mechanism design settings with private information, but in

which private monitoring plays no role.

In the following, Section 2 sketches a case study of the municipal dustmen strikes,

and discusses some empirical evidence, for illustrative purposes; Section 3 is devoted to a

description of the model. Section 4 presents the construction of equilibria in the repeated

game model and their properties are discussed in Section 5. A number of proofs are gathered

in the Appendix.

10Since the �rst version of the present paper was written (Gary-Bobo and Jaaidane (2006)), some new
results have appeared in the literature on subjective performance evaluation. Fuchs (2007) extends previous
contributions in a repeated game setting with private monitoring: he con�rms that termination contracts
and money burning are second-best optimal. Rui Zhao (2009) explicitly considers low e¤ort spells as a
substitute for termination contracts and interprets low e¤ort as low worker morale.
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2 Dustmen in the City of Paris: Sketch of a Case Study

We begin by brie�y discussing labor disputes between municipal dustmen (i.e., sanitation

workers) and the city of Paris, France. This is the type of implicit-contract, long-run re-

lationship between a �rm and a union that we try to model below. Some original data on

the strikes and wages of these workers, recently collected by the authors, will provide an

empirical illustration and a motivation for the theoretical analysis.

The dustmen of Paris enjoy a civil servant status which guarantees life-time employ-

ment to all workers: once hired, dustmen cannot be �red, except for very serious causes.

Due to strict seniority rules and because �ring is essentially impossible, when it comes to

personnel motivation, the city of Paris is placed in an uncomfortable position. A single

powerful trade union, the CGT, negotiates with the town hall11. The town hall cannot lock

dustmen out, or use replacement workers, but they can rely on outsourcing to private sector

sanitation companies, using public procurement contracts. The only problem is that this

process takes time, to auction the contract and to build new garbage trucks. It can thus be

very costly to outsource a large number of tons of garbage in a short period of time. The

army has been used to clean up the streets during some famous strikes of the past.

Figure 1 plots the dustmen�s number of strike days, per year, from 1968 to 2004.

It seems that the series is non-stationary, with a regime switch in the early eighties. The

recurrent strikes of the late 1960�s and early 1970�s had resulted in important pay raises, and

many new recruits. A new Mayor, Mr Jacques Chirac (a prominent politician, who was later

to become the President of the Republic), was elected in 1977. Mayor Chirac�s election was

greeted with very tough strikes in 1978 and 1979. Until 1977, the city of Paris had never had

recourse to the private sector: Mayor Chirac and his team crossed the Rubicon, and started

partial privatization of garbage collection in the early eighties. Figure 1 clearly shows the

reduction in strike incidence, starting from this period. Strikes have almost disappeared in

the nineties, during Jacques Chirac�s second and third terms (with the exception of 1990). He

stayed in o¢ ce from 1977 to 1995 and was replaced by a deputy mayor from the same party

11CGT stands for Confédération générale du travail. Note that, in France, union certi�cation does not
lead to union monopoly or exclusive representation in bargaining units, but the CGT is the dominant union
in the case of dustmen.
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until 2001. Thus, the outsourcing-privatization policy has lasted long enough to become a

well-established, credible mechanism. Its strategic e¤ect on strikes seems obvious. A glance

at Figure 2 shows the year to year change in the total number of dustmen, (as voted by the

Town Hall, and published in its o¢ cial record). From 1978 to 2000, with the exception of

1982 and 1983, the total number of dustmen remained constant and then decreased. In the

year 2001, a new mayor from the Socialist Party, with a public-sector friendly approach, took

o¢ ce. In any case, new recruits had to be hired to compensate for the implementation of the

35-hours week law, which had just been passed by the Socialist government. A resurgence

of strikes seems to have been the result of this policy.

But there is an unobserved downside to Mayor Chirac�s (apparently successful) policy,

which is that, since incentives are weak in the civil service, the privatization and low-pay

policy have created the conditions of chronic low e¤ort, and progressively demoralized the

workers. We have many reasons to believe that the rate of absenteeism, which is abnormally

high among municipal dustmen nowadays, has in fact increased over time. Slowdown or

work-to-rule spells became more frequent and are not recorded as strikes12. So, the drop in

strike incidence that we observe in Fig. 1 after 1983 could be due to a change of regime (i.e.,

a change in the implicit contract). We suggest below that these facts can be explained by a

change in the form of con�ict involved in (or used to support) the long-run equilibrium. In

other words, the underpinning of the implicit contract between the town hall and the union

has shifted from observable strikes to unobservable slowdown problems. In Appendix A, we

provide further details on the Paris dustmen case, and show that drops in the discounted

value of careers seem to cause strikes. The data on this case doesn�t contradict the view that

the discounted value of future wages and working conditions is the driving force behind the

observed history of disputes.

To sum up, these empirical facts, taken together, suggest that they have been gen-

erated by a long-run relationship between the town hall and the dustmen�s union. It seems

that a �nite-horizon, single-contract bargaining game with incomplete information cannot

reproduce the facts as accurately as a model of repeated interaction, in which pay raises,

12Our inquiry has revealed that, to an extent which is di¢ cult to measure or establish objectively, the
quality of applicants for vacant public dustmen positions has also decreased in the recent years. For details
on Paris dustmen, see Jaaidane and Gary-Bobo (2008).
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strikes, slowdown, outsourcing and the business cycle combine to produce a seemingly ran-

dom sequence of con�icts.

3 A Repeated Game Model of Slowdown and Strikes

We consider an in�nitely repeated game with 2 players: the employer and the union13.

3.1 Basic Assumptions

During each period, t, the Union and the Employer play a stage game G: the Union chooses

a level of e¤ort et in the set fe; eg and a "length," or probability of strike st in the interval

[0; 1]. We assume that the Union has enough command of its members to implement the

e¤ort and strike policy. The e¤ort variable is also the employee�s disutility of e¤ort14.

E¤ort determines the total number of hours, h, needed to complete the task. High

e¤ort e is associated with a small number of hours h, while low e¤ort e corresponds to a

large number of hours h > h. In contrast, strikes are complete work stoppages during which

a fraction st of output is lost. Our most important assumption is the following:

Assumption 1. eh < eh.

Assumption 1 says that the social cost of low e¤ort is higher than that of high e¤ort, as

will become clear below. The employer chooses a real wage rate wt in each period t and

simultaneously, chooses the extent of outsourcing xt in the interval [0; 1]. To be more precise,

a fraction of the task xt, in the interval [0; 1], can be outsourced. Accordingly, the fraction

of the task ful�lled by the employees is 1�xt. We also assume that outside options and (or)

rules concerning the workers impose that the real wage rate wt cannot fall below a minimum

w, which is assumed constant for simplicity. To focus on the interesting cases, we assume

the following.
13To �x ideas, the employer can be viewed as a public entity, the "town hall", and the union is that of

dustmen and sanitation workers. The employer has a given task to accomplish: a given, constant number of
tons of waste, say, has to be collected during each time period.
14Intuitively, in the absence of incentives, low e¤ort e is the natural behavior of workers, but, following

a good agreement, the worker�s morale can be raised by the Union�s o¢ cials, and high e¤ort e > e can be
implemented.
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Assumption 2. 0 < e < e � w.

The cost of outsourcing is,

C(x) = whx+ �
x2

2
; (1)

where � > 0. This formulation rests on the idea that subcontracting companies are e¢ cient,

since they pay the minimum wage w and obtain a high level of e¤ort from their workers, i.e.,

h = h, but that there are additional outsourcing costs, represented by the quadratic term.

This latter term captures the fact that outsourcing is a source of speci�c organizational costs.

It is likely that subcontractors are in a better bargaining position to extract surplus from the

employer when the extent of outsourcing is large. This quadratic term may also represent

the "political costs" of replacing civil servants with private sector workers.

Now, the employer faces changing circumstances, a changing state of the world, that

we model as an i.i.d random cost parameter �t� interpreted as a "cost of public funds" in

the case of a public employer. This cost parameter is observed by the employer but not by

the union. For simplicity, �t takes only two values: �, the �good state", with probability �,

and a high value � > �, the �bad state", with probability 1 � �. The cost of public funds

summarizes a number of random phenomena: business cycle �uctuations, price changes in

product and input markets15, etc. In the stage game G, at time t, the union chooses (et; st),

and the employer simultaneously chooses a state-dependent action, a mapping � ! (x�t; w�t).

We can now specify the players�payo¤s in the stage game. We drop the time index

t to simplify notation. The union�s payo¤ in G and in state � is de�ned as follows,

u� = (1� s)(1� x�)(w� � e)h: (2)

Note that u� depends on the state only through the employer�s state-contingent actions

(w�; x�). The interpretation of this speci�cation is easy. The worker�s surplus per hour

(w�� e) is multiplied by the required number of hours h and by the fraction of the task (the
15In the case of a public employer, cycles cause changes in tax revenues, changes in the interest rate on

public debt, but there are also unexpected costs faced by the town hall, and changes in the priorities or
in the political agenda of the ruling mayor�s team, which change the tradeo¤s that they face, in view of
reelection. All these factors are subsumed in parameter �t, which modi�es the employer�s resistance to the
union�s demands.
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number of tons of waste) carried out by the union�s workers in state �, that is (1� x�). We

assume that the workers receive a zero wage (and exert e¤ort zero) during strikes, so that

the union�s total surplus is multiplied by (1� s), the proportion of non-strike days.

The employer maximizes the (social) value of the task, denoted v0, minus internal

production costs, minus the cost of outsourced services. The fraction of the task performed

by the union and the external providers taken together is (1 � s)(1 � x) + x = 1 � s + xs.

When the workers are on strike, the external provider produces a fraction sx of the task.

The remaining part of the task, 1�x� (1� s)(1�x) = s(1�x), is not ful�lled16. The total

cost of production is de�ned as follows.

�[w�h(1� s)(1� x�) + C(x�)]; (3)

where C is the cost of outsourcing de�ned above. The employer�s utility in state � is denoted

v�, and de�ned as follows:

v� = v0(1� s+ sx�)� �[w�h(1� s)(1� x�) + C(x�)] (4)

The social surplus is R� = u� + v�, the sum of the players�stage game utilities. We have,

R� = v0(1� s+ sx�) + ((1� �)w� � e)(1� s)(1� x�)h� �C(x�): (5)

To simplify the presentation we propose the following normalization of parameters.

Assumption 3. 1 = w = h = e = � < �.

As a consequence, under Assumption 2, we have 1 = e > e. These assumptions are harmless,

except 1 = �, because this ensures that one unit of money from the employer is worth exactly

one unit for the union in the �good state" �. It follows that surplus is perfectly transferable

in the good state, while in the bad state, � > 1 acts as a �cost of public funds"17.

16In the waste collection example, s(1 � x) is the fraction of the garbage that is collected neither by the
public, nor by the private sector dustmen, and stays in the streets (forcing citizens, or the army, to do the
job).
17Since R� doesn�t depend on the wage w� when � = 1, the essential role of this latter assumption is to

simplify the analysis. Note that a worker exerting high e¤ort and paid the minimum wage has a zero rent,
since w � e = 0.
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Let now � be the players�common discount factor. In the in�nitely repeated game,

denotedG(�), the union�s and employer�s expected payo¤s are respectively de�ned as follows:

U = (1� �)
1X
t=0

�tE(ut�); V = (1� �)
1X
t=0

�tE(v�t);

where the expectation E(:) is taken with respect to state ��s distribution and 0 < � < 1.

3.2 Noncooperative Nash equilibrium of the stage game

To solve the stage game G, we �rst analyze the employer�s best reply to a given (e; s). The

employer�s strategy is to o¤er a state-dependent wage and outsourcing level pair (w�; x�).

We therefore solve for a standard Bayesian-Nash equilibrium of G.

3.2.1 The employer�s best reply

The employer�s best reply is a pair of functions, (w��(e; s); x
�
�(e; s)). Given that v� is a non-

increasing function of w�, the choice w�� = w is always a best response, and is the unique best

response if x� < 1 and s� < 1. The best reply x��(e; s) is the value of x� which maximizes

v�. Using Assumption 3 and the result w�� = w = 1, the �rst-order condition for an interior

maximum can be written,

v0s+ �h(1� s)� � � ��x��(s; e) = 0;

from which we immediately derive,

x��(s; e) =
1

��
[v0s+ �h(1� s)� �]+ ; (6)

where for any z, we denote [z]+ = maxf0; zg. Remark that x�� is a function of e because h is

a function of e. In the following, we assume that � is large enough so as to obtain18 x�� < 1.

Since v� is a concave function of x�, the above necessary solution is also su¢ cient.

3.2.2 The union�s equilibrium strategy

The Union chooses the pair (s�; e�) so as to maximize the expected utility E [u�], that is,

(w � e)h(1� s)(1� Ex��):
18For instance, we can take � > v0 + �h� 1 to guarantee this result.
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Given that we have 0 � Ex�� < 1, a best response maximizes (w � e)h(1 � s), taking

Ex�� as given. It is straightforward that this implies s
� = 0 and e� = e if and only if

(w � e)h > (w � e)h = 0. But the latter condition is true under Assumptions 1-3. As a

consequence, we can state the following result.

Result 1. The Nash equilibrium of the stage game G, denoted (e�; s�; w�� ; x
�
�), is unique and

we have,

e� = e; s� = 0; w�� = w; x�1 = x
�
�
= (h� 1)=�: (7)

In other words, the one-shot Nash equilibrium is characterized by a positive amount of

outsourcing, low e¤ort, low pay and no strikes19. The expected utilities in this equilibrium

are denoted (u�; v�). We have,

u� = Eu�� = (1� e)h(1� x�1);

v� = Ev�� = v0 � E(�)[h(1� x�1) + C(x�1)]: (8)

For future reference, de�ne

� = E(�) = (1� �)� + �: (9)

3.3 Cooperative solutions in the stage game G

By de�nition, a cooperative solution of G maximizes the expected surplus ER� = E(u�+v�)

with respect to (e; s; w�; x�), subject to the constraints: e 2 fe; eg, 0 � s � 1, 1 � w� � v0
and 0 � x� � 1. A cooperative solution maximizes the expected value of R, taking into

account the fact that the employer knows the state of nature while choosing w and x, and

can be described as follows: the union commits to a policy (e; s), and the employer, in

exchange, chooses (w�; x�) once the cost of funds � is known. Let (ec; sc; wc�; x
c
�) denote the

cooperative solution.

We �rst maximizeR� with respect to (w�; x�) for each state �. First, if � = � = 1, then,

R� doesn�t depend on w1 and the solution, denoted wc1, is indeterminate. Intuitively, there

19 If h is large, and � is small, the Nash equilibrium is a near collapse of the �rm: cooperation is almost
a necessary condition of the �rm�s existence.
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will be an interval of possible cooperative wages in the good state. De�ne the cooperative

bonus

b = wc1 � w: (10)

This bonus is a socially costless transfer between the employer and the union in the good

state.

Second, if � = � > 1, then, R� is a nonincreasing function of w, strictly decreasing if

x and s < 1. E¢ ciency then requires wc
�
= w. In the bad state, a pay raise is too costly and

the union should accept austerity, in the name of e¢ ciency. This will of course be a source

of con�ict.

We now search for the best cooperative amount of outsourcing xc�(s; e). Note that R�

is concave with respect to x�, so that necessary conditions for optimality are also su¢ cient.

The �rst-order condition for surplus maximization in state � can be written,

v0s+ (e� (1� �)wc�)h(1� s)� � � ��xc�(s; e) = 0;

which immediately yields,

xc�(e; s) =
1

��
[v0s+ (e� (1� �)wc�)h(1� s)� �]

+ : (11)

Again, we assume that � is large enough to ensure that xc�(s; e) � 1.

To maximize expected surplus ER� with respect to s, given (wc�; x
c
�), we compute the

derivative,
dER�
ds

= E

�
@R�
@s

�
+ E

�
@R�
@x�

@xc�
@s

�
= E

�
@R�
@s

�
:

The right-hand side equality is due to the envelope theorem: if xc� � 0 on some open

neighborhood, then @xc�=@s = 0, and if xc� > 0, then, by de�nition, @R�=@x� = 0. Thus,

using the de�nition of R�, we have,

dER�
ds

= E ((1� xc�)[(� � 1)hwc� + eh� v0]) :

Given that xc� < 1, the above derivative is negative if v0 is large enough, that is, if there is

enough surplus. We therefore assume,

Assumption 4. v0 > (� � 1)h+ eh.
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Under Assumption 4, we immediately obtain sc = 0. It is now possible to prove the following

result.

Result 2.

Under Assumptions 1-4, there exists a value �0 > 0, such that if � > �0, the cooperative

solutions of G are characterized by the following properties: ec = e, sc = 0, xc1 = x
c
�
= 0,

wc
�
= w = 1 and wc1 is indeterminate.

For proof, see Appendix B.

We conclude that e¢ cient cooperative agreements involve no strikes, high e¤ort, no outsourc-

ing, a minimal wage in the bad state, and a high compensation in the good state. Intuitively,

the wage wc1 must be high enough in �good times," when � = 1, to compensate workers for

the e¤ort, and for austerity in �bad times".

4 Construction of Equilibria in the Repeated Game

Our model is a game of repeated adverse selection. In these games, the moves of players

are public information, but moves are taken after players learn some private information.

An instance of this class of games is Athey and Bagwell�s (2001) model of repeated price-

competition oligopoly, in which �rm prices are public, but �rm costs are subject to privately

observed i.i.d. shocks. In these games, observed moves are public signals of the player�s

actions, and the actions map the set of private types into the set of possible moves: these

mappings are not observed. In our model, the employer�s moves (w; x) are observed by the

union, and are therefore public information, but � is a private i.i.d. shock which is never

disclosed. An employer�s pure action at time t is a mapping of the set of types f�; �g into

the set of possible moves [w; v0] � [0; 1]. Employer actions are not observed by the union.

Based on this formal de�nition of an action, games of repeated adverse selection can be

reformulated as repeated games with imperfect public monitoring20. Thus, a number of

20Fudenberg, Maskin and Levine (1994) have shown that a repeated game in which (i), the players�types
are private information, (ii) new types are drawn independently at each stage, and (iii), the players�actions
are publicly observed, can formally be reformulated as a repeated game with imperfect public monitoring,
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general results and techniques can be applied to them. Since � is never disclosed, G(�) has

no proper subgames, and it follows that an appropriate equilibrum concept is the Perfect

Public Nash Equilibrium (hereafter PPE), in which players play public strategies, that is,

by de�nition, strategies which depend only on publicly observable histories of play, but do

not depend on past unobservable types and actions of the player21. A PPE is de�ned as

a pro�le of public strategies that, after any public history, speci�es a Nash equilibrium for

the repeated game. On these questions, see Abreu et al. (1990), Fudenberg et al. (1994),

Mailath and Samuelson (2006).

In the following, we will �rst show that the repeated play of certain actions b�, involv-
ing strikes, is a PPE of the repeated game G(�), using trigger strategies. We then show that

cooperative play �c can be supported as part of a PPE, when players are su¢ ciently patient,

but at the cost of random reversions to b�, involving strikes and rigid wages. Cooperative play
can also be supported by random reversions to the static Nash equilibrium �� during a �nite

number of periods, in which strikes do not occur, but in which e¤ort is low and outsourcing

takes place. So, slowdown and (or) strikes, and partial replacement of workers, are ways of

supporting cooperation in a repeated-interaction, asymmetric-information context.

4.1 Construction of an equilibrium with rigid wages and strikes

We start our study of the repeated game by showing that there exists equilibria with rigid

wages and in which strikes occur during a positive fraction of each period t. Let b� =

(be; bs; bw; bx) be a list of actions of G such that bs � 0; be = e = 1; bx� = 0 for all �; bw� = bw for all
� and bw > 1. The stage game payo¤s of b� are easy to compute, we have, bu = (1� bs)( bw� e),bv� = (1� bs)(v0� � bw) and bv = Ebv� = (1� bs)(v0�� bw). From this we immediately derive the
if a player�s payo¤ does not directly depend on the other players�types. In other words, a repeated adverse
selection problem under private values can formally be rewritten in the form of a repeated game with
imperfect monitoring, i.e., a repeated multi-person moral hazard model.
21With public strategies, the employer�s choices at time t can depend on the current, privately observed

state �t, through the action chosen at time t, but may not depend on past actions, and may depend on past
states of nature only through past moves. Given our assumptions, the union can only play public strategies
and it is easy to show that the employer has a best reply which is a public strategy too. In this context,
there is no loss of generality in restricting the analysis to public strategies and public equilibria (again see
Mailath and Samuelson (2006)).
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long-run payo¤s (bU; bV ), as follows:
bU = (1� �)

1X
t=0

�tbu = bu = (1� bs)( bw � 1);
bV = (1� �)

1X
t=0

�tbv = bv = (1� bs)(v0 � � bw): (12)

The associated total surplus is bR = bU + bV = (1� bs)(v0 � (�� 1)bw � 1).
Perpetual repetition of the stage-game Nash equilibrium �� = (e�; s�; w�; x�) is obvi-

ously a PPE of G(�). The payo¤s of this equilibrium, denoted (U�; V �) are simply U� = u�

and V � = v�, de�ned above by (8). We also de�ne the total surplus R� = U� + V � =

v0 � (� � 1 + e)h(1 � x�1) � �C(x�1). We now show that there exists admissible (bs; bw) such
that bR > R�. To do this, we set bs = 0 and choose the value of bw so as to ensure bu > u� andbv > v�. This imposes,

1 + (1� e)h(1� x�1) < bw < 1 + h(1� x�1) + C(x�1): (13)

Computing the di¤erence between the upper and the lower bounds, we easily show that this

open interval for bw is nonempty if and only if,
(1� x�1)(eh� 1) + �

(x�1)
2

2
> 0;

which is always true under Assumption 1. Now, given a feasible bw, by continuity, we can
always �nd a value bs > 0 small enough to preserve bu > u� and bv > v�. The minimal value
of bw, denoted bw�, is given by the following expression,

bw� = 1 + (1� e)h(1� x�1)
(1� bs) > 1: (14)

We conclude that there exist values (bs; bw) >> (0; 1) such that, at the same time, bU > U�
and bV > V �.

We must now show that the perpetual repetition of b� = (be; bs; bw; bx) is a trigger strategy
equilibrium of G(�) if � is high enough. This is fairly standard. Consider the following

strategies: both players initially play b� and any deviation is punished by a permanent
reversion to ��. The equilibrium condition for the union is bU � (1� �)u0 + �U�, where u0 is
the expected payo¤ induced by the union�s best one-shot deviation in the stage game, when
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the employer plays ( bw; bx). If bU > U�, there exists a �0 < 1 such that the condition holds

for � > �0. The reasoning is the same for the employer. There are no inference problems in

this equilibrium because all deviations are perfectly detected by both players. We conclude

that when players are su¢ ciently patient and � is su¢ ciently large, the repetition of b� is an
equilibrium.

Result 3. Under Assumptions 1-4, there exists a �0 < 1 and a �0 > 0, such that, if

1 > � > �0 and � > �0, the perpetual repetition of b� is a PPE path of G(�).
This equilibrium entails a permanent, positive duration of strikes, no outsourcing, high e¤ort

and constant wages above the minimum. It is potentially very ine¢ cient, because e¢ cient

arrangements require no strikes and a state-contingent, �exible-wage policy. In this type

of equilibrium, strikes seem to be the cause of above-the-minimum wages. As shown by

the formula for bw� above, there is a trade-o¤ between equilibrium wages and equilibrium

strikes. In a cross-section of �rms, during phases in which b� is played, one could observe
an increasing relationship between strikes and wages, but the observed e¤ect of strikes on

wages is not "causal". We now turn to a family of equilibria that are much more e¢ cient

than the rudimentary b�.
4.2 A set of cooperative equilibria in which strikes are random

events

We now construct an equilibrium involving the cooperative mode of play �c = (ec; sc; wc; xc)

de�ned above. We need a precise de�nition of our equilibrium candidate�s strategies.

De�nition (Equilibrium Candidate):

(i) In the initial period, t = 0, the union cooperates and plays (ec; sc) = (1; 0). In state

� = 1, the employer plays (wc1; x
c
1), with w

c
1 > w and x

c
1 = 0; in state � = �, the employer

plays (wc
�
; xc
�
), where wc

�
= w and xc

�
= 0.

(ii) They play �c again in period t+ 1 if (wc1; x
c
1) was played in period t. If (w

c
�
; xc
�
)

is played in period t, then, starting from period t + 1, the union plays (be; bs), where be = 1,
17



and bs � 0; the employer plays ( bw; bx), where bw > w, and bx = 0 for all �, during T periods.
Both players return to cooperation and play �c = (ec; sc; wc�; x

c
�) in period t+ 1 + T .

(iii) If the union plays (e0; s0) 6= (ec; sc) in a period t such that (ec; sc) is required,

or if the union plays (e0; s0) 6= (be; bs) in a period t such that (be; bs) is required (i.e., during a
punishment spell), then in period t+1, both players return to the noncooperative equilibrium

�� of G during T � periods, after which they return to cooperative play �c, in period t+T �+1.

(iv) If the employer plays (w0; x0) such that (w0; x0) 6= (wc
�
; xc
�
) and (w0; x0) 6= (wc1; xc1),

in a period t, such that (wc; xc) is required, or if the employer plays (w0; x0) 6= (bw; bx) in a
period t such that ( bw; bx) is required, then, starting from period t+ 1, both players return to

the noncooperative equilibrium �� of G in period t+ 1, during T � periods, after which they

return to cooperation and play �c in period t+ T � + 1.

Using a terminology introduced by Athey and Bagwell (2001), there are �o¤-schedule"

and �on-schedule" deviations of the employer. The on-schedule deviation is not observable:

such deviations happen if the �rm plays (wc1; x
c
1) when the state is bad or plays (w

c
�
; xc
�
)

when the state is good. Any choice (w; x), di¤erent from (wc1; x
c
1) or (w

c
�
; xc
�
) is necessarily

detected as a deviation by the union when the game is in a cooperative phase, and any

(w; x) di¤erent from the required ( bw; bx) is also detected, during punishement phases. These
deviations are o¤-schedule. Union deviations can only be o¤-schedule. We must now check

that our equilibrium candidate satis�es all incentive constraints for a nonnegligible set of

parameter values.

4.2.1 Value functions

Let V be the long-run expected utility of the employer along any path of play induced by our

candidate equilibrium. Let V1 be the expected, discounted utility when the state is � = 1,

and let V� be the expected, discounted utility when the state is � > 1. Recalling that � is

the probability of a good state, we have,

V = �V1 + (1� �)V�: (15)

If � = 1, then V1 satis�es the equation,

V1 = (1� �)vc1 + �V; (16)
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where vc1 is the one-shot utility of the cooperative play �
c, and we denote vc1 = v1(e

c; sc; wc1; x
c
1).

Next, if the true value of the state is �, the employer plays xc
�
= 0 and wc

�
= 1, this

triggers a punishment spell lasting T periods in the period immediately following a bad draw

of �; then, b� is played T times; the per-period expected utility of the employer is bv in each
of these periods, and this latter term must be weighted by the annuity factor:

� + �2 + :::+ �T = �
(1� �T )
1� � :

Finally, the players return to cooperation at the end of the punishment phase. This has an

expected, discounted value �T+1V . It follows that V� satis�es the equation,

V� = (1� �)vc� + �(1� �
T )bv + �T+1V; (17)

where vc
�
= v�(e

c; sc; wc
�
; xc
�
). Using the linear equations de�ning the value functions above,

we easily obtain,

V = bv + (1� �)
�

(vc � bv) ; (18)

where, to simplify notation, we denote vc = Evc� and

� = 1� �� � (1� �)�T+1: (19)

Since (1 � �)�T+1 < 1 � � < 1 � ��, we easily conclude that � > 0. The union�s expected

utility and value functions have parallel de�nitions; it is su¢ cient to replace V with U and

v with u in the above formulas to �nd U .

4.2.2 Incentive constraints: o¤-schedule deviations

We �rst check a number of incentive constraints, due to the possibility of o¤-schedule devia-

tions. The employer can play an unexpected (w0; x0) in state �. Given that such a deviation

will trigger a reversion to the Nash equilibrium of G during T � periods, these deviations are

deterred if and only if,

V� � (1� �)v0� + �(1� �T
�
)v� + �T

�+1V; (IC0�)

where v0� = max(w;x) v�(e
c; sc; w; x), for all �. This will always be true if T � is large enough

and � is su¢ ciently close to 1. To see this, remark �rst that if � = �, substituting the
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expressions for V and V� in IC0�, we obtain,

0 � (1� �)(v0
�
� vc

�
)� �(1� �T �)(bv � v�)� �(1� �)

�
(�T � �T �)(vc � bv); (20)

and this inequality holds if T � is su¢ ciently large and � su¢ ciently close to 1. For instance,

take T � = +1, then, the inequality is true for all � greater than some �0 < 1, because v� < bv
and lim�!1(1� �)=� = (1 + T (1� �))�1 <1. If � = 1, substituting the expressions for V

and V1 in IC01, we obtain a similar result.

The union�s deviation can only be o¤-schedule. It can be shown that these deviations

can be deterred by reversion to �� during T � periods too. We can state the following result.

Result 4. There exists values �0 < 1 and T0 > 0, such that for all � in the open interval

(�0; 1) and all T � > max(T0; T ), the constraints IC 0� hold as strict inequalities and the

o¤-schedule deviations of both players are not pro�table.

The proof of Result 4 is completed in Appendix B.

4.2.3 Incentive constraints: honesty and guts

We now consider on-schedule deviations of the employer. In the good state, the employer

should have no incentive to act as if the state was bad. In other words, the employer should

be "honest". This imposes,

V1 � (1� �)evc1 + �(1� �T )bv + �T+1V; (IC1)

where by de�nition, evc1 is the one-shot payo¤ of playing (wc�; xc�) when � = 1, or evc1 =
v1(e

c; sc; wc
�
; xc
�
). We easily get evc1 = v0 � 1. A punishment phase starts immediately after

this deviation. Using V1 = (1� �)vc1 + �V , constraint IC1 can be rewritten,

�(1� �T ) (V � bv) � (1� �)(evc1 � vc1): (21)

Now, using the expression for V above, we easily derive the following equivalent form of IC1,

�(1� �T )
�

(vc � bv) � evc1 � vc1: (IC1)
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The appropriately discounted value of the expected incremental bene�ts from cooperation

must be greater than or equal to the temporary bene�ts of behaving as if the cost was high

when it is in fact low.

The employer must also prefer to pay a low wage instead of hiding the bad news that

the cost is high to avoid the punishment phase. In other words, the employer should have

the guts to face con�ict. Formally, we must have,

V� � (1� �)evc� + �V; (IC2)

where evc
�
is the payo¤ of playing (wc1; x

c
1) when � > 1, or evc� = v�(ec; sc; wc1; xc1). We easily getevc

�
= v0 � �wc1. The employer incurs a cost while deviating in this way � because the union

receives a high wage wc1 > 1, but they avoid the punishment phase. Using the expression

V� = (1� �)vc� + �(1� �
T )bv + �T+1V , it is easy to check that IC2 is equivalent to

vc
�
� evc

�
� �(1� �T )

�
(vc � bv): (IC2)

To simplify notation, de�ne

'(�; �; T ) =
�(1� �T )

1� �� � (1� �)�T+1
: (22)

The incentive constraints IC1 and IC2, for "honesty" and "guts" respectively, can be rewrit-

ten as

vc
�
� evc

�
� '(�; �; T )(vc � bv) � evc1 � vc1: (IC12)

Using the expressions for bv, vc, evc1, vc1, vc� and evc�, and the de�nition of the bonus paid in the
good state, b = wc1 � 1, we easily get that IC12 is equivalent to b � '(�; �; T )[ bA� �b] � �b,
where by de�nition, bA = bsv0+� bw(1�bs)��. The constraints IC12 can �nally be rearranged
as in the following statement22.

Result 5.

IC12 is equivalent to the following string of inequalities,

' bA
� + �'

� b � ' bA
1 + �'

; (IC12)

22Since vc � bv = bA � �b, we can also rewrite constraint IC12 in compact form as b � '(vc � bv) � �b. In
addition, since bA = bs(v0�� bw)+�( bw� 1), and given that bw > 1, and bv = v0�� bw > 0, it is easy to see thatbA > 0.
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where bA = bsv0 + � bw(1� bs)� � > 0.
It remains to show that the set of parameter values for which "honesty" and "guts" hold is

non-empty (and non-negligible).

4.3 Main results

Individual rationality constraints must also hold: we must have uc > bu and vc > bv. Given
the expressions of these terms, this is equivalent to �b > ( bw� 1) and �( bw� 1) > �b. Hence,
we have the additional constraints,

( bw � 1)
�

< b <
�( bw � 1)

�
: (IR12)

In the Appendix, we prove that the intersection of IC12 and IR12 is nonempty if � is large

enough. More precisely, there exists a nonempty open interval (bmin; bmax) of values of the

bonus b, such that IC12 and IR12 hold simultaneoulsy. This interval can be de�ned as follows:

bmin = max

(
' bA

� + �'
;
( bw � 1)
�

)
< b < min

(
' bA

1 + �'
;
�( bw � 1)

�

)
= bmax: (23)

We can therefore state,

Result 6.

Under Assumptions 1-4, for all � in (0; 1) and T � 1, there exists a threshold �0, de�ned as

�0 = 1 +
1

�(1� �)'; (24)

and an upper bound s0 > 0, such that, for all � > �0 and bs < s0, the values of wc1 picked

in the interval [1 + bmin; 1 + bmax] simultaneously satisfy the constraints IC 12 and IR12 and

bmin < bmax: the interval is nonempty. In particular, on-schedule deviations are not pro�table

on this interval.

The proof of Result 6 is completed in Appendix B.

Note that when � ! 0, then ' ! 0 and bmax ! 0: the interval shrinks and vanishes. We

therefore need patient players, but we also need �, the "cost of funds" in the bad state, to
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be high enough. It is easy to check that,

lim
�!1

lim
T!1

(1� �)' = 1:

It follows that when T is large and players are very patient, we require no more than � >

1 + 1=�, and if � is itself close to 1, this means approximately � > 2. With a su¢ ciently

large �, the ine¢ ciencies induced by the rigid wage bw are nonnegligible, and this enlarges
the set of feasible solutions.

Taken together, Results 1-6 show that our equilibrium candidate (de�ned above), is

a PPE of G(�) for su¢ ciently patient players. The following proposition summarizes our

result.

Proposition 1. Under Assumptions 1-4, let bw belong to the nonempty interval u� + 1 <bw < (v0�v�)=�. Then, for all T � 1, there exist real numbers �0 < 1, �0 > 0, s0 > 0, �0 > 1,
an integer T0 > 0 and a nonempty interval of wages [1 + bmin; 1+ bmax] (de�ned above) such

that, for all 1 > � > �0, � > �0, bs < s0, T � > T0, � > �0, 1 + bmin < wc1 < 1 + bmax, the

equilibrium candidate (de�ned above) is a Perfect Public Equilibrium of G(�).

The result describes conditions under which there exists an equilibrium characterized by an

"ordinary course of business" in which the union and the employer cooperate, but such that

�nite-length, ine¢ cient-con�ict spells are triggered by the random occurrence of a high-cost

state. During these con�ict spells, the employees�wage is kept above its minimum, the

employees�e¤ort is still high and there is no outsourcing, but the probability of strikes is

positive, i.e., a nonzero fraction of output will be lost, due to work stoppages, during each

of these periods. The cooperative phases are characterized by high wages, high e¤ort on the

part of employees, zero outsourcing and no strikes23.

Slowdown and strikes are in a certain sense substitutes as a way of "burning money".

An equilibrium of the same type, in which strikes disappear but slowdown, outsourcing

and low wages characterize punishment phases also exists. It is easy to construct a PPE

23The occurrence of strikes � as well as the low-e¤ort spells � is entirely due to the presence of informa-
tional asymmetries. The threat of a return to non-cooperative equilibrium in which strike activity is zero,
but outsourcing is positive, while e¤ort and wages are low plays a crucial role, but lies o¤ the equilibrium
path.
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of this sort in our model, using reversion to ��, instead of b�, when a bad state of nature
is drawn. In the de�nition of the equilibrium candidate, we replace b� = (be; bs; bw; bx) with
�� = (e�; s�; w�; x�) everywhere and obtain a valid statement as follows.

Proposition 2. In the de�nition of the equilibrium candidate, replace everywhere b� =
(be; bs; bw; bx) with �� = (e�; s�; w�; x�). Then, under Assumptions 1-4, for all T � 1, there

exist real numbers �0 < 1, �0 > 0, e0 < 1, an integer T0 > 0 and a nonempty interval of

wages [1 + bmin; 1 + bmax] such that, for all 1 > � > �0, � > �0, e0 < e < 1, T � > T0,

1 + bmin < wc1 < 1 + b
max, the equilibrium candidate in which b� is everywhere replaced with

�� is a Perfect Public Equilibrium of G(�).

Proposition 2 is proved in Appendix B.

4.4 Ine¢ ciency of Equilibria

Finally, can we �nd a fully e¢ cient equilibrium? In other words, does there exist equilibria

such that the expected total average utility of the players is equal to the highest possible

value of surplus, namely, such that U + V = uc + vc? For any given value of � < 1, the

answer to this question is no. To prove this assertion, remark �rst that in our model, utility

can be freely transfered only in the good state of nature � = 1. In this state, the slope of

the utility possibility frontier is �1: any unit of value taken from the employer�s pocket is

worth exactly one unit for the union. The e¢ cient frontier is de�ned by x� = 0, s = 0,

e = 1, and w� = 1. A fully e¢ cient equilibrium cannot possess a path which drops below the

e¢ cient frontier with a positive probability. An e¢ cient equilibrium path should therefore

remain on the e¢ cient frontier in all periods and w1 is the only variable that can vary during

fully e¢ cient equilibrium play. This means that increases in the bonus b = w1 � 1 are the

only way of punishing the �rm. The �rm can be punished for on-schedule deviations only if

the state is good, but the state is not observed by the union. Hence, whichever the union�s

decision rule to trigger punishments, the �rm can always claim that the state is bad, i.e.,

propose the minimum wage, and avoid any punishment24. It follows that the only possible

24For instance, the union could behave as a statistician, and compute the frequency of periods during which
the wage is not equal to its minimum. When this frequency is below � with a su¢ cient degree of signi�cance,
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fully-e¢ cient equilibria must be such that the wage is constantly equal to its minimum, or

the bonus b = 0. The union�s payo¤ in a fully e¢ cient equilibrium candidate is therefore

(1 � e) = 0, but this is the union�s minmax25 in G. Hence, if the candidate-equilibrium�s

union payo¤ is strictly above 0 there must exist one state at least in which w� > 1 = w. We

can state the following result.

Proposition 3. If � < 1, all PPE such that the union�s payo¤ is strictly positive are

ine¢ cient. In other words, if in a given PPE, the employer pays a wage higher than the

minimum, i.e., w� > w, with a positive probability, then, its equilibrium payo¤s (U; V ) are

below the e¢ cient frontier: U + V < uc + vc.

4.5 Constrained E¢ ciency

We would like to know if our family of equilibria is in a sense second-best e¢ cient. To this

end, we �rst de�ne a notion of second-best, or constrained, incentive-e¢ cient payo¤ in the

static game G. We then show that the candidate equilibria studied above can do better than

the static second-best e¢ cient level of surplus.

Consider now the one-shot game G as a static mechanism design problem. We will

search for the best direct, incentive-compatible revelation mechanism � ! (e�; s�; w�; x�). In

this mechanism, the informed agent is the employer, the principal is the union and we apply

the Revelation Principle (on these notions, see La¤ont and Martimort (2001)). De�ne h� = 1

if e� = 1 and h� = h if e� = e. The employer reports a state � and the �planner" imposes

(e�; s�; w�; x�). Second-best optima are solutions of the following optimization problem:

maximize Efh�(1� s�)(1� x�)(w� � e�)g; (25)

the union can try to punish the �rm by increasing w1, and revert to the Nash equilibrium of G if the �rm
doesn�t comply. But then, the �rm can continue to cheat forever if no other change is made. At some point,
if the observed frequency of high-pay periods is signi�cantly below �, the union has no other choice but to
punish the employer by choosing ine¢ cient values of s and (or) e and (or) by changing the required w� in
all states �, and with a positive probability at least. Given that this strategy relies on a statistical test, the
wrong decision will be made by the union with some positive probability and the equilibrium payo¤s will
therefore lie below the e¢ cient boundary.
25Note that the union�s minmax is obtained when the employer plays x = 1.
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subject to the constraints,

Efv0(1� s�(1� x�))� �A�g � v; (IR)

and

v0(1� s�(1� x�))� �A� � v0(1� s1(1� x1))� �A1; (ICa)

v0(1� s1(1� x1))� A1 � v0(1� s�(1� x�))� A�; (ICb)

where by de�nition,

A� = h�(1� s�)(1� x�)w� + C(x�); (26)

and v is a parameter.

Note that ICa and ICb together can be rewritten as follows,

A1 � A� � v0(s�(1� x�)� s1(1� x1)) � �(A1 � A�): (ICab)

This string of inequalities implies A1 � A� � 0, thus s�(1 � x�) � s1(1 � x1). First-best

e¢ ciency implies s� = x� = 0 and e� = 1, and in the bad state, w� = 1. From this we �nd

that ICab implies 0 � w1 � 1 � 0 � �(w1 � 1). Thus, the only fully e¢ cient and incentive

compatible solution entails w1 = w� = 1 and E(u�) = 0. If we look for a second-best

allocation such that w1w� > 1, we must solve the above optimization problem. Standard

methods can be applied. It can be shown that ICb and IR are binding at the optimum if v0

is large enough. Let (ee�; es�; ew�; ex�) denote the second-best solution. Let eu and ev denote the
second-best optimal expected payo¤s and eR = eu+ ev denote the second-best surplus. Then,
we have the following result.

Result 7. Under Assumptions 1-4, if v0 is su¢ ciently high, in a second-best optimal,

incentive-compatible revelation mechanism, the employer pays a wage higher than the min-

imum in some state, i.e., ew1 ew� > 1, IR and ICb are binding and we have, ee1 = e = 1;es1 = ex1 = 0.
There are three cases, with di¤erent solutions in the bad state, and two di¤erent

expressions of payo¤s:
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(i), if v0(1 � �(� � 1)) < �, work stops completely in the bad state, namely, es� = 1; and

outsourcing takes place, more precisely, ex� > 0 is a feasible solution of the equation v =

(v0 � �)ex� + ��ex2�; the wage paid in the good state is given by the expression
ew1 = (1=�)[v0(1� (1� �)(1� ex�))� v � (1� �)�C(ex�)]; (27)

the second-best optimal expected payo¤s are

eu = �(v0 � 1)� (1� �)[v0ex� + �C(ex�)]� v and ev = v: (28)

(ii), if v0(1� �(� � 1)) � �eh, then, there are no strikes and no outsourcing, es� = ex� = 0;ee�eh� = 1; the wage is constant, above the minimum, ew� = ew1 = (v0 � v)=� > 1; the second-
best optimal expected payo¤s are

eu = �1 + (v0 � v)=� and ev = v: (29)

(iii), if �eh > v0(1 � �(� � 1)) � �, the solution is either the same as in case (ii) above,

with ee� = 1, and es� = 0 = ex�, or the same as in case (i) above, with ee� = e, and es� = 1.
The proof of Result 7 is in Appendix B.

Intuitively, there are several ways of burning money. Result 7 shows that money can

be burnt by means of strikes and outsourcing if the probability of bad states is small, since

in this case, strikes are relatively cheaper. In contrast, if the probability of bad states is

relatively high, it is more e¢ cient to use a rigid wage system, since a high wage in the bad

state is then a less destructive way of wasting resources. We conclude the formal analysis

of our model by showing that in the repeated game, expected surplus can be greater than

in the static second-best optimal mechanism, using the strategies described above as our

equilibrium candidate.

Result 8. Under Assumptions 1-4, if v0 is large enough, then, there exists feasible pairs

(bs; bw) such that R > eR. In other words, the equilibrium strategies de�ned above as our

equilibrium candidate support payo¤s such that their sum is greater than the second-best

surplus eR, for appropriately chosen values of (bs; bw).
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The proof of Result 8 is given in Appendix B.

To sum up, we have been able to show that our candidate equilibrium is indeed and equi-

librium (Proposition 1), that slowdown can replace strikes as a means of burning resources

(Proposition 2) and �nally, that if our candidate equilibrium can do at least as well as the

second-best, incentive e¢ cient level of surplus in the one-shot game G (Result 8), for � < 1,

all equilibria must be �rst-best ine¢ cient.

5 Interpretations

We now study some properties of the model and discuss their ability to shed light on rela-

tionships between facts.

5.1 Minimal length of the punishment phase

Our equilibrium candidate supports an expected discounted value of the surplus denoted

R = U + V . Given the expressions of U and V , we have,

R = bu+ bv + (1� �)
�

(uc + vc � bu� bv): (30)

Remark that uc, vc, bu and bv do not depend on T . If we now treat T as a real number, we
�nd that (1� �)=� is a decreasing function of T . It follows from this that @R=@T < 0 and

the optimal value of T is therefore the smallest value compatible with IC12 and IR12. Now,

going back to IC12, we �nd that ' is a strictly increasing function of T . As a consequence,

for given values of b and (bs; bw), IC1 will be binding at the smallest real admissible value of
T , denoted eT ; that is, we will have '(�; �; T )(vc � bv) = b or equivalently, b = bmax. We

summarize a number of �ndings in the following statement.

Result 9. The real solution of the equation '(�; �; T )(vc�bv) = b with respect to T , denotedeT , is a well-de�ned and di¤erentiable function of (�; �; v0; b; bw; bs). The minimal value of T ,
an integer, is Tmin = int(eT )+ 1, where int(T ) is the largest integer smaller than or equal toeT . The following properties hold:

@

@T

�
1� �
�

�
< 0;

@'

@T
> 0;

@ eT
@v0

< 0;
@ eT
@b

> 0;
@ eT
@bs < 0; @ eT

@ bw < 0 (31)
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The minimal admissible value of (vc � bv) is b(1 � ��)=�. When (vc � bv) approaches this
minimal value, then eT ! +1. Hence, when bs become so small that (vc � bv) approaches its
minimal value, then eT tends toward in�nity.
For proof, see Appendix B.

The minimal value Tmin is a function of b, bw and bs. We now discuss some comparative
statics properties of eT . Given that '� = b, with � = vc � bv and ' is increasing in T , we see
that eT must be decreasing in �, and calculus con�rms that @ eT=@� < 0. An increase in the
"instantaneous surplus of cooperation" � decreases the minimal length of the punishment

phase � an easily understandable property. From this we derive,

@ eT
@v0

= bs@ eT
@�

< 0:

An increase in the value of production reduces the length of punishment phases all the more

since strikes are long.

After some computations, we obtain, @ eT=@b > 0. There is a tradeo¤ between the

prevalence of con�ict and the wage rate obtained by workers in the cooperation phases. It

must be that the fraction of time spent in a situation of con�ict increases when the bonus

is more generous. Increases in the bonus can only be sustained if the length of the minimal

punishment phase is increased, because the employer�s rewards from cooperation are reduced.

Another important tradeo¤ is between bs and eT . Easy calculus yields,
@ eT
@bs = (v0 � � bw)@ eT@� < 0:

More strikes during punishment spells should therefore be associated with shorter such spells.

This will generate a tradeo¤ between the duration and the incidence of strikes (we de�ne

incidence precisely below). In a cross-section of �rms, we would observe that �rms with

longer strikes are also such that strikes are less prevalent. Finally, we obtain,

@ eT
@ bw = �(1� bs)@ eT@� < 0:

When the rigid wage rate paid to workers during punishment phases is higher, the length of

these phases should be lower. In Appendix B, we also ask the following question: given bw,
b and �, can we �nd an optimal combination (T; bs)?
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5.2 Incidence of strikes

We now turn to the comparative statics of strike incidence, and study the ability of our model

to reproduce a number of empirical observations. The empirical literature has discussed the

behavior of strikes during the business cycle26. One of the main �ndings of this literature is,

with quali�cations, that strikes have a procyclical incidence. For instance, Vroman (1989)

�nds the latter property with US data between 1957 and 198427. McConnell (1990) �nds

that strike incidence is highest in industries that are depressed relative to the rest of the

economy but in regions with low unemployment. In France, the �rst di¤erence in the log-

aggregate number of days lost to strikes is positively correlated with the �rst di¤erence in

growth rates: the coe¢ cient of correlation is 0.4 during the period 1977-2004. So, it seems

that we have a pro-cyclical incidence of strikes at the aggregate level.

In our context, incidence is the unconditional probability of observing a strike, or the

average fraction of time spent on strike in equilibrium. It can be de�ned in a simple way as

the probability, denoted q, that a period chosen at random belongs to a punishment phase,

assuming that the length of punishment phases is minimal, set equal to Tmin. We thus de�ne

a lower bound, a notion of "minimal incidence". The duration of strikes is simply bs. Given
the length of punishment phases, and the probability of bad states (1 � �), we can express

the probability of non-cooperation in period t as follows:

1� Pr(cooperation at t) =
TX
�=1

(1� �) Pr(cooperation at t� �);

because the agents do not cooperate in period t if a punishment phase has started � periods

before, with � � T . In equilibrium, a punishment phase starts if the players were cooperating

in t � � and if a bad state has been drawn (with probability 1 � �). Given the stationary

nature of the model, Pr(cooperation at t) = Pr(cooperation at t� �) = 1� q. From this, we

immediately derive, q = (1� �)(1� q)T , that is,

q =
(1� �)T

1 + (1� �)T : (32)

26Research on this topic has started a long time ago. See, for instance, on the US case, Hansen (1921),
Rees (1952), Ashenfelter and Johnson (1969), Kennan (1986), Kennan and Wilson (1989), Card (1990).
27On the Canadian case, see Harrison and Stewart (1994). For a study of strikes in the UK (and further

references), see e.g., Devereux and Hart (2008).
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Suppose now that we have a sample of identical �rms playing the same Perfect Public

Equilibrium and with states drawn independently: q is then the probability of drawing a

�rm experiencing an ine¢ cient con�ict spell. But if random states are uncorrelated across

�rms, it is impossible to interpret the state of nature as a business-cycle �uctuation. At

the macroeconomic level, we observe more strikes in the country during booms, whereas our

model seems to predict that strikes are triggered by the occurrence of slumps. So, it seems

that our model predicts a counter-cyclical incidence of strikes, but this would be a naive

interpretation. Recall that, in our model, the state is by de�nition private information of

the employers. It is reasonable to assume that a general state of boom or bust would on

the contrary be common knowledge. To derive a microeconomic foundation for the strike

aggregates, we need strategies that are contingent on the publicly observed macroeconomic

state, while the �rm�s state � remains a privately observed, idiosyncratic shock. Suppose

that unions are more demanding during booms: this means that they expect higher bonuses

during booms. As a consequence, a given bonus can trigger a strike during a boom, while it

would be accepted without a murmur in a state of bust. Another possibility is that, when

faced with a given wage or bonus, unions will go on strike with a smaller probability in a

state of bust. If this is the case, more strikes will be triggered in �rms that are relatively dis-

advantaged during booms, that is, in �rms with a bad drawing of their private state �, while

the economy is booming. Now, if the length T of reversions to ine¢ cient play is not too long,

and if the publicly observed state of the macroeconomy is su¢ ciently persistent, a positive

correlation of booms with the incidence of strikes will be generated. The same mechanism

will also generate a lag of the aggregate strikes cycle. This is a relatively straightforward

extension of our model, since strategies can be made dependent on the outcome of a public

lottery in a simple way, but requires lengthy computations to be worked out in details. With

this type of extension, it seems clear that strikes can be pro-cyclical in the aggregate, even

if, in fact, they are always triggered by some disappointing event at the microeconomic level.

Finally, does the model provide us with an interpretation of the facts related to the

Paris dustmen? In particular, can we explain the drop in strike activity that we observe on

Fig. 1, from the mid-eighties until the early 2000s? We think that this sharp drop can be

explained as a change of regime. An equilibrium in which strikes are used as a punishment
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device has disappeared and has been replaced by an equilibrium in which slowdown is used

as a punishment. The number of observed days of strike has fallen to zero, while outsourcing

appeared. This can be checked on Fig. 2, showing that the number of civil-service dustmen

has also been decreasing from 1984 to 2000. This new equilibrium looks like a PPE in which

the one-shot Nash equilibrium is used during ine¢ cient punishment phases: unrecorded

slowdown replaces observed work stoppages. This regime switching is the likely result of a

sharp reduction in the value of �, the speci�c cost of outsourcing. A drop in � captures

the change of attitude of the town hall with respect to privatization of garbage-collection

services. Indeed, we know that a change of policy regarding outsourcing took place in the

late seventies, early eighties. In our model of strikes, a drop of � is likely to destroy the

established equilibrium regime described above in Proposition 1. This is because we have

@U�

@�
> 0; and

@V �

@�
< 0:

If V � increases enough, then it hits bV from below and the prevailing equilibrium is no longer
feasible. Since bV = (1 � bs)(v0 � � bw), maintaining the old equilibrium requires bs ! 0 or a

drop in bw that may be infeasible. An equilibrium in which strikes disappear but slowdown,

outsourcing and low wages characterize punishment phases is likely to replace the former

arrangement. We have shown that it is easy to construct a PPE of this sort in our model,

using reversion to �� instead of b� when a bad state of nature is drawn (see Proposition
2 above). In the latter equilibria, punishment phases are not easily observable, because

slowdown phases are not recorded as strike days. We know from our case study of the

Paris dustmen, and there is a lot of anecdotal evidence con�rming these trends, that the

recent period is one in which e¤ort has been low (with for instance higher absenteeism)

and worker resistance has been high (with many more work-to-rule or slowdown spells than

before). Recent statistics of the French Ministry of Labour show that if the number of

outright strikes has been decreasing in the past thirty years, in contrast, nonstandard forms of

con�ict, slowdown and work-to-rule have been everywhere on the rise (e.g., DARES (2009)).

A consequence of the inessential nature of strikes is that their causal e¤ect on wages, as well

as the causal impact of business-cycle indicators on strike incidence will be hard to identify,

since other unobservable forms of labor strife can also have an impact on wages.
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6 Conclusion

We have modeled the long-run relationship between an employer and his workers� union

as a repeated mechanism design problem, in a repeated game with imperfect monitoring.

The union does not observe �rm pro�tability, drawn at random in every period. In this

context, we have shown that cooperation can be sustained if players are su¢ ciently patient,

in spite of informational asymmetries, at the cost of random reversions to ine¢ cient ways

of playing, during �nite-duration spells, in which strikes, slowdown and worker replacement

may appear. We focus on a class of Perfect Public Equilibria in which strikes are used to

support equilibrium. Under cooperation, workers enjoy high wages (i.e., positive bonuses),

no outsourcing (and therefore more employment); the �rm avoids strikes completely and

productivity is higher, due to high worker e¤ort. The equilibrium path is characterized

by alternating phases of cooperative and ine¢ cient play involving strikes. Transitions are

caused by random external pro�tability shocks, which themselves cause low pay or a zero

bonus event. We showed that all the equilibria of our game are ine¢ cient. Given incen-

tive constraints, �rst-best e¢ ciency can be reached only if wages are constantly equal to

their minimum, implying a zero bonus, but the union�s payo¤ is then equal to its minmax.

However, Perfect Public Equilibria may support an expected surplus that is higher than the

second-best incentive-e¢ cient level, obtained by means of a direct revealing mechanism in

the static constituent game. In the class of equilibria that we studied, we have derived the

minimal length of punishment spells. Incentive constraints have been shown to imply that

higher wages or larger bonuses should be positively correlated with longer strike durations

� but longer strikes do not cause higher wages. Some empirical facts from the municipal

garbage-collection industry have been used to illustrate the theory and show the interaction

of outsourcing (or worker replacement), wages and strikes in the long run. In particular, our

model can explain why strikes may disappear in response to changes in the environment and

be replaced by other, less easily observable forms of con�ict. The proposed theory can be

viewed as a synthesis of the theory of strikes with that of relational contracts.
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7 Appendix A: Further Study of Paris Dustmen

A municipal dustman�s lifetime career is somewhat rigidly organized. There is a rigid wage-

scale divided in 10 grades. Seniority plays a major role in promotions: a dustman stays on

each grade (or step) for two or three years (depending on the grade). Those who become

foremen (i.e., �head of sanitation team") start to climb up a di¤erent ladder. But the future

of those who belong to the rank-and-�le until the end of their careers is entirely described

by the 10 grades, on the same scale. The pay corresponding to each grade varies over time,

because each negotiation with the union can lead to alterations of the ladder�s overall height,

and to a lesser extent, of the di¤erence between steps. The real value of each grade can also

vary over time, because of pay raises decided by the country�s central government and applied

to all members of the civil service, including municipal workers, and because of in�ation.

Figure 3 shows the real value of the 10 grades of a dustman�s career over time, with the

real value of the minimum wage as a point of comparison (at the bottom). An additional,

eleventh grade has been created in the nineties. Each wage-scale curve is roughly parallel to

others.

The e¤ects of Mayor Chirac�s tough outsourcing policy can easily be measured. In

1977, the dustmen of Paris seemed enjoyed a comfortable rent; they earned substantially

more than the national minimum wage: a �rst-grade beginner, which is typically an unskilled

worker, would earn 25%more than an equivalent private-sector, minimum-wage worker. This

rent is the likely result of the numerous strikes of the late sixties and early seventies (in

particular of the well-known 1968 events). Another striking feature is that in the long run,

the real values of the �rst grade and minimum wages converged. Public sector dustmen have

lost the wage-premium they enjoyed 30 years ago. This seems to be the combined result

of in�ation, which eroded the real values, and of town hall resistance to the union�s claims.

The process of return to long-run �equilibrium" wages has been gradual. During some years,

particularly the years 1984 to 1990, the real value of the lowest grades has decreased, and

the real value of the highest grades has decreased from 1986 to 1989. But none of these

curves does in fact describe the evolution of an individual worker�s wage, because seniority

triggers automatic grade promotions. Figure 4 plots a simulation of a typical career, showing
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the real wage of a dustman, hired in 1978, starting in the �rst grade, and promoted using

the seniority rules that used to be in force. This dustman�s wage has an increasing trend,

with some �uctuations (such as the visible dip between 1987 and 1989); short periods of

stagnation are followed by upward jumps, due to automatic grade promotions. Figure 4

also shows the real minimum wage as a point of comparison. It is likely that individual,

seniority-induced raises have eased the town hall�s austerity policy, by making the real-value

erosion of wages less painful for workers.

Given the pay scale and promotion rules, it is possible to compute the real value of

a dustman�s career at each point in time: it is the present discounted value of a dustman�s

real wages over an entire career cycle, evaluated at a given moment using the promotion

and pay rules in force. In other words, these discounted wage sums are computed each year

for a �rst-grade new recruit, under the myopic assumption that current seniority rules will

not change and that the real value of each grade will remain constant over the entire career.

Figure 5 plots the series of real career values, based on the dustman�s real take-home pay (in

2004 euros) and a discount rate of 3%. Figure 5 simultaneously shows a decreasing linear

trend and the swings of the best-�t curve, using a �fth-degree polynomial.

Finally, we have tried some regressions involving the real value of a career and the

number of strike days lost. The results obtained should of course be interpreted with caution,

due to the small number of observations, and to possible endogeneity problems, but still,

they are su¢ ciently suggestive to be presented here. Let Vt be the value of a career in

year t. Let �Vt = Vt � Vt�1 be the �rst di¤erence. Let �Nt be the yearly variation in

the total workforce, and let St be the number of days lost due to strikes in year t. Are

variations in Vt in a certain way correlated with strikes St? The �rst column in Table 1

shows a linear regression of V on S which is not yielding a signi�cant coe¢ cient. But in the

second column, a regression of �Vt on St and �Nt yields a signi�cant positive coe¢ cient on

strikes. Yet these results are somewhat disappointing. De�ne next the career-value increase

�V +t = maxf0;�Vtg. With this latter variable, we �nd an interesting regression. Column 4

in Table 1 reports the results of �V +t = a + bSt + c�Nt + ", which yields a signi�cant and

positive b and a negative c. Second, de�ne value drops as �V �t = minf0;�Vtg. We then run

the regression St = � + ��V �t�1 + 
�Nt�1 + " and �nd that � is signi�cant and negative,
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while 
 is signi�cant and positive. The results of the latter regression are reported in column

5 of Table 1. Lagged value drops seem to �cause" strikes, while workforce reductions seem

to harness strikes.

8 Appendix B: Proofs

Proof of Result 2.

We substitute the value of sc = 0 in the expression for xc� and we obtain,

xc1(e; 0) = (1=�) [eh� 1]
+ ; xc

�
(e; 0) = (1=��)

�
eh+ (� � 1)h� �

�+
:

We must now determine the cooperative e¤ort level ec. High e¤ort yields h = h = 1, and we

obtain, xc
�
(e; 0) = (1=��) [e� 1]+ = 0, since e � 1, and xc1(e; 0) = (1=�) [e� 1]

+ = 0. From

these results, we derive,

E(B� j e = e; s = 0) = v0 � E[(� � 1)wc� + e]:

If e¤ort is low, we have h = h > 1, and xc�(e; 0) can now be positive. Hence, we obtain,

E(B� j e = e; s = 0) = v0 � Ef[1� xc�(e; 0)][(� � 1)hwc� + eh]g � E[�C(xc�(e; 0))]:

Now, since �C(xc�(:)) is nonnegative, a su¢ cient condition for high e¤ort e to be optimal is

therefore,

E[(� � 1)wc� + e] < Ef[1� xc�(e; 0)][(� � 1)hwc� + he]g:

The left-hand side of this inequality doesn�t depend on �. If � is su¢ ciently high, xc� is as

small as desired and the inequality then holds, because, under Assumptions 1 and 2, eh > e

and h > 1. This proves the result.

Q.E.D.

Proof of Result 4.

Given the above analysis of IC0�, we must now consider o¤-schedule deviations of both

players to end the proof. The union�s deviation can only be o¤-schedule. Suppose that the
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state is � = 1, then, the union would not deviate from (ec; sc) in the next period if and only

if,

U1 � (1� �)uc1 + �(1� �)u0 + �2(1� �T
�
)u� + �T

�+2U; (IC4)

where u0 = max(e;s)Eu(e; s; w
c
�; x

c
�). Substituting the expressions for U and U1 in IC4, we

obtain the equivalent form:

0 � (1� �)(u0 � bu) + �T �+1(bu� u�)� �(bu� u�)� (1� �)
�

(1� �T �+1)(uc � bu);
and it is easy to see that this inequality holds for T � large enough and � su¢ ciently close to

1. For instance, take T � = +1, then, the inequality is true for all � greater than some �0 <

1, because u� < bu < uc = Euc�, and lim�!1(1� �)=� <1.

If the state is � = �, then the union doesn�t deviate from (be; bs) in the next period if
and only if,

U� � (1� �)uc� + �(1� �)bu0 + �2(1� �T �)u� + �T �+2U; (IC5)

where bu0 = max(e;s)Eu(e; s; bw; bx). Substituting again the expressions for U and U1 in IC5,

we obtain a similar result.

Finally, we must check that the union (resp. the employer) prefers to punish the

employer (resp. the union) in the case of an o¤-schedule deviation of the latter, knowing

that the employer (resp. the union) punishes the union (resp. the employer) for not punishing

by reverting to (w�; x�) for T � periods. This is true i¤

(1� �T �)u� + �T �U � (1� �)max
(e;s)

u(e; s; w�; x�) + �(1� �T �)u� + �T �+1U:

Given that, by de�nition of the one-shot Nash equilibrium, u� = max(e;s) u(e; s; w
�; x�), if

T � < 1, the above inequality boils down to u� � U , which is true because uc > bu and
therefore, U = bu+ ((1� �)=�)(uc � bu) > bu > u�.

We conclude that o¤-schedule deviations can all be deterred by reversions to the Nash

equilibrium of G during T � periods, if players are su¢ ciently patient and T � is su¢ ciently

large.

Q.E.D.
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Proof of Result 6.

To complete the proof of Result 6, set bs = 0. This implies bA = �bb;and it is easy to check that
the interior of the intersection of the IR12 and IC12 intervals, if nonempty, is the interval,

bmin = ( bw � 1)max� '�

� + �'
;
1

�

�
< b < �( bw � 1)min� '

1 + �'
;
1

�

�
= bmax:

We trivially have,

bmax =
'

1 + �'
( bw � 1)�: (33)

To prove the latter assertion, Compute �rst the derivative,

@'

@T
= �(1� �)

�2
�T+1 ln(�) > 0; (34)

as if T was a real number. This shows that ' is an increasing function of T . In addition, it

is easy to check that,

lim
T!1

(1� �)' = (1� �)�
1� � + (1� �)� < 1: (35)

This shows that '(1��) < 1. We can now check that bmin = ( bw�1)=� because �+�' > '��,
or equivalently, � > '�(1� �)(� � 1), and the latter inequality is true since '�(1� �) < 1.

Thus, if bs = 0, we have
bmin =

( bw � 1)
�

; and bmax =
'�( bw � 1)
1 + �'

: (36)

The interval is then nonempty if and only if bmin < bmax, that is, i¤, 1 < �'(� � 1), or

equivalently,

1 < �(1� �)'(� � 1): (37)

This is obviously true if � > �0. Remark that, using l�Hôpital�s rule, we obtain

lim
�!1

' =
T

1 + T (1� �) ; lim
�!1

�
'

1 + �'

�
=

T

1 + T
;

and

lim
T!+1

' =
�

1� �� ; lim
T!+1

�
'

1 + �'

�
= �:

The ratios '=(1 + �') and '=(� + �') remain bounded when T grows arbitrarily large and

when � ! 1. Now, if b is chosen in the open interval (bmin; bmax), by continuity, we can

choose a su¢ ciently small bs > 0 and still satisfy IC12 and IR12. This shows that if � > �0,
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there exists a pair (bs; bw), with bs > 0 and bw > 1, such that IC12 and IR12 simultaneously

hold.

Q.E.D.

Proof of Proposition 2.

The proof of Proposition 2 is easy if we use u� and v� instead of bu and bv in the de�nition
of the value functions U and V . We can write all incentive constraints in a parallel way,

as in the derivation of Results 4-6. It is then easy to check that the honesty-and-courage

constraints IC12 can be written,

'A�

� + �'
� b � 'A�

1 + �'
; (IC12)

where, A� = �[h(1 � x�1) + C(x�1) � 1]. It is easy to check that A� > 0 since h > 1. In

addition, we must have uc > u� and vc > v�, that is, after some rearrangement of terms,

u� = (1� e)h(1� x�1) < �b < A�: (IR12)

We then �nd that the bonus b should be chosen in the open interval (bmin; bmax), with,

bmin = max

�
u�

�
;
'A�

� + �'

�
; and bmax = min

�
A�

�
;
'A�

1 + �'

�
: (38)

If e is su¢ ciently close to 1, then bmin = 'A�=(� + �'). It is easy to see that bmax =

'A�=(1 + �') since � > 1. Thus, bmin < bmax : the interval is nonempty.

Q.E.D.

Proof of Result 7.

We �rst prove that IR is binding at the optimum. Suppose that this is false. Then choose

small variations dw1 > 0, dw� > 0, such that dA1 � dA� = 0: these small variations do

not change ICab. The left-hand side of IR decreases by a small amount and the objective

increases, a contradiction.

We express w1 using IR. After some rearrangement of terms, we �nd,

�w1h1(1�x1)(1� s1) = v0� v� (1��)[v0s�(1�x�)+ �A�]��[C(x1)+ v0s1(1�x1)]; (IR)
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We then substitute the expression for w1 in the objective function. This yields the objective

function,

E(u�) = v0 � v � (1� �)[v0s�(1� x�) + �A�]� �[C(x1) + v0s1(1� x1)]

+(1� �)(w� � e�)h�(1� x�)(1� s�)� �e1h1(1� x1)(1� s1);

We also substitute the expression for w1 in ICb. This yields,

v0 � v � v0s�(1� x�) + �A�: (ICbb)

Since (ICbb) doesn�t depend on (e1; s1; x1), it is optimal to choose e1h1 = eh = 1. In

addition, under Assumption 4, we have,

@E(u�)

@s1
= �(1� x1)(1� v0) � 0;

and it is now apparent that s1 = 0 is an optimal choice. Given these results, we �nd,

@E(u�)

@x1
= ���x1 � 0;

and therefore, x1 = 0 is optimal. It is then easy to check that the maximization of E(u�) is

equivalent to minimization of the following cost function, denoted L.

L = v0s�(1� x�) + (� � 1)w�h�(1� x�)(1� s�) + e�h�(1� x�)(1� s�) + �C(x�); (39)

subject to (ICbb).

Next, we show that ICb must bind at any optimum if v0 is large enough. Suppose

that this is false. Then, we have v0 � v < v0s�(1 � x�) + �A�. Suppose now that s� = 0.

Then, the constraints ICab imply s1(1 � x1) = 0 and A1� A� = 0, but this means that

ICb is binding, a contradiction. Hence, we must have s� > 0. Consider now a feasible small

variation ds� < 0. By continuity, the right-hand side of (ICbb) varies by a small amount, so

that (ICbb) continues to hold if �ds� is small enough and at the same time, the expected

cost varies by the amount

dL = (1� x�)[v0 � (� � 1)w�h� � e�h�]ds�:

If v0 � (�� 1)w�h� � e�h� > 0, we �nd that that dL < 0 and (ICbb) must bind. We assume

that v0 is large enough so that v0 � (� � 1)w�h� � e�h� > 0 and will check that this is true
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at the end of our computation. Using (ICbb) expressed as an equality, we eliminate w� from

the objective L. Substituting �w�h�(1� x�)(1� s�) = v0 � v � v0s�(1� x�)� �C(x�) in L,

after some rearrangement of terms, we see that the objective is in fact to minimize,

bL = (1=�)[v0(1� �(� � 1))� �e�h�](1� x�)s� + e�h�(1� x�) + C(x�): (40)

Now, two cases arise. Case 1: If v0(1 � �(� � 1)) < �, minimization of bL implies s� = 1.

It follows that x� is fully determined as a solution of (ICbb), expressed as an equality.

Given the quadratic speci�cation of C, x� is a feasible solution of the quadratic equation

0 = v� (v0��)x�+��x2�. The solutions are real and the smallest solution is smaller than 1

if v0 is large enough. We choose the solution that minimizes L = v0(1�x�)+ �C(x�) subject

to x� being smaller than one and being one of the solutions of the quadratic equation. If v0

is large enough, the feasible solution is the smallest root,

ex� = v0 � ��
p
(v0 � �)2 � 4��v
2��

:

Finally, (w�; h�; e�) are irrelevant because s� = 1; we can choose w� = 1 and e� = e. From

IR, we derive, v = �(v0 � w1) + (1� �)[x�v0 � �C(x�)], that is,

w1 = (1=�)[v0(� + ex�(1� �))� (1� �)�C(ex�)]� v:
We �nd that w1 � 1 if v0 is large enough, since ex� is a decreasing function of v0. The
condition v0 � (� � 1)w�h� � e�h� > 0 holds under Assumption 4.

Case 2: If v0(1��(�� 1)) > �eh, then, given the fact that e�h� � 1, minimization ofbL implies s� = 0. This implies in turn that e�h� = 1 is optimal. We now want to minimize
(1�x�)+C(x�) = 1+�x2� with respect to x�. This implies x� = 0, and by (ICbb), we derive

w� =
v0 � v
�

:

Using IR, we �nally obtain v = v0 � �w1 � (1� �)w�. We therefore derive,

w1 =
v0 � v
�

:

These values of the wage are obviously greater than one if v0 is large enough. The condition

v0 � (� � 1)w�h� � e�h� > 0 used above is now equivalent to

v0

�
1� (� � 1)

�

�
+
(� � 1)v
�

> 1:
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The latter condition holds in Case 2 if v0 is large enough, since � > � � 1.

Case 3: If �eh � v0(1 � �(� � 1)) > �, then, if in addition e�h� = 1, we must also

choose s� = 0 = x� to minimize L as in Case 2 above, and the solution is the same as that

of Case 2. If e�h� = eh, then we must choose s� = 1 to minimize L and the solution is the

same as in Case 1 above.

Q.E.D.

Proof of Result 8.

We check the inequality R = U + V � eR = eu+ ev. Assume that bs = 0, using the expressions
of U and V given above, the inequality is equivalent to,

eR � v0 � (�� 1)bw � 1� 
(�+ 1)( bw + 1);
where


 =
1� �
�

; and R = bR + 
(Rc � bR):
Considering Case 1 in Result 7, eR = �(v0 � 1)� (1� �)[v0ex� + �C(ex�)], and we must have,

bw � (1� �)
(�� 1)(
 + 1)

�
v0 � 1 + v0ex� + �C(ex�)�� 


(
 + 1)
:

The term ex� is de�ned in the proof of Result 7. This inequality will always be satis�ed if
v0 is large enough, because in Case 1, the term (v0ex� + �C(ex�)) ! v as v0 grows without

bound (this is because ex� ! 0 as v0 ! +1). Hence, in Case 1, if v0 is large enough, there is

an open interval of values of bw for which R > eR, while R is an equilibrium value of surplus,

because bw is chosen to satisfy IR12 and IC12.
Considering now Case 2 in Result 7, we have eR = �1 + v + (v0 � v)=� and we �nd

that bw must satisfy, bw � 1


 + 1

�
v0 � v
�

� 

�
:

The upper bound is again an increasing function of v0. Reasoning as in Case 1 above, we

�nd the same conclusion.

Q.E.D.
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Proof of Result 9.

Most of the results in the statement of Result 9 are obtained by straightforward calculus. If

we now treat T as a real number, we �nd

@

@T

�
1� �
�

�
=
(1� �)
�2

(1� �)�T+1 ln(�) < 0: (41)

It follows from this that @R=@T < 0 and the optimal value of T is therefore the smallest

value compatible with IC12 and IR12. Now, going back to IC12;we �nd that,

@'

@T
= �(1� �)

�2
�T+1 ln(�) > 0: (42)

Easy algebra shows that the equation '� = b can be rewritten in the form �T = H, where

H =
�� � b(1� ��)
�(� � b(1� �)) : (43)

It follows that the real solution of '(�; �; eT )� = b, denoted eT , is well-de�ned if 0 < H < 1.

It is easy to check that H < 1 if � < 1. Given this, we get H > 0 i¤ �� � b(1� ��) > 0, or

equivalently, i¤
�

1� ��� = ( limT!1
')� > b:

But the latter strict inequality is true since � = vc � bv > 0, ' is a increasing function of T
and IC1 holds by de�nition. We therefore easily �nd the well-de�ned real solution,

eT = ln(H)

ln(�)
: (44)

Given that '� = b and ' is increasing in T , we see that eT must be decreasing in �,
and calculus con�rms that

@ eT
@�

=
(1� �)b

ln(�)�H[� � b(1� �)]2 < 0:

After some computations, we obtain the following result:

@ eT
@b

=
@ eT
@wc1

=
�(1� �)(� + b�)

ln(�)[�� � b(1� ��)][� � b(1� �)] > 0:

Easy calculus yields,
@ eT
@bs = (v0 � � bw)@ eT@� < 0:

43



The minimal admissible value of � is b(1 � ��)=�. When � approaches this minimal value,eT ! +1. Hence, when bs become so small that � approaches its minimal value, then eT tends
toward in�nity.

Finally, it can be checked that eT is a decreasing function of � and that eT approaches
a �nite limit as � ! 1, namely,

@ eT
@�

< 0; and lim
�!1

eT = b

� � b(1� �) :

Q.E.D.

8.1 Is there an optimal probability of strikes?

We now ask the following question. Given bw, b and �, can we �nd an optimal combination
(T; bs)? Note that eT is a function of bs and the equilibrium surplus R is a function of (T; bs).
De�ne eR(bs) = R(eT (bs); bs). Then, there exists an interior optimum bs only if, applying the
chain rule, we have,

d eR
dbs = @R

@T

@ eT
@bs + @R@bs = 0;

for a feasible value of bs. Some simple (but lengthy) computations yield the following result.
Result 10. Given an equilibrium of the form described in Proposition 1 above and given

admissible values of bw, wc1 and �, the duration of strikes bs satis�es the necessary condition
d eR=dbs = 0 only if the following proportionality condition holds:

vc

uc + vc
=

bvbu+ bv = v0 � � bw
v0 � (�� 1)bw � 1 : (45)

In other words, (T; bs) maximizes R only if the latter proportionality condition holds and

T = eT (bs).
Proof of Result 10.

Using the notation bR = bu+ bv, and Rc = uc + vc, we have,
@R

@T

@ eT
@bs + @R@bs = @��1

@T
(1� �)(Rc � bR)@ eT

@bs + (1� (1� �)��1)
@ bR
@bs :
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Using the facts that H = �
eT and '� = b, where H is de�ned in the proof of Result 9, we

can simplify the above expression and we obtain,

�(1� �)(1� �)(Rc � bR)
�2

b(1� �)2(v0 � � bw)
(� � b(1� �))2 =

�(1� � eT )(1� �)
�

(v0 � (�� 1)bw � 1):
Using the fact that (1�� eT )(��b(1��)) = b(1��)=�, the above expression can be simpli�ed
further and rewritten as follows:

(1� �)(Rc � bR)
�(� � b(1� �)) =

v0 � (�� 1)bw � 1
v0 � � bw :

Now, recalling that � = 1����(1��)�H, it is easy to check that (��b(1��))� = �(1��).

Thus, we obtain,
(Rc � bR)

�
=
v0 � (�� 1)bw � 1

v0 � � bw :

Using now the fact that � = vc � bv and multipliying the numerator and denominator of the
right-hand side by (1� bs), we obtain

Rc � bR
vc � bv =

bRbv :
A simple rearrangement yields the result,

RcbR =
vcbv :

Q.E.D.

It is remarkable that the ratios bv=(bu + bv) and vc=(uc + vc) do not depend on bs. Therefore,
given feasible values of bw and b, the pair (T; bs) maximizes R, provided that bw satis�es the
above proportionality condition and T = eT (bs).

The ratio bv=(bu + bv) is a function of bw. We want to choose bw so as to satisfy the

proportionality condition of Result 10 above. Let the ratio � = vc=(uc + vc) be �xed. We

easily �nd the appropriate value,

bw = (1� �)v0 + �
(1� �)�+ � : (46)

And this latter value of bw is clearly greater than 1 if v0 is large enough.
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