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Abstract. I consider a two-candidate election in which there is aggre-
gate uncertainty about the popularity of each candidate, where voting
is costly, and where participants are instrumentally motivated. The
unique equilibrium predicts substantial turnout under reasonable pa-
rameter configurations, and greater turnout for the apparent underdog
offsets the expected advantage of the perceived leader. I also present
clear predictions about the response of turnout and the election outcome
to various parameters, including the importance of the election; the cost
of voting; the perceived popularity of each candidate; and the accuracy
of pre-election information sources, such as opinion polls.

THE TURNOUT PARADOX

Why do people vote? Across the supporters of different competing candidates, how is

turnout likely to vary? Is the election result likely to reflect accurately the pattern

of preferences throughout the electorate? These questions are central to the study

of democratic systems; they are questions which have attracted the attention of the

most insightful theorists and the most careful empirical researchers.

Nevertheless, the turnout question (why do people vote?) has proved problematic for

theories based on instrumental actors. In an oft-quoted question based on a statement

made by Fiorina (1989), Grofman (1993) provocatively asked: is turnout the paradox

that ate rational choice theory? The paradox is this: people do vote and yet it is

alleged that any “reasonable” rational-choice theory suggests that they should not.

1Although this is a recent paper, I have spoken with many colleagues about the research upon which it
is based over a lengthy period of time. I thank them for their welcome comments, conversation, encour-
agement, criticism, and suggestions. Particular thanks go to Jean-Pierre Benoı̂t, Torun Dewan, Steve
Fisher, Libby Hunt, Clare Leaver, Joey McMurray, Adam Meirowitz, Tiago Mendes, Kevin Roberts,
Ken Shepsle, Chris Wallace, and Peyton Young.
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Grofman (1993, p. 93) explained that the rational-choice-eating claim arises from two

predictions: firstly, that “few if any voters will vote” and, secondly, that “turnout will

be higher the closer the election.” He claimed that these predictions “are contradicted,

in the first case” and that, in the second case, “either contradicted or at least not

strongly supported” by the empirical evidence. This led to his “heretical view” that

the followers (himself included) of Downs (1957) were “fundamentally wrong” in their

quest for empirically supported predictions from rational-choice models.

More recently, Blais (2000, p. 2) supported the wasted-vote argument: “however close

the race, the probability of [an instrumentally motivated voter] being decisive is very

small when the electorate is large.” His view was this is true even in a moderately

sized electorate: “with 70,000 voters, even in a close race the chance that both can-

didates will get exactly the same number of votes is extremely small.” He concluded:

“the rational citizen decides not to vote.” While acknowledging that the cost of voting

is small, he reasoned that “the expected benefit is bound to be smaller for just about

everyone because of the tiny probability of casting a decisive vote.” From all of this,

he concluded that the-known calculus-of-voting model (Downs, 1957; Riker and Or-

deshook, 1968) “does not seem to work.” This is a well-established view; for instance,

Barzel and Silberberg (1973) highlighted that Arrow (1969, p. 61) said that it is “some-

what hard to explain . . . why an individual votes at all in a large election, since the

probability that his vote will be decisive is so negligible.” Many others, sometimes

reluctantly, have accepted this conclusion; for instance, in their survey Dhillon and

Peralta (2002) led by quoting Aldrich (1997), who said that “the rationality of voting

is the Achilles’ heel of rational choice theory in political science.”

It seems that, with a few exceptions, it has been accepted that voters’ voluntary and

costly participation cannot be explained by conventional goal-oriented behavior; in-

deed, the turnout paradox has been used by some (Green and Shapiro, 1994, notably)

to argue against the use of the rational-choice methods in political science.
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I argue that a theory of turnout based upon instrumentally motivated actors can work

well and so is not the Achilles’ heel of the rational-choice approach. I model a two-

candidate election, where voting is costly, and where participants are instrumentally

motivated. Hence, a voter balances the individuals costs of participation against the

possibility of determining the winner. The substantive and reasonable departure from

most established theories is this: there is aggregate uncertainty about the popularity

of each candidate. (Models without this feature have the unattractive property that,

in a large electorate, voters are able to predict almost perfectly the outcome; such

models have other problems too.)

The unique equilibrium arising from the simple model proposed here is consistent

with “substantial turnout” under “reasonable parameter configurations.” Of course, to

make sense of this claim I need to say what I mean by “substantial” and “reasonable.”

The predictions are helpfully illustrated by the following vignette, which emerges

from a particular numerical instance of the paper’s results.

Numerical Example. Consider a region with a population of 100,000

where 75% of the inhabitants are able to vote if they wish to do so. Sup-

pose that a 95% confidence interval for the popularity of the leading

candidate stretches from 56% to 61%. If each voter is willing to partic-

ipate in exchange for a 1-in-2,500 chance of influencing the outcome of

the election, then, under this specification, the equilibrium of the model

presented here predicts that turnout will exceed 50% of eligible voters.

Greater turnout for the underdog offsets her disadvantage.

This scenario specifies the voters’ perceptions of the candidates’ popularities; the con-

fidence interval approximates that which would be obtained following a pre-election

opinion poll with a sample size of 1,500 respondents.2 The presence of a non-

degenerate confidence interval reflects the existence of aggregate uncertainty over
2The confidence interval concerns the popularity of the leading candidate (and so, implicitly, the popu-
larity of the underdog) rather than the leader’s anticipated vote share. This is because the actual vote
shares depend, of course, on the turnout behavior of the two groups of voters.
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the underlying popularity of the competing candidates. The remaining elements of

the scenario concern the (unique) equilibrium prediction from the model presented

later in this paper. A critical factor is each voter’s willingness to participate; this is

captured by the pivotal probability which induces a voter to show up. In the vignette,

each voter “is willing to participate in exchange for a 1-in-2,500 chance of influencing

the outcome.” This implies that the instrumental benefit of changing the electoral

outcome for 100,000 people is 2,500 times as big as the cost of voting. More generally,

in equilibrium it turns out that the expected turnout rate satisfies

Turnout Rate ≈ Instrumental Benefit/Voting Cost
Population×Width of 95% Confidence Interval

, (?)

A brief check confirms that (?) generates the vignette discussed above. This same

rule implies that voters need to show up for a 1-in-25,000 influence if 50% turnout is

to arise in a world with 1,000,000 inhabitants. This probability might be described

as small. But how small is small? Some in the literature have described the likely

pivotal probability as “miniscule” (Dowding, 2005, p. 442). A pivotal probability of 1-

in-2,500 or 1-in-25,000 could hardly be described as such; with a 5% wide confidence

interval the required pivotal probability of roughly 40/N (where N is the population

size) is distinctly higher than the ball-park “1/N” arising from the Tullock’s (1967)

reasoning. Nevertheless, some have maintained that such odds remain too small to

induce participation; Owen and Grofman (1984, p. 322) claimed that if a voter enjoys

“only a one-in-21,000 chance of affecting the election” and his “only reason for voting

was to influence the outcome” then he would be “best off staying home.”

If the Owen and Grofman (1984) advice to the 1-in-21,000 voter is accepted, then of

course the turnout-is-rational claim must fail. However, it seems that odds of this

kind are entirely consistent with the motivations of an instrumental actor. Of course,

a voter who cares only about his narrow material self-interest might find it difficult to

turn out for the relatively moderate odds of 1-in-25,000; after all, if it costs $5 to vote

then the identity of the winning candidate over a term of office must make a difference
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of $125,000 to the life of the voter. Viewed so narrowly (as the effect of a change in

tax rates, public expenditure, and so forth, as it impacts a single individual) this

instrumental benefit could seem large. However, nothing in rational-choice theory

requires a voter to be so selfish. As soon as any element (even if it is a small element)

of other-regarding preferences (perhaps a desire to elect “the best candidate for the

people” rather than “the best candidate for my pocketbook”) is incorporated then the

odds of influence begin to look rather more attractive.

A worked example illustrates the impact of very mild other-regarding preferences.

Consider a voter who believes (paternalistically) that the election of his preferred

candidate will improve the life of each citizen by $250 per annum over a five-year

term. Suppose that his personal voting cost is $5. It is easy to see that if his concern

for others is only 0.01% (that is, 1-in-10,000) then, in a population of 1,000,000, he

will be willing to participate in exchange for a 1-in-25,000 chance of influencing the

outcome; this is enough to support a 50% turnout rate.

The idea that such other-regarding preferences may help to explain turnout in large

electorates has been explored by recent contributors to the literature. For instance,

Jankowski (2002) memorably depicted voting as “buying a lottery ticket to help the

poor” in work which he developed more formally in a later paper (Jankowski, 2007).

Similarly, in a persuasive article, Edlin, Gelman, and Kaplan (2007) argued (although

their argument is only suggestive; their paper is insightful but nevertheless incom-

pletely developed) that turnout is likely to be substantial if voters have social prefer-

ences. They noted (p. 293): “In a large election, the probability that a vote is decisive

is small, but the social benefits at stake in the election are large, and so the expected

utility benefit of voting to an individual with social preferences can be significant.”

Here I provide a complete analysis of a game-theoretic model which, when combined

with this idea, provides a resolution to the turnout paradox.
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RELATED LITERATURE

The vast turnout literature has been expertly surveyed by many authors, including

Blais (2000), Dhillon and Peralta (2002), Feddersen (2004), Dowding (2005), Geys

(2006a,b), and others. The literature moved from a view that the influence of an in-

dividual vote is too small to generate significant turnout, implying that other factors

such as a direct benefit from political participation must be present (Riker and Or-

deshook, 1968); there was a renaissance while some authors conjectured that game-

theoretic reasoning could yield an equilibrium outcome with reasonable turnout levels

(Palfrey and Rosenthal, 1983; Ledyard, 1981, 1984); and, finally, the renaissance view

was overturned as it was recognized that the early game-theoretic models relied on

a knife-edge properties (Palfrey and Rosenthal, 1985). The status quo is reflected in

the conclusion (Feddersen and Sandroni, 2006b, p. 1271) that “there is not a canonical

rational choice model of voting in elections with costs to vote.”

Many theories of voting (including models of strategic voting, as well as turnout-

focused work) have suffered from a difficult feature: researchers have specified mod-

els in which voters’ types (and so their voting decisions) are independent draws from

a known distribution.3 For instance, in a typical two-candidate model a voter prefers

a right-wing candidate with probability p and her left-wing challenger with probabil-

ity 1− p, where p is commonly known by all, and types are independent draws. Under

this specification there is no aggregate uncertainty: when the electorate is large the

law of large numbers tells us that the support for each candidate (and the election

outcome, if turnout is non-negligible) is known with high precision. The absence of

any real uncertainty might set alarm bells ringing. Looking a little further, “indepen-

dent type” models have other difficult features. For instance, if p 6= 12 (away from a

knife edge) then the probability of tie vanishes to zero exponentially as the electorate

3For examples, the classic turnout models of xxx, xxx, and xxxx all involve an independent-type speci-
fication; the models of strategic voting by xxx, xxxx, and xxxx do the same; and other work, including
the comparison of the signaling and short-term instrumental motivations by xxxxx, and the evaluation
of the welfare performance of voluntary-voting, also use independent-type specifications.
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grows larger. The latter feature would seem (if an independent-type specification

were to be accepted) to support the claim that the influence of an individual voter

over an election’s outcome is negligible.

However, Good and Mayer (1975) elegantly demonstrated that the absence of aggre-

gate uncertainty is crucial. When every member of an n-strong electorate votes, but

the probability p of support for the right-wing candidate is uncertain and drawn from

a density f(·), then the probability of a pivotal event is f(1
2
)/2n; this is inversely pro-

portional (so not exponentially related) to the electorate size.4 Of course, this shrinks

as n grows; however, it is difficult to conclude that it is negligibly small, and indeed

the precise size (and presumably any predictions arising from a model with aggregate

uncertainty) depend upon beliefs about the candidates’ relative popularity. Sadly,

the analysis of Good and Mayer (1975) was neglected; indeed, Fischer (1999) wrote

that “Good and Mayer’s method has largely been ignored, forgotten or unknown by

most who have needed to calculate the value of [the probability of being decisive],

although Chamberlain and Rothschild (1981) apparently independently discovered

results which were in accord with those of Good and Mayer.”

Fortunately, there are a few contributions which recognize the Good-Mayer analysis

and its implications. A notable article here is by Edlin, Gelman, and Kaplan (2007),

who recognized that a vote’s influence is “roughly proportion to 1/n.” They developed

ideas (to which I return later in the paper) suggesting that other-regarding concerns

may increase with n, and so substantial turnout may be maintained even in large

electorates. The ideas in their paper are good; however, their analysis is incomplete.

Whereas they presented formally stated propositions, there described no fully speci-

fied model, and no proofs of their claims; their paper is suggestive rather than con-

clusive, although I argue that their suggestions are the conclusions that should be

4When the electorate size n is even, the probability of an exact tie is approximately f( 12 )/n. However,
an individual vote can never change the election outcome for sure; it can only break or create a tie. For
that reason, the additional factor 1

2 is present when evaluating the influence of a vote.
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reached. Indeed, it turns out that the results of Good and Mayer (1975) and Cham-

berlain and Rothschild (1981) cannot be directly used. The reason is that both of

those early papers restricted to a world in which each voter has only two options;

for instance, vote L or vote R. A model which allows for voluntary turnout must al-

low for a third option—namely, abstention—and yet the early results do not apply.

One contribution of this paper, then, is to extend those earlier results to beyond the

binary-option setting, so enabling the analysis of a game-theoretic model of voluntary

turnout with aggregate uncertainty.5

Within the context of a generalized aggregate-uncertainty model, I show that the

Good-Mayer result that a voter’s influence is of order 1/n remains true. However, this

influence is larger when the turnout rates of supporters of the different candidates

offset any asymmetry in perceived support for them. For instance, if the right-wing

candidate is expected to be twice as popular as the left-wing candidate (using then

notation above, I mean that E[p] = 2/3) then if the turnout rate of left-wing supporters

is twice as high then the right-wing candidate’s advantage is neutralized, and so the

likelihood of a close race is maximized. A contribution of this paper is to show that

this precisely what happens in the unique equilibrium.

A related point was made in a recent article by Taylor and Yildirim (2010). They con-

sidered an “independent types” model without aggregate uncertainty. They used the

fact that supporters of different candidates are interested in slightly different close-

call events. For instance, a left-wing voter is interested in situations in which the

left-wing candidate is one vote behind her competitor (an extra vote will then create

a tie, and so a possible left-wing win) while a right-wing voter considers outcomes in

which the right-wing candidate is one vote behind. (Both types of voters are inter-

ested in situations with an exact tie.) In an equilibrium, both types of voters must

5Although there is aggregate uncertainty (voters do not know for sure how popular the candidates are)
each voter does know his own preference. So, this is a private-value model, unlike the common-value
models applied to jury voting (for example, Feddersen and Pesendorfer, 1996, 1997, 1998) in which a
voter performs a condition-on-being-pivotal calculation to ascertain his own preferred option.
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perceive the same probability of being pivotal; the two events in which a favored can-

didate in one-vote-behind must be equally likely. This happens only when the turnout

rates unwind any popularity-derived advantage for one of the candidates. The logic of

Taylor and Yildirim (2010) suggesting that equilibrium considerations should enable

an underdog to prosper is good; but nevertheless I show that their analysis does not

work once a model with aggregate uncertainty is considered. In the presence of such

aggregate uncertainty, the one-vote-behind outcomes are always equally likely in a

large electorate.

So how do I generate the greater-turnout for the underdog effect? The answer is that

different voter types (left-wing and right-wing) perceive the election differently be-

cause they are introspective. That is, a voter uses his type to update his beliefs about

p. (Notice that this can only happen in a world with aggregate uncertainty; if f(p)

is degenerate then a voter has nothing new to learn.) His initial beliefs (before ob-

serving his type) are described by f(p). Now, when evaluated at the mean p̄ = E[p]

a straightforward application of Bayes’ rule confirms that f(p̄ |L) = f(p̄ |R) = f(p̄);

that is, when thinking about the likelihood that the underlying division of support

is equal the expected degree of support, a voter’s beliefs do not shift when he condi-

tions on his type. What this means is that voters’ beliefs coincide when they worry

about the likelihood that p = p̄; and they are concerned about this only when p = p̄

results in a close-run race. For this to be so, the turnout rates of the left-wing and

right-wing voters must be inversely related to the corresponding candidates’ expected

popularities.

currently under construction — do feel free to jump ahead
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A SIMPLE MODEL OF A PLURALITY RULE ELECTION

The model is intentionally simple; it is a familiar two-candidate voting model but,

crucially, with aggregate uncertainty over the candidates’ relative support.

An electorate comprises n+1 voters. Each voter who is willing and able to participate

casts a ballot for either candidate L (left) or candidate R (right). Throughout the

paper, the pronoun “she” indicates a candidate, while the pronoun “he” indicates a

voter. The simple plurality rule operates: the candidate with the most votes wins;

if the vote totals are equal then a coin toss breaks the tie and decides the winner.

Everything that I say is robust to the precise choice of tie-break rule.

Each voter is available to vote (that is, he is not precluded from doing so by some

exogenous event) with probability a. Conditional on a, voters’ availabilities are inde-

pendent and identically distributed. However, there is aggregate uncertainty about a;

it is drawn from a distribution with a continuous density g(·). I write ā =
∫ 1

0
ag(a) da

for the expectation of a. Hence, if everyone who was able to do so voted then the ex-

pected turnout would be ā(n + 1). Nothing in this paper relies on the fact that there

is aggregate uncertainty about a. However, this specification allows for uncertainty

about the precise size of the electorate, or the possibility that there may be an exoge-

nous shock (inclement weather, perhaps) to the electorate’s availability.

A randomly chosen voter prefers candidate R with probability p and candidate L with

probability 1 − p. I refer to p as the true underlying popularity of R relative to L.

Conditional on p, voters’ types are independent and identically distributed. However,

just as there is aggregate uncertainty about a, there is also aggregate uncertainty

about p. Specifically, p is drawn from a distribution with a density f(·), where for ease

of exposition I assume that there is full support on the unit interval. Thus, prior to

their type realizations, voters share a common prior p ∼ f(p). I write p̄ =
∫ 1

0
pf(p) dp

for the prior expectation of p. However, each individual voter’s belief about p can differ

from f(p), simply because his own type realization reveals extra information about p.
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The remaining elements of the model’s specification are the players’ payoffs. Voting

is voluntary, but costly: a voter incurs a positive cost c > 0 if he goes to the polls; on

the other hand, abstention is free. I assume that all voters share the same cost of

voting, although in a later section I discuss what happens when I relax this part of

the model’s specification. A voter enjoys a positive benefit u if and only if his preferred

candidate wins the election. Again, I assume that the benefit component u of a voter’s

payoff is common to everyone.6

With the model’s basic ingredients in place, I describe one further piece of notation.

The only decision available to a voter is one of participation; if he arrives at the voting

booth then he (optimally) cast his ballot for his favorite candidate. I look at type-

symmetric strategy profiles, and for most of the paper I focus on those profiles which

involve incomplete turnout. By “type symmetric” I mean that voters of the same type

(either L or R, according to their candidate preference) behave in the same way; by

“incomplete turnout” I mean situations in which not everyone shows up to vote. A

strategy profile that fits both of these criteria reduces to a pair of probabilities tR and

tL which satisfy 0 < tR < 1 and 0 < tL < 1 respectively; these probabilities are the

turnout rates amongst the two type-determined subsets of the electorate. (However,

in a later section I also consider cases with complete turnout on at least one side,

so that tL = 1 or tR = 1.) Given these parameters, the overall turnout rate is t =

a(ptR + (1− p)tL), and the expected turnout rate is t̄ = ā(p̄tR + (1− p̄)tL).

OPTIMAL VOTING

The pivotal-voter logic is very familiar: when a voter considers his turnout decision

he balances the cost of participation against the likelihood of influencing the result.

He changes the outcome, of course, only when he is pivotal.

6Although I have not cluttered the notation to indicate this, I allow the benefit u and cost c terms to
vary with electorate size n. In many existing papers, such parameters are fixed while the electorate
expands. However, this is restrictive. A change in the electorate size is a change in the game played
by voters, and so payoffs should change too. In particular, it seems reasonable to suppose that u is
responsive (either positively or negatively) to n; later in the paper I consider this explicitly.
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Here I consider the decision faced by someone who is available to vote, as he considers

the likely outcome amongst the other nmembers of the electorate. I write bL and bR for

the vote totals amongst these others. Note that bL + bR ≤ n, and that the inequality

can hold strictly (indeed, usually it does so) because some electors are exogenously

unavailable (recall that a voter is unable to visit the polls with probability 1− a) and

because others endogenously choose to abstain.

Consider the situation faced by a supporter of candidate R. If there is a tie amongst

others (that is, if bR = bL) and if the tie-break coin toss goes against R, then his par-

ticipation is pivotal to a win for R. Similar, if there is a near-tie, by which I mean

that bR = bL − 1, and the tie-break coin toss is favorable, then his participation will

again change the outcome from a win for L to a win for R. I have assumed that the

returning officer employs a fair coin, and so the probability of each of the aforemen-

tioned coin-toss outcomes is simply 1
2
. In all other circumstances, the voter in question

can have no influence on the election’s outcome. Assembling these observations, and

performing similar reasoning for a supporter of candidate L, I obtain

Pr[Pivotal |R] =
Pr[bR = bL |R] + Pr[bR = bL − 1 |R]

2
, and (1)

Pr[Pivotal |L] =
Pr[bR = bL |L] + Pr[bL = bR − 1 |L]

2
. (2)

A supporter of R finds it strictly optimal to participate if and only if the expected ben-

efit from voting exceeds the cost; that is, if and only if uPr[Pivotal |R] > c. Naturally,

if this inequality (and the equivalent inequality for a supporter of L) holds then, given

that the c and u payoff parameters are common to everyone, turnout will be complete.

However, as turnout increases (that is, as the type-contingent turnout probabilities

tR and tL rise) the pair of pivotal probabilities will typically fall. If the turnout strate-

gies ensure that the expected costs and benefits of voting are equalized for both voter

types then these strategies yield an equilibrium. (Formally, this is a type-symmetric

Bayesian Nash equilibrium in mixed strategies.) For parameters in an appropriate
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range, such an incomplete-turnout equilibrium (where 1 > tR > 0 and 1 > tL > 0) is

characterized by a pair of equalities:

Pr[Pivotal |R] = Pr[Pivotal |L] =
c

v
. (3)

Conceptually, an equilibrium characterization is quite straightforward: simply find a

pair of turnout probabilities tL and tR such that these equalities are satisfied. How-

ever, in general the pivotal probabilities depend on tL, tR, f(·), g(·), and n in a complex

way. Nevertheless, in the presence of aggregate-level uncertainty these probabilities

become more tractable in larger electorates. I show this in the next section.

ELECTION OUTCOMES WITH AGGREGATE UNCERTAINTY

Taking a step back from the specific voting model, here I consider the properties of

beliefs about the election outcome when there is aggregate uncertainty about the

popular support for the various candidates. In the absence of such uncertainty, voting

decisions may be modeled as independent draws from a known distribution, leading

to a multinomial outcome for the vote totals. However, when these probabilities are

unknown (this is the aggregate uncertainty) then the decisions are only conditionally

independent; unconditionally there is correlation between voters’ ballots.7

Consider, then, an election in which each of n participants casts a ballot for one

of m + 1 options; so, there are m candidates, and the remaining option is absten-

tion. Suppose that the electoral support for the options is described by v ∈ ∆, where

∆ =
{
v ∈ Rm+1

+ |
∑n

i=0 vi = 1
}

is the m-dimensional unit simplex. The interpretation

here is that v is a vector of voting probabilities: a randomly selected elector votes for

7When studying elections, a natural modeling approach is to think of the various voters as symmetric
ex ante. One way of doing this is to suppose that their types are independent draws from the same
distribution. This, however, is a particularly strong form of symmetry. The more general form of sym-
metry is that beliefs about a set of voters do not depend on the labeling of those voters. This does not
imply that voting decisions are independent, but rather that they are exchangeable in the sense of de
Finetti (see, for instance, Hewitt and Savage, 1955). Indeed, if a potentially infinite sequence of voters
can be envisaged then (at least for binary type realizations) exchangeability ensures a conditionally
independent representation, just as described in this section.
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candidate i with probability vi, and abstains with probability v0 = 1−
∑n

i=1 vi. While v

can be interpreted as the underlying electoral support for the different candidates, it

does not necessarily represent the actual underlying popularity of them. The distinc-

tion is because vi is the probability that an elector votes for i, and not the probability

that he prefers that candidate. So, adapting the notation of the two-candidate model,

if the supporters of candidate i turnout with probability ti then vi = apiti.

Even if the electoral support v for the candidates is known (with aggregate uncer-

tainty, it is not) then the election outcome remains uncertain owing to the idiosyn-

crasies of individual vote realizations. That outcome is represented by b ∈ ∆†, where

∆† =
{
b ∈ Zm+1

+ |
∑n

i=0 bi = n
}

; here, bi is the number of votes cast for candidate i. Con-

ditional on v, independent and identically distributed voting decisions ensure that b

is the realization of a multinomial random variable. However, here I suppose that

the underlying electoral support for the options (the m candidates and the abstention

option) is unknown. Specifically, suppose that beliefs about v are represented by a

continuous and bounded density function h(v) ranging over ∆. Taking expectations

over v, the probability of an election outcome b is

Pr[b |h(·)] =

∫
∆

Γ(n+ 1)∏m
i=0 Γ(bi + 1)

[∏m

i=0
vbii

]
h(v) dv, (4)

where the usual Gamma function Γ(·) ≡
∫∞

0
yx−1e−y dy satisfies Γ(x+1) = x! for x ∈ N .

Obviously the expression for Pr[b |h(·)] in (4) is somewhat complex, but for larger n all

that really matters is the value of density h(·) evaluated at the peak of vbii . That peak

occurs at v = b
n
. An inspection of (4) confirms that

∏n
i=0 v

bi
i is sharply peaked around

its maximum; as n grows
∏n

i=0 v
bi
i becomes unboundedly larger at its maximum then

elsewhere. This is why only the density h
(
b
n

)
really matters, and so

Pr[b |h(·)] ≈ h

(
b

n

)∫
∆

Γ(n+ 1)∏m
i=0 Γ(bi + 1)

[∏m

i=0
vbii

]
dv =

xxx

xxx
h

(
b

n

)
,
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where the final inequality follows from spotting that the integrand is the density of a

Dirichlet distribution.

This logic was used originally by Good and Mayer (1975) and subsequently by Cham-

berlain and Rothschild (1981). In a two-option election, they considered the probabil-

ity of a tie (here, this corresponds to m = 1 and the event b0 = b1 = n
2
, where n is even)

and demonstrated that (in an obvious notation) it converges (in an appropriate sense)

to 1
n
h
(

1
2
, 1

2

)
as n grows. The same logic holds, of course, for larger m and for more gen-

eral electoral outcomes. This is confirmed by Lemma 1, which provides the first step

in a generalization of the Good and Mayer (1975) and Chamberlain and Rothschild

(1981) results.8

Lemma 1. Consider a sequence of elections indexed by n ∈ N , but where the voting

probabilities are described by h(·). Then limn→∞maxb∈∆† |nm Pr[b]− h (b/n)| = 0 .

An implication of this lemma is that what really matters when thinking about the

likelihood of electoral outcomes is not the idiosyncratic type realizations which deter-

mine the probability of an outcome b conditional on the underlying v, but rather than

density h(·) which captures the aggregate uncertainty about candidates’ popular sup-

port. The law of large numbers ensures that any idiosyncratic noise is averaged out.

In an election with few voters (a committee, perhaps) idiosyncratic noise remains. In

the committee context, then, a theoretical model which specifies only idiosyncratic

uncertainty (so that players’ types are independent draws from a known distribu-

tion) can be useful. When there are more voters, however, the use of “independent

type” models is discomforting. When there is no aggregate uncertainty, the modeler

is forcing voters’ beliefs to be entirely driven by factors (idiosyncratic type realiza-

tions) which are simply eliminated when there is mild aggregate uncertainty.

8Good and Mayer (1975) and Chamberlain and Rothschild (1981) considered elections with two options
(so m = 1 in the notation of this section), where n is even. They considered the probability of a tied
outcome; this corresponds to a sequence of election outcomes of the form bn =

(
n
2 ,

n
2

)
, which obviously

satisfies limn→∞
(
bn

n

)
=
(
1
2 ,

1
2

)
. Equation (2) from Good and Mayer (1975) corresponds to Lemma 1 for

this special case; Proposition 1 from Chamberlain and Rothschild (1981) reports the same result.
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PIVOTAL PROBABILITIES WITH AGGREGATE UNCERTAINTY

My attention now turns to the probability of pivotal events in elections with only

two competing candidates. Here I return from the general m-candidate notation used

in the previous section and move back to the (L,R)-notation used throughout the

remainder of the paper. For this case, the probability of an exact tie (a near tie, where

the candidates are separated by a single vote, takes a similar form) is

Pr[bL = bR] =
∑bn/2c

z=0
Pr[bL = bR = z]

=
∑bn/2c

z=0

Γ(n+ 1)

[Γ(z + 1)]2Γ(n− 2z + 1)

∫
∆

(vLvR)zvn−2z
0 h(v) dv, (5)

where v ∈ ∆ combines the voting probabilities vL, vR, and v0 = 1− vL − vR, and where

bn/2c indicates the integer part of n
2
. The probability in (5) is, of course, relatively

complex. However, for larger n Lemma 1 can be exploited and this probability simpli-

fies dramatically. A rigorous analysis is contained within the proof of Lemma 2, and

so here I use a rough heuristic argument. Applying Lemma 1,

Pr[bL = bR = z] ≈
h
(
1− 2z

n
, z
n
, z
n

)
n2

. (6)

This expression can be substituted into the summation of (5), so that

Pr[bL = bR] ≈ 1

n

∑bn/2c

z=0

h
(
1− 2z

n
, z
n
, z
n

)
n

. (7)

Allowing n to grow large, notice that summation defines a familiar Riemann integral

of the integrand h(1−2x, x, x) over the range [0, 1/2]. Dealing with all of these heuristic

steps rather more carefully generates the following lemma.

Lemma 2. In a two-candidate election, with abstention allowed, and support for the

two candidates and abstention described by the density h(v0, vL, vR), the probability of

a tie between the two candidates satisfies limn→∞ nPr[bL = bR] =
∫ 1/2

0
h(1− 2x, x, x) dx .
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Notice once again that (in the limit) the probability of a tie depends solely on the

properties of aggregate uncertainty via the density h(·).

An instrumental voter has a particular interest in the probability of a tied outcome:

his participation in the election can serve to break the tie. However, such an instru-

mental voter is also interested in situations which are one away from a tie.

When there is no aggregate uncertainty, the probability of different near-tie events

can be very different. This easiest to see by considering a world in which n is odd and

there is no abstention, so that v0 = 0. In this world, if v is known, then

Pr[bL = bR ± 1] =
Γ(n+ 1)

Γ
(
n+1

2
+ 1
)

Γ
(
n−1

2
+ 1
)v(n±1)/2

L v
(n∓1)/2
R , (8)

where the “±” and “∓” notation should have an obvious interpretation. The relative

likelihood of the two different kinds of close ties is

Pr[bL = bR + 1]

Pr[bL = bR − 1]
=
vL
vR
6= 1, (9)

where of course the “6= 1” claim holds if and only if vL 6= vR. Equation (9) holds

for any n, and once again illustrates the worrying properties of IID-specified models;

surely two such close events should not have radically different probabilities in a

large electorate?9 In fact, once aggregate uncertainty is introduced they do not have

different (limiting) probabilities. This is confirmed in the next lemma.

Lemma 3. In a two-candidate election with abstention, where the beliefs of a type

i ∈ {L,R} about the electoral support for the candidates are described by the density

h(v0, vL, vR | i), the probabilities of a tie and a near tie are asymptotically equivalent:

9Some contributors to the literature have relied on the property reported in equation (9). For example,
Taylor and Yildirim (2010) employed an IID specification, and in their model (as in this one, as I
shall show) an equilibrium requires different types to perceive the same probability of pivotality, and
so Pr[bL = bR + 1] = Pr[bL = bR − 1]. Given (9), this can only be true if vL = vR, and so turnout
must be inversely proportional to the popularity of a candidate, so that pLtL = pRtR. Once aggregate
uncertainty is introduced, their argument no longer applies; it relies on the knife-edge properties of a
IID-specified model. Fortunately, however, their conclusion (that turnout should be inversely related
to the perceived relative popularity of the competing candidates) remains, as I confirm in this paper.
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limn→∞ nPr[bL = bR ± 1 | i] = limn→∞ nPr[bL = bR | i]. Furthermore,

lim
n→∞

nPr[Pivotal | i] =

∫ 1/2

0

h(1− 2x, x, x | i) dx for i ∈ {L,R}. (10)

From Lemma 3, a voter’s beliefs about pivotal events are determined by h(· | i); this is

conditional on the voter’s type i ∈ {L,R}, simply because his own type teaches him,

via introspection, about the popularity of the candidates. But of course, the density

which appears in (10) concerns the electoral support for the candidates, rather than

their popularities. To form h(· | i), a voter takes into account the turnout probabilities

on the two sides, as well as possible variation in the size of the available electorate.

Recall that each elector is available on polling day with probability a, and prefers

candidate R rather than L with probability p. Beliefs about these two aspects of the

electoral environment arise from g(a) and f(p) respectively, and so the underlying

electoral situation is described by (a, p) ∈ [0, 1]2 with density f(p)g(a). However, a

voter updates his beliefs based on his own availability and his own preference. Abus-

ing notation a little, I write g(a | i) for the conditional belief of an available voter about

the availability of others. From Bayes’ rule, it is easy to see that

g(a | i) =
g(a)a

ā
, f(p |L) =

f(p)(1− p)
1− p̄

and f(p |R) =
f(p)p

p̄
, (11)

where ā is the ex ante expected availability of voters, and p̄ is the ex ante expected

popularity of candidate R. Of course, a voter’s conditional beliefs about a and p must

be transformed into beliefs about vL and vR (and, of course, the abstention probability

via v0 = 1 − vL − vR). If supporters turn out with probabilities tR and tL then the

corresponding voting probabilities for the candidates are vR = aptR and vL = a(1−p)tL.

The Jacobian of this transformation is readily obtained:

∂(vL, vR)]

∂(p, a)
=

 atR ptR

−atL (1− p)tL

 ⇒
∣∣∣∣∂(vL, vR)]

∂(p, a)

∣∣∣∣ = atLtR. (12)
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Looking back to Lemma 3, the density h(· | i) is only evaluated where vL = vR = x.

Using these inequalities it is straightforward to solve for p and a, and so

h(x, x, 1− 2x) =
f(p | i)g(a | i)

atLtR
where p =

tL
tL + tR

and a =
x(tR + tL)

tRtL
. (13)

Using (11) and (13) together with Lemma 3, yields the following result.

Lemma 4. Consider an election in which the supporters of candidates L and R partic-

ipate with probabilities tL and tR respectively. From the perspective of a voter thinking

about the outcome amongst the other n voters:

lim
n→∞

nPr[Pivotal |L] =
f(p?)

ā(tL + tR)

1− p?

1− p̄
and (14)

lim
n→∞

nPr[Pivotal |R] =
f(p?)

ā(tL + tR)

p?

p̄
, where p? =

tL
tL + tR

, (15)

and where p̄ is the expected popularity of R and ā is the expected availability of voters.

This lemma uses the notation “p?” for a critical threshold level of the underlying pop-

ularity of R relative to L. Notice that vL = vR if and only if p = p?. Hence, if candidate

R is to win then her popularity p must exceed p?. A tied outcome is only really feasible

when p is close to p?, and so when contemplating the likelihood of a pivotal event a

voter asks how likely this is by evaluating the density f(p?).

Several other aspects of Lemma 4 are worthy of note. Firstly, the likelihood of a

pivotal outcome is, of course, inversely proportional to the electorate size n.10 A con-

sequence of this is that the relative size of benefits and costs, captured by the ratio
v
c
, needs to be larger in a larger electorate if the same turnout behavior is to be sup-

ported. Secondly, and relatedly, the pivotal probability is inversely proportional to the

overall level of turnout (doubling both tL and tR, for instance, halves the probability of

10As observed by Good and Mayer (1975), this is not the case when the electoral support for the can-
didates is known, so that voting decisions are independent draws from a known distribution. Under
an IID specification, the probability of a pivotal event is inversely proportional to the square root of
the electorate size in the knife-edge case where the underlying support of the candidates is precisely
balanced; otherwise, the probability disappears exponentially with the electorate size.
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a pivotal outcome) and is inversely proportional to the expected availability of voters

at the polls. Thirdly, and perhaps most interestingly, the probability of a tied outcome

depends on the nature of the voters’ ex ante beliefs f(p) about the relative support of

the candidates. Indeed, the probability is higher as p? = tL/(tL + tR) moves closer to

the mode of f(·).

EQUILIBRIUM TURNOUT

Fixing the conjectured turnout behavior (that is, tL and tR) of others, Lemma 4 char-

acterizes the impact of an additional vote for both types of elector in a large electorate.

Here I turn my attention toward equilibrium considerations.

Recall, from equation (3), that an equilibrium with incomplete turnout (that is, where

1 > tL > 0 and 1 > tR > 0) is characterized by the pair of equalities

Pr[Pivotal |R] = Pr[Pivotal |L] =
c

u
. (16)

In general, these probabilities take a relatively complex form and so this characteri-

zation is obtuse. However, Lemma 4 demonstrates that the approximations

Pr[Pivotal |L] ≈ f(p?)

ā(tL + tR)n

1− p?

1− p̄
and Pr[Pivotal |R] ≈ f(p?)

ā(tL + tR)n

p?

p̄

where p? ≡ tL
tL + tR

(17)

work well when the electorate is large. I proceed, then, in a pragmatic way by assum-

ing that voters employ the approximations in (17) when they evaluate their decisions.

Definition. A voting equilibrium is a pair of voting probabilities tL and tR such that

voters act optimally given that they use the asymptotic approximations of (17).

This is a kind of “ε equilibrium” in the sense that, for finite n, voters are only approx-

imately optimizing. Nevertheless, for even moderately large elections the approxima-

tions in (17) are extremely good. Furthermore, in a later section of the paper (missing
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from this draft manuscript) I consider other justifications for the solution concept em-

ployed here. I also evaluate (in a section which is also missing from this preliminary

draft) the extent of the error in the approximations via a computational study, and

demonstrate that the approach works well even in a relatively small electorate.11

I now characterize the unique voting equilibrium. I write Pr†[Pivotal | i] for i ∈ {L,R}

for the approximations of (17). If turnout is incomplete then a voting equilibrium

must satisfy Pr†[Pivotal |L] = Pr†[Pivotal |R] = c
u
. Inspecting (17), notice that the

equality of the pivotal probabilities holds if and only if p? = p̄.

Lemma 5. A voting equilibrium with incomplete turnout must satisfy p̄ = tL/(tL+ tR).

This lemma is of independent interest. It says that the turnout rates amongst the two

factions of the electorate must exactly offset the prior expected asymmetry between

their popularity. Recall that p? ≡ tL/(tL + tR) is a critical threshold in the sense

that the true underlying popularity of candidate R needs to exceed p? if candidate

R is to win, at least in expectation. By showing that p? = p̄, Lemma 5 reveals that

a candidate’s true popularity (that is, either p or 1 − p) must exceed her perceived

popularity (either p̄ of 1− p̄) if she is going to carry the election.

Lemma 5 characterizes the relative size of the turnout rates tL and tR by solving the

equation Pr†[Pivotal |L] = Pr†[Pivotal |R]. However, it does not tie down the level of

these rates. This second step may be performed via the equation Pr†[Pivotal | i] = c
v
.

Before doing this, it is useful to introduce one additional item of notation. Define:

t̄ = ā [p̄tR + (1− p̄)tL] (18)

11The reason is that the approximations reported in (17) are obtained by averaging out the idiosyn-
cratic noise. The law of large numbers bites relatively quickly as n increases, and so aggregate-level
uncertainty dominates (and the approximations work well) even for moderate electorate sizes.
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for the expected turnout rate from an ex ante perspective. Dividing this by tL + tR,

applying Lemma 5, and using the approximations of (17), it is easy to see that

t̄

ā(tL + tR)
=
p̄tR + (1− p̄)tL

tL + tR
= 2p̄(1− p̄) ⇒

Pr†[Pivotal |L] = Pr†[Pivotal |R] =
f(p̄)

ā(tL + tR)
=

2p̄(1− p̄)f(p̄)

t̄
. (19)

Equating this final expression to the cost-benefit ratio c
u

pins down the equilibrium.

Proposition 1. If u
c

is not too large then there is a unique voting equilibrium with

incomplete turnout. Ex ante, the expected turnout rate t̄ satisfies

t̄ =
2p̄(1− p̄)f(p̄)u

cn
, (20)

while the individual turnout rates amongst the two groups of supporters are

tL =
p̄f(p̄)u

ācn
and tR =

(1− p̄)f(p̄)u

ācn
. (21)

The asymmetry in these turnout rates offset any prior asymmetry in the perceived pop-

ularity of the candidates: the less popular candidate enjoys greater turnout, and so

E[vL] = E[vR] = 1
2
. The overall expected turnout t̄n is increasing in the importance of

the election and decreasing in the cost of voting. Fixing f(p̄), turnout increases as the

margin between the expected popularity of the two candidates falls.

The final comparative-static prediction holds because the quadratic term p̄(1− p̄) in t̄

peaks at p̄ = 1
2
. This is a familiar prediction: turnout is higher in marginal elections.

Note, however, that the effect of increased asymmetry is weak when the candidates

are evenly matched. That is, beginning from p̄ = 1
2
, a local change in p̄ has only

a second-order effect on turnout. In the introductory remarks to this paper, I com-

mented on the claim, from Grofman (1993), that “turnout will be higher the closer

the election” and that this is “not strongly supported” by the empirical evidence. The
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claim is weakly supported here, but it should not necessarily be “strongly supported”

owing to the second-order effect of candidate asymmetry close to p̄ = 1
2
.

The other properties of a voting equilibrium are unsurprising. In particular, turnout

t̄ is, other things equal, inversely proportional to electorate size. However, the “other

things equal” is critical: as the electorate size changes, then so may the other parame-

ters, in particular the payoff u which an instrumental voter enjoys from changing the

identity of the winner. Also, turnout depends on the density f(p̄) of beliefs about p. I

consider this in more detail in the next section; however, it is worth noting that pre-

election information and so the nature of f(·) may be different in larger electorates.

A further observation is that Proposition 1 imposes the condition that “u/c is not too

large.” The reason is that an equilibrium exhibits incomplete turnout if and only if

max{tL, tR} < 1. Applying the solutions from (21), this holds if and only if

u

c
<

ān

max{p̄, (1− p̄)}f(p̄)
. (22)

If this inequality fails, then the voting equilibrium instead involves complete turnout

for the candidate with the lower expected popularity; I deal with this in a later section

of the paper (again, omitted from this preliminary draft manuscript).

A final observation I make here is that the equilibrium solution for the expected

turnout t̄ given by Proposition 1 does not depend on ā or any other aspect of voters’

aggregate availability. Hence, if in aggregate fewer electors are available or willing to

vote, then aggregate turnout is unaffected. Inspecting the solutions for tL and tR given

in (21), this is because the turnout rates of those who are “playing the turnout game”

rise as ā falls. This implies that the solution for turnout is robust to the supposition

that some voters (a fraction 1 − ā in expectation) have (erroneously, I claim) reached

the conclusion that their voter cannot count; the behavior of the “real players” endoge-

nously adjusts. Of course, this is all true only so long as there is a voting equilibrium
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with incomplete turnout. As the discussion just above has established, such an equi-

librium exists only if the inequality (22) holds. By inspection, this inequality holds

only if ā is large enough. If ā is sufficiently small (so that the voting-is-worthless mes-

sage has really taken hold) then the inequality fails. If this happens, then a voting

equilibrium involves incomplete turnout only on one side (the side with the perceived

advantage) and complete turnout (amongst those voters who are willing and able to

show up) on the other side. I study this case in a later section of the paper.

POPULARITY AND BELIEFS

From Proposition 1 it is clear that the properties of beliefs about the candidates’ pop-

ularity, determined by the density f(·), are critical to the level of expected turnout.

Note in particular that the density which enters the solution for t̄ is evaluated at the

expectation p̄. For a well-behaved density this expectation will be close to the mode,

which clearly maximizes the expected turnout rate. To move further, here I place a

little more structure on the density f(·).

A natural specification for voters’ beliefs is to assume that p follows a Beta distribu-

tion. Recall that p follows such a distribution with parameters βR and βL if

f(p) =
Γ(βR + βL)

Γ(βR)Γ(βL)
pβR−1pβL−1, (23)

where Γ(·) is the Gamma function. A special case of this is obtained, for instance,

when f(p) is uniform: βR = βL = 1. The Beta also has the convenient property that

it is conjugate with the binomial distribution. Hence, beginning from a Beta prior

and updating via Bayes’ rule following the observation of an opinion poll, beliefs are

Beta distributed. Specifically, if a voter begins with a uniform prior over p (a special

case of the Beta) and observes a random sample of potential voters containing βR − 1

supporters of R and βL − 1 supporters of L, then the voter’s posterior belief about p

follow the Beta with parameters βR and βL. Thus s = βR + βL indexes the size of
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the sample (allowing for information contained in the prior, together with the actual

sample of size s− 2) used by a voter to form beliefs.

Other properties of the Beta concern its mean. In particular p̄ = E[p] = βR/(βR + βL).

This means that a Beta may be conveniently rewritten in terms of its mean p̄ and a

parameter s which corresponds to the information available to a voter; as explained

above, s− 2 would corresponds to the sample size of an opinion poll (or set of opinion

polls), yielding an effective precision proportional to s once the prior is taken into

account. Using this formulation, Beta distributed beliefs satisfy

f(p) =
Γ(s)

Γ(p̄s)Γ((1− p̄)s)
pp̄s−1(1− p)(1−p̄)s−1.

This can be substituted into the turnout solution from Proposition 1. Doing so:

t̄ =
2u

cn

Γ(s)

Γ(p̄s)Γ((1− p̄)s)
2v[p̄p̄(1− p̄)(1−p̄)]s

cn
. (24)

To see things a little more clearly, and when s is large enough, we can approximate

the Beta density with a normal distribution. The variance of the Beta, in terms of s

and the mean p̄, satisfies var[p] = p̄(1− p̄)/(s+ 1). So, using a normal approximation

f(p) ≈

√
s+ 1

2πp̄(1− p̄)
exp

(
−(s+ 1)(p− p̄)2

2p̄(1− p̄)

)
, (25)

where here π indicates the mathematical constant and not a model parameter. When

evaluated at p̄ the exponential term disappears, so generating the next result.

Proposition 2. Using a normal specification for voters’ beliefs, turnout satisfies

t̄ =
up̄(1− p̄)

cn

√
2

π var[p]
. (26)

This is increasing in the precision of voters’ beliefs about the candidates’ popularity.
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Equation (26) offers a simple closed-form solution to the equilibrium turnout rate. All

of the existing predictions are maintained: the turnout rate is greatest when the elec-

tion is viewed as important; when voting costs are low; when candidates are perceived

to be evenly matched; when (other things equal) the electorate is smaller; and, finally,

when there is good pre-election information about the popularity of the candidates.

RESOLVING THE TURNOUT PARADOX

It is often claimed that rational-choice theory predicts extremely low turnout. The

classic reasoning is that if the turnout rate were high then the probability of a tie

in a large electorate is far too low to justify the cost of voting. Indeed, in a critical

assessment of rational-choice methods, Green and Shapiro (1994, Chapter 4) claimed:

“Although rational citizens may care a great deal about which person or

group wins the election, an analysis of the instrumental value of voting

suggests that they will nevertheless balk at the prospect of contributing

to a collective cause since it is readily apparent that any one vote has an

infinitesimal probability of altering the election outcome.”

It is certainly true that, other things equal, the probability of a tie declines as the

electorate size grows. This, however, does not automatically justify the “too low to

vote” conclusion. Indeed, it is not clear that the probability of a pivotal event is “infin-

itesimal” and (at least to me) it is not “readily apparent” that there is no hope for an

instrumental explanation for the turnout decision. What is needed is an assessment

of precisely how big or small the pivotal probability is. There have been attempts at

this in the literature, but each of them have serious methodological problems.

To move forward, then, I proceed with a calibration exercise. Specifically, I choose rea-

sonable parameter choices and then ask whether plausible levels of turnout emerge.

I begin with the precision of voters’ beliefs. In the context of Proposition 2, the vari-

ance of the normal beliefs var[p] = p̄(1 − p̄)/(s + 1) can be used to construct the size
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of a confidence interval regarding the popularity of candidate R. I write ∆ for the

width of such a confidence interval. Familiar calculations from classical statistics

yield ∆ ≈ 3.92×
√

var[p] for a confidence interval at the usual 95% level. Now

∆ ≈ 3.92×
√

var[p]. ⇔ s+ 1 ≈ 15.37× p̄(1− p̄)
∆2

(27)

Substituting this into the turnout solution (26) from Proposition 2,

t̄ ≈ 3.13× up̄(1− p̄)
cn∆

. (28)

Rather than fix the payoff parameters c and u, a rather more informative perspective

is to pick a particular turnout rate and ask what is required of the payoff parameters

to justify that rate. That is, the simple inversion of (28) yields

c

u
≈ 3.13× p̄(1− p̄)

t̄n∆
. (29)

Of course, the ratio c
u

is the probabilistic influence that an instrumental voter needs

to have on the outcome before she is willing to show up to the polls. In equilibrium, it

is equal to the probability of a pivotal event in the eyes of each type of voter.

So, let me work through these calculations. Consider a region with a population

of 100,000; this approximates the population of a city such as Cambridge, Mas-

sachusetts. In such a democracy it is reasonable to suppose that 75% of the popu-

lation are eligible to vote, and so n ≈ 75, 000. Next, suppose that the width of a 95%

confidence interval for the support of the leading candidate is 5%, or equivalently

∆ = 0.05. (An opinion poll with a sample size of around 1, 500 would generate such

confidence.) Suppose also that candidate R is believed to be more popular, and that

54.5% of the electorate are expected to prefer her; thus p̄ = 0.545. (Equivalently, there

is 95% confidence that her popularity lies between 52% and 57%.) I now ask: how

small does the cost-benefit ratio c
u

have to be in order to generate turnout of 50%?

c

u
=

3.13× 0.545× 0.455

0.5× 75, 000× 0.05
≈ 0.0004 ⇔ u

c
≈ 2, 500. (30)
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In other words, if the cost-to-benefit ratio is less than 1-in-2,500, or equivalently a

voter would be willing to participate in a 1-in-2,500 lottery which enabled her to

change the outcome from the disliked to the preferred candidate, then turnout of 50%

(slightly greater, in fact) can be supported as part of the unique voting equilibrium.

Proposition 3. Consider a region with a population of 100,000 where 75% of the in-

habitants are eligible to vote. Suppose that a 95% confidence interval for the popularity

of the leading candidate stretches from 52% to 57%. If each voter is willing to partici-

pate in exchange for a 1-in-2,500 chance of influencing the outcome of the election, then

in the unique voting equilibrium turnout will exceed 50%.

Is this consistent with instrumental explanations for voting? Would a voter show up

for a 1-in-2,500 of instrumentally changing the lives of 100,000 people?

Other-regarding preferences section to go here.

COMPLETE TURNOUT?

So far, my equilibrium analysis restricts to a context with incomplete turnout; that is,

where the turnout rates within each wing of the political spectrum satisfy 0 < tL < 1

and 0 < tR < 1. This, of course, requires the inequality (22) to hold. If voters beliefs

are normally approximated, as in (25), then this inequality becomes

u

c
<

ān
√

2π var[p]

max{p̄, (1− p̄)}
. (31)

This fails whenever the election is viewed as important (so that u is large); when the

cost of voting is small; when the electorate is relatively small; when relatively few are

willing to contemplate participation (that is, when ā is low); when one candidate is

perceived to enjoy a strong advantage; and, finally, whenever the voters beliefs about

the candidates’ positions are relatively precise (so that var[p] is small).

In the context of a voting equilibrium, what happens if (31) fails? One possibility is

that there is no turnout on either side. However, I can rule out this uninteresing case
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by simple assuming (quite reasonably) that c < v
2
. This inequality means that if a

voter were given dictatorial powers then he would choose to exercise them. Another

possibility is that there is complete turnout on at least one side, so that max{tL, tR} =

1. If this is the case, then the side with the least popular candidate (in expectation)

will be the one that maximizes turnout. This extends a property of the incomplete-

turnout equilibrium: the underdog enjoys greater turnout than the perceived leader.

Lemma 6. Suppose that p̄ > 1
2

so that candidate R is perceived to enjoy greater popu-

larity. A voting equilibrium satisfies tR ≤ tL. This holds strictly if min{tL, tR} < 1.

Thus it must be the case that p∗ ≥ 1
2
, where p∗ is the the critical threshold which the

true popularity of candidate R needs to exceed if she is to win (at least in expectation).

Inspecting Lemma 4, this means that the supporters of the stronger candidate have

a weaker incentive to participate, and so the probability Pr†[Pivotal |R] is the critical

factor in any equilibrium. One possibiblity, of course, is that there is complete turnout

from both sides, so that tL = tR = 1. This can be voting equilibrium if and only if

Pr†[Pivotal |R] ≥ c
v
. Substituting tL + tR = 1 and p? = 1

2
into the relevant pivotal

probability from equation (17), and using the normal approximation to voter beliefs,

the condition for this inequality, and hence for a complete-turnout equilibrium, is

Pr†[Pivotal |R] =
f
(

1
2

)
4ān

1

p̄
=

1

4ānp̄
√

2π var[p]
exp

(
−
(

1
2
− p̄
)2

2 var[p]

)
≥ c

u
. (32)

Fixing all of the other parameters of the model, this inequality must fail whenever

var[p] is sufficiently small. In other words, if the voters’ collective prior beliefs about

the underlying popularities of the candidates are sufficiently precise, then there can-

not be a voting equilibrium with complete turnout.

The remaining case is an equilibrium with complete turnout on one side of the polit-

ical spectrum (so that tL = 1 for supporters of the underdog candidate L) and incom-

plete supporter on the other side. Given that tL = 1, such an equilibrium is pinned
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down by the equation Pr†[Pivotal |R] = c
v
. This equation reduces to

f(p?) =
cāp̄n

u(p?)2
where p? =

1

1 + tR
. (33)

Looking for a solution tR ∈ [0, 1] is equivalent to seeking a solution p? ≥ 1
2
. If f(·) is

a unimodal distribution with its mode at p̄, then f(p) is increasing for all p < p̄. This

means that there is a unique solution to (33) satisfying p? < p̄. Of course, parameter

restrictions need to be checked to ensure that this solution satisfies p? > 1
2
. Once this

has been done, the following result emerges.

Proposition 4. Suppose that voters’ beliefs about the relative popularity of the can-

didates are approximated by a normal distribution. If u/c is small enough, then there

is a unique voting equilibrium with incomplete turnout on both sides. If u/c is large

enough, then there is a unique voting equilibrium with complete turnout. For interme-

diate values of u/c, however, there is a unique voting equilibrium with complete turnout

by supporters of the underdog, but only partial turnout of the leaders’ supporters.

— in progress —

OMITTED PROOFS

— this section under construction —

Proof of Lemma 1. For each γ ∈ ∆ and each n define Pn(γ) ≡
∫

∆
[
∏m

i=0v
γi
i ]

n
h(v) dv. In

terms of this function, the probability of a ballot outcome b ∈ ∆†n is

Pr[b |h(·)] =
Γ(n+ 1)∏n
i=0 Γ(bi + 1)

Pn
(
b
n

)
.

Pn(γ) is a continuous function of γ over the compact set ∆. The first step of the proof is

to show that Pn(γ) can be replaced with h(γ)
∫

∆
[
∏m

i=0v
γi
i ]

n
dv as n grows large. To take

this step, first note that the quasi-concave function
∏m

i=0v
γi
i is maximized by v = γ.

For small ε > 0 define ∆ε = {v ∈ ∆ |
∏m

i=0v
γi
i ≥

∏m
i=0γ

γi
i − ε}. This is a compact and
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convex neighborhood of γ. A lower bound to an expression of interest can be obtained:

Pn(γ)∫
∆

[
∏m

i=0v
γi
i ]

n
dv
≥
∫

∆ε
[
∏m

i=0v
γi
i ]

n
h(v) dv∫

∆
[
∏m

i=0v
γi
i ]

n
dv

≥ minv∈∆ε{h(v)}
1 +Rn

where Rn =

∫
∆/∆ε

[
∏m

i=0v
γi
i ]

n
dv∫

∆ε
[
∏m

i=0v
γi
i ]

n
dv

.

and where ∆/∆ε = {v ∈ ∆ |
∏m

i=0v
γi
i <

∏m
i=0γ

γi
i − ε}. Similarly,

Pn(γ)∫
∆

[
∏m

i=0v
γi
i ]

n
dv
≤

∫
∆/∆ε

[
∏m

i=0v
γi
i ]

n
h(v) dv +

∫
∆ε

[
∏m

i=0v
γi
i ]

n
h(v) dv∫

∆
[
∏m

i=0v
γi
i ]

n
dv

≤ maxv∈∆{h(v)}Rn + maxv∈∆ε{h(v)}
1 +Rn

,

where Rn is defined as before, and so

maxv∈∆{h(v)}Rn + maxv∈∆ε{h(v)}
1 +Rn

≥ Pn(γ)∫
∆

[
∏m

i=0v
γi
i ]

n
dv
≥ minv∈∆ε{h(v)}

1 +Rn

.

The maxima are well-defined: h(v) is continuous and ∆ and ∆ε are compact. Examin-

ing Rn,

Rn ≤

∫
∆/∆ε

[
∏m

i=0v
γi
i ]

n
dv∫

∆ε
[
∏m

i=0γ
γi
i − ε]

n
dv

=
1∫

∆ε
dv

∫
∆/∆ε

[ ∏m
i=0v

γi
i∏m

i=0γ
γi
i − ε

]n
dv −→ 0 as n→∞,

where the final claim follows because
∏m

i=0v
γi
i <

∏m
i=0γ

γi
i − ε for all v ∈ ∆/∆ε. Hence:

max
v∈∆ε

{h(v)} ≥ lim
n→∞

[
Pn(γ)∫

∆
[
∏m

i=0v
γi
i ]

n
dv

]
≥ min

v∈∆ε

{h(v)}.

By choosing ε small enough I can ensure that both minv∈∆ε{h(v)} and maxv∈∆ε{h(v)}

are arbitrarily close to h(γ), since h(·) is continuous, and so I conclude that

lim
n→∞

[
Pn(γ)∫

∆
[
∏m

i=0v
γi
i ]

n
dv

]
= h(γ).

Notice also that each member of the sequence of functions (indexed by n) is continuous

in γ, and so is the limiting function h(γ). Thus, looking across the compact set ∆, the
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convergence reported above is uniform. That is,

lim
n→∞

sup
γ∈∆

∣∣∣∣ Pn(γ)∫
∆

[
∏m

i=0v
γi
i ]

n
dv
− h(γ)

∣∣∣∣ = 0.

With the first step of the proof in hand in hand, I turn to the probability of b ∈ ∆†n.

nm Pr[b |h(·)] = nm
Γ(n+ 1)∏m
i=0 Γ(bi + 1)

Pn
(
b
n

)
= nm

Γ(n+ 1)

Γ(n+m)

Pn
(
b
n

)∫
∆

[∏m
i=0v

(bi/n)
i

]n
dv
×
∫

∆

Γ(n+m)∏m
i=0 Γ(bi + 1)

[∏m

i=0
v

(bi/n)
i

]n
︸ ︷︷ ︸

density of Dirichlet

dv

=
nm

n× (n+ 1)× · · · × (n+m− 1)
×

Pn
(
b
n

)∫
∆

[∏m
i=0v

(bi/n)
i

]n
dv
.

The final equality follows from noting that the third term in the previous expression

is the integral of the density of a Dirichlet distribution. Looking at the final line,

the first ratio converges to one as n → ∞. The second ratio is the term considered

earlier in the proof, evaluated at γ = b/n. The convergence established previously was

uniform. I conclude that limn→∞maxb∈∆†
n
|nm Pr[b |h(·)]− h(γ)| = 0. �

Proof of Lemma 2. From (5) in the text, nPr[bL = bR] = 1
n

∑bn/2c
z=0 n2 Pr[bL = bR = z].

Using Lemma 1, nPr[bL = bR = z] converges uniformly. That is,

lim
n→∞

max
z∈{0,1,...,bn/2c}

∣∣∣∣n2 Pr[bL = bR = z]− h
(
n− 2z

n
,
z

n
,
z

n

)∣∣∣∣ = 0

⇒ lim
n→∞

nPr[bL = bR] = lim
n→∞

1

n

∑bn/2c

z=0
h

(
n− 2z

n
,
z

n
,
z

n

)
,

where this equality holds so long as the right-hand side limit is well-defined. As noted

in the text, the right-hand side defines a Riemann integral of h(1 − 2x, x, x) over the

range [0, 1/2], and so converges to
∫ 1/2

0
h(1− 2x, x, x) dx as n→∞. �

Proof of Lemma 5. As noted in the main text, an inspection of (17) shows that

Pr†[Pivotal |L] = Pr†[Pivotal |R] if and only if p̄ = p? = tL/(tL + tR). �
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Proof of Lemma 6. I have assumed that c < v
2

and so there must be positive proba-

bility turnout from at least one voter type. This implies that min{tL, tR} > 0, and

so p? (from Lemma 4) is defined. If tR ≥ tL then there is positive turnout from the

supporters of R and so Pr†[Pivotal |R] > 0. tR ≥ tL implies that p? ≤ 1
2

and so, given

that p̄ > 1
2
, the expressions in (17) ensure that Pr†[Pivotal |R] < Pr†[Pivotal |L]. This,

however, means there is a strict incentive for supporters of L to participate, and so

tL = 1. Hence, tR ≥ tL can only hold if tL = tR = 1. I conclude that it cannot be the

case that tR > tL. The final claim of the lemma follows directly. �
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