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Abstract

We study the identification of an insurance model with multidimensional screen-

ing, where insurees are characterized by risk and risk aversion. The model is solved

using the concept of certainty equivalence under constant absolute risk aversion and

an unspecified joint distribution of risk and risk aversion. The paper then analyzes

how data availability constraints identification under four data scenarios from the

ideal situation to a more realistic one. The observed number of accidents for each

insuree plays a key role to identify the model.

In a first part, we consider the case of a continuum of coverages offered to each

insuree whether the damage distribution is fully observed or truncated. Truncation

arises from that an insuree files a claim only when the accident involves a damage

above the deductible. Despite bunching due to multidimensional screening, we show

that the joint distribution of risk and risk aversion is identified. In a second part, we

consider the case of a finite number of coverages offered to each insuree. When the

full damage distribution is observed, we show that despite additional pooling due

to the finite number of contracts, the joint distribution of risk and risk aversion is

identified under a full support assumption and a conditional independence assump-

tion involving the car characteristics. When the damage distribution is truncated,

the joint distribution is identified up to the probability that the damage is above

the deductible. In a third part, we derive the restrictions imposed by the model on

observables for the fourth scenario. We also propose several identification strate-

gies for the damage probability at the deductible. These identification results are

further exploited in a companion paper developing an estimation method with an

application to insurance data.

Keywords: Nonparametric Identification, Multidimensional Screening, Insurance, Mo-

ment Generating Function.



Identification of Insurance Models with

Multidimensional Screening

G. Aryal, I. Perrigne & Q. Vuong

1 Introduction

Identification of structural models in industrial organization has received much attention

over the past fifteeen years. See the survey by Athey and Haile (2007) on the nonpara-

metric identification of auction models. The problem of identification in econometrics

has a long history. See Koopmans (1949) and Hurwicz (1950). It is a key step for the

econometric and empirical analysis of structural models. For instance, the labor literature

provides many examples of the role played by identification in empirical studies as dis-

cussed by Heckman (2001). Studies on identification have known a renewed interest due

to the development of nonparametric models with nonseparable error terms (see Matzkin

(1994, 2007)), and to the use of structural models in empirical industrial organization.

The problem of (nonparametric) identification is important for several reasons. First,

it allows to assess the conditions required (if any) to recover uniquely the structure of

the model from the observables while minimizing parametric assumptions. Second, it

highlights which variations in the data allows one to identify each element of the struc-

ture. Third, some important questions related to the structural analysis of models can

be addressed once identification is established. One can think of which distribution of

the data can be rationalized by the model, or what restrictions the model imposes on the

observables that can be used to test the model validity.

More recently, the identification of several models with incomplete information has
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been addressed. Several lessons can be drawn. First, the optimal behavior of economic

agents plays an important role in identifying the model. For instance, in nonlinear pricing

models, the optimality of the tariff offered to consumers needs to be considered in addition

to the optimal consumers’ behavior to recover the latter’s willingness-to-pay distribution

and marginal utilities. See Perrigne and Vuong (2009). In this case, the first-order

conditions play a crucial role in establishing identification. Second, identification can be

achieved with instrumental variables and exclusion restrictions, which have been widely

used in the early literature on identification. Third, the one-to-one mapping between the

unobserved agent’s private information and the observed outcome such as the bidder’s

private value and his bid in auctions is a key element on which identification relies. See

Guerre, Perrigne and Vuong (2000) and Athey and Haile (2007) in the context of auctions.

Our paper differs from the previous literature in several dimensions. First, we consider

a model with multidimensional screening in which bunching/pooling cannot be avoided.

In this case, identification cannot rely exclusively on the one-to-one mapping between the

agent’s unobserved types and his observed outcome/action.1 Second, we consider a finite

number of options/contracts offered to each agent, while agents’ types are distributed

over a continuum. In addition to the bunching arising from multidimensional screening,

additional bunching arises because a finite number of contracts is offered to each agent.

This represents an additional challenge in the study of identification.2

In this paper, we are interested in the identification of insurance models with multidi-

mensional screening. Recent empirical studies on insurance by Cohen and Einav (2007)

and Einav, Finkelstein and Schrimpf (2009) have shown an important heterogeneity in

risk preferences, which may counterbalance the traditional intuition behind the Roth-

1Relying on Rochet and Chone (1998), Pioner (2007) addresses the identification of multidimensional

screening models in a nonlinear pricing context but assumes that one of the two agent’s types is observed

by the analyst.
2Crawford and Shum (2007) consider two contracts while agents’ types can take only two values thereby

avoiding any bunching. Gayle and Miller (2008) adopt a similar strategy. Leslie (2004) entertains a finite

number of price options through a discrete choice model to analyze consumers’ behavior but takes the

price schedule as exogenous. On the other hand, Perrigne and Vuong (2008, 2009) and D’Haultfoeuille

and Fevrier (2007) consider a continuum of contracts in principal-agent settings.
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schild and Stiglitz (1977) model of insurance. Namely, a low risk driver may buy a high

coverage because of high risk aversion and conversely. Thus, a model of insurance needs

to incorportate an additional component of asymmetric information, i.e. agent’s risk aver-

sion. Multidimensional screening, however, is known to be a difficult theoretical problem

because of the violation of the Spence-Mirrlees (single-crossing) condition. Thus, bunch-

ing will arise. See Rochet and Stole (2003) for a survey. In our case, following Aryal and

Perrigne (2009), this problem is solved using the certainty equivalence for no coverage.

In particular, the latter allows one to separate insurees though each level of certainty

equivalence corresponds to a set of individuals with different risk and risk aversion. The

model structure is given by the damage distribution and the joint distribution of risk and

risk aversion. For convenience, we consider constant absolute risk aversion as the latter

leads to an explicit expression for the certainty equivalence.

We proceed as follows. We consider several data scenarios from the ideal case with a

continuum of contracts offered to each insuree and a fully observed damage distribution

to the more realistic case with a finite number of contracts offered to each insuree and

a truncated damage distribution as an insuree files a claim only if the damage is above

the deductible. This allows us to better understand the role played by the data and in

particular how data constraints or limits identification of primitives. Moreover, this allows

us to assess which identifying assumption is needed.

The first data scenario is in the spirit of the auction literature as we exploit the one-to-

one mapping between the level of certainty equivalence and the deductible to identify the

distribution of certainty equivalence. The repetition of some outcome by the agent, namely

the number of accidents, then plays a crucial role in identifying the joint distribution of risk

and risk aversion. This contrasts with Chiappori and Salanie (2000) test of asymmetric

information in automobile insurance, which relies on whether the insuree has an accident.

When considering heterogeneity in risk aversion, our results show that we need to exploit

the number of accidents to achieve identification. The second data scenario maintains a

continuum of contracts but considers a damage distribution truncated at the deductible.

Because a continuum of contracts is offered, the subpopulation choosing full insurance,
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i.e. a zero deductible, identifies the damage distribution and the argument of the first

case applies.

When considering a finite number of contracts, identification becomes more complex

as the FOCs no longer provide a one-to-one mapping between the contract terms and

the insuree’s private information. Though the context is different, the number of acci-

dents plays a key role again in identifying the marginal distribution of risk. Regarding

the identification of the joint distribution of risk and risk aversion, we exploit an exclu-

sion restriction and a full support assumption requiring sufficient variations in the car

characteristics. Under these assumptions, the structure is identified when the damage

distribution is fully observed. On the other hand, when the damage distribution is trun-

cated at the deductible, we obtain identification of the structure up to the knowledge of

the probability that the damage is below the deductible. The latter probability is not

identified. To complete these results, we derive the model restrictions on the observables

in the fourth data scenario. We also explore some identifying assumptions for the prob-

ability of damage below the deductible. We consider a parameterization of the damage

distribution, additional data and a set identification strategy leading to some bounds for

the model structure.

The outline of the paper is as follows. Section 2 presents the model with a continuum

of contracts offered to each insuree and an extension to two contracts offered. Section

3 addresses identification when a continuum of contracts is offered whether the damage

distribution is fully observed or truncated at the deductible. Section 4 studies identifi-

cation when only two contracts are offered to each insuree making again the distinction

between a fully observed damage distribution and a truncated one. Section 5 derives the

restrictions imposed by the model under the latter data scenario, while Section 6 discusses

some identifying strategies for the damage probability below the deductible. Section 7

concludes.
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2 A Model of Insurance

This section relies on the theoretical results of Aryal and Perrigne (2009), who solve the

bidimensional screening problem in insurance. The basic idea is to use the concept of

certainty equivalence to rank insurees and reduce the bidimensional screening problem

into a single dimension. As expected, there is some pooling at equilibrium as agents with

the same level of certainty equivalence when no insurance is bought choose the same pair

of premium and deductible. They show that using certainty equivalence is not suboptimal

for the insurer to screen insurees. They also derive the first-order conditions that must

satisfy the premium and deductible when a continuum of coverages is offered and when a

finite number of coverages is offered. In this section, we briefly review the notations and

results that are needed to study the identification of the model. A notable difference of

our model with theirs is the definition of risk. In the theoretical literature on insurance

starting with Rotschild and Stiglitz (1976) and Stiglitz (1977), the insuree’s risk is defined

as the probability of accident. With such a definition of risk, Aryal, Perrigne and Vuong

(2009) show that the model is not identified even in the best data scenario of a continuum

of contracts and a fully observed damage distribution. Intuitively, one can identify the

distribution of certainty equivalence but the nonavailability of the number of accidents

for each insuree leads to the nonidentification of the joint distribution of risk and risk

aversion. Because we exploit here the observed number of accidents for each insuree, for

convenience we measure the insuree’s risk as the expected number of accidents. From an

empirical perspective, this measure makes sense as the insurer cares about the number of

accidents for each insuree as each accident may involve some payment. The theoretical

results of Aryal and Perrigne (2009) extend to this case.

We first introduce some notations and assumptions. Each insuree is characterized by

a pair (θ, a), where θ is his risk measured as the expected number of accidents and a

is his coefficient of constant absolute risk aversion (CARA). This information is known

only to the insuree leading to a problem of imperfect information for the insurer. The

latter is assumed to be a monopolist as in Stiglitz (1977). In contrast, in the pioneering

Rothschild and Stiglitz (1976) model, insurees vary in risk only, while their risk aversion
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is common and known to the insurer. The pair (θ, a) is distributed as F (·, ·), which is

twice continuously differentiable on its support Θ×A = [θ, θ]× [a, a]. The pairs (θ, a) are

assumed to be independent across insurees. The insuree’s utility function is assumed to be

CARA, i.e. Ua(x) = −e−ax. Each insuree may be involved in J accidents over the contract

period, where J follows a Poisson distribution with parameter θ. The number of accidents

J is independent across individuals. Each accident involves a damage Dj, j = 1, . . . , J ,

which are i.i.d as H(·) with support [0, d] ⊂ IR+. Damages are independent of (θ, a).

Certainty Equivalence

We introduce the concept of certainty equivalence when the individual has no coverage

and when he buys an insurance contract (t, dd), where t is the premium and dd the

deductible. Denoting w the insuree’s wealth and pj = Pr[j accidents occur] = e−θθj/j!,

the expected utility of a (θ, a) insuree without insurance is

V (0, 0; θ, a) = p0Ua(w) + p1E[Ua(w −D1)] + p2E[Ua(w −D1 −D2)] + . . .

= −p0e
−aw − p1e

−awE[eaD1 ]− p2e
−awE[eaD1 ]E[eaD2 ]− . . .

= −e−aw
[
p0 + p1φa + p2φ

2
a + . . .

]
= −e−awe−θ

(
1 +

θφa
1!

+
θ2φ2

a

2!
+ . . .

)
= −e−aw+θ(φa−1),

where φa = E[eaD1 ] > 1. The certainty equivalence CE(0, 0; θ, a) of no insurance coverage

is defined by the amount of certain wealth for the insuree that will give him the same

level of utility when he has no coverage, i.e. by −e−aCE(0,0;θ,a) = −e−aw+θ(φa−1). Thus,

s ≡ CE(0, 0; θ, a) = w − θ(φa − 1)

a
. (1)

We can verify that ∂s/∂θ < 0 and ∂s/∂a < 0. The certainty equivalence of no insurance

coverage decreases in both risk and risk aversion. As s is a function of (θ, a), it is random

and distributed as K(·) on [s, s], where s corresponds to the insuree (θ, a) and s to the

insuree (θ, a), respectively. The certainty equivalence of no insurance coverage defines a

locus of pairs (θ, a) on a downward sloping curve θ(a) at s given.
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We now turn to the certainty equivalence when the individual buys the insurance

coverage (t, dd). The (θ, a) insuree’s expected utility needs to incorporate that the damage

is covered by the insurer when it is above the deductible. Thus, his utility is affected by

the damage only when it is below the deductible. Using the same derivation as above

where w and Dj are replaced by w − t and min(dd,Dj), respectively, we obtain

V (t, dd; θ, a) = − exp [−a(w − t) + θ (φ∗a − 1)] ,

where φ∗a = E[eamin(dd,D)] =
∫
eamin(dd,D)dH(D) =

∫ dd
0 eaDdH(D) + eadd(1 −H(dd)). The

certainty equivalence for purchasing the coverage (t, dd) is given by

CE(t, dd; θ, a) = w − t−
θ
(∫ dd

0 eaDdH(D) + eadd(1−H(dd))− 1
)

a
. (2)

The Insurer’s Profit

We first assume that the insurer offers a continuum of contracts (t(θ, a), dd(θ, a)),

(θ, a) ∈ Θ×A. Under incomplete information, the insurer’s expected profit is given by

E[π] =
∫

Θ×A

{
t(θ, a)− p1(θ)

[∫ d

0
max(0, D1 − dd(θ, a))dH(D1)

]

−p2(θ)

[∫ d

0
max(0, D1 − dd(θ, a))dH(D1) +

∫ d

0
max(0, D2 − dd(θ, a))dH(D2)

]

− . . .
}
dF (θ, a)

=
∫

Θ×A

t(θ, a)−
∞∑
j=1

pj(θ)j
∫ d

0
max(0, D − dd(θ, a))dH(D)

 dF (θ, a)

=
∫

Θ×A

[
t(θ, a)− θ

∫ d

dd(θ,a)
(1−H(D))dD

]
dF (θ, a), (3)

where max(0, d−dd(θ, a)) reflects that the insurer covers the damage above the deductible

only and (t(θ, a), dd(θ, a)) indicates the dependence of the premium and deductible on

the insuree’s type. The notation pj(θ) emphasizes its dependence on the insuree’s risk

θ. The last equality follows from
∑∞
j=1 pj(θ)j = θ and

∫ d
0 max{0, D − dd(θ, a)}dH(D) =∫ d

dd(θ,a)(1−H(D))dD.
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Following Aryal and Perrigne (2009), we can equivalently express the insurer’s ex-

pected profit in terms of the certainty equivalence of no insurance s = CE(0, 0; θ, a). In

particular, the insurer does as well by proposing the same contract (t(s), dd(s)) for all

insurees with (θ, a) pairs leading to the certainty equivalence s. Thus, t(θ, a) = t(s) and

dd(θ, a) = dd(s). By making the change of variable (θ, a) to (θ, s) in (3) gives

E[π] =
∫ s

s

[
t(s)− E(θ|s)

∫ d

dd(s)
(1−H(D))dD

]
k(s)ds,

where k(·) is the density of certainty equivalence.

The Optimization Problem

Hereafter, we solve the problem in terms of s. The contracts need to guarantee the

insuree’s participation and his true type revelation. For the latter, we have

max
s̃∈[s,s]

CE(t(s̃), dd(s̃); θ, a) = max
s̃∈[s,s]

w−t(s̃)−
θ
[∫ dd(s̃)

0 eaDdH(D)+eadd(s̃)(1−H(dd(s̃)))−1
]

a
,

leading to the first-order condition at s̃ = s

dd′(s) = −η(s, a, dd(s))t′(s),

for all s ∈ [s, s], where

η(s, a, dd(s)) =
φa − 1

a(w − s)eadd(s)[1−H(dd(s))]
, (4)

since θ = a(w − s)/(φa − 1). This provides the incentive compatibility constraint for the

insurer’s optimization problem. Regarding the individual rationality constraint, Aryal

and Perrigne (2009) show that (i) there is no countervailing incentives problem and (ii)

it reduces to the boundary condition that sets the certainty equivalence for purchasing

coverage CE(t(s), dd(s); θ, a) for the (θ, a) insuree at s ≡ CE(0, 0; θ, a).

Aryal and Perrigne (2009) show that the insurer’s problem can be solved along the

path a(s), which is determined as the intersection of the insuree’s (IC) constraint, i.e.

θ = −t′(s) exp(−add(s))/[dd′(s)(1 −H(dd(s)))] and his certainty equivalence s, i.e. θ =

a(w − s)/(φa − 1). Thus, (4) can be written as η(s, a(s), dd(s)). The Hamiltonian of the
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insurer’s optimization problem can be written as

H(t(s), dd(s)) =

[
t(s)− E(θ|s)

∫ d

dd(s)
(1−H(D))dD

]
k(s)

+v(s)t′(s) + w(s)dd′(s) + r(s) [dd′(s) + η(s, a(s), dd(s))t′(s)] ,

where t(s) and dd(s) are the state variables, t′(s) and dd′(s) are the control variables, v(s),

w(s) and r(s) are the co-state variables. Solving for the first-order conditions, (t(s), dd(s))

is solution of

η(s, a(s), dd(s))E(θ|s)[1−H(dd(s))]

+
K(s)

k(s)

1

η(s, a(s), dd(s))

[
−∂η(s, a(s), dd(s))

∂dd
dd′(s) + η′(s, a(s), dd(s))

]
= 1,(5)

dd′(s) = −η(s, a+(s), dd)t′(s), (6)

where η′(s, a(s), dd(s)) denotes the total derivative of η(s, a(s), dd(s)) with respect to s,

with the initial condition CE(t(dd(s)), dd(s); s) = s. See Aryal and Perrigne (2009) for

the derivation of (5) and (6) interpreting their θ as the expected number of accidents.

At equilibrium, a lower value of s implies more insurance, i.e. a lower deductible and a

higher premium. At s, we have full insurance with dd(s) = 0.

Finite Number of Contracts

In practice, the principal offers a finite number C of contracts from which the agent can

choose. In insurance, we observe in general two to five pairs of premium and deductible

offered. To simplify the presentation, we consider C = 2. Our model takes C as exogenous.

Let (t1, dd1) and (t2, dd2) with t1 < t2 and dd1 > dd2 be the two contracts offered by the

insurer. We show how the insurer can determine these two contracts optimally. Intuitively,

in addition to the pooling of pairs (θ, a) leading to the same certainty equivalence s, there

will be bunching of agents with different values of s. The idea is then to determine two

subsets A1 and A2 that partition Θ×A such that individuals in A1 and A2 choose (t1, dd1)

and (t2, dd2), respectively.

The frontier between A1 and A2 is determined by the locus of (θ, a) insurees who are

indifferent between the two contracts, i.e. for which CE(t1, dd1; θ, a) = CE(t2, dd2; θ, a).
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Using the previous expressions for certainty equivalence, the frontier is the part lying in

Θ×A of the strictly decreasing curve defined by

θ(a) =
a(t2 − t1)[∫ dd1

0 eaDdH(D) + eadd1(1−H(dd1))−
∫ dd2
0 eaDdH(D)− eadd2(1−H(dd2))

]
=

t2 − t1∫ dd1
dd2

eaD(1−H(D))dD
, (7)

using integration by parts. We denote by θ∗ and a∗ the highest risk and risk aversion on

this frontier.

The insurer chooses (t1, dd1, t2, dd2) by maximizing his expected profit. Similarly to

(3), we have

E[π] =
2∑
c=1

∫
Ac

[
tc − θ

∫ d

ddc
(1−H(D))dD

]
dF (θ, a)

=
2∑
c=1

νc

[
tc − E[θ|Ac]

∫ d

ddc
(1−H(D))dD

]
,

where the second equality follows from
∫
Ac θdF (θ, a) = νcE[θ|Ac] with νc =

∫
Ac dF (θ, a).

The insurer’s expected profit from selling the two coverages is a weighted average with

weights ν1 and ν2 for the proportion of insurees choosing the first and second contracts,

respectively.

The optimal contracts need also to satisfy insurees’ incentive compatibility and par-

ticipation constraints:

CE(tc, ddc; θ, a) > CE(tc′ , ddc′ , θ, a), c 6= c′, ∀(θ, a) ∈ Ac, c = 1, 2,

CE(tc, ddc; θ, a) ≥ CE(0, 0; θ, a), ∀(θ, a) ∈ Ac, c = 1, 2.

Following Aryal and Perrigne (2009), the only constraint that binds is the individual

rationality constraint for the (θ, a) insuree, i.e. CE(t1, dd1; θ, a) = s. Maximizing E[π]

with respect to (t1, dd1, t2, dd2) with respect to this participation constraint gives the

first-order conditions

ν1 +
∫ a∗

a

[
t1−θ(a)

{∫ d

dd1
(1−H(D))dD

}]
f(θ(a), a)

∂θ(a)

∂t1
da
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−
∫ a

a∗

[
t2−θ(a)

{∫ d

dd2
(1−H(D))dD

}]
f(θ(a), a)

∂θ(a)

∂t1
da = λ (8)

∫ a∗

a

[
t1−θ(a)

{∫ d

dd1
(1−H(D))dD

}]
f(θ(a), a)

∂θ(a)

∂dd1

da+ E[θ|A1]ν1(1−H(dd1))

−
∫ a

a∗

[
t2−θ(a)

{∫ d

dd2
(1−H(D))dD

}]
f(θ(a), a)

∂θ(a)

∂dd1

da−λθeadd1(1−H(dd1)) = 0(9)

∫ a∗

a

[
t1−θ(a)

{∫ ∞
dd1

(1−H(D))dD
}]
f(θ(a), a)

∂θ(a)

∂t2
da

+ν2 −
∫ a

a∗

[
t2−θ(a)

{∫ d

dd2
(1−H(D))dD

}]
f(θ(a), a)

∂θ(a)

∂t2
da = 0 (10)

∫ a∗

a

[
t1−θ(a)

{∫ ∞
dd1

(1−H(D))dD
}]
f(θ(a), a)

∂θ(a)

∂dd2

da+ E(θ|A2)ν2(1−H(dd2))

−
∫ a

a∗

[
t2−θ(a)

{∫ d

dd2
(1−H(D))dD

}]
f(θ(a), a)

∂θ(a)

∂dd2

da = 0, (11)

t1 =
θ

a

[∫ d

dd1

(
eaD − eadd1

)
dH(D)

]
(12)

where λ is the Lagrangian multiplier associated with the participation constraint. See

Aryal and Perrigne (2009) for the derivation of (8)–(12) reinterpreting their θ as the

expected number of accidents.

3 Identification with a Continuum of Contracts

In this section, we consider the case in which a continuum of coverages is offered to each

insuree. Though this is seldom the case in practice, this allows us to understand the

problem of identification and the role played by the assumptions in identifying the model

structure. The model structure is given by the joint distribution of risk and risk aversion

F (·, ·) and the damage distributionH(·) given that the insuree’s utility function is specified

as CARA. Besides the specification of this utility function, the identification problem

is nonparametric.3 The problem of identification is to recover uniquely the structure

3The problem of identifying nonparametrically the agent’s utility function is quite complex. In the

context of auctions, the bidder’s utility function is not identified in general. Nonparametric identification

is achieved with the help of exclusion restrictions using exogenous variations in the number of bidders
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[F (·, ·), H(·)] from the observables. In the case of a continuum of contracts, we observe

the contract purchased by each insuree (t, dd) and the J claims made by each insuree

with the corresponding amounts of damages (D1, . . . , DJ). In Section 3.2, we observe J∗

claims with their corresponding damages (D1, . . . , DJ∗) because of the truncation at the

deductible.

We introduce some observed variables characterizing the insuree. We distinguish two

kinds of variables. The variables related to the insuree’s personal information such as

age, gender, education, marital status, location and driving experience are denoted by

X, while the variables related to the insuree’s car such as the car mileage, business use,

car value, power, model and make are denoted by Z.4 We remark that only X is an

exogenous variable as Z can be viewed as endogenously determined in a model including

the insuree’s car choice, where Z becomes a funtion of (θ, a,X). In this section, we allow

(θ, a) and (X,Z) to be dependent thereby allowing Z to be endogenous.

With the introduction of (X,Z) with values in the support SXZ ⊂ IRdimX+dimZ , the

model structure becomes F (θ, a|X,Z) and H(D|X,Z) as we expect that both variables

affect the insuree’s risk and risk aversion and the damage. For instance, the amount of

damage with an expensive car is likely to be larger than the damage with an inexpensive

one. This intuition is supported by the empirical analysis of Cohen and Einav (2007)

relying on some functional form for F (θ, a|X,Z). Let G(·|X,Z) denote the observed

deductible distribution conditional on (X,Z). It is crucial that all the variables used by

as in Guerre, Perrigne and Vuong (2009) or with the help of additional data from ascending auction

as in Lu and Perrigne (2008). See also Campo, Guerre, Perrigne and Vuong (2009) for semiparametric

identification when the bidder’s utility function is parameterized as CARA or CRRA. In the context

of insurance with bidimensional screning, it is likely that the insurer’s utility function is not identified.

Moreover, the CARA specification simplifies considerably the derivation of the model through an explicit

form of the certainty equivalence.
4The value of the car is used as a proxy for wealth w when computing the certainty equivalence so

that w is a variable in Z. Given that only the value of the car is at risk in the case of an accident, we

can consider that the relevant wealth in the model is the value of the car. Cohen and Einav (2007) use

a different proxy for wealth obtained from additional census data on average income. This measure of

wealth is then incorporated in the vector X in their empirical analysis.
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the insurer to discriminate insurees are included in (X,Z).

In studies on identification of structural models, it is important to be precise about the

set of admissible structures and the assumptions of the theoretical model. We formalize

such assumptions made on the structure and (θ, a, J,D,X,Z). Specifically, the structure

[F (·, ·|X,Z), H(·|X,Z)] belongs to FXZ ×HXZ as defined below.

Definition 1:Let FXZ be the set of conditional distributions F (·, ·|X,Z) satisfying

(i) For every (x, z) ∈ SXZ, F (·, ·|x, z) is a c.d.f. with compact support Θ(x, z)×A(x, z) =

[θ(x, z), θ(x, z)]× [a(x, z), a(x, z)] ⊂ IR∗+ × IR∗+,

(ii) The conditional density f(·, ·|·, ·) > 0 on its support.

Definition 2:Let HXZ be the set of distributions H(·|X,Z) satisfying

(i) For every (x, z) ∈ SXZ, H(·|x, z) is a c.d.f with compact support [0, d(x, z)] ⊂ IR+ with

sup(x,z)∈SXZ d(x, z) < +∞,

(ii) The conditional density h(·|·, ·) > 0 on its support.

Assumption 1: We have

(i) (D1, . . . , DJ) ⊥ (θ, a)|(J,X,Z).

(ii) (D1, . . . , DJ)|(J,X,Z) are i.i.d. as H(·|X,Z),

(iii) J ⊥ (X,Z, a)|θ with J |θ ∼ P(θ), i.e. Pr[J = j] = e−θ θ
j

j!
.

Assumption 1-(i) says that conditional on the insuree’s characteristics (X,Z), the amount

of damage does not provide any information on his risk and risk aversion. For instance,

conditional on (X,Z), the damage depends on factors such as road and weather conditions,

bad luck which are independent of (θ, a). In the same spirit, Assumption 1-(ii) says

that damages are independent conditional on (X,Z). Regarding Assumption 1-(iii), the

number of accidents J depends on the insuree’s risk θ only, while the Poisson distribution

follows the theoretical model of Section 2, where the insuree’s risk θ is the expected

number of accidents. We maintain Assumption 1 throughout the paper. In addition,

(θ, a, J,X, Z) is i.i.d. across insurees.
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3.1 Case 1: Full Damage Distribution

Case 1 considers the best data scenario. In addition to a continuum of coverages offered

to each insuree, the damage is observed for every accident whether its amount is below

or above the deductible. It follows that H(·|X,Z) is identified on [0, d(X,Z)]. It remains

to study the identification of F (·, ·|X,Z). For the rest of Section 3, to simplify the

notations, we suppress the conditioning on (X,Z). We first proceed by studying the

identification of the distribution K(·) of certainty equivalence of no coverage in view of

Section 2. If one can identify K(·), there is some hope to identify F (·, ·). The optimal

contracts are characterized by (5) and (6). Equation (5) defines a one-to-one mapping

between the certainty equivalence s and the deductible dd, while (6) defines a one-to-one

mapping between dd and t. The key idea is to exploit the former mapping to identify

the distribution of certainty equivalence from the observed deductible distribution G(·).
This result is in the spirit of the nonparametric identification literature on auctions and

contracts.5 We have G(dd) = Pr(d̃d ≤ dd) = Pr(s̃ ≤ s(dd)) = K(s) implying g(dd) =

k(s)s′(dd) with s(·) the inverse of dd(·) by monotonicity of the latter. Hence,

G(dd)

g(dd)
=
K(s)

k(s)

1

s′(dd)
=
K(s)

k(s)
dd′(s).

Substituting the above expression in (5), we obtain

η(s, a(s), dd(s))E[θ|s](1−H(dd))

+
G(dd)

g(dd)

−
∂η(s,a(s),dd(s))

∂dd

η(s, a(s), dd(s))
+
η′(s, a(s), dd(s))

η(s, a(s), dd(s))
s′(dd)

 = 1.

From (6), we have t′+(dd) = −1/η(s, a(s), dd(s)), where t+(dd) = t[s(dd)]. We also have

dt′+(dd(s))/ds = −d[η(s, a(s), dd(s))]−1/ds, i.e. t′′+(dd) × dd′(s) = η′(s, a(s), dd(s))/[η(s,

5For auctions, see Guerre, Perrigne and Vuong (2000) and the survey by Athey and Haile (2007)

where the mapping between the observed bid and the unobserved private value is exploited to identify

the private value distribution. For contracts, see Perrigne and Vuong (2009) in the context of nonlinear

pricing, and Perrigne and Vuong (2008) in the context of a procurement model with adverse selection

and moral hazard. There, the mapping between the observed price or quantity and the unobserved firm’s

type or efficiency is exploited to recover the underlying distribution of firms’ efficiency and willingness to

pay, respectively. See also D’Haultfoeuille and Fevrier (2007).
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a(s), dd(s))]2 or equivalently t′′+(dd) = [η′(s, a(s), dd(s))/[η(s, a(s), dd(s))]2]×s′(dd). Using

this result, we can rewrite the previous equation as

E(θ|s)(1−H(dd)) +
G(dd)

g(dd)

−
∂η(s,a(s),dd(s))

∂dd

η(s, a(s), dd(s))2
+ t′′+(dd)

 = −t′+(dd).

From (4), the derivative of η(·, ·, ·) with respect to dd is

∂η(s, a(s), dd(s))

∂dd
= −η(s, a(s), dd(s))

[
a(s)− h(dd)

1−H(dd)

]
.

Thus, the first-order condition defining the optimal deductible can be rewritten as

E(θ|dd)(1−H(dd)) +
G(dd)

g(dd)

[
−t′+(dd)

(
a(s)− h(dd)

1−H(dd)

)
+ t′′+(dd)

]
= −t′+(dd),

where E(θ|s) = E(θ|dd) because of the one-to-one mapping between dd and s. After

elementary algebra, we obtain

a(s) =
1

t′+(dd(s))

{
g(dd)

G(dd)

[
t′+(dd(s)) + E(θ|dd)(1−H(dd))

]
+ t′′+(dd(s))

}
+

h(dd)

1−H(dd)
,

showing that a(s) is identified as the right-hand side is observed or identified from ob-

servables. In particular, E(θ|dd) is identified by the expected number of claims made by

insurees choosing the deductible dd given that all the claims including those below the

deductible are observed by assumption, i.e. E(θ|dd) = E(J |dd).6 But, using (4) we have

s = w +
t′(dd)(φa − 1)

a(s) exp(a(s)dd)(1−H(dd))
,

showing that s is identified from the knowledge of dd. Thus, we have the following result.

Lemma 1: Suppose that a continuum of insurance coverages is offered to each insuree

and all accidents are observed for each insuree. Under Assumption 1, the pair (K(·), H(·))
is identified.

It remains to investigate whether we can identify F (·, ·) from the knowledge of K(·).
A sketch of the argument is as follows, where the observed number of claims J plays a

6We have E[J |dd] = E[J |s] = E{E[J |θ, s]|s} = E{E[J |θ, a]|s} = E{E[J |θ]|s} = E[θ|s], where we have

used Assumption 1-(iii) and the one-to-one mapping between (θ, a) and (θ, s).
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crucial role in identifying F (·, ·).7 Specifically, from the moment generating function of

the number of accidents J conditional on s, we show that we can identify the moment

generating function of θ given s in a neighborhood of zero. As is well known, the latter

identifies Fθ|S(·|·). Once we identify Fθ|S(·|·), we use K(·) to derive the joint distribution

of (θ, s). Identification of the joint density of (θ, a) follows from the known one-to-one

mapping between (θ, s) and (θ, a) given by (1).

Formally, for a given certainty equivalence s, the subpopulation of insurees with insur-

ance coverage (t(s), dd(s)) and their corresponding claims gives the moment generating

function MJ |S(·|s) as

MJ |S(t|s) = E[eJt|S = s] = E
{

E[eJt|θ, S]|S = s
}

= E
{

E[eJt|θ, a]|S = s
}

= E
{

E[eJt|θ]|S = s
}

= E
{
eθ(e

t−1)|S = s
}

= Mθ|S(et − 1|s), (13)

where the third equality follows from the one-to-one mapping between (θ, s) and (θ, a)

and the fourth and fifth equalities from Assumption 1-(iii) using the moment generating

function of the Poisson distribution with parameter θ. In particular, the above equation

shows that the moment generating function MJ |S(·|s) exists for every t ∈ IR because θ

has a compact support given S = s. Moreover, letting u = et − 1 shows that

Mθ|S(u|s) = MJ |S(log(1 + u)|s)

for all u ∈ (−1,+∞). Thus Mθ|S(·|s) is identified on a neighborhood of 0 thereby identi-

fying Fθ|S(·|s). See (say) Billingsley (1995, p. 390).8

The joint density of (θ, s) is f(θ, s) = f(θ|s)k(s), which is identified. From the known

one-to-one mapping T (·, ·) that transforms (θ, a) into (θ, s), namely T (θ, a) = [θ, w −
7In contrast, if the analyst observes only whether J = 0 or J ≥ 1 with the risk measured by the

probability of some accident(s) θ̃ = 1 − e−θ, F (·, ·) is not identified as shown by Aryal, Perrigne and

Vuong (2009).
8Alternatively, because Mθ|S(·|s) exists in a neighborhood of 0, then all the monents of θ given S = s

are identified by M
(k)
θ|S(0|s) = E[θk|S = s] for k = 0, 1 . . .. Since θ given s has compact support, we are in

the class of Hausdorff moment problems, which are always determinate, i.e. the distribution of θ given s

is uniquely determined by its moments.
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[θ(φa−1)]/a]′ with φa =
∫
eaDdH(D) andH(·) known, we can recover the joint distribution

of (θ, a) as

f(θ, a) = fθS(T−1(θ, a))

∣∣∣∣∣∂T−1(θ, a)

∂(θ, a)

∣∣∣∣∣.
This result is formally stated in the following proposition.

Proposition 1: Suppose that a continuum of insurance coverages is offered to each in-

suree and all accidents are observed for each insuree. Under Assumption 1, the structure

(F (·, ·), H(·)) is identified.

3.2 Case 2: Truncated Damage Distribution

We maintain the assumption that the insurer offers a continuum of contracts to each

insuree but we now consider that the damage distribution is not fully observed. In practice

and making abstraction of dynamic considerations, an accident leads to a claim if and only

if the damage is above the deductible. Using the claim data only, we cannot identify the

damage distribution but only the truncated damage distribution on [dd, d]. Nonetheless,

the damage distribution is still identified on its support [0, d] by exploiting claim data for

insurees buying full insurance for whom the deductible is zero. For this coverage, every

accident is reported since dd = 0 and thus H(·) is identified. Specifically, HD|dd(·|0) =

HD|S(·|s) = HD|(θ,a)(·|θ, a) = HD(·) by Assumption 1-(i). Thus, we have the following

lemma.

Lemma 2: Under Assumption 1, H(·) is identified.

It remains to study the identification of F (·, ·). Though the reported number of ac-

cidents J∗ is observed instead of J , the argument is similar to Case 1. Specifically,

reviewing the argument leading to Lemma 1, it is straightforward to see that K(·) is

identified if E(θ|dd) is. Since accidents are reported only if the damage is above the

deductible, we have E[θ|dd] 6= E[J∗|dd], where J∗ is the number of reported accidents,

i.e. those with a damage above the deductible. But J∗ given (J, dd) is distributed as

a Binomial with parameters (J, 1 − H(dd)) by Assumption 1-(i,ii). Thus, E[J∗|dd] =
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E{E[J∗|J, dd]|dd} = E[J(1−H(dd))|dd] = (1−H(dd))E[J |dd] = (1−H(dd))E(θ|dd), i.e.

E[θ|dd] = E[J∗|dd]/(1−H(dd)). Hence, E[θ|dd] is identified despite the truncation of the

damage distribution at dd leading to the identification of K(·).
Turning to the identification of F (θ, a), we begin with the identification of Fθ|S(·|·) as

before. The moment generating function of J∗ given s is

MJ∗|S(t|s) = E[eJ
∗t|S = s] = E{E[eJ

∗t|J, S]|S = s} = E{E[eJ
∗t|J, dd]|S = s}

= E
{

[H(dd) + (1−H(dd))et]J |S = s
}

= E
{
eJ log[H(dd)+(1−H(dd))et]|S = s

}
= Mθ|S

[
elog[H(dd)+(1−H(dd))et] − 1|s

]
= Mθ|S[(1−H(dd))(et − 1)|s] (14)

where the fourth equality uses the moment generating function of the Binomial distribu-

tion B(J, 1−H(dd)) and the fifth equality uses (13) with t replaced by log[H(dd) + (1−
H(dd))et]. Thus, we obtain

Mθ|S(u|s) = MJ∗|S

[
log

(
1 +

u

1−H(dd)

)
|s
]
,

for u ∈ (−(1 − H(dd),+∞). The rest of the argument in Case 1 applies leading to the

following proposition.

Proposition 2: Suppose that a continuum of insurance coverages is offered to each insuree

and accidents are observed if and only if the damage is above the deductible. Under

Assumption 1, the structure (F (·, ·), H(·)) is identified.

4 Identification with a Finite Number of Contracts

We now address identification of the model when only (say) two contracts are offered

given (X,Z). The identification argument can no longer rely on the identification of the

density of certainty equivalence as we cannot exploit the one-to-one mapping between

the insuree’s certainty equivalence and his deductible choice. There is a continuum of

s ∈ [s, s] values, while there are only a finite number of deductibles. Consequently, the

FOCs characterizing (t1, dd1, t2, dd2) alone will not allow us to identify F (θ, a). In addition

to the key role played by the observed number of claims, we exploit sufficient variations
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in exogenous variables to achieve identification. In particular, the optimality of contracts

is used through the contract form and the screening procedure. As before, we distinguish

whether the full damage or truncated damage distribution is observed.

4.1 Case 3: Full Damage Distribution

This case is the closest to Cohen and Einav (2007) who consider that claim data contain

all the accidents. Cohen and Einav (2007) identify the joint distribution of risk and

risk aversion under parametric assumptions. In particular, they assume a lognormal

mixture of Poisson for the claim data. Moreover, they do not exploit any information

provided by the optimality of contracts. In this section, we show how some features of

contract optimality combined with a full support assumption with sufficient variations in

the car characteristics can be exploited to identifiy nonparametrically f(θ, a). In view

of Cohen and Einav (2007) empirical findings, our identification result is important for

several reasons. First, the nonparametric identification of the joint distribution of risk

and risk aversion offers more flexibility on the dependence between risk and risk aversion.

Their empirical findings display a counterintuitive positive correlation between the latter

while one could expect a negative one. Second, their robustness analysis suggests that

the offered contracts are suboptimal with their estimated negative correlation, i.e. the

insurer could increase his profit by adjusting upward the current low deductibles. On the

other hand, a positive correlation would imply lower levels of deductibles.

Our identification results rely on a nonparametric mixture of Poisson distribution for

the number of claims. Specifically, the probability of the observed claims J conditional

on some characteristics (x, z) is given by

Pr[J = j|x, z] =
∫ θ(x,z)

θ(x,z)
e−θ

θj

j!
dFθ|X,Z(θ|x, z)

where the mixing distribution Fθ|X,Z(·|x, z) is left unspecified.

Given that all the accidents and their corresponding damages are observed, the damage

distribution H(·|X,Z) is identified. To establish identification of F (θ, a|X,Z), we proceed

as follows. We first show the identification of the marginal distribution of θ given (X,Z)
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following an argument similar to Case 1. In a second step, we identify the conditional

distribution of a given (θ,X, Z) at a(θ,X, Z), which defines the frontier between the two

sets A1(X,Z) and A2(X,Z). In a third step, we make an exclusion restriction and a

full support assumption involving the car characteristics Z to achieve identification of the

distribution of a given (θ,X, Z) on its support.

For the first step, we exploit again the observed number of accidents. Using an argu-

ment similar to that leading to (13) for the subpopulation of insurees with characteristics

(x, z), the moment generating function MJ |X,Z(·|x, z) is

MJ |X,Z(t|x, z) = E[eJt|X = x, Z = z] = E
{

E[eJt|θ,X, Z]|X = x, Z = z
}

= E
{

E[eJt|θ]|X = x, Z = z
}

= E
{
eθ(e

t−1)|X = x, Z = z
}

= Mθ|X,Z(et − 1|x, z),

where the third and fourth equalities follow from Assumption 1-(iv). Thus, fθ|X,Z(·|·, ·) is

identified by its moment generating function

Mθ|X,Z(u|x, z) = MJ |X,Z(log(1 + u)|x, z)

for all u ∈ (−1,+∞).

In the second step, we consider the probability that an insuree with risk θ and

characteristics (X,Z) chooses the coverage (t1(X,Z), dd1(X,Z)) as intuitively this pro-

vides information about the insuree’s risk aversion a. To do so, we define the dis-

crete variable χ, which takes the values 1 and 2 whether the insuree chooses the cov-

erage (t1(X,Z), dd1(X,Z)) or (t2(X,Z), dd2(X,Z)), i.e. whether the insuree’s types

(θ, a) belongs to A1(X,Z) or A2(X,Z), respectively. Thus, χ = 1 is also equivalent

to a ≤ a(θ,X, Z), where the latter is the inverse of the frontier (7), where (t1, dd1, t2, dd2)

and H(·) now depends on (X,Z). We remark that some features of optimal contracts are

used here, namely the offered contracts are of the form premium/deductible, while the

(θ, a) space is partitioned optimally by the frontier (7). The above probability of interest

can then be written as Pr[χ = 1|θ,X = x, Z = z], which is

Fa|θ,X,Z [a(θ, x, z)|θ, x, z] =
fθ|χ,X,Z(θ|1, x, z)ν1(x, z)

fθ|X,Z(θ|x, z)
,
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by Bayes rule, where ν1(x, z) is the proportion of insurees with characteristics (x, z)

choosing the coverage (t1(x, z), dd1(x, z)). The latter is identified from the data. Since

fθ|X,Z(·|·, ·) is identified from the first step, it remains to identify fθ|χ,X,Z(·|1, x, z). Ap-

plying the same argument as in Step 1 but conditioning on χ = 1 as well, we obtain

MJ |χ,X,Z [t|1, x, z] = E[eJt|χ=1, X=x, Z=z] = E{E[eJt|θ, a,X, Z]|χ=1, X=x, Z=z}

= Mθ|χ,X,Z [et − 1|1, x, z],

where the second equality follows from that conditioning on (θ, a, χ) is equivalent to

conditioning on (θ, a), while the third equality follows as before from Assumption 1-(iv).

Thus, fθ|χ,X,Z(·|1, ·, ·) is identified by its moment generating function

Mθ|χ,X,Z(u|1, x, z) = MJ |χ,X,Z(log(1 + u)|1, x, z)

for all u ∈ (−1,+∞).9 Hence, Fa|θ,X,Z [a(θ, x, z)|θ, x, z] is identified for every θ ∈ [θ(x, z),

θ(x, z)] and (x, z) ∈ SXZ .

To conduct policy counterfactuals, however, the analyst may need to identify F (·, ·|x, z)
on the whole support Θ(x, z)×A(x, z). This is the purpose of the third step. To do so,

we make the following assumptions. Let SW denote the support of some variable W and

SW1|w2 denote the support of some variable W1 given some variable W2 = w2.

Assumption 2: We have

(i) a ⊥ Z|(θ,X)

(ii) ∀(θ, a, x) ∈ SθaX , there exists z ∈ SZ|θx such that a(θ, x, z) = a.

Assumption 2-(i) is an exclusion restriction that gives

Fa|θ,X,Z(a(θ, x, z)|θ, x, z) = Fa|θ,X(a(θ, x, z)|θ, x) ∀(θ, x, z).

Because the left-hand side is identified from the second step, sufficient variations in

a(θ, x, z) due to z can identify Fa|θ,X(·|θ, x). This is the purpose of Assumption 2-(ii),

which is a full support assumption. Similar assumptions (sometimes called large support

9The argument works as well by considering χ = 2 leading to the overidentification of

Fa|θ,X,Z [a(θ, x, z)|θ, x, z]. This issue will be further discussed in Section 5.
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assumptions) have been made by different authors in various contexts. See Matzkin (1992,

1993), Lewbel (2000), Carneiro, Hansen and Heckman (2003), Berry and Haile (2009) and

Imbens and Newey (2009) among others. In our context, this assumption can be inter-

preted as follows: For every individual with personal characteristics (θ, a,X), there exists

some (say) car characteristics Z for which the insuree is indifferent between the two of-

fered coverages. The full support assumption is sufficient to guarantee identification as

shown next but it is not necessary.10 Specifically, we have

Fa|θ,X(a|θ, x) = Fa|θ,X [a(θ, x, z)|θ, x] = Fa|θ,X,Z [a(θ, x, z)|θ, x, z],

where the first equality uses the full support assumption and the second equality uses the

exclusion restriction assumption. Note that a(·, ·, ·) is identified in view of (7). Identifica-

tion of F (θ, a|x, z) follows using the first step. This result is formally stated in the next

proposition.

Proposition 3: Suppose that two insurance coverages are offered to each insuree and

all accidents are observed for each insuree. Under Assumptions 1 and 2, the structure

(F (·, ·|X,Z), H(·|X,Z)) is identified.

4.2 Case 4: Truncated Damage Distribution

The data scenario analyzed in Case 4 corresponds to the insurance data that a researcher

typically has, i.e. a finite number of contracts offered with claims filed only if damages

are above the deductible. Case 3 has shown that observing a finite number of contracts

does not prevent the nonparametric identification of the joint distribution of risk and risk

aversion provided all accident information is available and there is enough variation in

some excluded exogenous variables. In contrasts, the truncation on the damage distribu-

tion in Case 4 will limit the extent of identification. Nevertheless, we show that F (·, ·) is

10In other words, it may not be the minimal assumption required to identify F (θ, a|x, z). For instance,

we could have switched the roles of X and Z in Assumption 2. We prefer to use Z because it contains

the car value, which is continuous as required by the full support assumption.
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identified up to the knowledge of H(dd2(X,Z)|X,Z) or equivalently H(dd1(X,Z)|X,Z),

where dd1(X,Z) > dd2(X,Z).11

We follow similar steps as in Case 3 with θ̃ ≡ (1 − H(dd2(X,Z)|X,Z))θ replacing θ

while modifying the argument as J is unobserved. To begin, we note the relationship

between 1−H(dd1(X,Z)|X,Z) and 1−H(dd2(X,Z)|X,Z) which allows us to focus on

identification only in terms of 1 −H(dd2(X,Z)|X,Z). Because a claim is filed only if it

involves a damage above the deductible, we identify the truncated damage distributions

H∗c (·|X,Z) =
H(·|X,Z)−H(ddc(X,Z)|X,Z)

1−H(ddc(X,Z)|X,Z)
,

on [ddc(X,Z), d(X,Z)] from the subpopulation of insurees buying the coverage (tc(X,Z),

ddc(X,Z)) for c = 1, 2. To simplify the notations, we let Hc(X,Z) = H(ddc(X,Z)|X,Z)

hereafter. Differentiating the above equations and taking their ratio show that

π(X,Z) ≡ h∗2(D|X,Z)

h∗1(D|X,Z)
=

1−H1(X,Z)

1−H2(X,Z)
, (15)

for all D ≥ dd1(X,Z), where 0 < π(X,Z) < 1. In particular, the function π(·, ·) is

identified from the data, while H(·|X,Z) is identified on [dd2(X,Z), d(X,Z)] up to the

knowledge of H2(X,Z).

To identify the marginal density f̃θ̃|XZ(·|·, ·) of θ̃ given (X,Z), we exploit the observed

number of reported accidents J∗c . Using a similar argument as in (14), the moment

generating function of J∗ given (χ,X,Z) is

MJ∗|χ,X,Z(t|c, x, z) = E[eJ
∗t|χ = c,X = x, Z = z]

= E{E[eJ
∗t|J, χ,X, Z]|χ = c,X = x, Z = z}

= E
{

[Hχ(X,Z) + (1−Hχ(X,Z))et]J |χ = c,X = x, Z = z
}

= E
{

E[eJ log[Hχ(X,Z)+(1−Hχ(X,Z))et]|θ, χ,X, Z]|χ = c,X = x, Z = z
}

= E
[
eθ[Hχ(X,Z)+(1−Hχ(X,Z))et−1]|χ = c,X = x, Z = z

]
= Mθ|χ,X,Z [(1−Hχ(X,Z))(et − 1)|c, x, z] (16)

11When two contracts are offered, it is never optimal for the insurer to offer full insurance, i.e.

dd2(X,Z) = 0. Therefore, we cannot use the argument of Case 2 to identify H(·|X,Z) and hence

H2(·|X,Z).
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where the third equality uses the moment generating function of J∗ given χ,X,Z, which is

distributed as a Binomial B(J, 1−Hχ(X,Z)) by Assumption 1-(ii,iii), and the fifth equal-

ity follows from Assumption 1-(iv) and the moment generating function of the Poisson

distribution. Thus, we obtain

Mθ|χ,X,Z [u|c, x, z] = MJ∗|χ,X,Z

[
log

(
1 +

u

1−Hχ(X,Z)

)
|c, x, z

]
, (17)

for u ∈ (−(1 − Hχ(X,Z),+∞). In particular, the distribution of risk θ given (χ,X,Z)

is identified up to the knowledge of Hχ(X,Z). Since θ̃ = (1 − H2(X,Z))θ, its moment

generating function given (χ,X,Z) is

Mθ̃|χ,X,Z(u|c, x, z) = Mθ|χ,X,Z(u(1−H2(x, z))|c, x, z)

=

 MJ∗|χ,X,Z
[
log

(
1 + u

π(x,z)

)
|1, x, z

]
if c = 1,

MJ∗|χ,X,Z [log (1 + u) |2, x, z] if c = 2,
(18)

for all u ∈ (−π(x, z),+∞) and u ∈ (−1,+∞), respectively. Thus, the moment generating

function of θ̃ given (X,Z) is

Mθ̃|X,Z(u|x, z) = E{E[euθ̃|χ,X,Z]|X = x, Z = z}

= MJ∗|χ,X,Z

[
log

(
1+

u

π(x, z)

)
|1, x, z

]
ν1(x, z)

+ MJ∗|χ,X,Z [log (1+u) |2, x, z]ν2(x, z), (19)

for u ∈ (−π(x, z),+∞), showing that f̃θ̃|X,Z(·|·, ·) is identified as π(X,Z), ν1(X,Z) and

ν2(X,Z) are known from the data. Since fθ|X,Z(θ|x, z) = (1 − H2(x, z))f̃θ̃|X,Z((1 −
H2(x, z))θ|X,Z), the former density is identified up to H2(x, z).

In the second step, we consider again the probability that an insuree with risk θ

and characteristics (X,Z) chooses the coverage (t1(X,Z), dd1(X,Z)). Using (7) and 1−
H(D|X,Z) = (1 − H2(X,Z))(1 − H∗2 (D|X,Z)), we remark that the optimal frontier

between buying the two coverages in the space (θ̃, a) is given by

θ̃(a,X, Z) =
t2(X,Z)− t1(X,Z)∫ dd1(X,Z)

dd2(X,Z) e
aD[1−H∗2 (D|X,Z)]dD

, (20)
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leading to the inverse ã(θ̃, X, Z), which is identified. As before, from Bayes rule we have

Fa|θ̃,X,Z(ã(θ̃, x, z)|θ̃, x, z) =
f̃θ̃|χ,X,Z(θ̃|1, x, z)ν1(x, z)

f̃θ̃|X,Z(θ̃|x, z)
, (21)

where ν1(x, z) and f̃θ̃|X,Z(θ̃|x, z) are identified. Moreover, f̃θ̃|χ,X,Z(·|1, x, z) is identified

because its moment generating function Mθ̃|χ,X,Z(·|1, x, z) is identified on (−π(x, z),+∞)

as seen above.

In the third step, we note that Fa|θ̃,X,Z(ã(θ̃, x, z)|θ̃, x, z) = Fa|θ,X,Z(a(θ, x, z)|θ, x, z)
thereby identifying the latter up to H2(x, z). The rest of the argument is exactly the same

as in Case 3 leading to the identification of Fa|θ,X(·|·, ·) and then the joint distribution

of (θ, a) given (X,Z) up to the knowledge of H2(X,Z) because a(·, ·, ·) is known up to

H2(·, ·). We have then proved the following result.

Proposition 4: Suppose that two insurance coverages are offered to each insuree and

accidents are observed only when damages are above the deductible. Under Assumptions

1 and 2, the structure (F (·, ·|X,Z), H(·|X,Z)) is identified up to H2(X,Z).

Up to now, we have used little of the optimality of the offered coverages beyond the

contract form and the screening through the optimal frontier partitioning the insurees’

types. For instance, we have not used the FOC (8)–(12) determining the optimal insurance

terms (t1(X,Z), dd1(X,Z), t2(X,Z), dd2(X,Z)). One might ask whether the use of these

FOC may help in identifying some features of the structure or even the full structure itself.

For instance, we note that (12) identifies a(X,Z) because the latter solves the identifying

equation

t1(X,Z) =
θ̃(X,Z)

a(X,Z)

∫ d(X,Z)

dd1(X,Z)

(
ea(X,Z)D − ea(X,Z)dd1(X,Z)

)
h∗2(D|X,Z)dD,

using h(D|X,Z) = [1−H2(X,Z)]h∗2(D|X,Z) and θ̃(X,Z) = θ(X,Z)[1−H2(X,Z)]. Other

features of the structure may be identified.

A consequence of Proposition 4 is that the structure [F (·, ·|X,Z), H(·|X,Z)] is iden-

tified if and only if H2(X,Z) is identified. The next lemma shows that H2(X,Z) is
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not identified even when considering the full optimality of the model including the FOC

(8)-(12).12

Lemma 3: Suppose that two insurance coverages are offered to each insuree and accidents

are observed only when damages are above the deductible. Under Assumptions 1 and 2,

H2(X,Z) is not identified.

The proof can be found in the appendix. It relies on the construction of an obser-

vationally equivalent structure leading to the same observations. The nonidentification

arises from a compensation between the increase in the number of accidents and an appro-

priate decrease in the probability of damages being greater than the deductible. From the

insuree’s perspective, such a compensation maintains the relative ranking between the two

contracts. Thus, if a (θ, a) insuree buys (t1(X,Z), dd1(X,Z)) then the ((1−H2(X,Z))θ, a)

insuree also buys the same coverage if there is an appropriate increase (decrease) in the

probability of damages being greater than dd1(X,Z) thereby increasing (decreasing) the

likelihood of getting indemnity from the insurer. For the insurer’s perspective, the de-

crease (increase) in the average number of accidents is compensated by an appropriate

decrease (increase) in the probability that the damage is below the deductible. Thus the

expected payment to the insuree remains the same under either coverage.

5 Model Restrictions

This section derives the restrictions imposed by the model on observables under the data

scenario of Case 4, i.e. a finite number of contracts and a truncated damage distribution.

These restrictions can be used to test the model validity. For every insuree, we observe

[J∗, D∗1, . . . , D
∗
J∗ , χ, T,DD,X,Z], where D∗j denotes the (truncated) damage for the jth

reported accident and (T,DD) are the premium and deductible chosen by the insuree.

From the model, T and DD are given by T = tχ(X,Z) aand DD = ddχ(X,Z), where

12In particular, the observed optimal proportion of insurees ν2(X,Z) does not help in

identifying H2(X,Z). Specifically, ν2(X,Z) =
∫
1I[θ ≥ θ(a,X,Z)]f(θ, a)dθda = 1 −∫

Fa|θ,X,Z [a(θ,X,Z)|θ,X,Z]fθ|X,Z(θ|X,Z)dθ = 1− ν1(X,Z), which is always true.
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tc(X,Z) and ddc(X,Z) for c = 1, 2 are deterministic functions of (X,Z) satisfying the

first-order conditions (8)-(12). Thus, the vector of observables has a joint distribution

Ψ(·, . . . , ·) with a density ψ(·, . . . , ·) = ψD∗1 ,...,D∗J∗ |J∗,χ,X,Z(·, . . . , ·|·, . . . , ·)×ψJ∗|χ,X,Z(·|·, ··)×
ψχ|X,Z(·|·, ·)× ψX,Z(·, ·).

The next lemma provides necessary and sufficient conditions on the joint distribution

Ψ(·, . . . , ·) to be rationalized by a structure [F (·, ·|·, ·), H(·|·, ·)] ∈ FXZ × HXZ . We in-

troduce some notations. Let H∗cXZ be defined as the set HXZ with the difference that

the support is [ddc(X,Z), d(X,Z)] for c = 1, 2. The remaining notations are introduced

to write the model restrictions implied by the full support assumption and the first-

order conditions (8)–(12) (see conditions (iv) and (v) below). The insurer’s expected

payment in case of accident given the coverage c and characteristics (x, z) is denoted

E[P |c, x, z] =
∫ d(x,z)
ddc(x,z)

(1−ΨD∗|χ,X,Z(D|c, x, z))dD for c = 1, 2. We define θ̃(a) ≡ θ̃(a, x, z)

and ã(θ) ≡ θ̃−1(θ̃, x, z) as in (20) with H∗2 (D|X,Z) replaced by ΨD∗|χ,X,Z(D|2, X, Z).

Let f̃θ̃|χ,X,Z(·|·, ·, ·) and f̃θ̃|X,Z(·|·, ·) be densities corresponding to the moment generating

functions (18) and (19), respectively with νc(x, z) replaced by ψχ|X,Z(c|x, z) for c = 1, 2

and π(x, z) = ψD∗|χ,X,Z(·|2, x, z)/ψD∗|χ,X,Z(·|1, x, z). We denote by θ̃ = θ̃(x, z) the lower

bound of the support of f̃θ̃|X,Z(·|·, ·). Let f̃(·, ·|·, ·) = f̃a|θ̃,X,Z(·|·, ·, ·)f̃θ̃|X,Z(·|·, ·), where

f̃a|θ̃,X,Z(·|·, ·, ·) is obtained from (21) and Assumption 2. Let [a, a] ≡ [a(x, z), a(x, z)] be

the support of f̃a|X,Z(·|x, z), while a∗ ≡ a∗(x, z) = min{a, ã(θ̃, x, z)}. Lastly, we define

λ(x, z) = ψχ,X,Z(1, x, z) +
∫ a∗

a

[
t1(x, z)−θ̃(a)E[P |1, x, z]

]
f̃(θ̃(a), a|x, z)∂θ̃(a)

∂t1
da

−
∫ a

a∗

[
t2(x, z)−θ̃(a)E[P |2, x, z]

]
f̃(θ̃(a), a|x, z)∂θ̃(a)

∂t1
da,

which expresses the Lagrange multiplier in terms of observables.

Lemma 4 (Rationalization Lemma): Let Ψ(·, . . . , ·) be the distribution of (J∗, D∗1, . . . ,

D∗J∗ , χ,X, Z). Under Assumptions 1 and 2, [F (·, ·|·, ·), H(·|·, ·)] ∈ FXZ×HXZ rationalizes

Ψ(·, . . . , ·) if and only if the latter satisfies the following conditions

(i) ΨD∗1 ,...,D
∗
J∗ |J

∗,χ,X,Z(·, . . . , ·|·, . . . , ·) =
∏J∗

j=1 ΨD∗j |χ,X,Z(·|·, . . . , ·), where ΨD∗j |χ,X,Z(·|·, ·, ·) =

ΨD∗|χ,X,Z(·|·, ·, ·) ∈ H∗χXZ,

27



(ii) For all (x, z) ∈ SXZ, ψD∗|χ,X,Z(·|2, x, z) and ψD∗|χ,X,Z(·|1, x, z) are strictly positive

on [dd2(x, z), d(x, z)] and [dd1(x, z), d(x, z)], respectively. Moreover, their ratio π(x, z) is

independent of d ∈ [dd1(x, z), d(x, z)] with 0 < π(x, z) < 1,

(iii) For c = 1, 2 and all (x, z) ∈ SXZ, ψJ∗|χ,X,Z(·|c, x, z) > 0 on IN with a moment gener-

ating function defined on IR such that the right-hand sides of (18) are the moment gen-

erating functions of absolutely continuous distributions with densities bounded away from

zero on their supports [θ̃(1, x, z), θ̃(1, x, z)] and [θ̃(2, x, z), θ̃(2, x, z)] with union equal to

[θ̃(1, x, z), θ̃(2, x, z)] included in IR++.13 Moreover, Sa|θ̃x ≡ {a : ∃z ∈ SZ|θ̃x, a = ã(θ̃, x, z)}
is a compact interval in IR++ independent of θ̃,

(iv) For every (θ̃, x) ∈ Sθ̃X f̃θ̃|χ,X,Z [θ̃|1, x, z]ψχ|X,Z(1|x, z)
f̃θ̃|X,Z(θ̃|x, z)

; z ∈ SZ|θ̃x

 = [0, 1],

(v) The coverage terms t1(·, ·), t2(·, ·), dd1(·, ·), dd2(·, ·) satisfy 0 ≤ t1(·, ·) < t2(·, ·), d(·, ·) ≥
dd1(·, ·) > dd2(·, ·) ≥ 0, and∫ a∗

a

[
t1(x, z)−θ̃(a)E[P |1, x, z]

]
f̃(θ̃(a), a|x, z)∂θ̃(a)

∂dd1

da+ E[J∗|1, x, z]ψχ,X,Z(1, x, z)

−
∫ a

a∗

[
t2(x, z)−θ̃(a)E[P |2, x, z]

]
f̃(θ̃(a), a|x, z)∂θ̃(a)

∂dd1

da−λ(x, z)θ̃eadd1(x,z) = 0 (22)

∫ a∗

a

[
t1(x, z)−θ̃(a)E[P |1, x, z]

]
f̃(θ̃(a), a|x, z)∂θ̃(a)

∂t2
da+ ψχ|X,Z(2|x, z)

13Alternatively, the conditions on the moment generating function of J∗ given (χ,X,Z) in (iii) can be

replaced by conditions on its characteristic function φJ∗|χ,X,Z(·|c, x, z). Specifically, φJ∗|χ,X,Z(·|c, x, z) is

an entire characteristic function such that the right-hand sides of (29)-(30) are characteristic functions

corresponding to absolutely continuous distributions with densities bounded away from zero on their

supports [θ̃(1, x, z), θ̃(1, x, z)] and [θ̃(2, x, z), θ̃(2, x, z)] with union equal to [θ̃(1, x, z), θ̃(2, x, z)] included

in IR++. Such conditions can be written equivalently in more testable forms. For instance, a function is

a characteristic function if and only if it satisfies Bochner’s Theorem 4.2.2, and it is entire if and only if

it satisfies Theorem 7.2.1. A characteristic function corresponds to a distribution with bounded support

in IR++ if and only if it satisfies Theorem 7.2.3 with (7.2.3) strictly positive. All these theorems and

equations are from Lukacs (1960). A well-known sufficient condition for a distribution to be absolutely

continuous is that its characteristic function is absolutely integrable, while a necessary condition is that

the characteristic function vanishes in the tails. See Billingsley (1995, pp.345-347).
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−
∫ a

a∗

[
t2(x, z)−θ̃(a)E[P |2, x, z]

]
f̃(θ̃(a), a|x, z)∂θ̃(a)

∂t2
da = 0 (23)

∫ a∗

a

[
t1(x, z)−θ̃(a)E[P |1, x, z]

]
f̃(θ̃(a), a|x, z)∂θ̃(a)

∂dd2

da+ E(J∗|χ = 2, x, z)ψχ,X,Z(2|x, z)

−
∫ a

a∗

[
t2(x, z)−θ̃(a)E[P |2, x, z]

]
f̃(θ̃(a), a|x, z)∂θ̃(a)

∂dd2

da = 0 (24)

t1(x, z) =
θ̃

a

[∫ d(x,z)

dd1(x,z)

(
eaD − eadd1(x,z)

)
ψD∗|χ,X,Z(D|1, x, z)dD

]
. (25)

Condition (i) says that reported damages are independent and identically distributed

given the coverage choice and individual/car characteristics. In addition, reported dam-

ages are independent of the reported number of accidents given those variables. This is a

consequence of Assumption 1-(i,ii) on damages and number of accidents. Condition (ii)

requires that the densities of reported damages given coverage choice and individual/car

characteristics are strictly positive on their supports. More importantly, the ratio of these

densities needs to be independent of the level of reported damage above the level of high-

est deductible following (15). This property is also a consequence of Assumption 1-(i,ii),

i.e. independently and identically distributed damages and independence of damages from

coverage choice. Condition (iii) states that the support of the distribution of reported

accidents given coverage choice and individual/car characteristics is the set of integers.

The remaining part of (iii) follows from the compact support of the joint distribution of

risk and risk aversion and its nonvanishing corresponding density by Definition 1. In view

of (21), condition (iv) says that the probability for choosing coverage 1 by an insuree

characterized by (θ, x, z) takes all values in [0, 1] as the car characteristics vary. This

follows from the full support assumption in Assumption 2. Condition (v) provides the

relationship between the distribution of observables and the coverage terms. In particu-

lar, it requires that the premium and deductible for the two coverages must satisfy the

optimality conditions, i.e. the first-order conditions (8)-(12).

The rationalization lemma is important for several reasons. First, the insurance model

with multidimensional private information does impose some restrictions on observables.

In view of bunching in our model due to multidimensional screening and a finite number
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of coverages, one could have expected otherwise a priori. For instance, in auction mod-

els, the main restriction arises from the monotonicity of the equilibrium bidding strategy,

which is not present here because of the finite number of contracts. Second, Lemma 4

characterizes all the restrictions on the distribution of observables. It can be used to

test the validity of the model. Violation of a single restriction by the data would reject

the model. Relying on some recent developments in the econometrics literature, we can

discuss some testing procedures for each condition. For instance, (i) can be implemented

using conditional independence tests. See Su and White (2008). The independence of

π(x, z) from damage can be tested by noting that the ratio of the densities is also equal

to the ratio ΨD∗|χ,X,Z(dd1(x, z)|2, x, z)/ΨD∗|χ,X,Z(dd1(x, z)|1, x, z). This equality can then

be used to derive a Cramer-Von Mises type test relying on nonparametric estimates of the

densities. See Brown and Wegkamp (2002). Regarding (iii), as noted in footnote 12, we

can equivalently derive the restrictions that must satisfy the corresponding characteristic

function because the moment generating function at u is equal to the characteristic func-

tion at −iu. See Lukacs (1960, p. 135). Such restrictions would be then more convenient

to derive appropriate tests of such conditions.

Third, (v) provides restrictions on the coverage terms suggesting that an optimality

test could be performed. This contrasts with the previous structural literature in which

it is generally assumed that the observations are the outcomes of some equilibrium. In

particular, in auctions, observed bids result from the Bayesian Nash equilibrium of the

auction game and identification relies on such optimal behavior. This represents a strong

assumption that might be questionable from an empirical point of view. In contrast,

when the number of contracts is finite, optimality of the coverage terms given by (8)–

(12) is not used in identifying the model structure. As noted earlier, we exploit only the

optimal partitioning of insurees among the two contracts taking the observed premiums

and deductibles as given leading to the restrictions (i)–(iv). Thus, (22)–(25) can be used

to test the optimality of the observed coverages (T1, DD1, T2, DD2).14

14Though we use a different identification strategy for a continuum of contracts relying on the mono-

tonicity of the coverage terms in the certainty equivalence, we can envision a similar identification strategy

as in Section 4.2. This suggests that we could test the validity of the contract terms from the first-order
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6 Identification Strategies for Case 4

From Section 4.2, any assumption that identifies H2(X,Z) will identify the structure

[F (·, ·|X,Z), H(·|X,Z)] on Θ(X,Z)×A(X,Z) and [dd2(X,Z), d(X,Z)], respectively. In

this section, we investigate some identifying assumptions/conditions for H2(X,Z). An-

other possibility is to derive some bounds for H2(X,Z).

Parameterization of H(·|X,Z)

A simple stategy to identify H2(X,Z) is to parameterize the damage distribution

H(·|X,Z) as H(·|X,Z; γ) on [0, d(X,Z)] with γ ∈ Γ ⊂ IRq. Observations on reported

damage D∗ will typically identify γ and hence H(·|X,Z) on [0, d(X,Z)]. In particular,

H2(X,Z) = H(dd2(X,Z)|X,Z; γ) will be identified. So far, we have tried to minimize

parametric assumptions. From an estimation point of view, one could estimate non-

parametrically the truncated damage conditional density and use its shape to choose the

parameterization of H(·|X,Z). This exercise would require some reasonable assumptions

on the damage distribution such as continuity on its support and no mass point below

dd2(X,Z).

Additional Data Sources

A second strategy is to consider additional data sources providing for instance the

average number of accidents (reported and unreported) for every (x, z) ∈ SXZ , i.e.

µ(x, z) = E[θ|X = x, Z = z]. Let the average number of reported accidents for every

(x, z) be µ∗c(x, z) = E(θ|χ = c,X = x, Z = z)(1−Hc(X,Z)) for c = 1, 2. We have

µ(x, z) = ν1(x, z)E[θ|χ = 1, X = x, Z = z] + ν2(x, z)E[θ|χ = 2, X = x, Z = z]

=
1

1−H2(x, z)

(
ν1(x, z)

µ∗1(x, z)

π(x, z)
+ ν2(x, z)µ∗2(x, z)

)
leading to the identification of H2(x, z) given that νc(x, z), µ

∗
c(x, z), c = 1, 2 and π(x, z) are

identified from the data as shown in Section 4.2. Alternatively, an auxiliary information

could be E(θ|χ = c,X = x, Z = z) for (say) c = 2 and every (x, z). From the knowledge

of µ∗2(x, z), it is straightforward to identify H2(x, z).

conditions (5)-(6) even when a continuum of coverages is offered albeit an assumption similar to Assump-

tion 2 has to be made.
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Next, we consider that an auxiliary information is E[θ|X = x0, Z = z0] for some

(x0, z0). Using the argument in the previous paragraph shows that H2(x0, z0) is identified.

This information combined with a support assumption such as θ(x, z) = θ for every

(x, z) identifies H2(x, z). Specifically, note that we have θ̃(x, z) = (1 − H2(x, z))θ(x, z),

where θ̃(x, z) is the upper boundary of the support of fθ̃|X,Z(·|X = x, Z = z), which

is identified as shown in Section 4.2. Applying this equation at (x0, z0) identifies θ by

θ̃(x0, z0)/(1−H2(x0, z0)). Applying again this equation at different values (x, z) identifies

H2(x, z). A similar argument applies if θ(x, z) = θ.

It remains to investigate whether additional information on damages (reported and

unreported) helps in identifying H2(x, z). We have

E(D|X = x, Z = z) = E[D|D ≤ dd2(x, z)|X = x, z = z]H2(x, z)

+E[D|D ≥ dd2(x, z)|X = x, z = z](1−H2(x, z)),

where E[D|D ≥ dd2(x, z), X = x, z = z] =
∫ d(x,z)
dd2(x,z) Dh

∗
2(D|X = x, Z = z)dD is identified

from the data. Thus, for every (x, z) it is straightforward to see that identification of

H2(x, z) requires to know both E[D|D ≤ dd2(x, z), X = x, Z = z] and E(D|X = x, Z =

z). In particular, the knowledge of the latter is not sufficient in constrast to the previous

case in which additional data on the average number of accidents only was sufficient

for identification. As above, if one knows E[D|D ≤ dd2(x0, z0), X = x0, Z = z0] and

E(D|X = x0, Z = z0) for some (x0, z0) and if either θ(x, z) or θ(x, z) is independent of

(x, z), then H2(x, z) is identified for every (x, z).

Set Identification

A third strategy is to derive some bounds on H2(X,Z), which will provide some

bounds on the structure [F (·, ·|X,Z), H(·|X,Z). This approach also known as set iden-

tification has been made popular by Manski and Tamer (2002) and Chernozhukov, Hong

and Tamer (2007). See also Haile and Tamer (2003) and Kovchegov and Yildiz (2009) for

nonparametric bounds. Our bounds are in the spirit of the latter as they are nonpara-

metric. Let [F 0(·, ·|X,Z), H0(·|X,Z)] be the true structure. Given an arbitrary pair of

values (x, z), Proposition 4 implies that it is sufficient to determine the identified set for
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H0
2 (x, z), i.e. the set of values H2(x, z) that are observationally equivalent to H0

2 (x, z).15

The proof of Lemma 3 shows that any value H2(x, z) = 1 − (1/κ)[1 − H0
2 (x, z)] for

κ > sup(x̃,z̃)[1 − H0
2 (x̃, z̃)] is observationally equivalent to H0

2 (x, z). Thus, the identified

set for H0
2 (x, z) contains the interval(

1− 1−H0
2 (x, z)

sup(x̃,z̃)[1−H0
2 (x̃, z̃)]

, 1

)
. (26)

For the values (x, z) for which 1 −H0
2 (x, z) is close to the supremum, the left boundary

of the above interval approaches zero. Hence, for those values, the identified set is close

to (0, 1), which is not informative.

Some empirical evidence in Cohen and Einav (2007) may help us to motivate an

additional assumption that renders these bounds tighter. In particular, their estimated

damage density strictly decreases when the damage approaches the deductible from above

suggesting that the density below the deductible is not greater than its value at the

deductible. We then make the following assumption.

Assumption 3:The conditional damage distribution H(·|X,Z) satisfies

h(D|x, z) ≤ h[dd2(x, z)|x, z],

for every D ≤ dd2(x, z) and (x, z) ∈ SXZ.

We use this assumption to construct more informative bounds. Specifically, integrating

both sides from 0 to dd2(x, z) we obtain 0 ≤ H2(x, z) ≤ dd2(x, z)h(dd2(x, z)|x, z). Divid-

ing both sides by 1−H2(x, z) and using the definition of the conditional density h∗2(·|x, z),
we obtain

0 ≤ H2(x, z)

1−H2(x, z)
≤ dd2(x, z)h∗2(dd2(x, z)|x, z).

Solving for H2(x, z) gives the bounds

0 ≤ H2(x, z) ≤ dd2(x, z)h∗2(dd2(x, z)|x, z)
1 + dd2(x, z)h∗2(dd2(x, z)|x, z)

≡ B(x, z). (27)

15To be precise, this is the set of values H2(x, z) corresponding to structures [F (·, ·|X,Z), H(·|X,Z)]

that are observationally equivalent to [F 0(·, ·|X,Z), H0(·|X,Z)].
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In particular, the upper bound for H2(x, z) is strictly less than 1. Moreover, a useful

feature of the bounds (27) is that they are expressed as functions of observables.16

It remains to derive some bounds on the structure [F (·, ·|X,Z), H(·|X,Z)]. From (19)

we obtain the following lower and upper bounds for H(·|x, z)

[H∗2 (·|x, z), H∗2 (·|x, z) +B(x, z)(1−H∗2 (·|x, z))]

for every · ≥ dd2(x, z) and (x, z) ∈ SXZ . Thus, the smaller is B(x, z), i.e. the smaller is

dd2(x, z)h∗2(dd2(x, z)|x, z), the narrower is the above interval.

Regarding the derivation of bounds on F (·, ·|X,Z), we follow the identification ar-

gument of Section 4.2. We first derive bounds for the marginal c.d.f of θ given (X,Z).

Recall that the c.d.f. of θ̃ = (1 − H2(x, z))θ is identified from its moment generat-

ing function and the observed number of reported accidents. In particular, we have

Fθ|X,Z(·|x, z) = F̃θ̃|X,Z [(1−H2(x, z)) · |x, z] showing that

F̃θ̃|X,Z [(1−B(x, z)) · |x, z] ≤ Fθ|X,Z(·|x, z) ≤ F̃θ̃|X,Z(·|x, z),

leading to a first-order stochastic dominance among these three c.d.f.s. Section 4.2 does

not provide, however, an explicit expression for the c.d.f. F̃θ̃|X,Z(·|x, z) as its identification

was established through its moment generating function (19).

To obtain such an explicit form, we consider its density f̃θ̃|X,Z(·|x, z) and determines

its characteristic function φθ̃|X,Z(·|x, z) from available data. We first remark that the

distribution of θ̃ given (χ,X,Z) has compact support. Thus, it has an entire characteristic

function φθ̃|χ,X,Z(·|c, x, z), i.e. a characteristic function that has a (unique) differentiable

extension on the whole set of complex numbers φθ̃|χ,X,Z(·|c, x, z) = E[eiζθ̃|χ = c,X =

16To show that the bounds (27) are sharp requires to obtain the set of observationally equivalent

values H2(x, z), and in particular, the sharp lower bound of this set. The previous discussion shows that

the latter is between 0 and the lower bound of the interval (26). Similarly, exploiting the relationship

1−H2(x, z) = [1−H1(x, z)]/π(x, z) we obtain bounds for H1(x, z), namely

1− π(x, z) ≤ H1(x, z) ≤ 1− π(x, z)

1 + dd2(x, z)h∗2(dd2(x, z)|x, z)
.

The lower and upper bounds for H1(x, z) are strictly larger than zero and smaller than one, respectively.
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x, Z = z] for ζ ∈ 1C. See Lukacs (1960, p. 139). Following the derivation leading to (16)

with t replaced by iζ and noting that the characteristic function of a Binomial B(n, p)

and a Poisson P(λ) random variables are entire with extensions equal to (1 − p + peiζ)n

and eλ(eiζ−1), where ζ ∈ 1C, we obtain

φJ∗|χ,X,Z(ζ|c, x, z) = φθ|χ,X,Z

[
(1−Hc(x, z))

eiζ − 1

i
|c, x, z

]

= φθ̃|χ,X,Z

[
1−Hc(x, z)

1−H2(x, z)

eiζ − 1

i
|c, x, z

]
, (28)

where the second equality follows from θ̃ = (1−H2(X,Z))θ. Let ζ̃ = [(1−Hc(x, z))(e
iζ −

1)]/[i(1 − H2(x, z))], for all ζ ∈ 1C and ζ = u + i log(cosu) for u ∈ (−π/2, π/2). Then,

ζ̃ = tanu when c = 2 and ζ̃ = π(x, z) tanu when c = 1. Moreover, the range of ζ̃ is IR.

Therefore, letting t = arctanu when c = 2 and t = π(x, z) arctanu when c = 1 in (28),

and using cos(arctan t) = 1/
√

1 + t2 give the characteristic functions

φθ̃|χ,X,Z(t|2, x, z) = φJ∗|χ,X,Z

[
arctan t− i

2
log(1 + t2)|2, x, z

]
φθ̃|χ,X,Z(t|1, x, z) = φJ∗|χ,X,Z

[
arctan

(
t

π(x, z)

)
− i

2
log

(
1 +

t2

π2(x, z)

)
|1, x, z

]
,

for all t ∈ IR. Since φθ̃|X,Z(t|x, z) = ν1(x, z)φθ̃|χ,X,Z(t|1, x, z) + ν2(x, z)φθ̃|χ,X,Z(t|2, x, z),

one obtains the density f̃θ̃|X,Z(·|·, ·) by the inverse Fourier transform

f̃θ̃|X,Z(θ̃|x, z) =
1

2π

∫ +∞

−∞
e−itθ̃φθ̃|X,Z(t|x, z)dt.

if φθ̃|X,Z(·|x, z) is absolutely integrable, in which case f̃·|X,Z(θ̃|x, z) is continuous. See e.g.

Billingsley (1995, pp.347-348). Lastly, to determine the identified set for Fa|θ,X(·|·, ·), one

can use the bounds for H2(X,Z) and follow the identifying argument of Section 4.2.

7 Conclusion

Our paper addresses the problem of identification of insurance models with multidimen-

sional screening, where insurees have private information on their risk and risk aversion,

each taking a continuum of values. We define risk as the expected number of accidents.
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We make a special effort to incorporate in our model some important features in insurance

such as a random damage and the possibility of several accidents. The model also consid-

ers the possibility that the contracts offered to each insuree is either a continuum or finite

in number. Moreover, we also allow for data restrictions on the number of accidents and

their corresponding damages as insurees are expected to report an accident only when the

damage is above the deductible. Bunching arises necessarily at the equilibrium because of

mutlidimensional private information. The bunching problem is accentuated when there

is a finite number of coverages. Consequently, insurees with different private information

can choose the same coverage, which complicates the problem of identification from cov-

erage choices. Despite this, we show that we identify the joint distribution of risk and

risk aversion. When a continuum of contracts is offered, identification is achieved with-

out any additional assumption by exploiting the number of (reported) accidents. When

a finite number of contracts is offered, this information also plays a crucial role though

additional identifying assumptions need to be made. When only reported accidents and

damages are available to the analyst, we provide several identifying strategies including

set identification. Lastly, we characterize all the restrictions imposed by the model on ob-

servables. Such restrictions can be used to test the model validity. An interesting feature

of these restrictions is that optimality of the offered coverages can be tested separately as

identification of the model does not rely on this property.

Our results can readily be used to analyze insurance data when a limited number of

coverages is offered to each insuree and accidents are reported only when the damage is

above the deductible. The estimation method can follow the identification steps. Section

6 provides the material needed to estimate nonparametrically the model. For instance,

one could use nonparametric density estimators to obtain estimates of the bounds for the

probability of damage below the deductible. Inverse Fourier transform of the empirical

characteristic function can then be used to estimate bounds on the marginal distribution

of risk. Our nonparametric approach leaves much flexibility on the degree of dependence

between risk and risk aversion. Our companion paper develops this estimation procedure

with an application to automobile insurance data. See Aryal, Perrigne and Vuong (in
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progress).

Our model allows the individual and car characteristics to be dependent. This can be

exploited further by endogeneizing the car choice given the individual’s characteristics,

risk and risk aversion. This would lead to a model explaining the car choice, the coverage

choice, the number of accidents and the damages. Our results still hold in this case. In

particular, the identification of the joint distribution of risk and risk aversion can help

in estimating and/or simulating this model. See Aryal and Perrigne (in progress). More

generally, our results can be used to analyze a large range of insurance data such as

crop, health or home insurance as long as the data provide a repeated outcome such

as several claims made by insurees. Our identification method can also be used to study

identification of models with adverse selection when a finite number of contracts is offered.

One can think of nonlinear pricing where a finite number of price/quantity options is

offered to consumers or firms who purchase items several times over the pricing period.

37



Appendix

Proof of Lemma 3: In view of Proposition 4, H2(X,Z) is identified if and only if the struc-

ture [F (·, ·|X,Z), H(·|X,Z)] is. Thus, it suffices to show that the latter is not identified. Let

[F (·, ·|X,Z), H(·|X,Z)] be a structure satisfying Definitions 1 and 2 as well as Assumptions 1

and 2. We construct a second structure [F̃ (·, ·|X,Z), H̃(·|X, Z)] as follows. Let θ̃ = κθ with

κ > sup(x,z)∈SXZ [1 − H2(x, z)] ≥ 0, while ã = a so that f̃(·, ·|X,Z) = (1/κ)f(·/κ, ·|X,Z). Let

h̃(·|X,Z) be a strictly positive conditional density on its support [0, d(X,Z)] with h̃(D|X,Z) =

(1/κ)h(D|X,Z) for D ≥ dd2(X,Z). Because 0 <
∫ d(x,z)
dd2(x,z) h̃(D|x, z)dD < 1, it follows that κ >

1−H2(x, z) for all (x, z) ∈ SXZ as required above. The second structure [F̃ (·, ·|X,Z), H̃(·|X,Z)]

satisfies Definitions 1 and 2 as well as Assumptions 1 and 2 as θ̃(a,X,Z) = κθ(a,X,Z) as shown

below.

We now show that these two structures are observationally equivalent, i.e. they lead to the

same distribution for the observables (J∗, D∗1, . . . , D
∗
J∗ , χ, t1, dd1, t2, dd2) given (X,Z), where J∗

and D∗ refer to the number of reported accidents and their corresponding damages, respectively,

while χ indicates which coverage is chosen by the insuree. First, we note that the coverage terms

are deterministic functions of (X,Z) solving the FOC (8)–(12). Thus, the optimal frontier for

the second structure must be

θ̃(a,X,Z) =
t2(X,Z)− t1(X,Z)∫ dd1(X,Z)

dd2(X,Z) e
aD(1− H̃(D|X,Z))dD

=
t2(X,Z)− t1(X,Z)∫ dd1(X,Z)

dd2(X,Z) e
aD 1

κ(1−H(D|X,Z))dD

= κθ(a,X,Z),

thereby showing that the highest risk aversion in Ã1 is ã∗(X,Z) = a∗(X,Z).

Regarding the distribution χ̃ given (X,Z), we note that χ̃ = χ. The latter follows from χ̃ = 1

if and only if (θ̃, a) ∈ Ã1(X,Z), i.e. θ̃ ≤ θ̃(a,X,Z) and a(X,Z) ≤ a ≤ ã∗(X,Z). Since θ̃ = κθ,

θ̃(a,X,Z) = κθ(a,X,Z) and ã∗(X,Z) = a∗(X,Z), we have χ̃ = 1 if and only if χ = 1. Thus,

the distribution of χ̃ given (X,Z) is the same as that of χ given (X,Z), i.e. ν̃c(X,Z) = νc(X,Z)

for c = 1, 2. Regarding the distribution of J̃∗ given (χ̃,X, Z) = (χ,X,Z), from (16) its moment

generating function is

Mθ̃|χ,X,Z [(1− H̃χ(X,Z))(et − 1)|c, x, z] = Mθ|χ,X,Z [(1−Hχ(X,Z))(et − 1)|c, x, z]

= MJ∗|χ,X,Z [t|c, x, z]
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using 1 − H̃c(X,Z) = (1 − Hc(X,Z))/κ and Mθ̃|χ,X,Z(u|c, x, z) = Mθ|χ,X,Z(κu|c, x, z). Hence,

the distribution of J̃∗ given (χ,X,Z) is the same as that of J∗ given (χ,X,Z). Regarding the

distribution of reported damage D̃∗ given (J̃∗, χ,X,Z) is

H̃∗χ(·|X,Z) =
H̃(·|X,Z)− H̃χ(X,Z)

1− H̃χ(X,Z)
=
H(·|X,Z)−Hχ(X,Z)

1−Hχ(X,Z)
= H∗χ(·|X,Z)

using 1− H̃χ(·|X,Z) = (1−Hχ(·|X,Z))/κ.

Lastly, it remains to show that (t1(X,Z), dd1(X,Z), t2(X,Z), dd2(X,Z)) satisfies the FOC

(8)–(12) associated with the second structure. Using θ̃(a,X,Z) = κθ(a,X,Z), f̃(θ̃(a,X,Z), a|X,

Z) = f(θ̃(a,X,Z)/κ, a|X,Z)/κ = f(θ(a,X,Z), a|X,Z)/κ, 1−H̃(D|X,Z) = (1−H(D|X,Z))/κ,

ν̃c = νc and E[θ̃|Ãc] = κE[θ|Ac], it can be easily verified that (t1(X,Z), dd1(X,Z), t2(X,Z), dd2

(X,Z)) satisfies (8)–(12) with λ̃ = λ as soon as (8)–(12) hold for the original structure. Hence,

the two structures lead to the same distributions for the observables as desired.2

Proof of Lemma 4: We first prove neccessity. Let [F (·, ·|·, ·), H(·|·, ·)] ∈ FXZ × HXZ be a

structure that rationalizes Ψ(·, . . . , ·) under Assumptions 1 and 2. To prove (i) we follow Guerre,

Perrigne and Vuong (2000) proof of Theorem 4 (Conditions C1-C2). From Assumption 1-(i,ii),

we have (D1, . . . , DJ) i.i.d as H(·|X,Z) conditional upon (J, θ, a,X,Z). Thus, J∗ follows a

B[J, 1−Hχ(X,Z)] given (J, θ, a,X,Z) since an accident is reported if and only if the damage is

above the deductible. For any (d1, . . . , dj) ∈ IRj+ we have

Pr[D∗1 ≤ d1, . . . , D
∗
j ≤ dj , J∗ = j|J, θ, a,X,Z]

=
∑

1≤r1 6=... 6=rj≤J
Pr[ddχ(X,Z)≤Dr1≤d1, . . . , ddχ(X,Z)≤Drj ≤dj , Dr<ddχ(X,Z), r 6∈{r1, . . . , rj}|J, θ, a,X,Z]

=
J !

j!(J − j)!
Pr[ddχ(X,Z)≤D1≤d1, . . . , ddχ(X,Z)≤Dj≤dj , Dr<ddχ(X,Z), r=j + 1, . . . , J |J, θ, a,X,Z]

=
J !

j!(J − j)!

 j∏
r=1

[H(dr|X,Z)−Hχ(X,Z)]

 [Hχ(X,Z)]J−j

because (D1, . . . , DJ) are i.i.d. as H(·|X,Z) given (J, θ, a,X,Z). Since J∗ is B[J, 1−Hχ(X,Z)]

given (J, θ, a,X,Z) we obtain

Pr[D∗1 ≤ d1, . . . , D
∗
j ≤ dj |J∗ = j, J, θ, a,X,Z] =

j∏
r=1

H(dr|X,Z)−Hχ(X,Z)

1−Hχ(X,Z)

showing that (D∗1, . . . , D
∗
j ) are i.i.d as H∗χ(X,Z) ∈ H∗χXZ given (J∗ = j, J, θ, a,X,Z) and hence

given (J∗ = j, χ,X,Z). Thus, (i) holds.
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To prove (ii), we note that ΨD∗|χ,X,Z(·|·, ·, ·) = H∗χ(·, ·) ∈ H∗χXZ thereby establishing the first

part of (ii). Moreover, ψD∗|χ,X,Z(d|2, x, z)/ψD∗|χ,X,Z(d|1, x, z) = (1−H1(x, z))/(1−H2(x, z)) ≡

π(x, z), which is independent of d ∈ [dd1(x, z), d(x, z)] and in (0, 1).

To prove (iii), we note that

Pr[J∗ = j∗|θ, a,X,Z] =
∞∑
j=j∗

Pr[J∗ = j∗|J = j, θ, a,X,Z]Pr[J = j|θ, a,X,Z].

Thus, J∗ given (θ, a,X,Z) is a mixture of a B[J, 1 − Hχ(X,Z)] with a mixing P(θ) distri-

bution by Assumption 1-(iii). That is, ΨJ∗|θ,a,X,Z(·|θ, a, x, z) is a P[(1 − Hχ(x, z))θ] distribu-

tion. Hence, ψJ∗|χ,X,Z(·|c, x, z) =
∫
Ac ΨJ∗|θ,a,X,Z(·|θ, a, x, z)dF (θ, a|x, z) thereby establishing

ψJ∗|χ,X,Z(·|c, x, z) > 0 on IN as F (·, ·|·, ·) ∈ FXZ . The moment generating function of J∗

given (χ,X,Z) exists on IR in view of (16) since the distribution of θ given (χ,X,Z) has a

bounded support. The right-hand sides of (18) must be the moment generating functions of

absolutely continuous distributions with densities bounded away from zero on their supports

[θ̃(1, x, z), θ̃(1, x, z)] and [θ̃(2, x, z), θ̃(2, x, z)] with union equal to [θ̃(1, x, z), θ̃(2, x, z)] included

in IR++ because they are the moment generating functions of θ̃ = (1−H2(X,Z))θ given (c, x, z)

which have such properties.

Regarding (iv), for every (θ, a, x) ∈ SθaX , we have

Fa|θ,X(a|θ, x) = Fa|θ,X,Z [a(θ, x, z)|θ, x, z] =
fθ|χ,X,Z(θ|1, x, z)ψχ|x,z(1|x, z)

fθ|X,Z(θ|x, z)
,

=
f̃θ̃|χ,X,Z(θ̃|1, x, z)ψχ|x,z(1|x, z)

f̃θ̃|X,Z(θ̃|x, z)
,

for some z ∈ SZ|θx, where the first equality follows from Assumption 2, the second equality from

Bayes rule, and the third equality from θ̃ = (1−H2(X,Z))θ. Because a can be chosen arbitrarily,

it follows that the right-hand side takes all values in [0, 1]. Regarding (v), let θ̃ = (1−H2(X,Z))θ.

The proof then follows the last paragraph of the proof of Lemma 3 with κ = 1−H2(X,Z).

We now turn to sufficiency. Let the distribution Ψ(·, . . . , ·) of (J∗, D∗1, . . . , D
∗
J∗ , χ,X,Z, )

and the contract terms [t1(·, ·), dd1(·, ·), t2(·, ·), dd2(·, ·)] satisfy (i)–(v). We need to exhibit

a structure [F (·, ·|·, ·), H(·|·, ·)] ∈ FXZ × HXZ satisfying Assumptions 1–2 that rationalizes

Ψ(·, . . . , ·) of (J∗, D∗1, . . . , D
∗
J∗ , χ,X,Z, ) and [t1(·, ·), dd1(·, ·), t2(·, ·), dd2(·, ·)]. Let the distribu-

tion of (J,D1, . . . , DJ , θ, a,X,Z) satisfy Assumptions 1 and 2-(i).

In view of the identification argument of Section 4.2, we define H(·|·, ·) as follows: For a con-

stant κ ∈ (0, 1), letH(D|X,Z) = κψD∗|χ,X,Z(D|2, X, Z)+(1−κ) whenD ≥ dd2(X,Z). Note that
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H(·|X,Z) has a strictly positive density on [dd2(X,Z), d(X,Z)] because ΨD∗|χ,X,Z(·|2, X, Z) ∈

H∗2XZ . For D ∈ [0, dd2(X,Z)] let H(·|X,Z) be arbitrary as long as it has a strictly posi-

tive density on [0, dd2(X,Z)]. Thus, H(·|·, ·) ∈ HX,Z . Note that κ = 1−H(dd2(X,Z)|X,Z) ≡

1−H2(X,Z) so that H∗2 (·|X,Z) ≡ [H(·|X,Z)−H2(X,Z)]/[1−H2(X,Z)] = ΨD∗|χ,X,Z(·|2, X, Z)

after straightforward algebra. Moreover, ψD∗|χ,X,Z(D|2, X, Z) = π(X,Z) ψD∗|χ,X,Z(D|1, X, Z)

for D ≥ dd1(X,Z) by (ii) implying π(X,Z) = 1 − ΨD∗|χ,X,Z [dd1(X,Z)|2, X, Z] by integration

and H∗1 (·|X,Z) ≡ [H(·|X,Z)−H1(X,Z)]/[1−H1(X,Z)] = ΨD∗|χXZ(·|1, X, Z) after some alge-

bra. Thus, ΨD∗1 ,...,D
∗
J∗ |J

∗,χ,X,Z(·, . . . , ·|·, . . . , ·) is rationalized given Assumption 1 as long as χ is

a deterministic function of (θ, a,X,Z) as implied by the theoretical model.

To construct F (·, ·|·, ·) we follow again the identification argument. Let f(θ|c,X,Z) =

κf̃θ̃|χ,X,Z(κθ|c,X,Z) and f(θ|X,Z) = κf̃θ̃|X,Z(κθ|X,Z), where these densities exist by condition

(iii). In particular, f(θ|X,Z) is strictly positive on its support [θ̃(1, x, z)/κ, θ̃(2, x, z)/κ] ⊂ IR++.

Turning to Fa|θ,X,Z(·|·, ·, ·) = Fa|θ,X(·|·, ·) by Assumption 2-(i), we follow (21). For every

(θ, x) ∈ SθX , let Fa|θ,X(·|x, z) have a strictly positive density on its support Sa|θ̃x ≡ {a : ∃z ∈

SZ|θ̃x, a = ã(θ̃, x, z)} = Sa|θx ≡ {a : ∃z ∈ SZ|θx, a = a(θ, x, z)} satisfying

Fa|θ,X [a(θ, x, z)|θ, x] =
f̃θ̃|χ,X,Z(θ̃|1, x, z)ψ(1|x, z)

f̃θ̃|X,Z(θ̃|x, z)
(A.1)

for every (θ, x, z) ∈ SθXZ , where θ̃ = κθ and a(θ, x, z) ≡ ã(κθ, x, z). By (iv) the right-hand

side has range [0, 1] as z varies in SZ|θ̃x for every given (θ̃, x) ∈ Sθ̃X , i.e. for every given

(θ, x) ∈ SθX . Thus, for every (θ, x) ∈ SθX and every a ∈ Sa|θx, there exists a z ∈ SZ such that

a = a(θ, x, z), i.e. Assumption 2-(ii) is satisfied. We can now extend Fa|θ,X(·|θ, x) over Sa|θx
by Fa|θ,X(a|θ, x) = Fa|θ,X [a(θ, x, z)|θ, x] using the above equation. Thus, F (·, ·|·, ·) ∈ FXZ as

desired.

The structure [F (·, ·|·, ·), H(·|·, ·)] constructed as above rationalizes ΨJ∗|χ,X,Z(·|·, ·, ·) be-

cause of (18) and the uniqueness of the corresponding density. This structure also rationalizes

Ψχ|X,Z(·|·, ·). Specifically, by definition we have

Fa|θ,X(a(θ, x, z)|θ, x) =
fθ|χ,X,Z(θ|1, x, z)ν1(x, z)

fθ|X,Z(θ|x, z)
=
f̃θ̃|χ,X,Z(θ̃|1, x, z)ν1(x, z)

f̃θ̃|X,Z(θ̃|x, z)
.

Using (A.1) shows that ν1(x, z) = ψχ|X,Z(1|x, z) as desired. The fact that the structure ratio-

nalizes (t1(·, ·), dd1(·, ·), t2(·, ·), dd2(·, ·)) follows the argument of the last paragraph of the proof

of Lemma 3. 2
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