
Comonotonic Proper Scoring Rules to

Measure Ambiguity and Subjective Beliefs

Amit Kothiyal, Vitalie Spinu, & Peter P. Wakker ∗

Econometric Institute, Erasmus University,

P.O. Box 1738, Rotterdam, 3000 DR, the Netherlands

August, 2010

Abstract

Proper scoring rules serve to measure subjective degrees of belief. Traditional

proper scoring rules are based on the assumption of expected value maximiza-

tion. There are, however, many deviations from expected value, primarily due

to risk aversion. Correcting techniques have been proposed in the literature for

deviations due to nonlinear utility. These techniques still assumed expected util-

ity maximization. More recently, corrections for deviations from expected utility

have been proposed. The latter concerned, however, only the quadratic scoring

rule, and could handle only half of the domain of subjective beliefs. Further, be-

liefs close to 0.5 could not be discriminated. This paper generalizes the correcting

∗This paper, especially Section 2, is based on the plenary lecture “Extracting Knowledge Using Deci-

sion Principles: Proper Scoring Rules Reconsidered from the Perspective of Modern Decision Theories,”

by Peter P. Wakker, October 21 2009, ADT (1st International Conference on Algorithmic Decision The-

ory), Venice, Italy.
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techniques to all bounded proper scoring rules, covers the whole domain of be-

liefs and, in particular, can discriminate between all degrees of belief. Thus we

fully extend the properness requirement (in the sense of identifying all degrees of

subjective beliefs) to all models that deviate from expected value.

Keywords: proper scoring rules, subjective beliefs, ambiguity, nonexpected utility

1 Introduction

Proper scoring rules are cleverly devised optimization problems that serve to efficiently

measure subjective degrees of beliefs. Their original introduction, and almost exclusive

use up to today, assumed expected value maximization. However, numerous deviations

from expected value have been documented, due to risk aversion and other factors.

Winkler & Murphy (1970) analyzed deviations due to risk aversion, but still assumed

expected utility (with risk aversion then captured by nonlinear, concave, utility). In view

of the many deviations from expected utility (Starmer 2000; Gilboa 2004), Offerman et

al. (2009; abbreviated OSVW henceforth) extended Winkler & Murphy’s analysis to also

incorporate the latter deviations.

The purpose of OSVW was to analyze the most popular proper scoring rule, the

quadratic one, as it is mostly applied, so as to clarify what problems arise in those

applications according to modern decision theories. OSVW provided corrections for

those existing applications as good as possible. Some problems, however, are impossible

to resolve for traditional proper scoring rules once expected utility is abandoned. These

problems are discussed in detail in Sections 4 and 7. They were pointed out by OSVW

(Appendix A and p. 1483 penultimate paragraph). In brief, the first problem is that

a function W , from which beliefs will be derived, can be measured only on half of the
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domain, being only the events that are more likely than their complements. Without

further assumptions, we cannot observeW for events less likely than their complements.

We call this first problem the half-domain problem, or the H-problem.

The second problem is that traditional proper scoring rules lose their discriminatory

power for subjective beliefs around 0.5. That is, there is an interval of degrees of belief

around 0.5 where the scoring rules give the same optimal reported probability (“fifty-

fifty”) for all those degrees of belief. The latter phenomenon, theoretically predicted by

nonexpected utility, is confirmed by empirical studies. A common finding there is that

a large proportion of reported beliefs is exactly 0.5. It is not plausible that there will

be so many true beliefs of exactly and precisely 0.5 at exactly the event considered. It

is more plausible that people with true beliefs in a considerably region around 0.5 all

report 0.5. The level of 0.5 serves as a magnet so to say (Andersen et al. 2009). Then

a reported probability of 0.5 relates to many degrees of true belief, and cannot be used

to uniquely find back the true belief. If properness is taken to mean that all degrees of

belief can be identified, then traditional scoring rules are not even proper under theories

more general than expected value, strictly speaking, because they cannot discriminate

between the aforementioned degrees of belief around 0.5. We call the second problem

the identification-problem, or the I-problem.

Regarding the H-problem, OSVW specified a symmetry condition for beliefs (binary

additivity, p. 1484) under which measurements from the half of the domain that can

be covered give information about the other half. They used this in their experiment

(p. 1470, 2nd paragraph; see also the symmetry about 0.5 in their Figure 1, or in our

Figure 4 below). If binary additivity is violated, however, then half of the domain remains

unobservable (see OSVW’s p. 1484). Regarding the I-problem, in OSVW’s experiment,
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the lack of discriminatory power around 0.5 did not occur prominently (end of Section

8.1.1). OSVW suggested a modification that can avoid the loss of half of the domain

also if binary additivity is violated (their Appendix A), but left its examination to future

studies. This paper provides an analysis of their suggestion and gives generalizations.

We do not focus on the proper scoring rules that have been most popular in appli-

cations so far, as OSVW did. We instead analyze general proper scoring rules. The

theoretical results of OSVW for quadratic scoring rules are extended to general proper

scoring rules, and nontraditional scoring rules are presented that avoid the aforemen-

tioned problems. Consequently, the latter scoring rules extend properness from expected

value to general decision models. They are truly proper in the sense of fully identify-

ing subjective beliefs (including ambiguity) over their whole domain, for most currently

popular decision models.

The main contribution of OSVW was to propose a correction of traditional proper

scoring rules for violations of expected value (risk neutrality) that works on the half

of the domain where their scoring rule is proper. They called this correction the risk

correction. The cause underlying the aforementioned problems is that classical proper

scoring rules do not satisfy Schmeidler’s (1989) condition called comonotonicity. We

extend their correction to the whole domain of beliefs mainly by ensuring that Schmei-

dler’s comonotonicity is satisfied. The latter can be seen to preserve ranks of events.

Hence, our method will be called the rank correction.

Section 2 describes some history on proper scoring rules from a personal perspective.

Basic definitions are in Section 3, with an example illustrating the difficulties of classical

proper scoring rules under nonexpected utility in Section 4. This example also suggests

the direction of solution. Section 5 presents the main theorems of this paper, general-
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izing results of OSVW. Section 6 shows how these theorems can be applied to measure

subjective beliefs in a tractable manner, as in OSVW needing no utility measurement

but, unlike OSVW, giving full discrimination. A discussion is in Section 7, and Section

8 concludes.

2 Proper scoring rules as the most appealing multi-

criteria optimization problem; history and exam-

ple

This section is less formal than the rest of this paper, and is close to the lecture referred

to in the opening footnote. It can be skipped by readers only interested in theory or

applications. To take an example examined in this paper, assume that you want to

know very precisely how likely it is according to a weather forecaster that it will rain

tomorrow. You can simply ask directly, such as “What is your subjective probability

of rain tomorrow?” The event of rain tomorrow is denoted E. Problems are, first,

that many people cannot or will not relate to subjective probabilities, especially for

unique one-shot events as rain on the calendar day that tomorrow is. Second, even if

the forecaster understands and accepts the concept of subjective probability, there may

be no clear incentive for her to give a meaningful and truthful answer.

To find out about the ideas of the weather forecaster, we turn to what we consider

the most appealing multicriteria optimization problem presently existing. Imagine that

we ask the weather forecaster to choose a number r between 0 and 1, telling her that

she will be rewarded by 1− (1− r)2 if E (rain tomorrow), and by 1− r2 if no rain. This

rewarding scheme is called the quadratic scoring rule. The problem presented to the
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weather forecaster entails a two-attribute optimization problem. The weather forecaster

would like to choose r so as to maximize both the outcome (1 − (1 − r)2) under E and

the outcome (1− r2) under the complementary event Ec. The former outcome increases

in r and the second one decreases in r, so that tradeoffs between the two attributes have

to be made, as in all nontrivial multicriteria optimization problems. What is an optimal

choice of r for the weather forecaster?

Imagine that the weather forecaster has a subjective probability p of rain tomorrow,

consciously or subconsciously. Assume that she maximizes expected value; i.e., expected

value is her goal function (possibly in an “as if” sense). Then r is chosen so as to

maximize

p(1− (1− r)2) + (1 − p)(1− r2).

The first-order optimality condition is

2p(1 − r)− 2r(1 − p) = 0,

implying

r = p. (1)

The algebra is so simple that the readers may wonder why we claim that proper scor-

ing rules constitute the most appealing multicriteria optimization problem presently

existing. Yet such is our claim. The conceptual implications of the above finding are

breathtaking, as we explain next.

Eq. 1 shows that it is in the self-interest of the weather forecaster (assuming expected

value for now) to truthfully report her subjective probability. Subjective probabilities

describe the subjective degree of belief in cases where a person is not sure and has lack

of information regarding whether event E will happen. All of us lack information in
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virtually all of our decisions. No one knows for sure what the weather will be the next

day, but we have to make decisions contingent on it. That we have degrees of belief, even

to a precise quantitative degree, may seem to be like science fiction. According to many

today, including many frequentist statisticians, subjective probabilities are a nonexisting

and meaningless concept. Proper scoring rules can serve as a powerful antidote against

such views. Not only do subjective probabilities exist for rational decision makers (being

their reported probabilities in proper scoring rules) but even more, they are easy to

measure and to be made observable. To the extent that a strictly frequentist statistician

will not report her true subjective probability in a proper scoring rule she is only

harming herself. Proper scoring rules are, essentially, a devise for reading the minds of

people.

Brier (1950) introduced proper scoring rules. Bruno de Finetti, one of the greatest

thinkers of the past century and the most important contributor to the concept of

subjective probability (de Finetti 1931, 1937), independently invented proper scoring

rules (de Finetti 1962). The independence of his discovery is credible given that he could

not read or speak English in those days. This independence was confirmed by Savage

(1971 p. 783). Further, de Finetti invented many great ideas independently and often

before others who became more known for them later. For example, the famous index

of risk aversion and concave utility, −U ′′/U ′, commonly called the Pratt-Arrow index

of risk aversion after Pratt (1964) and Arrow (1965, 1971), first appeared in de Finetti

(1952, p. 700/701). We can now add a score to his palmares: de Finetti was, together

with Brier, the first neuroeconomist. They could read the minds of people without

needing expensive machines, and they could measure things (degrees of belief) more

interesting than neuronal activities in the brain, as studied by modern neuroeconomics.
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In mainstream economics, private information of an agent that she has but that others

cannot see is often modeled as the type of the agent. The subjective probability of the

weather forecaster can then be taken as her type. Incentive compatible mechanisms are

games where it is in the self-interest of an agent to reveal her true type, and where

the agent has no interest in manipulating and misrepresenting her private information.

Such mechanisms are of great importance for efficiently organizing a society, for instance

for taxation. Given this importance, Hurwicz (1960), Maskin and Myerson received the

2007 ”Nobel” prize in economics for this idea. However, Brier’s (1950) proper scoring

rule preceded Hurwicz (1960) by a decade.

Allowing to read the minds of people, supporting the Bayesian approach to statis-

tics, dominating modern neuroeconomics historically, financially, and outputwise, and

preceding a Nobel prize discovery by 10 years, should be enough to qualify as the most

appealing multi-criteria optimization problem presently existing. Mathematical simplic-

ity for all this is an additional pro. When the third author, as a bachelor’s student, and

exposed to purely frequentist statistics teachers, discovered proper scoring rules through

the inspiring text of Finetti (1962), this determined his academic career.

An interesting application of proper scoring rules is in Tetlock (2005). For many

years he interviewed leading politicians, submitting their opinions to proper scoring

rules. Then, years later, he could draw many interesting conclusions.

3 Basic definitions

Let E denote an event of which it is uncertain whether or not it is true, such as rain

tomorrow. Ec denotes the complement of E. A prospect αEβ is a function from {E,E
c}

to R, assigning outcome α to E and outcome β to Ec. That is, it yields $α if there
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will be rain tomorrow, and $β if there will be no rain tomorrow. Section 2 discussed

proper scoring rules from a normative perspective, under the traditional assumption of

expected value maximization. The rest of this paper analyzes proper scoring rules under

descriptively more realistic models.

Virtually all presently existing decision theories, including expected value and ex-

pected utility, evaluate the prospect αEβ by

If α > β, then αEβ �→W (E)U(α) + (1−W (E))U(β);

If α = β, then αEβ �→ U (α) (= U(β));

If α < β, then αEβ �→W (Ec)U (β) + (1−W (Ec))U (α). (2)

Here U : R→ R is the utility function that is assumed continuously differentiable with

positive derivative everywhere. W , the weighting function, is a set function with 0 ≤

W (E) ≤ 1 for all E and E ⊃ E ′ ⇒ W (E) ≥ W (E ′). When choosing between different

prospects, a decision maker chooses the one that maximizes the above evaluation. We

call this decision model binary rank-dependent utility, abbreviated binary RDU , or just

RDU . If α = β, then the three formulas give the same result.

The different weighting of events under different orderings of outcomes is referred to

as rank dependence. It was Gilboa’s (1987) and Schmeidler’s (1989, first version 1982)

key idea for getting a sound decision theory for nonadditive beliefs. The same basic idea

had been invented independently by Quiggin (1982) for the special case of risk (known

probabilities). W gives the weight of events when they yield the best outcome. A

pessimist will overweight the worst outcome and have lowW values, and for an optimist

it will be the other way around. For two events E,Ec, pessimism means that W (E) +

W (Ec) ≤ 1. It is psychologically plausible that people weigh events differently when the

events yield favorable outcomes than when they yield unfavorable outcomes (Wakker
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2010 Section 6.4). This explains the empirical success of rank-dependent theories.

If W is a probability measure, then the traditional expected utility model results.

Then the formula for α > β agrees with that for α < β in Eq. 2, and both these

formulas can be used for all cases. That is, we then need not invoke rank dependence.

If, further, U is linear then expected value holds.

In view of the many empirical violations of expected utility, several alternative models

have been considered. Virtually all these generalizations of expected utility agree with

binary rank-dependent utility on the domain of two-outcome prospects considered here

(Appendix A). That is, on this domain all theories agree with Schmeidler’s (1989) theory.

Hence, our analysis is valid under all these theories.

Proper scoring rules concern prospects SE(r)ESEc(r). A subject chooses a real num-

ber 0 ≤ r ≤ 1, called reported probability of E, and then receives an outcome depending

not only on r but also on whether or not event E obtains. The functions SE and SEc

describe the dependence on E. This pair of functions, and the prospects SE(r)ESEc(r)

that they generate for each r, are called a scoring rule. We assume that SE and SEc are

continuously differentiable. We also assume that binary rank-dependent utility holds;

i.e., r maximizes the RDU value of SE(r)ESEc(r). Given continuity of the RDU func-

tional and compactness of r’s domain [0, 1], an optimal r always exists. There may in

general exist several optima, in which case one optimum is arbitrarily selected to be the

reported probability r.

DEFINITION 1 A scoring rule is proper if the unique optimal value of r is pwhenever: U

is linear andW is a probability measure withW (E) = p (expected value maximization).1

�

1Our formal definition is the same as the classical definition, with properness only referring to

expected value maximization. This paper shows in fact how such rules can be extended to larger classes
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Section 1 presented an example of a proper scoring rule. We summarize the formal

assumptions of our model.

ASSUMPTION 2 [Structural Assumption]. E denotes an event, Ec its complement, and

αEβ a prospect. Prospects are evaluated by Eq. 2 (binary rank-dependent utility), with

U continuously differentiable with positive derivative everywhere, and W a weighting

function. r is the reported probability, maximizing Eq. 2 over prospects generated by

the scoring rule SE(r)ESEc(r). SE and SEc are continuously differentiable. The scoring

rule SE(r)ESEc(r) is proper. �

The following well-known result will often be used. Its proof, and all other proofs,

are in Appendix B.

LEMMA 3 SE(r) is strictly increasing in r and SEc(r) is strictly decreasing in r. �

4 An example illustrating the two problems of clas-

sical proper scoring rules

This section illustrates the main analytical difficulties of classical proper scoring rules

under nonexpected utility, and then will suggest a solution. This section can be skipped

by readers specialized in rank-dependent theories and by readers only interested in ap-

plications. We first give a numerical example, and then discuss it.

EXAMPLE 4 Assume U (α) = α, and W (Ec) < W (E) < 0.5. The weights W (E) and

W (Ec) add to less than 1, which is typical of nonexpected utility with a nonadditive

of decision models while still eliciting beliefs correctly. The most essential property of proper scoring

rules is that all degrees of belief are uniquely related to reported probabilities through a known function,

so that beliefs are identifiable.
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W and pessimism. W (E) > W (Ec) suggests that E is subjectively more likely than its

complement. Assume the quadratic scoring rule 1−(1−r)2
E
1−r2 discussed in Section 2.

For r = 0.5 it gives a constant score, 0.75 for both events. Its RDU value is, accordingly,

0.75. The calculations given in the rest of this example show that r = 0.5 gives the

optimal value. In the main text following the example we discuss the result in intuitive

terms, which may be more convenient for readers who want to skip algebra.

If we increase r by a small ε > 0 then the highest score results under event E; i.e.

for r > 0.5 we have SE(r) = 1 − (1 − r)2 > 1 − r2 = SEc(r). Accordingly, the first

part of Eq. 2 applies (with α = SE(r) > β = SEc(r)). The change in RDU value is

approximately (with the steps explained after)

W (E)S ′

E
(0.5)ε + (1−W (E))S ′

Ec(0.5)ε = (W (E)− (1 −W (E))S ′

E
(0.5)ε < 0.

The equality follows from substituting S′

E
(0.5) = −S ′

Ec(0.5) > 0, and the inequality

follows from substituting W (E)− (1 −W (E)) < 0.

If we decrease r by a small ε > 0 then the highest score results under event Ec.

Accordingly, the last part of Eq. 2 applies. The change now is approximately

W (Ec)S ′

Ec(0.5)(−ε) + (1−W (Ec))S ′

E
(0.5)(−ε) = (W (Ec)−(1−W (Ec))S ′

E
(0.5)ε < 0.

We substituted W (Ec)− (1−W (Ec) < 0. The move away from certainty by decreasing

r leads to a prospect with a considerably lower RDU value, both because Ec is less likely

than E and because of pessimism.

It follows that r = 0.5 is a local optimum. It does not satisfy first-order optimality

conditions because RDU is not differentiable at this r. It can be seen that r = 0.5 is in

fact a global optimum. If we assume nonlinear utility, then the changes in RDU above

have to be multiplied by U ′(0.75) which does not change signs. Hence r = 0.5 then
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still is a local optimum. Concavity of utility reinforces risk aversion and a preference for

r = 0.5. Hence it readily follows that r = 0.5 is a global optimum for every concave utility

function. Figure 1 depicts the optimal r as a function of W (E) for square-root utility.

The figure is valid whenever W (Ec) < W (E) and, in fact, whenever W (Ec) < 0.5.
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Figure 1: The solid line depicts the optimal reported probability r as a function of

W (E), assuming U (x) =
√

(x) and W (Ec) < W (E) or W (Ec) < 0.5.

�

We continue to consider the quadratic scoring rule as in the above example. Under

expected value and expected utility, an event that is more likely than its complement

also has a weight exceeding 0.5, and then it is always favorable to increase r above 0.5.

The above example demonstrates that things are different under nonexpected utility.

Then for all events E that are more likely than there complements but that yet have
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their weight below 0.5 it is not favorable to increase r above 0.5. In this case, pessimism

generates too much preference for certainty, and r = 0.5 is the optimal reported proba-

bility for all these events. Under pessimism, which is commonly found, there will be a

range of events E like this (both W (E) < 0.5 and W (Ec) < 0.5), illustrated by the flat

part in Figure 1. For all of them, r = 0.5 is optimal. The reported probability r = 0.5

does not discriminate between the degrees of beliefs of these events. The most essential

property of properness, the possibility to discriminate between all levels of belief, then

is lost. This loss of discrimination is the cause of the I-problem. The magnet-optimum

at r = 0.5 is related to phenomena known as inertia and the bid-ask spread. All these

phenomena can be explained by rank dependence through its implication that is known

as first-order risk aversion (Wakker 2010 Example 6.6.1).

As regards the H-problem, it readily follows in the above example that r > 0.5 can

be optimal only if W (E) ≥ W (Ec), and r < 0.5 can be optimal only if W (Ec) ≥

W (E).2 Thus, the highest payment can only result under the most likely event (OSVW

Observation A1). We can never observe the weightW (E) of an event E that is less likely

than its complement because W (E) only plays a role if E receives the better outcome.

This illustrates the H-problem.

Both problems just explained are implied by the rank-dependent nature of Eq. 2,

where the decision weights change in a drastic nonsmooth manner if the ordering of

the scores for the two events changes. Such changes of orderings of outcomes occur for

classical proper scoring rules such as the quadratic scoring rule and, more generally, for

all scoring rules that have SE(r) = SEc(r) for some 0 < r < 1.3 We can avoid these

changes in weights, and the corresponding analytical problems, if we use scoring rules

2 If W (E) < W (Ec) then each r > 0.5 is strictly dominated by 1− r.

3By Lemma 3, E then is ranked best for r′ > r but Ec is ranked best for r′ < r.
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for which the ordering of outcomes is the same for all r; for instance, if SE(r) ≥ SEc(r)

for all r. In Schmeidler’s (1989) terminology, we then consider a comonotonic set of

prospects. This will be the plan of the rank correction defined later. We first present

some theorems.

5 Main results

The following result generalizes Theorem 1 of OSVW.

LEMMA 5 Suppose that Structural Assumption 2 holds. For all reported probabilities r

with SE(r) > SEc(r), and also for r = 0 if SE(0) = SEc(0), we have

r =
W (E)

W (E) + (1−W (E))U
′(SEc(r))

U ′(SE(r))

. (3)

�

The expression for r in Lemma Eq. 3 is not explicit because r appears in both sides

of the equality. It is, in general, possible that for one value of W (E) several values of r

satisfy Eq. 3. The following example illustrates this point.

EXAMPLE 6 Assume the quadratic scoring rule and expected utility. Assume that the

utility function U is very convex, which implies strong risk seeking. Assume W (E) =

W (Ec) = 0.5. Then the decision maker will dislike the certainty resulting from r = 0.5

(yielding a sure outcome 0.75), and will prefer the risk resulting from moving r up or

down somewhat. For example, if U(x) = e2.5x, then r = 0.14 and r = 0.86 are optimal

(Figure 2; OSVW p. 1486). Then the reported probability r is selected to be one of

these two numbers. Eq. 3 then holds for both these numbers. It in fact also holds for

r = 0.5, where there is however a local minimum. �
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Figure 2: Multiple optima for W (E) = W (Ec) = 0.5 and convex utility in Example 6.

We can obtain an explicit expression of W in terms of r, generalizing Corollary 2 of

OSVW.

COROLLARY 7 Assume Structural Assumption 2, with r as in Lemma 5. Then we

have for this r:

W (E) =
r

r + (1− r) U ′(SE(r))
U ′(SEc(r))

. (4)

�

Although the following result is logically weaker than Corollary 7, we present it as our

main result because it is especially tractable for applications. It shows how properness

can be extended to general decision models. The condition SE(0) ≥ SEc(0) implies that

SE(r) > SEc(r) for all 0 < r ≤ 1 because SE is strictly increasing and SEc is strictly

decreasing (Lemma 3). Event E always having the same rank in the sense of having the
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best outcome, means per definition that the set of prospects considered is comonotonic.

Schmeidler (1989) demonstrated the importance of this condition for nonexpected utility.

THEOREM 8 [Extending properness from expected value to nonexpected utility]. As-

sume Structural Assumption 2 with, further, SE(0) ≥ SEc(0). Then Eq. 4 holds for all

reported probabilities r. �

One implication in the above theorem is thatW (E), being a function of r throughout

its domain, can be uniquely inferred from r. This is essential for the identifiability of W

from r.

6 The rank correction and other tractable applica-

tions of Theorem 8

The condition SE(0) ≥ SEc(0) used in the preceding results can easily be established

for bounded proper scoring rules by means of the following observation, whose proof is

trivial.

OBSERVATION 9 If SE(r)ESEc(r) is proper, then so is

(k + SE(r))ESEc(s) ∀k ∈ R. (5)

�

We can thus take any

k ≥ SEc(0)− SE(0) (6)

to have the condition of Theorem 8 satisfied. For example, for the quadratic scoring rule

defined in Section 2, we can take k = 1 (Figure 4 in Section 7).
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For applying Observation 9 it is necessary that SE(0) is a real number, and for

instance it should not be −∞. Thus our comonotonic approach cannot be used for

the logarithmic proper scoring rule.4 It can be used for all bounded proper scoring

rules, such as the classical spherical rule ( r√
r2+(1−r)2

)E(
1−r√

r2+(1−r)2
) and its comonotonic

versions, e.g. the one resulting by taking k = 1 in Eq. 5. Using this scoring rule instead

of the quadratic scoring rule in Figure 4 leads to virtually the same correction curve.

An alternative rank correction can be obtained by arranging SE(1) ≤ SEc(1), imply-

ing SE(r) < SEc(r) for all r < 1. Then all conclusions of Theorem 8, and the following

applications, remain valid by interchanging Ec and E.

At first, our main results, based on Eq. 4, may seem to be intractable for practical

purposes. To apply it, it seems that we have to infer ratios of derivatives of utility,

and measuring utility can be as difficult as measuring beliefs. Before discussing the

general solution, we mention a convenient result if we may assume linear utility. Then

the ratio of utility derivatives is simply 1. Linear utility is plausible for moderate stakes

as often used in proper scoring rules (Luce 2000 p. 86; Pigou 1920 p. 785; Rabin 2000;

Ramsey 1931 p. 176). The following observation concerns this case, and provides the

most efficient way to empirically measure nonadditive measures W presently available

in the literature.

OBSERVATION 10 Assume that Structural Assumption 2 holds, that SE(0) ≥ SEc(0),

and that U is linear. Then

W (E) = r.

�

4 It can be used for the logarithmic scoring rule if we can restrict attention to a subdomain of events

whose belief exceeds some positive threshold.
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We next turn to a general method, introduced by OSVW for their quadratic scoring

rule, and now adapted to our general setup, to avoid measuring utility (and probability

weighting) also if utility is not linear. We assume that events Q with objective probabil-

ities p are available, for instance generated by flipping symmetric coins. It is commonly

assumed that W (Q) is the same for all events Q with the same probability p (probabilis-

tic sophistication; Machina & Schmeidler 1992), so that we can define w(p) =W (Q) for

a function w, called the probability weighting function.5 OSVW considered the function

B = w−1(W ), arguing that this is a better candidate for an index of belief than W .6

Substitution in Eq. 4 shows the following: for the probability p that has the same re-

ported probability r as event E, we have w(p) = W (E), that is, p = w−1(W (E)). Thus

an easy way results for measuring subjective beliefs w−1(W (E)):

S��� 1. For event E, observe the reported probability r.

S��� 2. For r, find an event Q with objective probability p such that Q has the same

reported probability r as E.

S��� 3. We obtain B(E) = p = w−1(W (E)) as the subjective belief in E.

OSVW measured the reported probability of a sufficiently dense set of objective

probabilities p, taking all values p ∈ {0, 1/20, . . . , 20/20}. With this, straightforward,

work done once, they could for each event E in their analysis immediately infer its

5 In this way, Observation 10 provides the most efficient way presently existing to empirically measure

w. We then have w(p) = r with p the objective probability of event E.

6 In the same way as we can define decision weight w(p) for objective probability p, we can define

decision weight W (E) = w(B(E)) for general events E. This illustrates that B rather than W is the

natural analog of probabilities. The decision component w should be removed from W = w◦B before

an interpretation as index of belief can be considered.
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subjective belief from the reported probability r. OSVW called their way of filtering out

w from W the risk correction.

Comonotonic scoring rules described in Theorem 8 provide a better way to implement

the above procedure than the classical quadratic scoring rule of OSVW because the

three-step procedure then is valid for all r, also if binary additivity is violated and if

r = 0.5. We call the resulting procedure the rank correction, and we recommend its use

for applications. Comonotonicity is not only useful for the analytical purposes explained

before, but also for psychological reasons. We then control the effects of optimism and

pessimism in rank dependence, keeping them constant throughout the measurement of

beliefs.

7 Illustrations and Discussion

Figure 3 depicts the modification of Figure 1 with a rank correction instead of a risk

correction. The rank correction curve is based on our method in Theorem 8, using Eq.

5 with k = 1. It has no flat part and discriminates between all levels W (E). The

I-problem has been resolved. The H-problem has been resolved too. We will discuss it

in detail for Figure 4, which is similar.

Figure 4 replicates the risk correction curve of OSVW’s Figure 1 for quadratic scoring

rules, and adds the rank correction curve. This figure concerns the special case where

a probability p is given for event E, objective or subjective, and W (E) = w(p), with w

and U specified in the figure. Now we can let the x-axis designate probability p rather

than the subjective weight W (E), which would be w(p) in this case. The curves now

give the optimal reported probabilities r = R(p) as a function of p. The risk correction

curve is based on the traditional quadratic scoring rule, defined in Section 2 and used
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Figure 3: The solid line gives the optimal reported probability r as a function of W (E),

assuming U(x) =
√

(x), for the comonotonic quadratic scoring rule modified using Eq.

5 with k = 1: 2− (1 − r)2E1− r2. The figure is valid for all values of W (Ec).

by OSVW. Again, this curve has the I- and D-problems, but the rank-corrected curve

does not. The rank correction curve is based on our method in Theorem 8, using Eq.

5 with k = 1. It has no flat part and discriminates between all probabilities. Thus

the I-problem has been solved. As regards the H-problem, in the risk correction curve

replicated from OSVW, the part for p < 0.5 has simply been obtained from flipping and

rotating the part for p > 0.5. This can be justified only under a condition called binary

additivity (OSVW, p. 1484). Such a procedure was not needed for the rank correction.

This whole curve is derived from data, and it is valid irrespective of whether or not

binary additivity holds. Thus the H-problem has been solved too.

Noise in Observations. For practical purposes we do not only want to avoid com-
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Figure 4: Reported probability r = R(p) as a function of probability p. We assume binary

RDU for known probabilities, with U(α) = α0.5 and W (E) = w(p) = exp−((−log(p))0.65).

pletely flat parts, but also shallow parts in Figure 4, because they give little discrim-

inatory power and they are prone to errors due to noise in the data. Finding proper

scoring rules that provide the optimal discriminatory power in the part of the domain

of our maximal interest is a topic for future research. Sometimes we may deliberately

restrict our attention to events for which particular beliefs can be excluded on a priori

grounds, and require properness and the restrictions of Lemma 5 only on that part of

the domain. For example, if we believe beforehand that E will be judged considerably

more likely than its complement, so much that we are also sure to be at a safe distance

from the flat part of the risk correction curve in Figure 4, then we can again consider

the quadratic scoring rule of OSVW.

Interpretations of Subjective Beliefs and Ambiguity. Reported probabilities are purely
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choice-based concepts, and any psychological concept derived from them is based on in-

terpretations. Under expected utility, (subjective) probabilities are usually interpreted

as cognitive indexes reflecting degrees of beliefs. This interpretation is commonly fol-

lowed in the literature on proper scoring rules. Schmeidler (1989) interpreted his nonad-

ditive generalizationW of subjective probabilities also as an index of belief but assumed

expected utility for risk. As explained before, OSVW suggested that w−1(W ) is a good

index if expected utility for risk is violated. In Schmeidler’s approach, with expected

utility holding for risk so that w is the identity function, we have B = W so that

OSVW’s interpretation is consistent with Schmeidler’s. As did OSVW, we follow these

generalized interpretations to stay as close to the traditions in the literature on proper

scoring rules as possible.

Further generalizations and different interpretations can be considered. Nonadditive

measures are often assumed to capture the effects of ambiguity (unknown probabilities).

It can be debated to what extent ambiguity concerns the cognitive component of belief or,

differently, components of decision-attitude, or, possibly, a mix/interaction of these two

components. No consensus has yet been reached in decision theory on these questions.

We leave the interpretations and further decompositions and disentangling of various

components to future studies.

8 Conclusion

Proper scoring rules are important tools for measuring subjective degrees of beliefs.

They have many appealing and valuable properties. Unfortunately, they have mostly

been analyzed under the assumption of expected value maximization, whereas many

empirical studies have demonstrated violations of expected value. OSVW extended
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one proper scoring rule, the quadratic one, to general decision theories, but had no

discriminatory power for events with likelihood close to fifty-fifty (the identification

problem). Further, they could not provide observations for events less likely than their

complement (the half-domain problem). This paper generalizes the results of OSVW to

all proper scoring rules and degrees of belief, and shows how the problems mentioned can

be resolved. Thus we have provided a general method for measuring subjective beliefs.

Appendix A. Special Cases of Binary Rank-

Dependent Utility

As explained in Appendix C of OSVW, many existing theories are special cases of Eq.

2. If an objective probability p is given of E, and W (E) = p = 1−W (Ec), then we deal

with expected utility for decision under risk (von Neumann & Morgenstern 1944). If no

objective probability p is given of E, but W (E) is a subjective probability, then we deal

with subjective expected utility for decision under uncertainty (Savage 1954). In both

cases considered, W (E) +W (Ec) = 1.

If an objective probability p is given of E, but W (E) = w(p) for a nonlinear function

w then we deal with rank-dependent utility (Quiggin 1982) and, for gains, with prospect

theory (Kahneman & Tverky 1979; Tversky & Kahneman 1992). Studies with rich

domains of events E have found that W often cannot be obtained as a transformation of

probabilities, not even of subjective probabilities (ambiguity). Then general nonadditive

set functionsW are used (Denneberg 1994), as in Choquet expected utility (Gilboa 1987;

Schmeidler 1989). For prospects with two outcomes as considered here, other theories
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are also special cases of Eq. 2. These theories include multiple priors with maxmin

expected utility (Chateauneuf 1991; Gilboa & Schmeidler 1989; Luce & Raiffa 1957;

Wald 1950) and with α-maxmin (Eichberger et al. 2010; Ghirardato, Maccheroni, &

Marinacci 2004; Hurwicz 1951; Jaffray 1994 ?3.4; Luce & Raiffa 1957 ?13.5). For gains,

prospect theory (Kahneman & Tversky 1979; Tversky & Kahneman 1992) is included.

Other models include Einhorn & Hogarth (1985) and Pfanzagl (1959).

Many papers considered nonadditive belief measures W without explicitly linking

them to decisions, as in belief functions (Chateauneuf & Jaffray 1989; Dempster 1967;

Denoeux 2008; Grabisch, Marichal, & Roubens 2001; Rota 1964; Shafer 1976; Stanley

1986), fuzzy measures (Grabisch, Murofushi & Sugeno 2000; Zadeh 1965), imprecise

probabilities (Walley 1991), support functions (Tversky & Koehler 1994), and upper

and lower probabilities (Kyburg 1983).

Appendix B. Proofs

P	

� 
� L�

� 3. Assume, for contradiction, that SE(r) = SE(r
′) for some r �= r′.

Then r is (at least weakly) preferable to r′ for all W (E) if SEc(r) ≥ SEc(r′). r′ is (at

least weakly) preferable to r for all W (E) if SEc(r) ≤ SEc(r′). r and r′ are equivalent

for all W (E) if SEc(r) = SEc(r′). That is, the comparison between SEc(r) and SEc(r′)

determines a choice between r and r′ irrespective of W (E). It then is impossible that

r is strictly preferable at p = r and r′ is strictly preferable at p = r′ under expected

value, and a contradiction with properness has resulted. Hence the continuous SE must

be either strictly increasing or strictly decreasing, and SEc must also be one of these
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two. Because for p = 1 the value r is chosen so as to maximize SE and this value of r,

by properness, is r = 1, we see that SE is maximal at r = 1. Similarly, inspecting p = 0

we see that SEc is maximal at r = 0. Hence the only possibibility is that SE is strictly

increasing and SEc is strictly decreasing. �

We next establish Eq. 3 for all optimal r that satisfy a first-order condition, dealing

with boundary solutions only after. We denote the reported probability r that optimizes

the value of the scoring rule by r̃. By r we denote general values in [0, 1]. From classical

properness it follows that the expected value under W (E) = p is optimal at r = r̃ = p

for all p∈ [0, 1]. Hence, we have, for all r ∈ [0, 1] (for interior r as first-order condition,

and then for the boundary r’s by continuity),

pS
′

E(p) + (1− p)S
′

Ec(p) = 0 ∀p∈ [0, 1]. (7)

It implies

S
′

Ec(p) = −pS
′

E(p)

1− p
∀p∈ [0,1). (8)

We now turn to general W,U . We write π for the decision weight W (E). If r̃ > 0,

then, by continuity, SE(r′) > SEc(r′) for an r′ < r̃. If r̃ = 0, then we define r′ =

r̃ = 0. The comonotonic region is [r′, 1]. By Lemma 3, SE(r) ≥ SEc(r) for all r in

the comonotonic region. For all prospects here, E yields the best outcome, which by

Schmeidler’s (1989) definition means that this set of prospects is comonotonic. We

restrict our attention to the comonotonic region in what follows. There the prospect

SE(r)E(SEC(r)) is evaluated by:

V (r) := πU(SE(r)) + (1 − π)U(SEC (r))
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with first derivative

V ′(r) = πS
′

E(r)U
′

(SE(r)) + (1− π)S
′

EC (r)U
′

(SEC(r)). (9)

Substituting Eq. 8 for r = p, the first derivative is

V ′(r) =
S

′

E(r)

1− r
[(1 − r)πU

′

(SE(r))− r(1− π)U
′

(SEc(r))] ∀r∈ [0, 1). (10)

For interior optimal r̃ (0 < r̃ < 1), V ′(r̃) = 0, and Eqs. 3 and 4 follow from the following

equalities:

(1 − r̃)πU
′

(SE(r̃))− r̃(1− π)U
′

(SEc(r̃)) = 0, (11)

which follows from Eq. 10 because SE(r) is strictly increasing.7 We now get

r̃

1 − r̃
=

π

1− π

U
′

(SE(r̃))

U ′(SEc(r̃))
.

Algebraic manipulations now give Eqs. 3 and 4 for r̃.

We finally turn to r = 1 and r = 0; i.e., we consider boundary solutions r. The case

of r̃ = 1 is similar to the case r̃ = 0 .8 In the rest of the proof we consider the latter

case. If π = 0 then Eqs. 3 and 4 follow immediately, and we are done. We assume π > 0

henceforth, and derive a contradiction.

We have “> 0” in Eq. 11 because U ′ > 0, π > 0, and r̃ = 0. By continuity, we have

“> 0” for all r in [0, r′) for some r′ > 0. The interval [0, r′] can and will be assumed

7This is direct if S
′

E
(r̃) > 0. It is also possible that S

′

E
(r̃) = 0, and we assume this henceforth.

Assume, for contradiction, that we have “< 0” in Eq. 11. By continuity, this holds on an interval [r′, r̃]

for some r′ < r̃ that can be assumed to be in the comonotonic region. S′

E
≥ 0 implies V ′ ≤ 0 on (r′, r̃].

Because SE is strictly increasing, S′

E
takes positive values at some values in (r′, r̃], implying that V ′ < 0

there and V is strictly larger there than at r̃, contradicting optimality at r̃. “> 0” in Eq. 11 similarly

leads to a contradiction, with V larger at some value r′ > r̃.

8There is a duality between E and Ec, r and 1− r, and p and 1−p, because of which the case r̃ = 1

follows from the case r̃ = 0.
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to be contained in the comonotonic region. Because S
′

E(r) ≥ 0, Eq. 10 would imply

V ′(r) ≥ 0 on the open interval (0, r′). By continuity, this would hold on [0, r′]. V , being

maximal at r = 0, then would be constant on [0, r′]. Because SE is strictly increasing it

must have positive derivate at some points in [0, r′]. V ′, the product in Eq. 10 is positive

there, and V cannot be constant on [0, r′], so that a contradiction has resulted. The

proof is done.
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