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1 Introduction

The identification of structural parameters of stylized models is one of the central tasks of

applied economics. Unfortunately, most models omit various frictions that make agents

deviate systematically from their theoretical predictions. For instance, canonical models of

labor supply or consumption behavior do not permit adjustment costs, inattentive agents,

or status quo biases. How can structural parameters be identified when agents face such

optimization frictions?

One natural solution is to estimate the structural parameters of a model that incorporates

the frictions. This approach has two limitations in practice. First, it is diffi cult to incorporate

all frictions in a tractable model. Second, estimating even simple dynamic models with fric-

tions, such as Ss adjustment, requires strong assumptions and is computationally challenging

(Attanasio 2000). Motivated by these limitations, I propose an alternative solution: bounding

structural preference parameters without identifying how frictions affect behavior.

I analyze a standard dynamic lifecycle model in which the effect of income-compensated

(Hicksian) price changes on demand is determined by a structural parameter of utility ε. I

introduce optimization frictions into this nominal model through an error term in the demand

function whose conditional expectation is unknown. These optimization errors generate dif-

ferences between mean observed demand and the mean optimal demand predicted by the

frictionless model. Because the optimization errors need not be orthogonal to the price, the

observed Hicksian elasticity ε̂ estimated from demand responses to a price change differs from

the structural elasticity parameter ε. The observed elasticity ε̂ confounds preferences (ε) with

the effect of the frictions. For example, agents may under-react to a price increase in the

short-run because of adjustment costs.

This paper seeks to identify ε from estimates of ε̂. I focus on identifying ε because it is

important for both positive and normative analysis. The impacts of prices in steady-state are

determined purely by ε in many models. Moreover, the recovery of preference parameters is

essential for welfare analysis.

I bound ε from observations of ε̂ by assuming that agents choose points near the friction-

less optimum. Specifically, I allow agents to deviate arbitrarily from the nominal model’s

prediction as long as the expected lifetime utility cost of doing so is less than δ percent of

1



expenditure. This property is satisfied by standard dynamic adjustment cost models, where

agents remain on average within some utility threshold of their optimum. In the case of other

frictions such as inattention or status quo biases, this restriction requires that agents respond

to incentives that are suffi ciently important.

I derive a closed-form representation for bounds on the structural Hicksian elasticity ε as a

function of the observed Hicksian elasticity ε̂, the size of the price change used for identification

∆ log p, and the degree of frictions δ.1 The bounds shed light on what can be learned from

reduced-form elasticity estimates in an environment with frictions. The bounds shrink at a

quadratic rate with ∆ log p. As a result, pooling several small price changes —although useful

in improving statistical precision —yields less information about the structural elasticity than

studying a few large price changes. If ε̂ > 0, the lower bound on the structural elasticity ε is

strictly positive, showing that frictions do not affect tests of a null hypothesis of zero response.

If the observed elasticity ε̂ = 0, the upper bound on ε can be expressed in terms of the utility

cost of ignoring the price change. This permits straightforward calculations of the range of

elasticities consistent with zero behavioral response, analogous to power calculations used to

evaluate statistical precision.

The preceding results apply to an intensive margin model in which consumption is perfectly

divisible. I also derive bounds on extensive margin elasticities by analyzing a model in which

agents choose whether to buy an indivisible good. The bounds on the structural Hicksian

extensive margin elasticity (η) shrink linearly with δ and are therefore an order of magnitude

tighter than those on the Hicksian intensive margin elasticity (ε). This is because the utility

costs of ignoring price changes are first-order on the extensive margin, in contrast with the

second-order costs on the intensive margin. Hence, frictions such as adjustment costs or

inattention have smaller effects on aggregate demand when microeconomic choices are discrete

rather than continuous.

One can obtain tighter bounds on ε or η by calculating the least upper bound and the largest

lower bound implied by multiple observed elasticities. The sensitivity of structural elasticity

estimates to frictions can be evaluated by computing these unified bounds as a function of

δ. The smallest level of frictions δmin that reconciles a group of observed elasticities provides

1The value of δ must be specified exogenously and may vary across applications. I consider the assumption
that aggregate welfare would be 1% higher absent frictions (δ = 1%) to be a plausible benchmark.
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measures the “economic significance” of the differences in estimates. If δmin is small, the

differences are not economically significant in that they can be explained simply by allowing for

small frictions. The value of ε or η when δ = δmin converges to the true value as the number of

observed elasticities grows large, providing a point estimate of the structural elasticity adjusted

for frictions.

I apply these methods to investigate what can be learned about structural labor supply

elasticities from the empirical literature on labor supply. The application consists of four

components, each of which addresses a different strand of the labor supply literature.

First, I analyze the impact of frictions on the intensive margin elasticity —the effects of tax

changes on hours of work for employed individuals. Based on a large body of microeconometric

evidence, “the profession has settled on a value for this elasticity close to zero”(Saez, Slemrod,

and Giertz 2011). I show that small frictions could explain why observed elasticities are

often near zero by calculating the utility costs of ignoring tax reforms. For instance, the

utility costs of ignoring the widely studied Tax Reform Act of 1986 (TRA86) —and instead

choosing the optimal pre-reform level of work hours — are less than 2% of income per year

for all except top income earners. Accordingly, empirical studies find that TRA86 induced

behavioral responses in the short run only for top income earners. To assess what can be

learned about ε from existing estimates of intensive margin labor supply elasticities, I calculate

bounds on ε using estimates from studies of hours elasticities, taxable income elasticities,

elasticities for top income earners, and macroeconomic cross-country estimates. Even though

the observed elasticity estimates vary widely, all the estimates are consistent with a single

structural elasticity ε if one permits frictions of 1% of post-tax earnings in choosing labor

supply. Pooling the fifteen hours and taxable income elasticity estimates yields bounds on ε

of (0.28, 0.54) when δ = 1%, with a 95% confidence interval of (0.23, 0.61). The minimum

level of frictions required to reconcile these fifteen estimates is δmin = 0.5% of net earnings

and the corresponding point estimate of the structural elasticity is εδ-min = 0.33.

Second, I analyze how frictions affect extensive margin elasticities — the effects of tax

changes on employment rates. The utility costs of ignoring tax changes on the extensive

margin are between 5 to 10% of income for many tax policy changes in the U.S. These large

costs could explain why microeconometric studies uniformly detect significant impacts of tax

changes on employment rates despite finding negligible intensive margin responses. I calculate
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bounds on the structural Hicksian extensive margin elasticity η using estimates from existing

studies. The bounds on the extensive margin elasticities implied by each study are very

tight, confirming that observed elasticities provide an accurate representation of structural

elasticities on the extensive margin. The mean extensive margin elasticity among the studies

I consider is 0.27.

Third, I turn to the literature on non-linear budget set estimation, which analyzes the

impacts of progressive income taxation on labor supply. Researchers have faced significant

challenges in explaining observed labor supply behavior with non-linear budget set models

because much fewer individuals bunch at kink points of the tax system than one would expect.

I show that frictions could help resolve these diffi culties because the utility gains from bunching

are very small relative to plausible optimization costs.

Finally, I show that frictions and indivisible labor (Rogerson 1988, Rogerson and Wallenius

2009) can together explain why macro elasticity estimates based on cross-country comparisons

imply larger elasticities than micro evidence. On the intensive margin, the micro estimate of

ε = 0.33 after accounting for frictions matches macro estimates. On the extensive margin,

micro estimates match macro cross-country estimates even without accounting for frictions,

as expected given the results above. I also bound the intensive margin Frisch elasticity

using the estimated structural Hicksian elasticity and show that it matches macro evidence

on fluctuations in hours conditional on employment over the business cycle. However, micro

estimates are not consistent with macro evidence on the extensive margin Frisch elasticity

(Chetty et al. 2011b).

The analysis here should be viewed as one step toward characterizing how frictions affect

labor supply elasticities. The results are based on a standard lifecycle model of labor supply

as in MaCurdy (1981) and do not account for factors incorporated into more recent models,

such as human capital accumulation, credit constraints, or uncertainty. One would have

to specify a nominal model that incorporates all of these structural features to bound labor

supply elasticities in such an environment. This point illustrates a more general caveat: the

ability to account for frictions using bounds does not provide an excuse for failing to build an

accurate model. The bounds are valid only if the nominal model is correct up to optimization

frictions.

This paper builds upon and relates to the partial identification, near rationality, robust
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control, and durable goods literatures. The econometric literature on partial or set identifi-

cation addresses problems such as missing data or imperfect instruments (Manski 2007, Nevo

and Rosen 2008). The present paper uses set identification to estimate structural parameters

with model mis-specification. I derive bounds by assuming that agents are “near rational,”as

in the menu cost and near rationality literature in macroeconomics (Akerlof and Yellen 1985,

Mankiw 1985, Cochrane 1989). The focus on a class of models around a pre-specified nominal

model parallels the robust control literature (Hansen and Sargent 2007). The robust control

literature analyzes optimal policy with a minimax criterion and model uncertainty, whereas

I consider identification of the nominal model’s parameters in the same setting. Finally,

the bounds provide an alternative method of estimating preferences or production functions

in models with adjustment costs. This approach requires fewer assumptions than existing

methods of identifying such models (e.g. Eberly 1994, Attanasio 2000) because it uses inputs

that can be estimated using quasi-experimental techniques. However, it does not permit as

rich an analysis of short-run counterfactuals because it only partially identifies the model’s

parameters.

The paper is organized as follows. The next section sets up a dynamic model with

frictions. The bounds on intensive and extensive margin price elasticities are derived in

Section 3. Section 4 presents the application to labor supply and taxation. Section 5

concludes.

2 Demand Models with Frictions

Consider a dynamic model with N individuals who have heterogeneous tastes over two goods,

x and y. The price of x in period t is pt and the price of y is fixed at 1. Individual i has

wealth Zi and chooses demand by solving

max
xt,yt

T∑
t=1

vi,t(xt, yt) s.t.
T∑
t=1

[ptxt + yt] = Zi (1)

To simplify the exposition, I use the following specification of flow utility in the main text:

vi,t(xt, yt) = yt + ai,t
x

1−1/ε
t

1− 1/ε
if ε 6= 1 (2)

vi,t(xt, yt) = yt + ai,t log xt if ε = 1
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This quasilinear utility specification has three convenient properties: (1) it is a money metric,

(2) it makes the agent’s problem static because optimal demand for xt depends only on pt

and ai,t, and (3) it permits heterogeneity in demand levels but generates a constant price

elasticity ε. I extend the main result (Proposition 1) to the general case where vi,t(xt, yt) is

not quasilinear in Appendix A.

The utility function in (2) imples that optimal demand is x∗i,t(pt) = (
ai,t
pt

)ε. Let α =∑
i

∑
t log x∗i,t(pt = 1)/NT denote the mean log demand in the population when pt = 1 and

νi,t = log x∗i,t(pt = 1)−α denote the deviation of individual i in period t from the mean. Then

we can write agent i’s demand function as

log x∗i,t(pt) = α− ε log pt + νi,t

My objective is to identify ε, the structural preference parameter that controls the price

elasticity of demand. More compactly, I refer to ε as the “structural elasticity.” When

utility is quasilinear, the Hicksian (utility constant), Marshallian (wealth constant), and Frisch

(marginal utility constant) elasticities are all equal to ε. The bounds derived below apply to

the Hicksian elasticity when utility is not quasilinear (see Appendix A). I therefore use ε to

denote the Hicksian elasticity in the general model in (1), in which the three elasticities differ.

Consider identification of ε using a price change from pA in period A to pB 6= pA in

period B.2 The standard assumption made to identify ε from such variation is the following

orthogonality condition on the error term vi,t.

A1 Tastes are orthogonal to the identifying price variation: Evi,A = Evi,B.

Under this assumption,

ε = −
E log x∗i,B(pB)− E log x∗i,A(pA)

log pB − log pA
(3)

Equation (3) shows that the observed response to a price change point identifies ε in the

frictionless model in (1). I refer to (1) as the “nominal”model, following the robust control

literature. I now show how optimization frictions affect the link between ε and the observed

response using two examples.

2The analysis is unaffected if the identifying price variation is cross-sectional, provided that the variation in
pt is orthogonal to the variation in tastes across individuals νi,t.
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Example 1: Adjustment Costs. Suppose the agent must pay an adjustment cost of ki,t

to change his consumption of x in period t. The path of ki,t evolves deterministically and

tastes ai,t and prices pt follow arbitrary stochastic processes. Let Et denote the conditional

expectation operator over prices and tastes given information available in period t. In this

model, agent i chooses consumption xi,t in period t by solving:

max
xs
Et

T∑
s=t

[ai,s
x

1−1/ε
s

1− 1/ε
− psxs − ki,s · (xs 6= xs−1)]. (4)

Observed demand in this model, xi,t, differs from the frictionless optimum x∗i,t. Let the

observed elasticity estimated from a price change between periods A and B be denoted by

ε̂ = −E log xi,B(pB)− E log xi,A(pA)

log pB − log pA
(5)

In this model, ε̂ no longer identifies the structural elasticity ε. The observed elasticity ε̂ may

be smaller or larger than ε depending upon the evolution of prices, adjustment costs, and

tastes. Nevertheless, the structural elasticity ε still plays a central role in determining behav-

ior in steady-state. For example, the effects of permanent price variation across economies

starting in period 1 (e.g., countries with different tax regimes) is determined purely by ε.

Intuitively, adjustment costs affect observed elasticities primarily in the short-run, as agents

delay adjustment until periods with low switching costs.

Example 2: Price Misperceptions. A growing body of evidence indicates that individuals

misperceive prices, e.g. because of inattention to tax rates (DellaVigna 2009). To model this

class of deviations from (1), let p̃i,t(pt) denote agent i’s perceived price as a function of the

true price in period t. The agent chooses xi,t by solving

max
xs

T∑
s=t

[ai,s
x

1−1/ε
s

1− 1/ε
− p̃i,s(ps) · xs] (6)

The resulting observed elasticity is

ε̂ = ε
E log p̃i,B(pB)− E log p̃i,A(pA)

log pB − log pA

Again, the observed elasticity ε̂ confounds the structural elasticity of interest ε with other

parameters, in this case the effect of the price change on mean perceived prices. But if

perceptions converge to the truth over time, steady-state behavior is determined solely by ε.
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Optimization Frictions and Partial Identification. The two examples above illustrate

why it is challenging to accurately model and fully identify structural models with frictions.

In the first example, full identification requires estimation of many primitives. The second

example is more challenging because it requires specification of a theory of perceptions p̃i,t(pt).

This problem motivates a less ambitious strategy: identifying ε without fully identifying the

primitive sources of optimization frictions. Identifying ε is useful (though not always suffi cient)

for both positive and normative analysis. As discussed in the examples above, ε is suffi cient

to predict steady-state responses under plausible conditions. The structural elasticity ε and

the observed elasticity ε̂ are together suffi cient for welfare calculations in many applications

(Chetty, Looney, and Kroft 2009).

It is useful to recast the problem of identifying ε with unknown frictions as a partial

identification problem. Define agent i’s “optimization error”as the log difference between his

optimal demand under the nominal model and his observed demand: φi,t = log xi,t − log x∗i,t.
3

Then observed demand for agent i can be written as

log xi,t = α− ε log pt + νi,t + φi,t (7)

Define xt(pt) = [
N∏
i=1

xi,t(pt)]
1/N and x∗t (pt) = [

N∏
i=1

x∗i,t(pt)]
1/N as the geometric means of ob-

served and optimal demands.4 Mean observed (log) demand is

log xt = E log xi,t = log x∗t (pt) + Eφi,t

Unlike the preference heterogeneity error νi,t, the optimization errors φi,t generated by fric-

tions are not orthogonal to changes in prices. For example, in the adjustment cost model,

mean observed demand may be at the optimum in period A (Eφi,A = 0), but above the new

optimum following a price increase in period B (Eφi,B > 0). Without assumptions on φi,t,

ε is unidentified by the observed response E log xi,B − E log xi,A. Intuitively, if one places no

restrictions on perceptions or adjustment costs, an observed response to a price change can be

reconciled with any structural price elasticity.

3The optimization error is an error from the econometrician’s perspective but not necessarily from the agent’s
perspective. In the adjustment cost model, the agent optimizes by choosing xi,t according to (4).

4The geometric mean is analytically convenient because individuals with different levels of expenditure are
weighted equally in calculations of aggregate demand elasticities. If one defines mean demand as an arithmetic
mean, the results below hold if the δ class of models in (8) is defined as requiring that the expenditure-weighted
mean of utility costs is less than δ.
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Restricting the Degree of Frictions. One can obtain bounds on ε by restricting the support

of φi,t without making additional assumptions about Eφi,t. I restrict the support of φi,t by

requiring that agents make choices near the optimal choice under the nominal model. I obtain

a money-metric measure of the utility cost of setting x suboptimally for the general nominal

model in (1) using an expenditure function. Let U∗i,t denote agent i’s total utility from periods

t to T under his optimal consumption plan. The minimum expenditure needed to attain U∗i,t

when the agent sets xt at x̃t is

ei,t(x̃t) = min
xs,ys

T∑
s=t

(psxs + ys) s.t.
T∑
s=t

vi,t(xs, ys) ≥ U∗i,t and xt = x̃t.

The agent’s utility cost (measured in dollars) from setting xi,t suboptimally is ei,t(x∗i,t) −

ei,t(xi,t). I restrict the size of optimization errors by requiring that the mean utility cost as a

fraction of optimal expenditure on good x is less than an exogenously specified threshold δ:

1

N

∑
i[ei,t(x

∗
i,t)− ei,t(xi,t)]/ptx∗i,t ≤ δ (8)

The threshold δ measures the degree of optimization frictions.5 For instance, δ = 1% permits

deviations from optimal demand with an average utility cost of up to 1% of expenditure on

xt. Note that because utility costs are calculated under the nominal model, the analysis that

follows rests on the assumption that the nominal model is correct in a frictionless environment.

I refer to the models that generate observed demand levels xi,t that satisfy (8) as a “δ

class of models” around the nominal model. The adjustment cost model in (4) lies in the

δ class of models around (1) if the average adjustment cost as a percentage of expenditure

1
N

∑
i ki,t/ptx

∗
i,t ≤ δ/2 in all periods t. Intuitively, if agents face adjustment costs of less than

δ/2, they will never tolerate a utility loss of more than δ by setting xt suboptimally because

they could always switch to x∗t and then back to xt in period t + 1. Similarly, the model

of price misperceptions in (6) lies in the δ class of models around (1) if the expected utility

losses due to misperceptions are less than δ —that is, if perceptions are not too inaccurate on

average.

Although (8) is defined based on the utility cost of setting demand suboptimally in a

single period, the δ class of models includes dynamic models in which agents make choices

5The restriction on xi,t in (8) is effectively a restriction on the support of the optimization error φi,t because
xi,t = x∗i,te

φi,t
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based upon the present value of utility gains over their lifetimes. The reason is that with

a suitable choice of δ, (8) provides a worst-case scenario for the choice of xt. For example,

in the adjustment cost model, forward-looking agents might switch xt to x∗t even if the flow

utility gains from doing so are smaller than ki,t/2, because they can reap utility gains over

their lifetimes by paying the switching cost once. However, irrespective of the path of prices

and tastes, these forward-looking agents’behavior will always satisfy (8) if δ is specified as

twice the mean adjustment cost. The choices of myopes who consider only flow utility gains

will also satisfy (8). The δ class of models thus encompasses a rich set of dynamic models of

behavior around the nominal model.6

A δ class of models maps prices and primitives to a set of mean demand levels, which I

denote by

Xt(pt, δ) = {xt :
1

N

∑
i[ei,t(x

∗
i,t)− ei,t(xi,t)]/ptx∗i,t ≤ δ} (9)

When utility is quasilinear, the choice set Xt(pt, δ) takes a particularly simple form. In the

quasilinear case, we can assume without loss of generality that the agent splits his wealth

equally across periods because the consumption path of yt does not affect utility. Then flow

utility as a function of xt is given by

ui,t(xt) = Zi/T − ptxt + ai,t
x

1−1/ε
t

1− 1/ε

In this case, (8) can be written as the set of demands that yield flow utility within δ units of

the optimum on average:

Xt(pt, δ) = {xt :
1

N

∑
i[ui,t(x

∗
i,t)− ui,t(xi,t)]/ptx∗i,t ≤ δ} (10)

Because the demand problem under the nominal model is effectively static with quasilinear

utility, the lifetime utility cost of setting xt suboptimally in period t is just the flow utility cost

of the error. Figure 1 illustrates the construction of the choice set X(pt, δ) with quasilinear

utility when there is no heterogeneity across agents and δ = 1%. The figure plots flow utility

u(xt) when ai,t = e3.5, ε = 1, log pt = 1, and Z/T = 100. The set of choices that yield utility

within δ = 1% of the optimum, X(pt, δ) = [10.2, 14], is shown by the red interval on the x

axis.
6However, it bears emphasis that the δ class only includes models that deviate from the nominal model

modestly, as in (8). A model with borrowing constraints or uncertainty would not fall within the δ class of (1)
and would require specification of an alternative nominal model.
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Now consider how a price increase from pA to pB affects mean observed demand in a δ

class of models. Figure 2a illustrates the choice sets at the two prices, X(pA, δ) and X(pB, δ),

with the same parameters as in Figure 1. The structural elasticity ε controls the movement

of the choice sets with the price p, as illustrated by the dashed blue line. The solid black lines

illustrate that various mean demand changes [log xB(pB)− log xA(pA)] may be observed for a

given value of ε. Each solid line is generated by a different model. For instance, the flat line

could be generated by a model with status quo bias or satisficing consumers. Over-reaction

could be observed in a model with adjustment costs, e.g. if there has been a history of price

increases in the past. One may even observe an increase in demand, for instance if the price

increase reflects a change in tax policy that raises tax rates but makes taxes less salient.

These examples show that optimization frictions destroy the 1-1 map between the observed

response and the structural elasticity in (3). Let the range of structural elasticities consistent

with a given observed elasticity ε̂ in a δ class of models be denoted by (εL(ε̂, δ), εU (ε̂, δ)).

The objective of this paper is to characterize εL and εU in terms of empirically estimable

parameters. The bounds (εL, εU ) measure the uncertainty in the structural elasticity due to

potential mis-specification of the behavioral model, much as a statistical confidence interval

measures the uncertainty in the parameter estimate due to sampling error.7

3 Bounds on Price Elasticities

I derive bounds on intensive margin elasticities in two steps. First, I characterize Xt(pt, δ),

the set of mean observed demands at a price pt for a given value of ε. Second, I identify the

set of structural elasticities ε consistent with an observed elasticity ε̂. After establishing these

results for the intensive margin case, I replicate the analysis for an extensive margin model

in which x is an indivisible good. Finally, I show how multiple observed elasticities can be

combined to obtain more informative bounds on the structural elasticity.

Throughout, I focus on identification of bounds on ε, taking ε̂ as an estimate from an infinite

sample. Inference about the bounds in finite samples, where there is statistical imprecision in

the estimate of ε̂, can be handled using the techniques proposed by Imbens and Manski (2004)

7 I characterize the range of ε rather than other measures of dispersion because we typically lack a prior
distribution over the models within the δ class. A natural approach in such cases is to consider worst-case
scenarios (Hansen and Sargent 2007).
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or Chernozhukov, Hong, and Tamer (2007).

3.1 Bounds on the Choice Set

The following lemma analytically characterizes Xt(p, δ) for small δ using a quadratic approxi-

mation to flow utility ui,t(x) in the quasilinear case.

Lemma 1. For small δ, the set of mean observed demands is approximately

Xt(pt, δ) = {xt : | log xt − log x∗t | ≤ [2εδ]1/2} (11)

Proof. It is convenient to rewrite the definition of the choice set in (9) as requiring that

ui,t(x
∗
i,t)− ui,t(xi,t) ≤ δi,tptx∗i,t and 1

N

∑
i δi,t ≤ δ. Here δi,t can be interpreted as the degree of

frictions faced by agent i in period t. Taking a quadratic approximation to ui,t(x) = ui,t(e
log x)

around log x∗i,t and exploiting the first-order condition under the nominal model u
′
i,t(x

∗
i,t) = 0

yields

ui,t(x
∗
i,t)− ui,t(x) ' −1

2
(x∗i,t)

2u′′i,t(x
∗
i,t)(log x− log x∗i,t)

2 (12)

Therefore, agent i’s observed demand in period t must satisfy

| log xi,t − log x∗i,t| ≤ [−2δi,t
pt
x∗i,t

1

u′′i,t(x
∗
i,t)

]1/2 (13)

With the quasilinear utility specification in (2), u′′i,t(xt) =
∂2vi,t(xt)

∂x2t
and the first order condition

in the nominal model for xi,t is
∂vi,t
∂x (x∗i,t(pt)) = pt. Implicitly differentiating this first order

condition yields

u′′i,t(x
∗
i,t)

dx∗i,t
dpt

= 1 (14)

Substituting (14) into (13) gives the following restriction on demand for each agent:

| log xi,t − log x∗i,t| ≤ [2εδi,t]
1/2

To derive bounds on mean observed demand xt, use Jensen’s inequality to obtain:

| log xt − log x∗t | = |E log xi,t − E log x∗i,t| ≤ E[2εδi,t]
1/2 ≤ [2εδ]1/2

It follows that mean observed demand xt in a δ class of models satisfies

| log xt − log x∗t | ≤ [2εδ]1/2
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Note that the approximation error in this equation vanishes as δ → 0 because the remainder

of the Taylor approximation in (12) involves higher-order terms.

Lemma 1 captures three intuitions. First, the width of the choice set, which is 2[2εδ]1/2

log units, shrinks at a square-root rate as δ goes to zero. This result implies that even small

optimization frictions δ can generate substantial variation in observed behavior. With a price

elasticity of ε = 1 and δ = 1%, the choice set extends approximately +/-14% around x∗(pt),

as illustrated in Figure 1. The root-δ shrinkage of the choice set is driven by the second-order

losses of deviating from the maximum of a smooth function (Akerlof and Yellen 1985, Mankiw

1985).

Second, equation (13) shows that the width of the choice set is inversely related to the

curvature of utility around the optimum, u′′i,t(x
∗
i,t). A useful property of the model is that

u′′i,t(x
∗
i,t) is pinned down by ε, the structural parameter of interest. Highly curved utilities

generate small structural elasticities because the agent has a strong preference to locate near

x∗i,t. For example, suppose the demand for an essential medicine is perfectly price inelastic

at a level x∗i,t. The price elasticity of demand approaches zero as the curvature of the utility

function approaches infinity —agents demand the medicine at any price only if they lose infinite

utility by not having it. Because the utility costs of deviating from x∗i,t are infinitely large,

the choice set Xt(pt, δ) collapses to the singleton x∗t for any δ when ε = 0, as illustrated in

Figure 2b. The choice set expands as ε rises. This connection between ε and the curvature of

utility is critical because it eliminates the need to estimate the additional parameter u′′i,t(x
∗
i,t)

when bounding ε.

Finally, the set of mean observed demands depends only upon the mean level of frictions

δ, and not the distribution of frictions at the individual level δi,t. Because each individual’s

choice set is proportional to [δi,t]
1/2, the potential difference between mean observed and

optimal demand is largest (the worst-case scenario) when δi,t = δ for all i, t.

3.2 Bounds on the Structural Elasticity

Figure 3a depicts the largest structural elasticity ε that could have generated an observed

elasticity ε̂ for a price increase from pA to pB. When ε = εU , mean observed demand lies at

the bottom of the choice set at price pA (log xA(pA) = log x∗A(pA) − (2εδ)1/2) and the top of
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the choice set at price pB (log xB(pB) = log x∗B(pB)+(2εδ)1/2). The upper bound εU therefore

satisfies the condition

ε̂ = − log xB(pB)− log xA(pA)

log(pB)− log(pA)
= − log x∗B(pB)− log x∗A(pA) + 2(2εδ)1/2

log(pB)− log(pA)
= εU − 2

(2εUδ)
1/2

∆ log p
(15)

where ∆ log p = | log(pB) − log(pA)|.8 Similarly, the lower bound structural elasticity εL

consistent with ε̂, illustrated in Figure 3b, is defined by the equation

ε̂ = εL + 2
(2εLδ)

1/2

∆ log p
(16)

The following proposition characterizes the solutions to (15) and (16).

Proposition 1. Under assumption A1, for small δ, the range of structural elasticities consis-

tent with an observed elasticity ε̂ is approximately (εL, εU ) where

εL = ε̂+
4δ

(∆ log p)2
(1− ρ) and εU = ε̂+

4δ

(∆ log p)2
(1 + ρ) (17)

with ρ = (1 +
1

2

ε̂

δ
(∆ log p)2)1/2

Proof. Equations (15) and (16) both reduce to the quadratic equation (ε̂ − ε)2 = 8εδ
(∆ log p)2

.

The upper and lower roots of this quadratic equation are the bounds.

Equation (17) maps the magnitude of the price change (∆ log p), the observed elasticity

ε̂, and the degree of frictions δ to bounds on the structural elasticity ε when flow utility is

quasilinear.9 In Appendix A, I show that when utility is not quasilinear, Proposition 1 applies

to the Hicksian elasticity. In particular, if the demand function is isoelastic between pA and

pB, an observed Hicksian elasticity ε̂ generates bounds on the structural Hicksian elasticity ε

given by exactly the same formula as (17). The discussion that follows therefore applies to

Hicksian elasticities in the general model in (1).

Figure 4 plots the bounds (εL, εU ) vs. ε̂ with δ = 1% of expenditure.10 Panel A considers

a price change of ∆ log p = 20%, while Panel B considers ∆ log p = 40%. The bounds
8With ∆ log p defined as the absolute value of the log price change, the results below also apply to price

reductions.
9When ε̂ is a finite-sample estimate, a 95% confidence set for ε can be obtained by computing εL using the

lower limit of the 90% confidence interval for ε̂ and εU using the upper limit of the 90% confidence interval
under certain regularity conditions (Imbens and Manski 2004).
10These bounds are computed using (17), which relies on a quadratic approximation to utility. To evaluate

the quality of the approximation, I calculated the exact bounds with the utility in (2) numerically for a range
of values of ε̂ < 1, ∆ log p < 100%, and δ = 1%. In all cases, the exact and approximate bounds differ by less
than 0.001, showing that (17) is suffi ciently accurate for most applications.
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offer several insights into what can be learned about structural elasticities from reduced-form

estimates of observed elasticities. First, larger price changes are much more informative about

ε because the bounds shrink at a quadratic rate with ∆ log p. With a price change of 20%, an

observed elasticity of ε̂ = 0.2 is consistent with structural elasticities up to εU = 2.3. With

∆ log p = 40% and ε̂ = 0.2, εU = 0.85. The reason for this rapid shrinkage is that the

movement in the choice sets for a given value of ε is larger when ∆ log p is larger, resulting in

a narrower set of observed responses ε̂ consistent with any given ε.

Second, the bounds are asymmetric around the observed elasticity: εU − ε̂ > ε̂− εL. This

asymmetry is driven by the proportional relationship between the width of the choice sets

and ε, as shown in Lemma 1. Large structural elasticities generate wide choice sets and are

therefore consistent with a broader range of ε̂ than small structural elasticities. A related

implication is that if ε is small, there will be little dispersion in observed elasticities across

studies, whereas a large ε may lead to substantial variation in observed elasticities.

Third, the lower bound is strictly positive (εL > 0) whenever ε̂ > 0 regardless of δ. If

ε = 0, the choice sets collapse to a single point x∗t (pA) = x∗t (pB) as shown in Lemma 1, and

one will therefore never observe positive values of ε̂. Agents intent on maintaining a fixed

value of x must face very large costs of deviating from the optimum and therefore will never

do so.11 This result is useful for hypothesis testing: finding ε̂ > 0 is adequate to reject the

null of a zero structural elasticity regardless of frictions.

Finally, consider the converse case of a study that detects zero observed behavioral response

(ε̂ = 0).12 When ε̂ = 0, the bounds take a particularly simple form. The lower bound is

εL = 0. The upper bound can be conveniently expressed in terms of the utility cost of

ignoring the price change for an optimizing agent with time-invariant preferences. Consider

a hypothetical agent who has fixed tastes ai,t = ai across periods A and B and is initially at

his nominal optimum x∗i (pA). Using a quadratic approximation analogous to that in Lemma

1, this agent’s utility loss from failing to change demand to x∗i (pB) in period B is

∆ui ≡ ui,B(x∗i (pB))− ui,B(x∗i (pA)) ' −1

2
u′′i,B(x∗i,B)(log x∗i,B − log x∗i,A)2(x∗i,B)2.

Using equation (14), the utility loss from failing to reoptimize in response to a price change
11By the same reasoning, ε̂ < 0 implies ε > 0, as one could never observe a negative response if ε = 0. Note

that negative structural elasticities (ε < 0) are ruled out by agent optimization in the nominal model.
12Among the feasible responses in a δ class of models, a zero response is perhaps the most likely outcome, as

it requires no adjustments or attention.
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as a percentage of the optimal expenditure level at price pB is

∆u%(ε) =
∆ui

pBx∗i (pB)
=

1

2
(∆ log p)2ε (18)

The utility loss ∆u%(ε) is an increasing function of the structural elasticity ε. The following

result shows that the upper bound on ε when ε̂ = 0 can be expressed in terms of ∆u%(εU ).

Corollary 1. Under assumption A1, for a given value of ε, the observed elasticity ε̂ can be 0

only if ∆u%(ε) ≤ 4δ.

Proof. When ε̂ = 0, (17) implies εU = 8δ/(∆ log p)2. Combining this equation with (18)

yields the result.

Corollary 1 provides a simple method of determining the range of structural elasticities

for which one can be sure to detect a behavioral response. Starting from the optimum, the

percentage utility cost of ignoring a price change given an elasticity of ε must exceed 4δ to

guarantee an observed elasticity ε̂ > 0. The 4δ condition is obtained because the cost of

deviating from the optimum rises at a quadratic rate (see Appendix A for details). When

ε̂ = 0, εU shrinks at a quadratic rate with ∆ log p but only a linear rate with δ. Studying

a price change that is twice as large yields more information about ε even if frictions are

also twice as large, underscoring the value of placing greater weight on large treatments for

identification.

3.3 Extensive Margin Elasticities

I now replicate the analysis above for the case where x is an indivisible good and agents make

extensive margin choices about whether to buy x. To analyze extensive margin responses,

consider the model in (1) with the quasilinear flow utility in (2), but assume that x ∈ {0, 1},

so that agents make a discrete choice. As with the intensive margin results, the results below

apply to the Hicksian extensive margin elasticity when quasilinearity is relaxed.

It is optimal for an agent to buy the good if its utility exceeds its price, i.e. if bi,t ≡ ai,t
1− 1

ε

>

pt. Let the distribution of the rescaled taste parameter bi,t in the population be given by a

smooth cdf Ft(bi,t) with positive support for all bi,t > 0. I make an identification assumption

analogous to A1 to ensure that elasticity estimates are unbiased without frictions:

A1’Tastes are orthogonal to the identifying price variation: FA = FB.
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Let θ∗t = 1 − Ft(pt) denote the optimal fraction of agents who buy x and θt denote the

observed fraction who buy x in period t. The structural extensive margin demand elasticity for

a price change from pA to pB is η(pA, pB) ≡ log θ∗B(pB)−log θ∗A(pA)
log(pB)−log(pA) . The corresponding observed

extensive margin elasticity is η̂(pA, pB) ≡ log θB(pB)−log θA(pA)
log(pB)−log(pA) . Because the density f(p) varies

with the price, η(pA, pB) varies with the price. To bound η(pA, pB), I assume that the

aggregate demand function is locally iso-elastic.

A2 The extensive margin elasticity is constant between pA and pB: η(pt) = −∂θ∗

∂pt
pt
θ∗ =

η(pA, pB) for pt ∈ [pA, pB].

Let δ denote the degree of frictions permitted as a fraction of expenditure when buying

the good, pt. Then a δ class of models around the nominal extensive margin model can be

defined by requiring that average utility losses are less than δpt, as shown in Appendix A. I

now establish a set of results analogous to those in the intensive margin case. The proofs

of these results, which are given in the appendix, use first-order Taylor approximations and

parallel those for the intensive margin.

Lemma 2. For small δ, the set of participation rates is approximately

Θt(pt, δ) = {θt : | log θt − log θ∗t | ≤ η(pt)δ} (19)

The width of the choice set is directly proportional to the structural elasticity η and the degree

of frictions δ. The structural elasticity matters because it is proportional to the density of

the taste distribution f(pt). If η(pt) is large, many agents are near indifferent between buying

x and not buying x at price pt and experience small utility costs by choosing x suboptimally.

This leads to greater variation in θt.

The critical difference between Lemma 2 and its intensive margin analog, Lemma 1, is that

the width of the choice set for participation rates is proportional to δ rather than δ1/2. This

makes the choice set much narrower on the extensive margin than the intensive margin. With

δ = 1% and a structural elasticity of 1, the choice set spans ±1% of optimal aggregate demand

on the extensive margin, compared with ±14% on the intensive margin. This is because

individuals incur first-order utility losses from choosing x suboptimally on the extensive margin

since they are not near interior optima.

The lower and upper bounds on η given an observed elasticity η̂ can be characterized as in

Figure 3b, leading to the following analog of Proposition 1.
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Proposition 2. Under assumptions A1’and A2, for small δ, the range of structural elasticities

consistent with an observed elasticity η̂ is approximately (ηL, ηU ) where

ηL = η̂/(1 + ρn) and ηU =

{
η̂/(1− ρη) if ρη < 1

∞ if ρη ≥ 1
(20)

where ρη =
2δ

∆ log p
.

Because the choice set grows linearly with η on the extensive margin, the bounds on η are

more sensitive to the level of frictions. If the level of frictions is suffi ciently large relative

to the size of the identifying variation (2δ > ∆ log p), the η is unbounded above because the

choice sets widen more rapidly than they shift as η rises. Intuitively, even if no one responds

to a small price change on the extensive margin, there could nevertheless be a large lurking

density of agents who are very close to indifferent between buying and not buying x, generating

arbitrarily large η. In contrast, on the intensive margin, we obtain a finite upper bound on ε

for any price change because the choice set grows more slowly (in proportion to (ε)1/2) with ε.

Conversely, when frictions are relatively small, the bounds on η are much tighter than

those on ε for a given δ because the choice set is much narrower on the extensive margin.

With δ = 1% and a price change of 20%, an observed elasticity of η̂ = 0.2 is consistent with

extensive margin structural elasticities up to ηU = 0.22, in contrast with the upper bound of

εU = 2.3 for the same parameters on the intensive margin. In practice, most empirical studies

generate tight bounds on η for plausible levels of δ, as shown in the application below. For

instance, with δ = 1% frictions, one needs a price change of just 2% to obtain a finite upper

bound on η.

One can also establish an analog to Corollary 1 by considering the utility cost of not

responding to a price change for the agent who is just indifferent between buying and not

buying at price pA, i.e. the agent with bi = pA. Let

∆uext,% =
|pB − pA|

pB
' ∆ log p (21)

denote the utility cost to this agent (as a percentage of expenditure on x when participating)

of choosing x suboptimally when the price is changed to pB.13 The utility cost of ignoring

a price change is a first-order function of ∆ log p on the extensive margin, in contrast with
13For price cuts, the relevant utility cost is for a marginal agent who was not buying x at price pA; for

price increases, the relevant utility cost is for an agent who was buying x at pA. Intuitively, the agent who
experiences the largest utility cost ∆uext,% determines the lower bound on η̂.
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the second-order cost on the intensive margin in (18). Intuitively, non-participants enjoy the

benefits of a price cut only if they reoptimize their behavior and enter the market. In contrast,

on the intensive margin, the first-order increase in wealth from the price cut is automatically

obtained; the benefit of reoptimization is only the second-order gain of choosing a better level

of consumption.

Corollary 2. Under assumptions A1’and A2, if η > 0 then η̂ can be 0 only if ∆uext,% ≤ 2δ.

If the utility cost of ignoring the price change for the marginal agent exceeds 2δ, we must

observe η̂ > 0 if η > 0. Because the utility losses from ignoring price changes are first-order

on the extensive margin, price changes induce behavioral responses even with substantial

frictions. A 20% change in the price could produce η̂ = 0 only with frictions of δ > 10%

when η > 0. In contrast, the same 20% change could produce ε̂ = 0 on the intensive margin

with a structural elasticity of ε = 0.5 even with δ = 0.25%. Frictions have smaller effects on

aggregate demand when microeconomic choices are discrete rather than continuous because

the costs of suboptimal choice are concentrated among the marginal agents with bi ' pA.14

3.4 Combining Multiple Observed Elasticities

One can obtain more information about the structural elasticity by combining multiple ob-

served elasticities. I demonstrate this for the intensive margin, but the results that follow

apply identically to extensive margin elasticities. Suppose we have a set of observed elastici-

ties {ε̂1, ..., ε̂J} from J empirical studies. Let ∆ log pj denote the size of the price change used

to identify observed elasticity j. Let εjL and ε
j
U denote the lower and upper bounds implied

by study j, derived using Proposition 1. Let εmax
L = max(εjL) denote the largest lower bound

and εmin
U = min(εjU ) denote the least upper bound. Then it follows that ε ∈ (εmax

L , εmin
U ).

By calculating (εmax
L , εmin

U ) as a function of δ, one can assess how sensitive estimates of ε

are to frictions. One value of special interest is the smallest δ that reconciles the observed

elasticities, δmin. When δ = δmin, the structural elasticity ε is point identified. To characterize

this minimum-δ value of ε, let ε̂1 denote the observed elasticity that produces the least upper

bound and ε̂2 the observed elasticity that produces the highest lower bound when δ = δmin.

The minimum-δ estimate of ε satisfies εδ-min = εU (ε̂1, δmin) = εL(ε̂2, δmin). Solving these two

14 If the aggregate costs of suboptimal choice were shared across all agents, they would become a second-order
function of ∆ log p because the fraction of agents who lose utility by not reoptimizing is proportional to ∆ log p.
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equations using the definitions of εU and εL in (15) and (16) yields the following estimator:

εδ-min =
∆ log p1ε̂1 + ∆ log p2ε̂2

∆ log p1 + ∆ log p2
(22)

Equation (22) also applies to extensive margin elasticities: ηδ−min is the same weighted average

of the pivotal observed elasticities.

The εδ-min estimator for the structural elasticity has two attractive features. First, it does

not require exogenous specification of δ. Second, if one were to observe all possible elasticities

ε̂ generated by a δ class of models, the smallest level of frictions that could reconcile the

observed values of ε̂ would be δmin = δ, resulting in εδ-min = ε. In this sense, εδ-min converges

to ε if observed elasticities are estimated in a suffi ciently rich set of environments.

The value of δmin can be used to formally define “economically significant”differences. If

δmin is small, the differences in estimates are not economically significant in that they can

be reconciled simply by allowing for small frictions rather than fundamentally changing the

economic model. In analogy with reporting the statistical significance of differences between

estimates, the economic significance of a new estimate can be quantified by reporting the δmin

required to reconcile it with prior evidence.

4 Application: Labor Supply

The wage elasticity of labor supply is a parameter of central interest for tax policy analysis and

macroeconomic models. A large literature in labor economics, macroeconomics, and public

finance estimates this elasticity using various methods. There are many frictions that may

make observed labor supply differ from optimal labor supply, such as costs of switching jobs

(Altonji and Paxson 1992), inertia (Jones 2008), and inattention (Chetty and Saez 2009). But

few studies that estimate labor supply elasticities account for such frictions. The methods

developed above are therefore well suited to extracting the information these studies contain

about the structural labor supply elasticity.

I analyze the effects of frictions on four strands of the labor supply literature: (1) inten-

sive margin elasticities, (2) extensive margin elasticities, (3) non-linear budget set estimation,

and (4) macroeconomic elasticity estimates. Throughout, I focus on identifying Hicksian

elasticities relevant for steady-state comparisons. I discuss the implications of the analysis
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for the Frisch (intertemporal substitution) elasticity relevant for understanding business cycle

fluctuations in the context of the fourth application.

4.1 Intensive Margin Elasticities

Following MaCurdy (1981), I characterize structural labor supply elasticities in a lifecycle

model in which agents choose consumption (ct) and hours of work (lt) to solve

max
ct,lt

T∑
t=1

vi,t(ct, lt) s.t.
T∑
t=1

[Yi,t + (1− τ t)wlt − ct] = 0 (23)

where τ t denotes the tax rate in period t, w denotes the wage rate, and Yi,t denotes unearned

(non-wage) income. Let lc,∗t (τ t) denote the structural Hicksian labor supply function generated

by (23). Note that (23) is equivalent to the demand model in (1) with leisure as one of the

consumption goods. Because the Hicksian wage elasticity of leisure coincides with the Hicksian

wage elasticity of labor supply, Proposition A1 can be used to bound the structural labor supply

elasticity ε =
log lc,∗B (τB)−log lc,∗A (τA)

log(1−τB)−log(1−τA) . In this application, ∆ log p = ∆ log(1− τ) and δ measures

frictions in choosing labor supply as a percentage of net-of-tax earnings (1− τ t)wlc,∗t .

I evaluate the impact of frictions on intensive margin elasticities in two steps. I begin by

simulating the utility costs of ignoring the tax changes used for identification in the micro-

econometric literature. I find that the costs are typically quite small, suggesting that frictions

might substantially attenuate observed elasticities (Corollary 1). I then calculate bounds on

the structural Hicksian labor supply elasticity using existing estimates of observed elasticities.

4.1.1 Utility Costs of Ignoring Tax Changes

I calculate the costs of ignoring tax changes with quasilinear, iso-elastic flow utility:

vi,t(ct, lt) = ct − ai
l
1+1/ε
t

1 + 1/ε
. (24)

Let Tt(wl) denote an agent’s tax liability as a function of his taxable income in year t. Since

the path of consumption has no impact on the utility costs of choosing l suboptimally when

utility is quasilinear, I assume without loss of generality that the agent sets consumption equal

to net-of-tax income. Then flow utility as a function of the labor supply choice and tax regime

is

ui(l;Tt) = wl − Tt(wl)− ai
l1+1/ε

1 + 1/ε
(25)
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I consider tax changes over a three year interval, following the convention in the literature

(Gruber and Saez 2002). Let l∗i,t denote optimal labor supply in period t under the nominal

model in (23). The utility loss in dollars from ignoring the tax changes that occur between

years t− 3 and t for an individual who sets labor supply at the optimum in year t− 3 is:15

∆ui,t = ui(l
∗
i,t;Tt)− ui(l∗i,t−3;Tt) (26)

I calculate l∗i,t and ∆ui,t numerically for various values of ai and years t.16 I use a structural

elasticity of ε = 0.5, the upper bound on ε estimated below, to obtain upper bounds on utility

losses. The tax rates Tt(wl) are obtained from the NBER TAXSIM calculator, including both

employer and employee payroll taxes but ignoring state taxes. I consider a single tax filer

with two children who has only labor income and no deductions other than those for children.

I adjust for inflation in the wage w using the CPI over the relevant three-year period.17

Tax Reform Act of 1986. The Tax Reform Act of 1986 (TRA86) is one of the largest

reforms in the U.S. tax code and the focus of many empirical studies. Figure 5 evaluates the

costs of ignoring this tax reform. Panel A shows the marginal tax rate schedules in 1985 (thick

red line) and 1988 (thin blue line). The dashed blue line, which is replicated in all the panels

as a reference, shows the log change in the marginal net-of-tax rate (NTR), ∆ log(1−MTR).

TRA86 increased the NTR by 15-20% for those with incomes below $100,000 and by nearly

40% for those with incomes close to $200,000.

Panel B plots the utility cost (measured in dollars) of ignoring the tax change (∆ui,1988)

vs. gross taxable income in 1985.18 For instance, an individual whose taste parameter

ai placed him at an optimal taxable income of $100,000 prior to TRA86 would lose $1,000

by failing to reoptimize labor supply in response to the change in the tax code. Panel

C plots the cost of ignoring the tax reform as a percentage of consumption, ∆ui,1988,% =

15The results below do not assume that all agents start at the optimum in the base year; they only require
that choices in the base year lie within a δ class of models. I calculate utility costs for agents who start at
the optimum because this calculation tells us whether ε̂ = 0 is consistent with a given structural elasticity
(Corollary 1).
16The only heterogeneity across agents in these calculations is the disutility of labor ai, which generates

differences in pre-tax earnings. Heterogeneity in wi is isomorphic to heterogeneity in ai in (24).
17A STATA program TAXCOST.ado that calculates the utility cost of ignoring tax reforms has been posted

on the NBER server. TAXCOST takes exactly the same inputs as TAXSIM. By running TAXCOST instead of
TAXSIM, researchers can calculate the utility costs of ignoring the tax changes they are using for identification.
See http://obs.rc.fas.harvard.edu/chetty/taxcost.html for further information.
18Values at non-convex kinks in the base year are interpolated to obtain a continuous curve. Since no

individual would optimally locate at a non-convex kink, the utility cost is undefined at these points.
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∆ui,1988/(wl
∗
i,1988− T1988(wl∗i,1988). Most individuals earning less than $100,000 lose less than

1% of net earnings by ignoring TRA86 when choosing labor supply in 1988. Using Corollary

1, this result implies that frictions of δ = 1% could lead to an observed elasticity of ε̂ = 0 from

TRA86 for an individual earning less than $100,000 even if his underlying structural elasticity

were ε = 0.5.19

Finally, Panel D plots the change in taxable income (wl∗i,1988 − wl∗i,1985) required to reop-

timize relative to TRA86. With ε = 0.5, a taxpayer earning $100,000 prior to the reform

would have to increase his pre-tax earnings by $13,000 in order to reach his new optimum.

This substantial change would yield a utility gain (net of the disutility of added labor) of only

$1,000. Given that the search costs of immediately finding additional work that pays an extra

$13,000 could well exceed $1,000, it is plausible that many individuals would not respond to

TRA86 within a three-year horizon.20

The costs of ignoring TRA86 are considerably larger for high income earners. An individual

earning $200,000 in 1985 would lose $4,500 per year (nearly 3% of net earnings) by ignoring

the tax reform. High income individuals gain a lot more from reoptimizing both because

the dollars at stake rise with income and because the change in tax rates was larger for high

incomes.

Figure 6a extends the analysis of tax reforms to cover all tax changes from 1970-2006. I

compute the percentage utility loss (∆ui,t,%) from ignoring tax changes at the 20th, 50th, and

99.5th percentile of the household income distribution. The value plotted for year t is the

percentage utility cost of choosing l∗i,t−3 instead of l
∗
i,t in year t. There is no tax change since

1970 for which the utility cost of failing to reoptimize on the intensive margin exceeds 1% of

net earnings for the median taxpayer. The utility costs of ignoring tax reforms are substantial

only for the top 1% of income earners around TRA86. Correspondingly, the largest observed

elasticities in historical time series are for top income earners around TRA86; for lower income

19Corollary 1 applies to individuals who are at an interior optimum both before and after the tax change. In
particular, a tax change could produce an observed elasticity ε̂ = 0 if the level of frictions δ > ∆ui,t,%(ε)/4 for
such individuals. For individuals who optimally locate at kinks between tax brackets, the tangency conditions
used to derive Corollary 1 do not hold. However, even for these agents, it is clear that a tax change could
produce ε̂ = 0 if δ > ∆ui,t,%(ε).
20The total lifetime gain from reoptimizing labor supply is much larger because the agent gains $1,000 every

year. However, because the flow utility gains are relatively small, many agents may delay adjustment until a
period where frictions (e.g. job switching costs) are lower. Thus, micro studies might not detect much change
in labor supply between 1985 and 1988 even if TRA86 induced individuals to reoptimize in the long run.
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groups and other time periods, observed intensive margin elasticities are near zero (Saez 2004).

While there is little gain from adjusting behavior to optimally react to tax changes on the

intensive margin over any three year interval, it is not the case that ignoring taxes completely

imposes little cost. For example, using equation (18), the utility cost of ignoring a tax rate

of τ = 40% and working l∗(τ = 0) hours is 1
2 ·

1
2 · (0.4)2 = 4% of net earnings per year when

ε = 0.5. This is why short-run responses to tax reforms may not be very informative about

how the tax system affects labor supply on the intensive margin in steady state.

4.1.2 Bounds on the Intensive Margin Hicksian Elasticity

How much can be learned about the structural Hicksian labor supply elasticity (ε) from existing

elasticity estimates? To answer this question, I apply Proposition A1 to calculate the bounds

on ε implied by a set of well-known studies of intensive margin labor supply. One should keep

two caveats in mind when interpreting the results of the exercise. First, I assume a constant

structural elasticity ε across all the studies, ignoring potential variation in local preferences

across tax regimes, income levels, demographic groups, or countries. Second, I assume that

each study provides an unbiased estimate of the observed elasticity ε̂. Econometric issues

such as omitted variables and mean reversion may bias some of the estimates (Saez, Slemrod,

and Giertz 2011). Any such biases would pass through to the bounds.

Table 1 divides the studies of intensive margin labor supply into four groups: (A) studies

that measure labor supply using hours of work; (B) studies that measure labor supply using

taxable income; (C) studies that use taxable income but focus exclusively on top income earn-

ers; and (D) studies that rely on cross-sectional comparisons (across countries with different

tax regimes or individuals with different wage rates) to estimate steady-state hours elastici-

ties.21 The table lists the point estimate and standard error of the observed Hicksian elasticity

and the change in the net-of-tax rate used for identification. Details on the calculations and

sources for each study are given in Appendix B. For quasi-experimental studies that analyze

a single tax change, I define ∆ log(1−MTR) as the change in the mean MTR for the treat-

ment group (e.g. top income earners in Feldstein (1995)). For studies that pool tax or wage

21 In the model in (23), the hours and taxable income elasticities are the same. I therefore pool estimates
from both types of studies to bound the structural labor supply elasticity in this model. In more general
models, taxable income elasticities may be larger than hours elasticities because they incorporate changes in
reporting and avoidance behavior as well as changes in work effort (Slemrod 1995).
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changes of different sizes (e.g. Gruber and Saez 2002), I define ∆ log(1−MTR) as twice the

standard deviation of ∆ log(1−MTR) in the sample. This is the size of the single price change

that would generate the same statistical precision as the variation in ∆ log(1−MTR) used for

identification, as shown in Appendix B.

The observed elasticity estimates vary substantially across studies. Microeconometric

studies of the full population find the smallest elasticities: the mean observed hours and taxable

income elasticities among the studies considered in Panels A and B is 0.15. Studies of top

income earners find much larger elasticities, with a mean of 0.84. The mean elasticity among

macroeconomic studies of steady-state responses is 0.32.

The largest observed elasticities in Panels A and B are obtained from the studies that

focus on the largest changes in tax policy: the abolition of the income tax for a year in Iceland

(Bianchi, Gudmundsson, and Zoega 2001) and a Swedish tax reform in 1991 termed the “tax

reform of the century”(Gelber 2010). This pattern is consistent with the view that frictions

are less likely to attenuate short-run responses to very large price changes. Excluding the

Bianchi, Gudmundsson, and Zoega and Gelber studies, every point estimate in Panels A and

B is below all of the point estimates in Panels C and D. Moreover, many of the confidence

intervals for ε̂ in Panels A and B do not overlap with the confidence intervals for ε̂ in Panels

C and D. Hence, the systematic differences in point estimates of observed elasticities across

the studies in the different groups cannot be explained by statistical imprecision.

Can frictions explain the differences in the estimates? Columns 6-7 of Table 1 show the

bounds (εL, εU ) implied by each point estimate with frictions of δ = 1% of net earnings. Many

studies that use small tax changes are consistent with structural elasticities above 1 despite

obtaining small estimates. Figure 7 gives a visual representation of the bounds in columns

6-7. For scaling purposes, I exclude studies that use variation in net-of-tax rates of less than

20% for identification. None of the intervals plotted in the figure are disjoint —that is, all

the estimates are consistent with a single structural Hicksian elasticity ε if one permits 1%

frictions. Hence, the differences in estimates across high and low income earners as well as

the differences in estimates across macroeconomic and microeconometric studies can be fully

explained by small frictions.

Although any one study by itself produces wide bounds, the studies in Table 1 yield

informative bounds on the Hicksian elasticity when combined. Intuitively, by estimating
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elasticities in many environments, one can obtain much sharper bounds on ε. The unified

lower bound across the studies when δ = 1% is εL = 0.47, obtained from Goolsbee’s (1999)

analysis of TRA86. The unified upper bound is εU = 0.51, obtained from Blau and Kahn’s

(2007) estimate using cross-sectional wage variation in the U.S. These bounds are robust in

the sense that even if one excludes these two pivotal studies, the unified bounds expand only to

(0.44, 0.54), with the pivotal estimates now coming from Kopczuk (2010) and Gelber (2010).

While it is instructive to demonstrate that frictions can explain the differences in estimates

between Panels B and C, the large elasticities for top income earners most likely reflect ma-

nipulation of reported taxable income rather than changes in labor supply (Slemrod 1995).

One may also question the validity of the estimates in Panel D because of the many omitted

variables and other factors that could bias cross-sectional comparisons (Alesina, Glaeser, and

Sacerdote 2005). If we only include the studies in Panels A and B, the unified bounds are

(0.28, 0.54). These more conservative bounds are my preferred range of estimates for the

structural labor supply elasticity with δ = 1% frictions.

Figure 8 shows how the unified bounds vary with the degree of frictions. The dark shaded

region shows the values of ε consistent with the observed elasticities in Panels A and B of

Table 1 for δ ∈ (0, 5%). The bounds widen as δ rises, but remain somewhat informative even

with δ = 5%, where εL = 0.15 and εU = 1.23. Given that individuals are unlikely to tolerate

utility losses equivalent to 5% of net earnings per year on average, we can rule out ε < 0.15 (as

suggested by some microeconometric studies) or ε > 1.23 (as used in some macro calibrations)

based on existing evidence.

The smallest value of δ that can reconcile the observed elasticity estimates in Panels A

and B is δmin = 0.5%. That is, the differences in these 15 observed elasticity estimates are

“economically significant”only if frictions in choosing labor supply are less than 0.5% of net

earnings on average. The corresponding minimum-δ point estimate of the structural elasticity

is εδ-min = 0.33. This value of 0.33 is my preferred point estimate of the structural intensive

margin Hicksian elasticity adjusted for frictions. Interestingly, this value is similar to the

point estimates obtained from studies that are less susceptible to frictions to begin with —the

steady-state cross-sectional comparisons in Panel D and the micro studies of large tax changes

discussed above.

Columns 8-9 of Table 1 show a 95% confidence set for the ε implied by each study. These
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columns use the lower endpoint of the 90% confidence interval (CI) for ε̂ to calculate εL and

the upper endpoint of the 90% CI to calculate εU (Imbens and Manski 2004), assuming that

ε̂ is normally distributed. In many cases, the 95% confidence sets are only slightly wider than

the bounds obtained when ignoring sampling error. For instance, εU for Gelber’s estimate for

men rises from 0.54 to 0.59. A 95% confidence set for the unified bounds can be constructed

by using a simple Bonferroni bound.22 The 95% confidence set for the unified bounds is

(0.23, 0.61) when using the studies in Panels A and B. These calculations indicate that the

greater source of imprecision in labor supply elasticities is uncertainty about the economic

model of behavior due to frictions rather than noise due to sampling error.

4.2 Extensive Margin Elasticities

I now apply the results in Section 3.3 to explain why microeconometric estimates of observed

elasticities on the extensive margin are larger than those on the intensive margin (Heckman

1993). As above, I first calculate the utility costs of ignoring tax changes on the extensive

margin and then apply Proposition 2 to bound the extensive margin Hicksian elasticity.

4.2.1 Utility Costs of Ignoring Tax Changes

I calculate the utility costs of suboptimal choice on the extensive margin using the model in

(25) with l ∈ {0, 1}, so that agents can only choose whether to work or not. I follow the same

methodology as in Section 4.1.1 to calculate the utility cost of ignoring a tax change for the

marginal agent in year t − 3 at each gross earnings level wi. The marginal agent at wi has

bi = wi − Tt−3(wi). The utility cost (measured as a percentage of net-of-tax earnings when

working) of choosing lt suboptimally for this agent is

∆ui,t,ext,% = | log(wi − Tt(wi))− log(wi − Tt−3(wi))|. (27)

Earned Income Tax Credit Expansions. Figure 9 replicates Figure 5 for another important

episode in U.S. tax policy —the expansion of the Earned Income Tax Credit under the Clinton

22Given J estimates {ε̂1, ..., ε̂J}, let (εj,CIL ,εj,CIU ) denote a 1− .05/J percent confidence interval for ε for study
j, calculated using the method in Imbens and Manski (2004) as above. The intersection of these J regions is a
(conservative) 95% CI for the unified bounds: P [ε ∈ (εj,CIL , εj,CIU ) for all j] = 1 − P [ε /∈ (εj,CIL , εj,CIU ) for some
j] ≥ 1 −

∑J
j=1 P [ε /∈ (εj,CIL , εj,CIU )] ≥ 1 − J × 0.05/J = 0.95. Thanks to Tim Armstrong for suggesting this

approach.
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administration. Most studies find virtually no changes in labor supply in response to EITC

expansions for individuals on the intensive margin, but find a substantial response on the

extensive margin (Meyer and Rosenbaum 2001, Eissa and Hoynes 2006). Figure 9 shows that

this pattern could be driven by frictions.

Panel A shows tax changes and utility costs on the intensive margin. The dashed blue

line shows that between 1993 and 1996, net-of-tax wage rates rose by 20% for single tax filers

with two children earning below $10,000 as the phase-in subsidy was increased. Meanwhile,

net-of-tax wages fell by roughly 15% for those with incomes between $15,000 and $30,000

because of the increase in the phase-out tax rate. The solid red curve, constructed as in

Figure 5c, shows that most individuals lose less than 1% of net earnings per year by ignoring

these changes on the intensive margin. Corollary 1 implies that an observed response of ε̂ = 0

would be consistent with ε = 0.5 if one permits δ = 1% frictions in reoptimizing labor supply.

Panel B of Figure 9 replicates Panel A for the extensive margin. The x axis of these figures

is the income that the individual would earn (wi) were he to work prior to the EITC expansion.

On the extensive margin, the relevant tax rates are average rather than marginal. The dashed

blue curve shows the change in net-of-average-tax rates (i.e., the return to working) as a result

of this reform. The solid red curve shows the utility cost of ignoring the EITC expansion for

individuals on the margin of entering the labor force at various income levels in 1993, which

coincides with the log change in the net of tax rate as shown in (21). Consider an individual

who would earn $5,000 when working and is indifferent between working and not working

in 1993, i.e. has disutility of work bi = 5000 − T1993(5000). Figure 9b shows that for this

marginal individual, the gain from entering the labor force in response to the Clinton EITC

expansion is 18% of net income when working, roughly $1,000. In contrast, the gain from

reoptimizing hours on the intensive margin for a worker earning $5,000 prior to the reform is

0.7% of income, roughly $50. On the extensive margin, the agent would have lost the extra

$1,000 EITC refund if he had ignored the tax reform and stayed out of the labor force. But

on the intensive margin, a worker gets the $1,000 tax reduction even if he does not change his

hours. This could explain why individuals respond to the EITC expansion in the short run

on the extensive margin despite frictions. Indeed, Corollary 2 implies that one could observe

an elasticity of η̂ = 0 on the extensive margin only if frictions in adjusting labor supply exceed

δ = 9% of net-of-tax earnings when working.

28



Figure 6b extends this analysis to cover all tax changes from 1970-2006. In contrast to the

intensive margin results shown in Figure 6a, there are several tax changes that would generate

large utility losses (5-10% of net earnings) if ignored on the extensive margin.23 The utility

costs are particularly large for individuals who earn low incomes when working, consistent

with the literature finding the largest extensive margin responses for this group.

4.2.2 Bounds on the Extensive Margin Hicksian Elasticity

Chetty et al. (2011b, Table 1) present a meta analysis of extensive margin elasticity estimates.

In Table 2, I apply Proposition 2 to calculate the bounds implied by the studies they consider

with δ = 1% frictions.24 Panel A considers estimates from quasi-experimental studies, while

Panel B considers steady-state estimates from studies that exploit cross-sectional variation

across countries or individuals. Two results emerge from this analysis.

First, the bounds on extensive margin elasticities are much tighter than those on the

intensive margin, as shown in Figure 10. For instance, Eissa and Liebman’s (1996) analysis of

EITC expansions yields η̂ = 0.30 and bounds on η of (0.26, 0.36) with δ = 1% frictions. Jacob

and Ludwig’s (2008) analysis of a housing voucher experiment yields bounds of (0.17, 0.19) on

the extensive margin elasticity, compared with bounds of (0.02, 0.84) on the intensive margin.25

Observed labor supply elasticities appear to provide reasonably accurate estimates of structural

elasticities on the extensive margin.

Second, the heterogeneity in extensive margin elasticities across groups cannot be at-

tributed purely to frictions. The minimum level of frictions required to reconcile the extensive

margin elasticities in Table 2 is δmin = 17%. Hence, there are economically significant dif-

ferences in structural extensive margin elasticities across groups. For instance, it is plausible

that participation elasticities are especially large for low-income single mothers (Meyer and

Rosenbaum 2001). There may be similar heterogeneity in structural elasticities on the inten-

23 In these calculations, I assume that the marginal worker is in the labor force in cases where the average tax
rates rises over the three years and out of the labor force for cases where it falls. This is the relevant calculation
to determine when one would observe zero response on the extensive margin, as shown above. I exclude the
99.5 percentile from Figure 6b for scaling reasons and because few individuals enter the labor force at the 99.5
percentile of the income distribution.
24Among the studies considered by Chetty et al. (2011), I include only those that estimate Hicksian elasticities

and those for which I was able to compute the size of the tax change used for identification.
25The level of frictions may differ on the extensive and intensive margins. The point here is that frictions

would have to be at least 10 times larger on the extensive margin in order to generate the same impacts as on
the intensive margin.
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sive margin, but existing evidence is inadequate to detect such heterogeneity in the presence

of small frictions.

4.3 Bunching at Kinks and Non-Linear Budget Set Models

The preceding two sections have considered studies that analyze local changes in marginal tax

rates without fully modelling each agent’s budget set in a progressive tax system. Another

important strand of the literature on labor supply accounts for the entire tax system by esti-

mating non-linear budget set (NLBS) models of labor supply (e.g. Hausman 1985, Blomquist

and Newey 2002). NLBS models are generally rejected by the data because they do not

match the properties of the income distributions around kinks in the tax system. This has

forced researchers to adopt solutions such as smoothing the budget set to remove kinks (e.g.

MaCurdy, Green, and Paarsche 1990). Frictions can explain various patterns in the non-linear

budget set literature and offer a potential method of addressing the problems that have arisen

in fitting NLBS models to the data.

(i) Bunching at Kinks. A central problem in NLBS models is that they predict far

more bunching at kinks in the tax schedule than observed in practice. This is illustrated

in Figure 11, which plots the income tax schedule in 2006 (dashed blue line) for a single

filer with two children. The solid grey curve shows the income distribution predicted by

the frictionless model in (25) when ε = 0.5 and tastes ai are uniformly distributed. The

frictionless model predicts sharp spikes at each kink in a kernel density plot of the income

distribution.26 However, empirical income distributions for wage earners exhibit no such

bunching at kinks (Saez 2010). Small frictions in choosing labor supply can explain why

bunching is not more prevalent. The number next to each convex kink in Figure 11 shows the

utility gain as a percentage of consumption (calculated using the utility in (25) from locating

at that kink point relative to optimizing under the incorrect assumption that the rate in the

previous bracket continues into the next bracket.27 The utility losses are less than 1% of net

earnings at most of the kinks.

(ii) Self-Employed Individuals. Saez (2010) documents that unlike wage earners, self-

26Adding noise to the income process can make the spikes (which arise from point masses) more diffuse, but
plausible levels of noise do not eliminate bunching in the frictionless model (Saez 2010).
27There are many values of ai that can induce individuals to locate at each kink. The numbers in the figure

are (unweighted) mean percentage losses for agents who would optimally locate at the kink.
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employed individuals bunch at the first kink of the EITC schedule, where tax refunds are

maximized. Audit studies show that self employment income is frequently misreported on

tax returns because of the lack of double reporting. Unlike changing actual hours of work,

misreporting generates a first-order utility gain because it transfers resources from the gov-

ernment to the taxpayer. The large utility gains from misreporting taxable income could

explain why the self-employed overcome frictions and bunch at this kink. Interestingly, even

the self-employed do not bunch at the second kink of the EITC schedule (where the phase-out

region begins). The first kink in the EITC schedule maximizes the size of the EITC refund

while minimizing payroll tax liabilities. There is no reason to locate at the second kink if

one’s goal is to reap first-order gains from income manipulation.

(iii) Notches. Unlike kinks, notches in budget sets, where a $1 change in earnings leads to a

discontinuous jump in consumption, generate substantial behavioral responses. For example,

income cutoffs to qualify for Medicaid (Yelowitz 1995) and social security benefits in some

pension systems (Gruber and Wise 1999) induce sharp reductions in labor supply. To calculate

the utility cost of ignoring a notch, suppose that earning wlt > K triggers a penalty of P .

Then the utility cost of setting lt > K/w for an individual with l∗t ≤ K/w exceeds P . Because

the utility cost of ignoring a notch increases at a first-order rate with the size of the penalty

P , notches will affect observed behavior substantially even with frictions.

These results suggest that introducing small frictions in choosing l could generate income

distributions that match observed distributions more accurately. More generally, allowing

for optimization errors —by permitting agents to deviate systematically from their frictionless

optima provided that the utility losses fall below some threshold —may offer a more disciplined

method of estimating NLBS models.

4.4 Micro vs. Macro Elasticities

The final strand of the literature I consider is the debate on micro vs. macro labor supply

elasticities. Macroeconomic models calibrate labor supply elasticities to match the variation in

aggregate hours of work across countries with different tax systems or over the business cycle.

In both cases, macro calibrations of representative agent models imply larger elasticities than

microeconometric estimates of intensive margin elasticities. Can frictions explain this gap?

Cross-Country Evidence and Hicksian Elasticities. The mean estimate of the intensive
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margin Hicksian elasticity from the two macroeconomic studies in Table 1 (Prescott 2004,

Davis and Henrekson 2005) is 0.33.28 The mean estimate of the extensive margin Hicksian

elasticity from the three macroeconomic studies in Table 2 (Nickell 2003, Prescott 2004, Davis

and Henrekson 2005) is 0.17. Hence, macro cross-country evidence implies an aggregate hours

elasticity of 0.33 + 0.17 = 0.5.

These macro elasticity estimates are consistent with micro estimates once one accounts

for optimization frictions. On the intensive margin, even the smallest estimates in Table 1

are consistent with a structural elasticity of 0.33 with δ = 1% frictions. The minimum-δ

micro estimate of ε = 0.33 coincides exactly with the macro intensive elasticity. Intuitively,

macroeconomic comparisons are more likely to overcome frictions because they analyze steady-

state behavior and because they induce coordinated changes in work patterns (Altonji and

Oldham 2003, Chetty et al. 2011a).

On the extensive margin, the observed micro estimates in Panel A of Table 2 are similar

to the macro and cross-sectional estimates in Panel B even without accounting for frictions.

The mean micro estimate of η is 0.27. The similarity between micro and macro estimates of

extensive margin elasticities is consistent with the prediction that frictions have little impact

on extensive margin responses.

In order to calculate the aggregate hours elasticity implied by micro estimates, one cannot

simply sum the intensive and extensive elasticities (ε+η) because individuals on the extensive

margin tend to work fewer hours than the average individual when they work.29 Blundell,

Bozio, and Laroque (2011) estimate the heterogeneity in elasticities across groups and find

that the aggregate hours elasticity is about 80% of the sum of the median intensive and

extensive elasticities in the population. Applying the same shrinkage factor, I infer that the

micro evidence implies an aggregate hours elasticity of roughly 0.8× (0.33 + 0.27) ' 0.5 after

adjusting for frictions.

I conclude that micro estimates are consistent with macro evidence on steady-state ag-

28The well known elasticity of 3 reported by Prescott (2004) is a Frisch elasticity. Regressing log hours on
log net-of-tax rates using Prescott’s data yields a Hicksian aggregate hours elasticity of 0.7 and an intensive
elasticity of 0.46. Prescott translates the Hicksian elasticity of 0.7 into a Frisch elasticity of 3 based on specific
functional form assumptions about utility.
29For example, prime-age males work many hours and tend to have low extensive margin elasticities. In

macro studies, the aggregate hours elasticity is the sum of the intensive and extensive elasticities because the
data used is on mean hours per worker in the population.
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gregate hours elasticities once one accounts for frictions and indivisible labor. Indivisible

labor models show that both intensive and extensive margins are important in accounting for

aggregate hours differences (Rogerson 1988, Ljungvist and Sargent 2006, Rogerson and Wal-

lenius 2009). Frictions explain the gap between micro and macro intensive margin elasticity

estimates and the similarity of micro and macro extensive margin elasticity estimates.

This reconciliation should not be interpreted as evidence that other factors that vary across

countries —such as social norms or regulations (Alesina, Glaeser, and Sacerdote 2005) —do not

affect hours of work. It is very diffi cult to obtain compelling estimates of the causal impact

of taxes on labor supply from cross-country evidence because of omitted variable and reverse

causality problems. The lesson here is simply that after accounting for optimization frictions

and extensive margin responses, micro estimates would predict differences in hours of work

across countries that are similar to what we see in the data.

Intertemporal Substitution and Frisch Elasticities. In order to fit observed fluctuations in

aggregate hours over the business cycle, equilibrium macro models —in which fluctuations in

labor supply are driven by preferences —require intensive margin Frisch elasticities of about

0.5 and extensive margin Frisch elasticities above 2 (Chetty et al. 2011b). The analysis in

this paper does not directly tell us whether micro evidence is consistent with these values

because it bounds the Hicksian rather than the Frisch elasticity, which controls intertemporal

substitution. Chetty et al. (2011b) summarize micro estimates of the Frisch elasticity. Here,

I instead show that one can obtain tight bounds on the structural intensive margin Frisch

elasticity from the estimated structural Hicksian elasticity of ε = 0.33.

In the lifecycle labor supply model in (23), the intensive margin Frisch elasticity εF is re-

lated to the intensive margin Hicksian elasticity by the following equation (Ziliak and Kniesner

1999, Browning 2005):

εF = ε+ ρ(
d[wl∗i,t]

dYi,t
)2 Ai,t
wl∗i,t

(28)

where ρ is the elasticity of intertemporal substitution (EIS),
d[wl∗i,t]

dYi,t
measures the marginal

propensity to earn out of unearned income (the income effect), and Ai,t
wl∗i,t

is the ratio of assets

to wage income. This equation implies εF > ε.

One can obtain more information about εF by calibrating the other parameters in (28).

The ratio of assets to wage earnings was approximately Ai,t
wl∗i,t

= 1.26 for the median individual
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in the U.S. in 2008 (Dynan 2009, Table 1). Table 3 shows the values of the Frisch elasticity

implied by a Hicksian elasticity of ε = 0.33 and Ai,t
wl∗i,t

= 1.26 for various combinations of ρ and

−d[wl∗i,t]

dYi,t
. To calibrate these two parameters, note that balanced growth requires that income

and substitution effects cancel, implying
d[wl∗i,t]

dYi,t
= −ε ⇒ d[wl∗i,t]

dYi,t
= −0.33. Both micro and

macro studies find an EIS of ρ ≤ 1 (Hall 1988, Vissing-Jorgensen 2002, Guvenen 2006). The

largest Frisch elasticity consistent with these parameters is εF = 0.47. Intuitively, the Frisch

elasticity cannot be much larger than the Hicksian elasticity for plausible values of the income

effect because εF − ε is proportional to the income effect squared and the ratio of assets to

earnings is not very high for most households in the U.S.

An intensive margin Frisch elasticity of 0.47 is roughly consistent with the macro evidence

on business cycle fluctuations in hours of work conditional on employment.30 However, Chetty

et al. (2011b) find that fluctuations in employment rates over the business cycle imply Frisch

elasticities that are an order of magnitude larger than micro estimates. Unfortunately, this

discrepancy between micro and macro estimates of the Frisch elasticity on the extensive margin

cannot be explained by optimization frictions.

5 Conclusion

There are many frictions that induce agents to deviate from the optimal choices predicted

by standard economic models. This paper has shown that the model mis-specification that

arises from the omission of these frictions can be handled using the tools of set identification.

Abstractly, I exchange the standard orthogonality condition on the error term for a bounded

support condition based on the utility costs of errors. I derive an analytical representation

for bounds on structural price elasticities that is a function of the observed elasticity, size of

the price change used for identification, and the degree of optimization frictions.

Applying the bounds to studies of taxation and labor supply offers a critique and synthesis

of this literature. The critique is that many microeconometric studies of labor supply are

uninformative about intensive margin elasticities because they cannot reject large values of ε

30An interesting question left for future work is whether the structural or observed elasticity is more relevant
for business cycle fluctuations. If there are small fluctuations in wage rates over the business cycle, the observed
elasticity (attenuated by frictions) may be the better predictor of behavioral responses. But if a small group
of individuals face very large wage shocks, then frictions may be overcome and the structural elasticity may be
more relevant.
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with frictions of even 1% of earnings in choosing labor supply. The synthesis is that several

patterns in this literature can be reconciled by allowing for such small frictions. Combining

estimates from several studies, my preferred point estimates of structural Hicksian elasticities

are 0.33 on the intensive margin, 0.27 on the extensive margin, and roughly 0.5 for aggregate

hours. I also find that Frisch elasticities cannot be much larger than Hicksian elasticities given

plausible income effects.

Both the methodology and application in this paper could be improved in several respects

in future work. Methodologically, it is important to extend the bounds to settings beyond the

binary treatment effect estimator considered here. Natural extensions include difference-in-

difference estimates and regression models that allow for continuous price variation. It would

also be interesting to explore whether the bounds can be sharpened by imposing additional

restrictions from theory, such as a requirement that agents converge to unconstrained optima

over time. In the labor supply application, it would be useful to calculate bounds in modern

structural models of labor supply that incorporate factors such as human capital accumulation,

credit constraints, and uncertainty. Because full identification of these models is challenging,

bounding the structural elasticity may be a particularly fruitful approach in such cases.

Finally, the bounding methodology developed here can be applied to estimate a variety

of other critical parameters such as the elasticity of intertemporal substitution, the marginal

propensity to consume out of income, or the effects of the minimum wage on employment.

Such analyses would shed light on which disagreements are economically significant and which

can be reconciled simply by allowing for small frictions.
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Appendix A: Theoretical Derivations

(i) Bounds on Intensive Margin Elasticities with Income Effects

This appendix shows that the bounds in Proposition 1 apply to the Hicksian elasticity when
the quasilinearity assumption in (2) is relaxed. To simplify notation, I ignore heterogeneity
across agents and assume all agents have a flow utility function v(xt, yt); heterogeneity does
not affect the result under the assumption that the structural elasticity does not vary locally
across agents, as discussed below.

The agent’s partial expenditure function (on all other goods) conditional on consuming x̃t
units of good xt is

ẽ(x̃t) = min
xs,ys

[yt +
T∑

s=t+1

(psxs + ys)] s.t.
T∑
s=t

v(xs, ys) ≥ U and xt = x̃t (29)

We can write the total expenditure function as

E(p, U) = min
xt

ptxt + ẽ(xt) (30)

Let the expenditure-minimizing choice of xt be denoted by x
c,∗
t (pt, Ut), the structural Hicksian

demand function. Let xct(pt, Ut) denote the observed Hicksian demand function. With this
notation, the definition of the δ class of models in (8) can be written as:

[ptx
c
t + ẽ(xct)]− [ptx

c,∗
t + ẽ(xc,∗t )] ≤ δptxc,∗t (31)

I first establish an analog of Lemma 1 in this setting.

Lemma A1. For small δ, the set of observed Hicksian demands is approximately

Xc
t (pt, δ) = {xct : | log xct − log xc,∗t | ≤ [2ε(pt)δ]

1/2} (32)

where xct denotes the Hicksian demand function and ε(pt) = −∂xc,∗

∂pt
pt
xc denotes the structural

Hicksian price elasticity of demand at price pt.
Proof. The first order condition for (30) is

ẽx(xc,∗t ) = −pt (33)

Using a quadratic approximation to the partial expenditure function, we can exploit this first
order condition to obtain

[ptx
c
t + ẽ(xct)]− [ptx

c,∗
t + ẽ(xc,∗t )] ' 1

2
(xc,∗t )2(log xct − log xc,∗t )2ẽxx(xc,∗t )

and hence we can rewrite (31) as

| log xct − log xc,∗t | ≤ [2δ
pt
xc,∗t

1

ẽxx(xc,∗t )
]1/2 (34)

Differentiating (33) with respect to pt implies 1/ẽxx(xc,∗t ) = −∂xc,∗

∂pt
and substituting this equa-

tion into (34) completes the proof.
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Next, I establish the analog of Proposition 1. When utility is not quasi-linear, the struc-
tural elasticity ε(pt) varies with the price pt. Let ε(pA) and ε(pB) denote the structural

point elasticities at the initial and final prices and ε(pA, pB) = − log xc,∗B (pB)−log xc,∗A (pA)

log(pB)−log(pA) denote
the structural arc elasticity between the two prices. Then the upper bound on ε(pA, pB) is
characterized by an equation analogous to (15):

ε̂(pA, pB) = − log xcB(pB)− log xcA(pA)

log(pB)− log(pA)
= ε(pA, pB)− 2(2ε(pB)δ)1/2

∆ log p
(35)

Solving this equation requires a parametric assumption about utility to relate the two point
elasticities at pA and pB to the arc elasticity. I make the following local iso-elasticity assump-
tion, which is analogous to assumption A2 in the extensive margin case.

A2’The structural Hicksian elasticity is constant between pA and pB: ε(pt) = −∂xc,∗

∂pt
pt
xc,∗ =

ε(pA, pB) for pt ∈ [pA, pB]

In a model with heterogeneous utilities vi(xs,ys), the result that follows requires a stronger
iso-elasticity assumption, namely that the structural elasticity ε(pt) does not vary across agents
between pA and pB. It also requires an assumption analogous to A1, i.e. that tastes are
orthogonal to the price change used for identification.

Under A2’, the upper and lower bounds on the structural arc elasticity ε(pA, pB) are
characterized by the same equations as (15) and (16):

ε̂ = ε± 2
(2εδ)1/2

∆ log p

Proposition A1. Under assumption A2’, for small δ, the range of structural Hicksian elas-
ticities ε(pA, pB) consistent with an observed Hicksian elasticity ε̂(pA, pB) is approximately
(εL, εU ) where

εL = ε̂+
4δ

(∆ log p)2
(1− ρ) and εU = ε̂+

4δ

(∆ log p)2
(1 + ρ) (36)

with ρ = (1 +
1

2

ε̂(pt)

δ
(∆ log p)2)1/2

Proof. Identical to the proof of Proposition 1.

(ii) Bounds on Extensive Margin Elasticities

With quasilinear utility, the agent’s flow utility in period t is vi,t(x, y) = y+ bi,tx. Recog-
nizing that the consumption path of y does not affect lifetime utility, the flow utility cost of
choosing x suboptimally in period t is

ui,t(x
∗(pt))− ui,t(x) = (x∗i,t − x)(bi,t − pt)

I define a δ class of models around the nominal model by a condition analogous to (8):

(x∗i,t − x)(bi,t − pt) ≤ δipt and
1

N

∑
i δi,t ≤ δ and F (bi,t|δi,t) = F (bi,t) (37)
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The last condition —that the taste distribution cannot vary across agents with different frictions
—is needed to ensure that the choice set has the same width for the marginal agents at each level
of p.31 This condition was not necessary in the intensive margin case because the marginal
agent did not vary with p there.

Proof of Lemma 2. Equation (37) implies that agent i’s observed demand for x is

xi,t =


1 if bi,t − pt > δi,tpt

{0, 1} if |bi,t − pt| ≤ δi,tpt
0 if bi,t − pt < −δi,tpt

Let θδi,t(pt) denote the observed participation rate for agents who have frictions δi,t and
θt = Eθδi,t(pt) denote the observed participation rate in the aggregate economy. Under
the condition that F (bi,t|δi,t) = F (bi,t), it follows that θδi,t(pt) lies in the set

[1− F ((1 + δi,t)pt), 1− F ((1− δi,t)pt)] (38)

= [θ∗t + F (pt)− F ((1 + δi,t)pt), θ
∗
t + F (pt)− F ((1− δi,t)pt)] (39)

' [θ∗t − f(pt)ptδi,t, θ
∗
t + f(pt)ptδi,t)] (40)

where the last line uses a first-order Taylor expansion of F (pt) around pt. Under A1’and A2’,
η = −d log[1−F (pt)]

d log pt
= f(pt)

θ∗(pt)
pt. Hence

θδi,t(pt) ∈ [θ∗t · (1− ηδi,t), θ∗t · (1 + ηδi,t)]

⇒ Eθδi,t(pt) ∈ [θ∗t · (1− ηEδi,t), θ∗t · (1 + ηEδi,t)]
⇒ θt(pt)/θ

∗
t (pt) ∈ [1− ηδ, 1 + ηδ]

The approximation log(1 + ηδ) ' ηδ for small δ yields | log θt − log θ∗t | ≤ ηδ.

Proof of Proposition 2. Given a structural elasticity η, the maximal observed response to
a price change of ∆ log p is ∆ log θ = η∆ log p + 2δη and the minimal observed response is
∆ log θ = η∆ log p− 2δη. Therefore the observed elasticity η̂ = ∆ log θ

∆ log p must satisfy

(1− ρη)η ≤ η̂ ≤ (1 + ρη)η (41)

where ρη = 2δ
∆ log p . If ρη ≥ 1, η is unbounded above for a given value of η̂ because both

inequalities in (41) are satisfied for arbitrarily large η. If 2δ
∆ log p < 1, then the upper and lower

bounds on η are obtained when (41) holds with equality. Solving these equations yields (20).

Proof of Corollary 2. Suppose η̂ = 0. Then ρη < 1⇒ ηU = 0. Hence a positive structural
elasticity (η > 0) can only generate a 0 observed elasticity if ρη = 2δ

∆ log p ≥ 1 ⇔ ∆uext,% =
∆ log p ≤ 2δ.

(iii) Intuition for 4δ threshold in Corollary 1

31To see why this condition is needed, suppose agents with bi,t close to pt have very large δi,t while those
away from the margin have δi,t = 0. This would result in a wide choice set for the participation rate at pt even
if Eδi,t < δ.
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This section explains why ∆u%(ε) must be below 4δ in order to observe ε̂ = 0. Let
d = x∗A(pA)−min(XA(pA, δ)) denote the difference between the mean optimal demand and the
lowest mean demand in the initial choice set. Figure (a) below shows that at the upper bound
εU , the difference between the optimal demands at the two prices is x∗(pA) − x∗(pB) = 2d.
By definition, the percentage utility cost of choosing min(XA(pA, δ)) instead of x∗(pA) is δ.
Given that the utility cost of deviating by d units is δ, the utility cost of deviating by 2d units
is 4δ, as illustrated in Figure (b).
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Appendix B: Sources and Calculations for Studies in Table 1

This appendix describes how the values in columns 3-5 Table 1 are calculated. The papers
used for the analysis along with comprehensive documentation of the calculations are available
at http://obs.rc.fas.harvard.edu/chetty/bounds_opt_meta_analysis.zip

I use compensated intensive margin estimates reported in each paper when available and
use the Slutsky equation to calculate compensated elasticities in cases where uncompensated
elasticities are reported.

The studies do not always directly report the relevant inputs, especially the net-of-tax
change ∆ log(1−τ). For studies whose estimates are identified from a single quasi-experiment
(e.g. Feldstein 1995), I define ∆ log(1 − τ) as the change in the marginal NTR for the group
that the authors’define as the“treated” group. For studies that pool multiple tax or wage
changes of different sizes and do not explicitly isolate a treatment group (e.g. Gruber and
Saez 2002), I define ∆ log(1 − τ) as twice the standard deviation of ∆ log (1−MTR) in the
sample. The logic for this approach is as follows. In a linear regression Yi = α + β1Xi + ui,
the standard error of β̂1 is the square root of (var (u) /var (X)) /N where N is the sample
size. Consider a second regression Yi = α+ β2Zi + ui, where Zi = 0 for half the observations
(the “control group”) and Zi = 2 · SD (X) for the remaining observations (the “treatment
group”). Setting the size of the single treatment to 2 · SD (X) yields var(Z) = var(X).
Hence, the standard error of β̂2 equals the standard error of β̂1. A single tax change of
2 · SD (∆ log(1−MTR)) therefore produces an estimate of ε̂ with the same precision as the
original variation in marginal tax rates used for identification.

I calculate the bounds by assuming that agents face a linear budget set whose slope is
given by their marginal tax rate (MTR) and apply Proposition A1 using ∆ log(1−MTR) in
place of ∆ log p. This yields valid bounds on ε for agents who remain in the interior of budget
segments in a progressive tax system. However, the bounds cannot be applied to agents who
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locate at kinks. Given that most of the studies in Table 1 estimate elasticities from changes
in the behavior of agents away from kinks, this is not a serious limitation.32

The remainder of the appendix describes how I calculate ε̂, the standard error of ε̂, and
∆ log(1−MTR) for each study in Table 1.

A. Hours Elasticities
1. MaCurdy (1981): ε̂: reported in text on page 1083. s.e.(ε̂): imputed from the t-statistic

for δ reported in row 5 of Table 1 as 0.15/0.98 because the estimate of compensated elasticity
is approximately equal to δ. ∆ log(1− τ): the relevant within-person annual wage variation is
not reported in the paper, so I use 2× SD = 2× (0.1522 + 2 · 0.0862)1/2 from Table 1, column
4 of Low, Meghir and Pistaferri (2010) who estimate the standard deviation of changes in log
wages. Note that this is likely an overestimate of the size of ∆ log(1− τ), resulting in bounds
that are too tight, because MaCurdy uses family background characteristics, age, and year
dummies as instruments for wage growth and does not use all elements of wage growth for
identification.

2,3. Eissa and Hoynes (1998): ε̂: authors report for men an intensive margin“wage elas-
ticity” of 0.07 and an income elasticity of −0.03 in Table 8, col. 3. This “wage elasticity”
uses the total hours change, which includes the hours change induced by the increased EITC
rebate, which raised the average net of tax rate by 0.042 for a couple earning $15,000 with
two children (for whom the average net-of-tax rate changed from 107.5% in 1993 to 112.1%
in 1994 computed using TAXSIM). This rebate should have changed hours (in log terms) by
−0.03 × 0.042, giving an uncompensated elasticity of 0.069. The compensated elasticity is
ε̂menlc,w = ε̂l,w − wl

y ε̂l,y = 0.200, with w, l, and y coming from Table 3, column 4. A parallel
calculation using Table 9 gives ε̂womenlc,w = 0.088. s.e.(ε̂): assuming that w, l, y and the change
in income from the EITC expansion are measured without error, using the t-statistics from
the coeffi cients on ln(wage) and virtual inc to impute the standard errors for the elasticities,

SE(ε̂menlc,w ) =

√
SE(ε̂l,w)2 +

(
wl
y SE(ε̂l,y)

)2
= 0.074 and SE(ε̂womenlc,w ) = 0.067. ∆ log(1 − τ):

defined as 2×SD of log net-of-tax-rate in the phase out EITC rates listed in Table 1 for 1984—
96 because most married couples that receive the EITC are in the phase-out region (Table
2).

4. Blundell, Duncan, and Meghir (1998): ε̂, s.e.(ε̂): Table 4, row 1. This is an intensive
margin elasticity because the variation in wages from the grouping estimator does not appear
to affect participation, based on the discussion on page 845. ∆ log(1 − τ): defined as 2 ×
SD(log ŵgt − log ŵg − log ŵt) = 0.23 reported in Table 9 because the variation arises from
group-time interactions in wages.

5. Ziliak and Kniesner (1999): ε̂, s.e.(ε̂): Table 1, column 3. ∆ log(1 − τ): the study
effectively uses within-person annual wage variation because lagged wage growth is included
as an instrument. Since within-person annual wage variation is not reported in the paper, I
again use 2 × SD = 2 × (0.1522 + 2 · 0.0862)1/2 from Table 1, column 4 of Low, Meghir and
Pistaferri (2010).

32Recent studies that identify observed elasticities from bunching at kinks (e.g. Saez 2009, Chetty et al. 2011)
are an exception. I incorporate these studies into the linear-demand framework by exploiting the fact that
they also study movements in the kinks over time, which create reductions in marginal rates for the subgroup
of individuals located between the old and new bracket cutoffs. These studies imply that these individuals do
not increase labor supply significantly when their marginal tax rates are lowered. This constitutes an observed
elasticity estimate based on choices at interior optima, permitting application of Proposition 1.
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B. Taxable Income Elasticities
6. Bianchi, Gudmundsson, and Zoega (2001): ε̂, s.e.(ε̂): average percent change in earnings

for men and women weighted by observations (columns 1—4 of Table 6) divided by the percent
change in the net-of-tax rate. Standard error computed from the standard errors reported for
the changes in earnings. I interpret this estimate as an intensive margin elasticity because
Table 6 conditions on work in 1986 and tax rates were generally lower in 1987 and 1988 than
in 1986. I take this to be a compensated elasticity because Bianchi, Gudmundsson, and Zoega
argue that income effects are small on page 1565—6, although this is somewhat tenuous. Note
that the elasticity estimates provided by the authors are computed using average rather than
marginal tax rates, necessitating use of the computation described above. ∆ log(1 − τ): log
change from tax rate of 0 in 1987 to 0.3875, which is an average of the flat tax in 1988 and the
mean of the top marginal tax rate and bottom marginal tax rate in 1986 reported in Table 1
because the change in earnings estimate compares 1987 to the average earnings in 1986 and
1988.

7. Gruber and Saez (2002): ε̂, s.e.(ε̂): average of the estimates in column 2 of Table 9 for
individuals with taxable income between $10,000 and $50,000 and those with taxable income
between $50,000 and $100,000. These estimates are compensated elasticities, as Gruber and
Saez note on page 20 that income effects are essentially zero in their sample. ∆ log(1 − τ):
defined as 2× SD of the change in log net-of-tax-rate and computed separately for columns 3
and 4 of Table 3 using the means and standard deviations for each year. The two estimates
of ∆ log(1 − τ) are then averaged in the same way as in the elasticity calculation described
above.

8. Saez (2004): ε̂, s.e.(ε̂): Table 7B, column 6 for the top 5 to 1 percent of tax units.
Note that Saez uses gross income, not taxable income. I interpret his estimate as an intensive
margin elasticity because his sample consists of repeated cross sections of workers and because
the extensive margin is unlikely to be important for the top 5 to 1 percent of tax payers. I
interpret this estimate as a compensated elasticity following the aforementioned evidence from
Gruber and Saez (2002) that income effects are small. ∆ log(1 − τ): defined as 2 × SD of
the log net-of-tax-rate for the top 5 to 1 percent of tax units listed in column 8 of Table 5.

9. Jacob and Ludwig (2008): ε̂: authors report that head of households’quarterly earnings
conditional on working changed by $228 from a control mean of $5,558 in Table 3. As with Eissa
and Hoynes, I calculate how much income would have changed absent the grant worth $6,860
(page 9) in order to compute a compensated wage elasticity. Jacob and Ludwig do not report
the effect of unearned income on earnings, so I use an estimate from Imbens, Rubin, and Sacer-
dote (2001), who report in Table 4, specification V, col. 1 a marginal propensity to earn out of
unearned income (MPE) of -0.114 with a standard error of 0.015. In an earlier version, Imbens,
Rubin, and Sacerdote (1999) reported earnings and participation elasticities of “around”-0.20
and -0.14 respectively, so I assume an intensive MPE of d[wl]

dY = −0.114(1− 0.14
0.20) = −0.034. On

a quarterly basis, the grant should have lowered earnings by −0.0346860
4 = 58.65. Dividing the

change in earnings absent the grant by the tax change gives an uncompensated elasticity of
log(5558−228+58.65)−log(5558)

log 1−log(1−0.3) = 0.086. ε̂ = ε̂u − d[wl]
dY = 0.086 + 0.034 = 0.121. s.e.(ε̂): Assuming

that the standard error on the intensive MPE is proportional to the error on the total MPE,
and that the change in income due to the grant is measured without error, then the standard
error is 0.031. ∆ log(1 − τ): MTR changed from 0 to 0.30 for those receiving the housing
voucher as described in footnote 29; log(1)− log(1− 0.3) = 0.36.

10, 11. Gelber (2010): ε̂, s.e.(ε̂): Table 3, column 1 for men and column 2 for women.
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These estimates use earned income since it is less susceptible to manipulation than taxable
labor income. These estimates presumably reflect primarily intensive margin responses since
the extensive margin is unlikely to be important for the high income group affected by the
change in top bracket tax rates. ∆ log(1− τ): percent change in net-of-tax rate from 1989 to
1991 for the highest tax brackets reported in Table 1.

12. Saez (2010): ε̂, s.e.(ε̂): Table 2, row 1 of column 6 for wage earners with two or more
children. ∆ log(1− τ): change in NTR at first kink in the EITC benefit schedule from 1995
to 2004.

13, 14. Chetty et al. (2011a): ε̂, s.e.(ε̂): observed elasticities at middle and top kinks,
calculated using equation 6 in Chetty et al. (2011a) as b/K∆ log(1 − τ). In this equation,
K is the location of the tax bracket cutoff (DKr 164,300 for the middle tax and DKr 267,600
for the top tax). The estimated excess mass at the kink (b) is 1.79 (s.e. 0.05) for married
women at the top kink (Figure IIIb) and 0.06 (s.e. 0.03) at the middle kink (Figure VIa).
∆ log(1− τ): size of tax changes at the middle and top tax kinks as reported in Figure II.

15. Chetty et al. (2011a): ε̂, s.e.(ε̂): Table 2, col 1. ∆ log(1 − τ): defined as 2 × SD of
the changes in the log net-of-tax rate reported in the last row of Table 1, col 1.

C. Top Income Elasticities
16. Feldstein (1995): ε̂: high minus medium tax rate specification in Table 2. For this and

other studies based on TRA86, I follow the literature in interpreting elasticties as compensated
elasticities because the reform was revenue neutral (Feldstein 1999). s.e.(ε̂): not reported by
Feldstein (1995). For a rough estimate, rescaling the standard error cited by Feldstein on
page 566 for Auten and Carroll (1994) by the ratio of sample sizes in the two studies yields:
s.e.(ε̂)= 0.15

√
14425/3735 = 0.295. ∆ log(1 − τ): reported in Table 2 for the high tax rate

group.
17. Auten and Carroll (1999): ε̂, s.e.(ε̂): Table 2, Col 6. ∆ log(1 − τ): reported by

Goolsbee (1999) for the highest income group in Table 3, row C for 1985 to 1989 because
TRA86 “provided tax variation mostly at the top of the income scale, so that their overall
estimates are identified primarily by reactions of high income taxpayers”(Gruber and Saez
2002, pg 24-25).

18. Goolsbee (1999): ε̂, s.e.(ε̂): Table 4, column 1. ∆ log(1− τ): Table 3, row C for 1985
to 1989 based on the quote above.

19. Saez (2004): ε̂, s.e.(ε̂): Table 3C, column 3 for the top 1 percent of tax units. Note
that Saez uses gross income, not taxable income. I interpret his estimate as an intensive
margin elasticity because his sample consists of repeated cross sections of workers and because
the extensive margin is unlikely to be important for the top 1 percent of tax payers. I interpret
this estimate as a compensated elasticity following the aforementioned evidence from Gruber
and Saez (2002) that income effects are small. ∆ log(1 − τ): defined as 2 × SD of the log
net-of-tax-rate for the top 1 percent of tax units listed in column 3 of Table 5.

20. Kopczuk (2010): ε̂, s.e.(ε̂): Table 9, second panel, col (1), 2002-2005, with standard
error imputed from the reported t-statistic. This is a compensated elasticity following Gruber
and Saez (2002) equation 2. ∆ log(1− τ): reported on page 17.

D. Macro/Cross-Sectional
21. Prescott (2004): ε̂, s.e.(ε̂): calculated by regressing log hours per worker on log net-

of-tax rates using OECD data reported by Prescott in Table 2 on hours per adult, which are
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converted to hours per worker using labor force participation rates from OECD Stat Extracts.33

The data on labor force participation rates are missing for Canada and the U.K. in the 1970’s
and these observations are therefore excluded. The elasticity estimate can be interpreted as a
compensated labor supply elasticity if government expenditure is viewed as unearned income
in the aggregate. ∆ log(1− τ): defined as 2× SD of the change in log net-of-tax rate for the
12 observations with non-missing data on hours per employed person.

22. Davis and Henrekson (2005): ε̂: computed using log differences in annual hours per
employed adult based on the slope coeffi cient in Table 2.3 (middle panel, Sample C) and
the sample means of annual hours per employed person and tax rates in Table 2.1 for the
corresponding sample. The elasticity estimate can be interpreted as a compensated labor
supply elasticity if government expenditure is viewed as unearned income in the aggregate.
s.e.(ε̂): calculated from the standard error reported for the slope coeffi cient in Table 2.3 (middle
panel, Sample C). ∆ log(1 − τ): computed as 2 × SD of log one minus sum of tax rates for
the 19 countries in Sample C.34

23. Blau and Kahn (2007): ε̂: computed from intensive margin (with selection correction)
elasticities reported in Table 6, defining the income elasticity as the elasticity of women’s hours
with respect to husband’s wages and using the Slutsky equation to compute compensated
elasticities in corresponding fashion. Mean values of wl and y are from Table A2 and A3.
I report an unweighted average of the elasticities from Model 1 for each of the three time
periods. s.e.(ε̂): calculated from the standard error reported for the regression coeffi cients in
Table 7 of NBER Working Paper 11230. ∆ log(1 − τ): defined as 2 × SD of log wage rates
because the study effectively exploits cross-sectional variation in wage rates for identification;
the instruments used in Table 6 correct only for measurement error. The standard deviation
of log wages for married women is not reported, and is therefore taken from Rothstein (2008),
who reports a value of 0.50 in col. 4 of Table 1 for married women in 1992/3. This estimate
is consistent with other published estimates of the standard deviations of women’s log wages
in the CPS (e.g., Blau and Kahn 2000, Card and DiNardo 2002).

Appendix C: Sources and Calculations for Extensive Margin Studies in Table 2

This appendix describes the sources of the values in Columns 3-4 of Table 2 for each study.
For studies 1-9, the elasticity estimates (η̂) in column 3 are taken from Table 1 in Chetty et
al. (2011b), and details on the sources of these estimates are given in Appendix B of that
paper. I follow the same methods as in Appendix B to calculate ∆ log(1 − τ), defined here
as the change in the net-of-average tax rate. The papers used for the analysis along with
comprehensive documentation of the calculations are available at:
http://obs.rc.fas.harvard.edu/chetty/bounds_opt_meta_analysis.zip

A. Quasi-Experimental Elasticities
33Data are for men and women aged 15-64 for 1970-1974 and 1993-1996 in order to

match Prescott’s data. Data are available from OECD Stat Extracts at the following URL:
http://stats.oecd.org/Index.aspx?DataSetCode=LFS_SEXAGE_I_R
34Data are for 1995 for all countries except New Zeland and Australia for which I use 1986 and 1985 values

following Davis and Henrekson’s data appendix. Austria is excluded because Davis and Henrekson exclude it
from Sample C. The variable of interest in the data set is tw which stands for “tax wedge.” See Davis and
Henrekson for more details. The mean (0.496 vs. 0.500) and standard deviation (0.14 vs. 0.133) reported for
Sample C in Table 2.1 differs slightly from those used in this calculation. The data were accessed from the .zip
appendix at the following URL: http://cep.lse.ac.uk/pubs/number.asp?number=502
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1. Eissa and Liebman (1996):∆ log(1−τ): Meyer and Rosenbaum (2000) use the same data
source and in Table 2 calculate the financial gain from working for single mothers in 1990 as
$8,458, compared with $7,469 in 1984. I therefore define ∆ log(1− τ) = log(8458)− log(7469).

2. Graversen (1998): ∆ log(1− τ): Table 3 reports level changes in employment rates and
participation elasticities, from which I back out ∆ log(1− τ) = (∆θ/θ)/η̂, where ∆θ = −0.031
is the estimated change in employment rates for single women, θ = 0.7 is the mean employment
rate for single women using an average of the six participation rates in Table 2 weighted by
sample sizes, and η̂ = −0.174 is the elasticity estimate reported in Table 3.

3. Bianchi, Gudmundsson, and Zoega (2001): ∆ log(1 − τ): defined as the log difference
in one minus the average tax rate of 0 in 1987 to 0.1125, which is an average of the 1986 and
1988 average tax rates reported in Table 1.

4. Meyer and Rosenbaum (2001): ∆ log(1 − τ): see discussion of study 4 in Chetty et al.
(2011b), who define ∆ log(1 − τ) = 45% after accounting for taxes and transfers as in Meyer
and Rosenbaum (2000, pg. 1043).

5. Eissa and Hoynes (2004): ∆ log(1− τ): Meyer and Rosenbaum (2000, pg. 1043) report
a tax change of 45% from 1984 to 1996 for the group studied by Eissa and Hoynes.

6. Liebman and Saez (2006) :∆ log(1− τ): defined as log(1− 0.419)− log(1− 0.31) based
on the change in tax rates reported on pages 10—11 for OBRA93.

7. Jacob and Ludwig (2008): ∆ log(1−τ): MTR changed from 0 to 0.30 for those receiving
the housing voucher as described in footnote 29; log(1)− log(1− 0.3) = 0.36.

8. Blundell, Bozio, and Laroque (2011): ∆ log(1− τ): defined as 2× SD of log net-of-tax-
rates for participation. Standard deviation of 0.37 obtained from personal correspondence
with authors.

B. Macro/Cross-Sectional Elasticities
9. Nickell (2003): η̂: computed using the average point estimate of 2 percent (reported

on page 8) and the sample means of employment rates and tax rates from Tables 1 and 2,
respectively. ∆ log(1 − τ): defined as 2 × SD of log net-of-tax-rates using values listed in
Table 2.

10. Prescott (2004): η̂: calculated by regressing log labor force participation rates from
OECD Stat Extracts on log net-of-tax rates using the same sample of countries and years as
Prescott.35 The data on tax rates is taken from Table 2 of Prescott (2004). The data on
labor force participation rates are missing for Canada and the U.K. in the 1970’s and these
observations are therefore excluded. ∆ log(1 − τ): defined as 2 × SD of the change in log
net-of-tax rate for the 12 observations with non-missing data on labor force participation rates.

11. Davis and Henrekson (2005): η̂: computed using the log difference in employment
based on the slope coeffi cient in Table 3 (bottom panel, Sample C) and the sample means of
labor force participation and tax rates in Table 1 for the corresponding sample. ∆ log(1− τ):
computed as 2× SD of log one minus sum of tax rates for the 19 countries in Sample C.

12. Blau and Kahn (2007): ∆ log(1 − τ): defined as 2 × SD of log wages, calculated as
described in study 23 in Appendix B above.

35Data are for men and women aged 15-64 for 1970-1974 and 1993-1996 in order to
match Prescott’s data. Data are available from OECD Stat Extracts at the following URL:
http://stats.oecd.org/Index.aspx?DataSetCode=LFS_SEXAGE_I_R
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FIGURE 1
Choice Set in a δ Class of Models
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NOTE–This figure illustrates the choice set Xp t ,δ in a δ class of models when there is no heterogeneity across agents and δ = 1%

and a i,t= a = exp3.5. The blue curve plots flow utility ux t = 100 − p tx t+a log x t with log p t= 1. The set of demand levels that

yield utility within 0.01p tx
∗p t dollars of the maximum is shown by the red interval on the x axis.



FIGURE 2
Identification with Optimization Frictions
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NOTE–This figure plots the choice sets at two price levels, XpA ,δ and XpB ,δ, with log pA= 1 and log pB= 1.2. In Panel A,

 = 1; in Panel B,  = 0. All other parameters are specified as in Figure 1. The dashed blue line shows the optimal demand

x∗p t. The black lines in Panel A illustrate some of the responses (logxBpB − log xApA) that may be observed for a price

increase from pA to pB with a structural elasticity of  = 1 and frictions of δ = 1% .



FIGURE 3
Bounding the Structural Elasticity with Optimization Frictions
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b) Lower Bound on Structural Elasticity

NOTE–The solid black line in each panel depicts the observed demand response for a price increase from pA to pB with an observed

elasticity ̂ = 0.3, log pA= 1, and logpB= 1.4. Panel A depicts the highest structural elasticity, U= 1, that could have generated

this observed response with δ = 1%. The dashed blue line depicts the optimal demand x∗p t with  = 1. Panel B analogously

depicts the lowest structural elasticity, L= 0.1, that could have generated the same observed response.



FIGURE 4
Bounds on Structural Elasticities as a Function of Observed Elasticities
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NOTE–This figure plots the bounds on the intensive margin structural elasticity L ,U vs. ̂ with δ = 1% frictions and

Δ logp = 20% (Panel A) and Δ logp = 40% (Panel B). The bounds are computed using Proposition 1.



FIGURE 5
Tax Reform Act of 1986
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c) Utility Cost of Ignoring Tax Change (% of net earnings)
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NOTE–These figures are based on the Tax Reform Act of 1986. The x axis in all the figures is gross earnings in the year prior to the

reform. Panel A shows how marginal tax rates changed between 1985 and 1988 for single filers with two children. Panel B plots

the utility cost Δu i , measured in dollars, from failing to reoptimize labor supply on the intensive margin in response to the tax

change with  = 0.5. Panel C plots the same utility cost as a percentage of net-of-tax earnings (Δu i,%), defined as the dollar cost in

Panel B divided by the agent’s optimal net-of-tax earnings in 1988. Panel D shows the change in gross earnings (wl i,1988
∗ −wl i,1985

∗ )

required to reoptimize relative to the tax change. In Panels B-D, the dashed blue line (right y axis) replicates the log change in the

net-of-tax rate (1-MTR) shown in Panel A.



FIGURE 6
Utility Cost of Ignoring Tax Changes by Year
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NOTE–These figures plot the utility cost of ignoring changes in taxes over three-year periods from the 1970 to 2006 for selected

percentiles of the household income distribution. Panel A shows the utility cost of failing to reoptimize labor supply on the intensive

margin (Δu i,t,%) with a structural intensive-margin elasticity of  = 0.5, calculated as in Figure 5c. In each year y, the point that is

plotted shows the utility loss (as a percentage of optimal net-of-tax earnings in year y) from choosing labor supply optimally

according to the tax system in year y − 3 instead of year y. Panel B depicts the percentage utility cost (Δu i,t,ext,%) of failing to

reoptimize labor supply on the extensive margin in year y for the marginal agent in year y − 3. This is the agent whose disutility of

working b i made him indifferent between working and not working in y − 3. The utility cost Δu i,t,ext,% is measured as a percentage

of net-of-tax earnings when working in year y, as in Corollary 2.



FIGURE 7
Bounds on Intensive-Margin Hicksian Labor Supply Elasticities with δ = 1%
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NOTE–The red intervals show the bounds on the structural intensive-margin Hicksian elasticity  implied by each of the studies

with corresponding numbers listed in Table 1. The blue squares show the point estimate of each study. The x axis is the log change

in the net of tax rate (Δ log1 − τ) used for identification in each study. Papers with Δ log1 − τ < 20% are excluded from this

figure for scaling purposes. The shaded region shows the range of structural elasticities consistent with all the observed elasticities

in Panels A-D of Table 1, the unified bounds of 0.47,0.51. When only studies 1-15 (Panels A and B) are used, the unified

bounds are 0.28,0.54.



FIGURE 8
Unified Bounds on Hicksian Intensive-Margin Elasticity vs. Degree of Frictions
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NOTE–This figure shows how the unified bounds on the structural intensive-margin elasticity  vary with the level of frictions δ.

The solid red lines plot the unified bounds implied by the studies in Panels A and B of Table 1. These unified bounds are defined

only for δ > δmin= 0.5% because δ’s below this threshold cannot reconcile the observed elasticities. The dashed red lines show a

95% confidence interval for the unified bounds.



FIGURE 9
Utility Costs of Ignoring the Clinton EITC Expansion
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NOTE–These figures are based on the Clinton EITC Expansion enacted between 1993 and 1996. Panel A considers the intensive

margin. The x axis is gross earnings in the year prior to the reform. The dashed blue line (right y axis) shows the log change in the

net-of-marginal-tax rate (1-MTR) from 1993-1996 for single filers with two children. The solid red line plots the utility cost as a

percentage of optimal net-of-tax earnings in 1996 (Δu i,1996,%) from failing to reoptimize hours of work in response to the tax change

when  = 0.5. Panel B considers the extensive margin. The dashed blue line (right y axis) shows the log change in the

net-of-average-tax rate (1-ATR) from 1993-1996 for single filers with two children. The solid red line plots the utility cost

(Δu i,1996,ext,%) of failing to enter the labor force in 1996 for the marginal agent who chose not to work at each earnings level in

1993. This is this agent whose disutility of working b i made him indifferent between working and not working in 1993 at the gross

earnings level shown on the x axis. The utility cost Δu i,1996,ext,% is measured as a percentage of net-of-tax earnings when working

in 1996.



FIGURE 10
Bounds on Extensive-Margin Hicksian Labor Supply Elasticities with δ = 1%
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NOTE–The red intervals show the bounds on the structural extensive-margin Hicksian elasticity  implied by each of the studies

with corresponding numbers listed in Table 2. The blue squares show the point estimate of each study. The x axis is the log change

in the net of tax rate (Δ log1 − τ) used for identification in each study. Papers with Δ log1 − τ < 20% are excluded from this

figure for scaling purposes.



FIGURE 11
Gains from Bunching at Kinks in 2006 Tax Schedule
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NOTE–The dashed blue curve shows the 2006 marginal tax rate schedule in the U.S. The solid grey curve shows the distribution of

taxable income predicted by the frictionless labor supply model with  = 0.5. This curve assumes a uniform distribution of a i and

plots an Epanechnikov kernel density of the simulated earnings distribution with a bandwidth of $1000. The numbers near each

convex kink are the utility gain as a percentage of optimal net-of-tax earnings (Δu%) from locating at that kink when  = 0.5. To

compute Δu% at a given kink, I first define Δu i,% as the utility gain for an individual with taste parameter a i from locating at that

kink relative to optimizing under the (incorrect) assumption that the tax rate in the previous bracket continues into the next bracket.

I then define Δu% as the unweighted mean of Δu i,% over all individuals whose a i would make it optimal for them to locate at that

kink. The first two kinks (1.84% and 0.71%) correspond to the end of the phase-in and start of the phase-out regions of the EITC.



Study Identification s.e. log(1-)
(1) (2) (3) (4) (5) (6) (7) (8) (9)

A. Hours Elasticities
1. MaCurdy (1981) Lifecycle wage variation, 1967-1976 0.15 0.15 0.39 0.03 0.80 0.04 1.20
2. Eissa and Hoynes (1998) U.S. EITC Expansions, 1984-1996, Men 0.20 0.07 0.07 0.00 15.29 0.00 15.51
3. Eissa and Hoynes (1998) U.S. EITC Expansions, 1984-1996, Women 0.09 0.07 0.07 0.00 15.07 0.00 15.30
4. Blundell, Duncan, and Meghir (1998) U.K. Tax Reforms, 1978-1992 0.14 0.09 0.23 0.01 1.78 0.00 2.04
5. Ziliak and Kniesner (1999) Lifecycle wage, tax variation 1978-1987 0.15 0.07 0.39 0.03 0.80 0.00 0.99

Mean observed elasticity 0.15
B. Taxable Income Elasticities
6. Bianchi, Gudmundsson, and Zoega (2001) Iceland 1987 Zero Tax Year 0.37 0.05 0.49 0.15 0.92 0.10 1.04
7. Gruber and Saez (2002) U.S. Tax Reforms 1979-1991 0.14 0.14 0.14 0.00 4.42 0.00 4.84
8. Saez (2004) U.S. Tax Reforms 1960-2000 0.09 0.04 0.15 0.00 3.51 0.00 3.64
9. Jacob and Ludwig (2008) Chicago Housing Voucher Lottery 0.12 0.03 0.36 0.02 0.84 0.01 0.92
10. Gelber (2010) Sweden, 1991 Tax Reform, Women 0.49 0.02 0.71 0.28 0.86 0.25 0.91
11. Gelber (2010) Sweden, 1991 Tax Reform, Men 0.25 0.02 0.71 0.12 0.54 0.10 0.59
12. Saez (2010) U.S., 1st EITC Kink, 1995-2004 0.00 0.02 0.34 0.00 0.70 0.00 0.77
13. Chetty et al. (2011a) Denmark, Married Women, Top Kinks, 1994-2001 0.02 0.00 0.30 0.00 0.93 0.00 0.94
14. Chetty et al. (2011a) Denmark, Middle Kinks, 1994-2001 0.00 0.00 0.11 0.00 6.62 0.00 6.62
15. Chetty et al. (2011a) Denmark Tax Reforms, 1994-2001 0.00 0.00 0.09 0.00 9.88 0.00 9.89

Mean observed elasticity 0.15
C. Top Income Elasticities
16. Feldstein (1995) U.S. Tax Reform Act of 1986 1.04 0.26 0.37 2.89
17. Auten and Carroll (1999) U.S. Tax Reform Act of 1986 0.57 0.12 0.37 0.21 1.53 0.11 1.81
18. Goolsbee (1999) U.S. Tax Reform Act of 1986 1.00 0.15 0.37 0.47 2.14 0.32 2.47
19. Saez (2004) U.S. Tax Reforms 1960-2000 0.50 0.18 0.30 0.14 1.77 0.03 2.21
20. Kopczuk (2010) Poland, 2002 Tax Reform 1.07 0.22 0.30 0.44 2.58 0.24 3.09

Mean observed elasticity 0.84
D. Macro/Cross-Sectional
21. Prescott (2004) Cross-country Tax Variation, 1970-1996 0.46 0.09 0.42 0.18 1.20 0.10 1.41
22. Davis and Henrekson (2005) Cross-country Tax Variation, 1995 0.20 0.08 0.58 0.07 0.57 0.01 0.76
23. Blau and Kahn (2007) U.S. wage variation, 1980-2000 0.31 0.004 1.00 0.19 0.51 0.18 0.52

Mean observed elasticity 0.32
Unified Bounds Using Panels A and B: 0.28 0.54 0.23 0.61

Minimum- Estimate 0.33
Unified Bounds Using All Panels: 0.47 0.51 0.23 0.53

Minimum- Estimate 0.50

TABLE 1
Bounds on Intensive Margin Hicksian Labor Supply Elasticities with = 1% Frictions

95% CI

Note: This table shows bounds on structural intensive margin Hicksian elasticities using estimates from existing studies.  Column 3 shows the point estimate of the observed elasticity, column 4 
shows the associated standard error, and column 5 shows the size of the net-of-marginal-tax wage change used for identification.  Columns 6 and 7 show the lower and upper  bounds on the 
structural elasticity, calculated using Proposition A1.  Columns 8 and 9 give the lower and upper bounds implied by the corresponding endpoints of the 90% confidence interval for the elasticity 
estimates.  See Appendix B for sources and details underlying calculations in columns 3-5.

−min:

−min:

  L LU U



Study Identification ∆log(1-τ)

(1) (2) (3) (4) (5) (6)

A. Quasi-Experimental Estimates

1. Eissa and Liebman (1996) U.S. EITC Expansions 1984-1990, Single Mothers 0.30 0.12 0.26 0.36

2. Graversen (1998) Denmark 1987 Tax Reform, Women 0.24 0.25 0.22 0.26

3. Bianchi, Gudmundsson, and Zoega (2001) Iceland 1987 Zero Tax Year 0.42 0.12 0.36 0.50

4. Meyer and Rosenbaum (2001) U.S. Welfare Reforms 1985-1997, Single Women 0.43 0.45 0.41 0.45

5. Eissa and Hoynes (2004) U.S. EITC expansions 1984-1996, Low-Income Married Men and Women 0.15 0.45 0.14 0.16

6. Liebman and Saez (2006) U.S. Tax Reforms 1991-1997, Women Married to High Income Men 0.15 0.17 0.13 0.17

7. Jacob and Ludwig (2008) Chicago Housing Voucher Lottery 0.18 0.36 0.17 0.19

8. Blundell, Bozio, and Laroque (2011) U.K. Tax Reforms 1978-2007, Prime-age Men and Women 0.30 0.74 0.29 0.31

Mean observed elasticity 0.27

B. Macro/Cross-Sectional

9. Nickell (2003) Cross-country Tax Variation, 1961-1992 0.14 0.54 0.13 0.15

10. Prescott (2004) Cross-country Tax Variation, 1970-1996 0.25 0.42 0.24 0.26

11. Davis and Henrekson (2005) Cross-country Tax Variation, 1995 0.13 0.58 0.13 0.13

12. Blau and Kahn (2007) U.S. Wage Variation 1989-2001, Married Women 0.41 1.00 0.40 0.41

Mean observed elasticity 0.23

Bounds on Extensive-Margin Hicksian Labor Supply Elasticities with  δ = 1% Frictions

Note: This table shows bounds on structural extensive margin Hicksian elasticities using estimates from existing studies.  Column 3 shows the point estimate of the observed elasticity and column 4 shows the 

size of the net-of-average-tax wage change used for identification.  Columns 5 and 6 show the lower and upper bounds on the structural elasticity, calculated using Proposition 2.  See Appendix C for sources 

and details underlying calculations in columns 3-4.
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TABLE 3

Frisch Elasticities Implied by Hicksian Elasticity of 0.33

Income Effect: -d [wl* ]/dY

0.00 0.11 0.22 0.33 0.44 0.55 0.66

0.00 0.33 0.33 0.33 0.33 0.33 0.33 0.33

0.20 0.33 0.34 0.35 0.36 0.38 0.41 0.44

0.40 0.33 0.34 0.36 0.39 0.43 0.49 0.55

EIS 0.60 0.33 0.34 0.37 0.42 0.48 0.56 0.66

 (ρ) 0.80 0.33 0.35 0.38 0.44 0.53 0.64 0.77

1.00 0.33 0.35 0.39 0.47 0.58 0.71 0.88

1.20 0.33 0.35 0.41 0.50 0.63 0.79 0.99

1.40 0.33 0.35 0.42 0.53 0.67 0.87 1.10

Note: This table shows the intensive margin Frisch elastictity implied by various combinations of the EIS and 

income effect.  The calculations assume that the ratio of wealth to earned income is A/wl* = 1.26 (Dynan 2009) 

and the intensive margin Hicksian (compensated) elasticity is ε = 1/3 (Table 1).  Values within the dashed lines 

are consistent with evidence that the EIS≤1 and the uncompensated labor supply elasticity is positive.  The 

values are computed using the equation εF =ε+ρ(d [wl* ]/dY )²(A/wl* ).


