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Abstract. This paper shows how to characterize the set of outcomes func-

tions that can be supported as equilibrium outcome functions in competing
mechanism games. We describe a set of mechanisms we refer to as reciprocal

mechanisms. It is show that the set of outcome functions supportable as equi-

libria in a game in which principals offer reciprocal mechanisms is the same
as the set of outcomes supportable by a centralized mechaism designer. It is
then shown that any outcome function that can be supported as an equilib-
rium outcome in any competing mechanism game can also be supported as an

equilibrium outcome function in a game in which all players offer reciprocal
mechanisms. In this equilibrium, all players offer the same reciprocal mech-
anism which implements a collection of direct mechanisms in which players
report their payoff types truthfully to other players.

1. Introduction

It has been known for some time that the ’revelation principle’ doesn’t hold
in competing mechanism games. What this means is that modeling competing
mechanism designers as if they offered the usual kind of direct mechanisms in
which agent reports about their payoff types are converted into actions, will only
capture some of the things that can be supported as equilibrium in competing
mechanism games. This argument stems from a remark in (McAfee 1993) - since
agents observe the mechanisms that were offered by the other mechanism designers,
their types should be defined broadly enough to allow them to convey this payoff
information. McAfee didn’t make anything of this, but the subsequent literature
offers many simple examples to illustrate why this actually makes a difference.
Examples of equilibrium outcome functions in competing mechanism games that
can’t be supported as equilibria when designers offer naive direct mechanisms have
been given by (Peck 1995), (Epstein and Peters 1999), (Martimort and Stole 2002),
and (Peters 2001) among others.

(Epstein and Peters 1999) provides a type space and set of mechanisms which
allows agents to convey market information along with information about their
payoff type. They show that every equilibrium in a competing mechanism game is
equivalent to an equilibrium relative to what they called the universal set of mech-
anisms. The universal set of mechanisms contains only mechanisms that convert
type reports into outcome. In the equilibrium relative to this set of mechanisms,
every agent reports his or her type truthfully. However, types are taken from the
’universal set of types’, which is broad enough to convey both the agent’s payoff
type, and his market information.
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The universal set of types illustrates two things. First, the McAfee idea that
type should be reinterpreted in competing mechanism games is right, but unusable.
Universal types are complex, and have properties that do not lend themselves to ap-
plications.1 However, the approach did illustrate two useful facts. First, equilibria
in naive mechanisms are typically robust to expansions of the set of feasible mecha-
nisms. What this means is that the equilibria that McAfee was able to describe - in
which competing mechanism designers simple don’t ask agents for market informa-
tion because they aren’t allowed to - are also equilibria when mechanism designers
are allowed to use much more sophisticated mechanisms. The complication in com-
peting mechanisms is that equilibrium supports allocations that aren’t supportable
when mechanism designers are restricted to smaller sets of mechanisms.

The literature on common agency (many competing principals, but only a single
agent) tried to remedy this by abandoning the revelation principle, and simply ask-
ing for some set of indirect mechanisms that could be used to support all outcomes
that might quality as common agency equilibrium. (Martimort and Stole 2002)
and (Peters 2001) show that every (robust) equilibrium relative to any set of indi-
rect mechanisms in common agency is an equilibrium relative to the set of menus.
(Pavan and Calzolari 2009) show a similar result for common agency using what
they call the set of ’extended direct mechanisms’. All robust pure equilibrium in
common agency are equilibrium relative to the set of extended direct mechanisms.

As useful as the common agency tools are, they have two shortcomings. First,
common agency is special since there can only be one agent, and principals can’t
communicate. Second, though the set of mechanisms (menus) that this literature
offers is considerably simpler than the universal set of mechanisms, they are not
sufficiently structured to allow a characterization of supportable outcomes.2

(Yamashita 2007) has recently suggested a way to extend the common agency
logic to problems in which each principal has many agents. As in common agency,
principals simply ask agents what to do, and commit themselves to carry out the
recommendation as long as the majority of the recommendations agree. A charac-
terization theorem for this case is given by (Peters and Troncoso-Valverde 2009) for
competing mechanism games with at least four players and at least one principal.
Oddly, a simple common agency does not fit into this environment.

This paper does two things. First, it provides a simpler set of indirect mecha-
nisms which can be used to characterize equilibrium outcomes in all environments.
We call these mechanisms reciprocal mechanisms. They play the same role as
menus in common agency, in the sense that an outcome function supportable as an
equilibrium in some game of competing mechanism designers can also be supported
as an equilibrium in reciprocal mechanisms. However, it applies to environments
with many agents as well as to environments with no agents at all. In a game
in reciprocal mechanisms, players send each other messages of three kinds. The
first are public messages that play a dual role, both conveying market information
and specifying a commitment. The second kind of message is a private message
conveying a player’s payoff type. The third is a private correlating message whose
role is to support randomization and correlation.

1For example, agents types typically depend on the mechanism that a seller offers.
2Characterizations of outcomes for special environments have been given by (Peters and

Troncoso-Valverde 2009). Though it might not be apparent why yet, we would also include

(Tennenholtz 2004) and (A.T. Kalai and Samet 2007) in this category.
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The first part of our main theorem is a surprisingly simple characterization the-
orem. Every outcome function that can be supported by a centralized mechanism
designer can be supported as an equilibrium in reciprocal mechanisms, i.e., as an
equilibrium in competing mechanisms. We emphasize that we impose no restric-
tion on the number of players. Nor do we focus on or require players to use pure
strategies or to enjoy non-random outcomes. Indeed, since a centralized mechanism
designer can support correlated outcomes, we can show how to support these as
equilibria in a competing mechanism game.

The ’market’ messages we add are based on an idea from computer science3

suggesting that computer programs exhibit a kind of duality. A program is a set
of instructions that converts some set of inputs into an output. At the same time,
the syntax of the program can can serve as an input into other programs. We are
just going to treat contracts like computer programs. Instead of using the syntax
of the contracts directly, we are going to create a set of message an associated each
contract with one of these messages.4 We will then simply think of contract offers
as public messages and allow players to write contracts that make commitments
conditional on these messages.

However, we don’t need elaborate mathematics to do this. The reason is that
we are simply trying to find a way to characterize all equilibrium outcomes. For
this reason we are free to restrict the set of contracts and messages that players can
use in much the same way that the revelation principal restricts players to sending
type reports instead of arbitrary messages. In fact, the set of feasible contracts is
constructed using a method that is similar to that in (Pavan and Calzolari 2008)
who exploit the idea of a player’s extended type. This is supposed to describe the
outcome that the player expects to occur in the game. The set of contracts we use
coincident with this set of types.

To see the rough idea, consider a simple symmetric prisoner’s dilemma game
with actions C and D, and restrict attention for the moment to pure outcomes.
Begin by defining a message θ∗, which either player can announce publicly at the
first stage of our competing mechanism game. Announcing this message commits
the player to the following action which depend on the public message of the other
player:

θ∗ ≡

{

C if player 2 announces θ∗

D otherwise.

Add to this two additional messages, θc. Announcing θc at the beginning of the
game commits the player to use the cooperative action no matter what public
message the other player uses, and θd which commits to the non-cooperative action
no matter what message the other player announces. We then simply define the
set of feasible reciprocal mechanisms as

{

θ∗, θc, θd
}

. Each of the symbols θ∗, θc

and θd plays a dual role as it represents a specific mechanism, but is also used as a
possible message which is used by the mechanisms or contract of the other player.

The normal form of the game in reciprocal mechanisms is simply the following
(replacing payoffs with outcomes):

3Von Neumann
4This is similar to the approach in (Peters and Szentes 2008) where the literal syntax of

contracts is re-encoded into a integer.
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θ∗ θc θd

θ∗ (CC) (DC) (DD)
θc (CD) (CC) (CD)
θd (DD) (DC) (DD)

It is immediate that in this new normal form in reciprocal mechanisms, there
is an equilibrium in which both players publicly announce the mechanism θ∗. In
this equilibrium cooperation occurs. Evidently (DD) can also be supported as an
equilibrium.

It is also straightforward to extend this argument to arbitrary (finite) complete
information games. Suppose there are n players, each of whom has a finite set
of feasible actions Ai. Define A =

∏

i=1,...n Ai and A−i =
∏

j 6=i Aj . Again, we
will stick for the moment to pure strategies, and define a collection of constant
mechanisms for each player. To make things a little simpler, suppose each player
has k pure actions.5 Then create k messages θia1

to θiak
for player i. Announcing any

of these messages publicly commits i to play the corresponding action no matter
what messages other players announce.

Now we can create a set of reciprocal mechanisms which will be denoted by
messages like θi

(a1,a
′
i),...,(an,a′

n)
. The objects ai are elements of the feasible set of

actions for player i. One way to think of these is that they are the cooperative
actions that players are trying to support with their reciprocal mechanisms. The
object a′i is a vector of n− 1 actions from i’s action set. Informally, these represent
punishments that i will implement against each of the other players when they refuse

to cooperate. So the index (ai, a
′
i) has n components. There are kn

2

reciprocal
mechanisms like this. The set of mechanisms available to each player i will then be
the set of constant mechanisms plus this set of reciprocal mechanisms.

The public message θ(a1,a
′
1),...(ai,a

′
i),...,(an,a′

n)
commits player i as follows:

θ(a1,a
′
1),...(ai,a

′
i),...,(an,a′

n)

(

θ′−i

)

=

(1.1)

{

a′ij ∃!j : θ′j 6= θ(a1,a
′
−1),...,(ai,a

′
−i),...,(an,a′

n)

ai otherwise.

In the notation above ∃! means “there exists a unique”.
Each mechanism like this has a cooperative action ai and an array of punishments

a′i = {a′i1, . . . , a
′
im} for each of the other players. If all the other players offer the

same reciprocal mechanism as player i, then i will respond with his cooperative
action ai. If all but one of the players offer the same reciprocal mechanism as
player i, then i will respond with the punishment action a′ij for that player. It is
immediate that this set of reciprocal mechanisms supports every action profile in
which each player receives at least his minmax payoff as a Nash Equilibrium in
mechanisms.

This illustrates how reciprocal mechanisms work. We now extend the idea to
allow for randomization and incomplete information.

5This is without loss of generality since we can modify payoff functions to assign low payoffs

when i takes actions that aren’t feasible in the original game.
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2. Incomplete Information Games

In a game of incomplete information, there are n players. Each player has a finite
action set Ai and a finite type set T . In standard notation A, A−i represent cross
product spaces representing all players actions and the actions of all the players
other than i, respectively. Types are jointly distributed on Tm according to some
common prior and preferences of player i are given by ui : A × T → R. Players
have expected utility preferences over lotteries. Note that because the distribution
of types is arbitrary, it is without loss of generality to assume that all players types
lie in the same space. We are also going to assume that the set of potential types
is at least as large as the set of actions available to each player.

Let Qi, Q and Q−i represent mixtures over Ai, A and A−i respectively. Since
players have expected utility preferences we write u (Q, t) to be the expected utility
associated with the mixture Q when types are i. An outcome function is a mapping
ω : Tn → Q. An outcome function is incentive compatible if

(2.1) E {u (ω (t) , t) |ti} ≥ E {u (ω (t′i, t−i) , t) |ti} .

A punishment ρi : T−i → P−i is used when player i chooses not to participate in
the mechanism that implements ω. The outcome function is individually rational
if there is a punishment ρi for each player i such that for every i

(2.2) E {u (ω (t) , t) |ti} ≥ max
ai∈Ai

E {u (ai, ρi (t−i)) , t|ti} .

Players choose mechanisms that commit them to actions that depend on mes-
sages that they send and receive. Messages available to player i are elements of a
measurable space Mi. Each m ∈ Mi is a sequence of messages that can be eithe
public or private. Let ιij be a measure on Mj describing which messages of player
j are observable by i. Each player i is assumed to be able to observe all of his own
messages. All observable messages are assumed to be contractable.

We model mechanisms by assuming that the sequence m always includes mes-
sages that describe player i’s commitments. Formally Mi consists of a set of equiv-
alence classes µi (m) such that each message m′ ∈ µi (m) is associated with the
same mapping γi :

∏

j Mi → Ai. This mapping is assumed to be measurable with

respect to i’s information
{

ιij
}

j 6=i
. This mapping describes how player i’s action

is determined by the messages that he observes. The set of feasible commitments
for player i is a set Γi - each mechanism in this set being associated with a unique
equivalence class.

A message m is said to represent an instrutable mechanism if the mechanism
γi associated with µi (m) is an onto function from µi (m) to Ai, and if the only

subset of µi (m) that is measurable with respect to any ιji is µi (m) itself. We
assume throughout that the set of mechanisms available to every player includes
an inscrutable mechanism.

The objects Γ , {Mi}i=1,...,n and
{

ιij
}

i,j=1,...n
represent a particular model of

a competing mechanism game. The mechanisms described by each of the Mi are
analogous indirect mechanism in the usual problem. The description is intended
to capture a broad variety of different models. For example, messages, including
commitments, may be either public or private. They can be made sequentially or
simultaneously. Particular models of competing mechanisms may also include re-
strictions on mechanism designers’ ability to contract. In a typical common agency
model, for example, mechanisms are annouced publicly, but no player is allowed
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to condition directly on these publicly verifiable messages. So the set of feasible
mechansims may consist solely of mechanisms that are measurable with respect to
measures that are coarser than the information measures given by

{

µi
j

}

.
The formulation here simply assumes there is a set of players, all of whom could

potentially offer contracts. The special models that have been examined in the
literature are special cases. For example the principle agent formulation ((Epstein
and Peters 1999), (Yamashita 2007), (Han 2006)) assumes that players can be di-
vided into two groups consisting of uninformed principals who possess the ability
to write contracts, and informed agents who can’t write contracts at all. Formally,
we simply endow ’agents’ with the ability to condition only on their own messages.
Common agency (Peters 2001) or (Martimort and Stole 1998) imposes the addi-
tional restriction that there is only a single agent, and prevents the ’principals’ from
contracting with each other.

It isn’t at all obvious what the right way to model indirect mechanisms is in the
competing mechanism game. Menu mechanisms in common agency, or competition
in reserve prices among aucitoneers ((Peters and Severinov 1997)) simply impose
restrictions on what mechanism designers can do. Complex issues associated with
contractual robustness, and the infinite regress associated with allowing contracts to
depend on other contracts are addressed in (Epstein and Peters 1999) and (Peters
and Szentes 2008). Here we are simply going to assume that the modeller has
chosen methods to resolve these issues and included them in the specification of the
set of messages.

Given this specification, the equilibrium in the competing mechanism game is
defined in the usual way. A strategy rule specifies for each player and for each
of his possible types, a randomization over the set of mechanisms and rules that
specify randomizations over the set of messages sent to other players conditional
whatever information is available at the time the message is sent. We focus on
Bayesian equilibrium (as does the revelation principle) because we are interested
in characterizing all possible outcomes, and all the refined equilibrium are also
Bayesian equilibrium.

2.1. Reciprocal Mechanisms. The objective here is to show that there is a rela-
tively simple competing mechanism game that can be used to understand equilibria
in all competing mechanism games. This game takes place in two stages. At the
first stage each player simultaneous announces a public message that describes his
commitments in the game. In the second round each player privately sends a mes-
sage in [T × [0, 1]] to each of the other players. The first element of this message is
a type report, the second is a correlating message used to support randomization.
In the formalism of the previous section the message space consists of a sequence
of two signals, the first from Θi are all public, the second from (T × [0, 1])

n
are all

private.
The public messages in Θi are all tied to commitments which may be of two

possible types. We describe the messages then associate a mechanism with each
of them. First, we focus on a subset of the set of measurable mappings ci :
(T × [0, 1])

n
×(T × [0, 1])

n−1
→ Ai. The arguments of this function are the player’s

own messages, and the messages that he receives privately from the other players.
A mechanism di is referred to as a direct mechanism if it is a measurable function

from (T × [0, 1])
n
× (T × [0, 1])

n−1
→ Ai, if di implements some arbitrary fixed

action unless the first n messages are all the same, and if it depends only on the



ON THE REVELATION PRINCIPLE AND RECIPROCAL MECHANISMS IN COMPETING MECHANISM GAMES7

fractional part of the sum of the n correlating messages. We explain how these
correlating messages are used below. The set of direct mechanisms available to
player i is Di. A punishment mechanism pji for player i to use against player j is
a direct mechanism that is independent of the messages of player j. Let Di be the
set of direct mechanisms available to player i. We let Di refer to the set of direct
mechanisms.

The second kind of commitment is a reciprocal mechanism. To construct these,

we begin with the public messages that represent them. Let δi =

{

di,
{

pji

}

j 6=i

}

consist of a direct mechanism and a list of punishment mechanisms. This list
consists of a different punishment mechanism for each of the other players. The
notation δ = {δ1, . . . , δm} represents a list of such lists, while ∆ is the set of all δ.
We are going to index the set of feasible mechanism for player i by Θi = ∆ ∪Di.
If θi ∈ Di, then θi commits player i to the corresponding direct mechanism.

We need to associate a unique commitment with each element of ∆. Use the
notation θδi to be the mechanism associated with the message δ, and let dδi to refer
the direct mechanism associated with the ith element of the list δ. The reciprocal
mechanism θδi given by the mapping

(2.3) θδi (θ
′) =

{

pji ∃!j : θ′j 6= θδj
dδi otherwise.

The notation ∃! means “there exists a unique”. This commits player i to the direct
mechanism dδi (from the list δ) unless there is a unique player j who fails to use
the mechanism θδj . In that case, the mechanism commits i to use the punishment

mechanism pji designed for that player.

3. Theorem

The set of Θi of mechanisms available to each player is small. One can imagine
mechanisms more complicated than direct mechanisms. Reciprocal mechanism es-
pecially are restrictive. They allow players to respond to deviations, but only in a
manner that is independent of what the deviation is. Nonetheless, we can show that
when players are restricted to choose their mechanism in Θi, any incentive compat-
ible and individually rational outcome function can be supported as an equilibrium
in the corresponding competing mechanism game.

Let ω be an outcome function that is incentive compatible and individually
rational in the sense of (2.1) and (2.2). Recall that an outcome function has the
property that for every array of types t, ω (t)is some joint distribution on A.

Theorem 1. There is a Bayesian equilibrium in the contracting game with re-
ciprocal mechanisms Θ that supports the outcome function ω if and only if ω is
implementable by a mechanism designer in the sense that is satisfies (2.1) and
(2.2). In this equilibrium, all players use a common mechanism θδ, players report
their types truthfully at the second round to each player, and each player chooses a
correlating message uniformly from the interval [0, 1] .

Proof. Index the action profiles in A in some arbitrary way. Let ωk (t) be the
probability assigned to action profile ak by the outcome function ω when player
types are given by the vector t. The notation aki means the action taken by player
i in action profile ak. As mentioned above, we restrict attention to mechanisms
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where i constrains himself to send the same message to all the other players. Let
x = (xi, x−i) be the vector of signals sent by all the players. Now define

(3.1) dωi (t, x) =







aki : k = min
k′

:

k′

∑

τ=1

ωτ (t) ≤ ⌊
∑

j

xj⌋







.

The notation ⌊y⌋ means the fractional part of the real number y. This functions
aggregates the signals x into a number between 0 and 1, uses this to choose the
index of the action profile in A that depends on the type reports of all the players,
then directs player i to take his part in this action profile.

To see how this is going to implement the desired outcome, suppose first that each
of the players chooses xi using a uniform distribution. The random variable ⌊

∑

j xj⌋

is uniformly distributed on [0, 1]. In that case, the function {dω1 (t, x) , . . . , dωn (t, x)}
implements the action profile ak with probability ωk (t) as the outcome function
requires. The more interesting property of this construction is that for each value of
xi, ⌊xi+

∑

j 6=i xj⌋ is also uniformly distributed on [0, 1].6 This means that whatever
else is happening, it is a best reply for each player i to select a number xi using a
uniform distribution provided he believes the others are doing the same thing.

We use exactly the same construction for the punishment

(3.2) p
ρj

ij (t, x) =







aki : k = min
k′

:
k′

∑

τ=1

ρτj (t) ≤ ⌊
∑

τ 6=j

xj⌋







.

Let δωi =
{

dωi ,
{

p
ρj

ij

}

j 6=i

}

where dωi and p
ρj

ij are defined by (3.1) and (3.2), and

δω = {dωi }i=1,...,n. We now claim that if the outcome function ω is implementable,
then there is a Bayesian equilibrium in the competing mechanism game in which
each player i offers reciprocal mechanism θδ

ω

i as defined by (2.3) using the list δωi .
To see why, imagine first that all players offer this reciprocal mechanism. Then

all players are constrained to use the function dωi to translate messages into actions.
We have already explained that whatever type report a player sends to other players,
he is completely indifferent about the message that he sends as long as he believes
the others messages are chosen uniformly. As a consequence, there is a continuation
equilibrium in which each player chooses his message uniformly. If all other players
are revealing their true types to other players, (recall we are assuming here that
every player is using a direct mechanism which constrains each of them to send the
same message to every other player), then the payoff to player i if he also reveals
his true type is

E {u (dω1 (t, x) , . . . , dωm (t, x) , t) |ti} = E {u (ω (ti, t−i) , t) |ti}

≥ E {u (ω (t′i, t−i) , t) |ti}

where this last expression is the payoff he gets if he lies about his type. The
inequality follows from (2.3) and (2.1).

Now suppose that i deviates to some alternative contract c′. This must be un-
profitable. To ensure this, we need to construct continuation play that makes i
worse, conditional on the fact that, as a unilateral deviator, the other players are

6This device is from the paper (A.T. Kalai and Samet 2007). A proof of this last property
is given in (Peters and Troncoso-Valverde 2009). This proof also shows why ⌊

∑
j xj⌋ must be

uniformly distributed.
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committed by the reciprocal contract, to carry out the punishments pρi

−i,i against i.
We assume that each player j continues to report type truthfully when implement-
ing punishments, and that whenever i’s contract asks the others to make reports,
they report some arbitrary messages

(

t−i, x−i

)

. Then since the action that player
i takes cannot depend on the types of the other players, the payoff when player i
of type ti deviates is

max
{tij ,xij}j 6=i

E

{

u
(

c′
(

{tij , xij}j 6=i
,
(

t−i, x−i

)

)

, pρi

−i,i (t−i, x−i) , t
)

|ti

}

≤

max
ai

E
{

u
(

ai, p
ρi

−i,i (t−i, x−i) , t
)

|ti
}

≤

E {u (ω (ti, t−i) , t) |ti}

where the last line follows from (2.2).
To prove the other direction, begin with an outcome function ω that is support-

able as a Bayesian equilibrium in reciprocal mechanisms. Player i’s equilibrium
payoff is

(3.3) E {u (ω (t) , t) |ti} .

Let c′ be any contract for which i’s action is an onto function only his own correlat-
ing message xi. In any equilibrium relative to reciprocal mechanism, this deviation
must be unprofitable. In response to such a deviation, the other players will respond
with some randomization over punishment mechanisms

{

p
ρj

ij

}

j 6=i
. The randomiza-

tion is possible because players may be mixing when choosing among mechanisms.
The messages and punishments that the others use can’t depend on i’s choice of
action. Furthermore, choosing a payoff maximizing message at the second stage
is equivalent to choosing a payoff maximizing action at the second stage since the
contract is onto. It then follows

E

{

max
t′
i

E(t′−i
,t−i,x−i)u

(

a
t′i
i , p̃−i

(

t′−i, x−i

)

, (ti, t−i)
)

|ti

}

≤

E {u (ω (t) , t) |ti} .

This is almost the expression we want, except that when taking expectations on the
left hand side. To complete the argument, let ρ′ (t−i) be the probability distribution
over the actions A−i conditional on t−i that is induced by the equilibrium strategies
of the players other than i in the continuation equilibrium. Then from the inequality
above

max
ai

E {u (ai, ρ
′ (t−i) , (ti, t−i)) |ti} ≤ E {u (ω (t) , t) |ti} ,

which completes the proof. �

4. Equilibrium in Inscrutable Indirect Mechanisms

Theorem 1 provides a characterization of outcome functions supportable in re-
ciprocal mechanism games. Reciprocal mechanism are restrictive as we have men-
tioned. For these reasons, it may be more sensible to model competing mechanism
games with a more realistic looking set of indirect mechanisms. The next theorem
simply states that if this set of indirect mechanisms satisfies the inscrutability as-
sumption we described above, then any outcome function that can be supported
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as an equilibrium relative that set of mechanisms can also be supported as an
equilibrium in reciprocal mechanisms.

All that is required to to this is to show that if an outcome function is supportable
as equilibrium relative to an inscrutable set of indirect mechanisms, then it satisfies
(2.2).

Theorem 2. If an outcome function ω is supportable as an equilibrium in in-
scrutable indirect mechanisms, then it is supportable as an equilibrium in reciprocal
contracts.

Proof. The proof mimics the second part of the proof in Theorem 1. Let ω (t)
be the outcome function supported by some equilibrium in inscrutable indirect
mechanisms. Player i’s payoff is given by (3.3). Since player i can Let c′ be a
deviation to an inscrutable contract in which i’s action is an onto function from
M

[0,1]
i to Ai. Let ρ

′ (t−i) be the type contingent randomization over A−i associated
with the continuation equilibrium associated with this deviation. Since choosing a

message in M
[0,1]
i is equivalent to choosing an action, it follows from the fact that

the deviation is unprofitable that

max
ai

E {u (ai, ρ
′ (t−i) , (ti, t−i)) |ti} ≤ E {u (ω (t) , t) |ti} ,

�

Theorem 2 differs slightly from theorem 1 since it only goes in one direction. Not
all the outcome functions that can be supported with reciprocal mechanisms can
be supported as equilibrium relative to some arbitrary set of indirect mechanisms.

5. An Example

To illustrate, we consider a well known issue in mechanism design. Suppose there
are two sellers and two buyers (i.e. four players in all). Each seller has a single unit
of output to sell to which he or she assigns a value of vm. Each buyer has a private
valuation, either vl or vh ranked the obvious way with vl < vm < vh. Payoffs to the
seller are equal to the money he receives less his value if he trades, payoffs to each
buyer are equal to their private valuation when they succeed in trading, less the
money they pay. Each seller offers a mechanism, each buyer chooses to participate
in one and only one mechanism. We assume that valuations are correlated. To
make life simple suppose that both valuations are the same with probability q > 1

2
and that they are equally likely to (both be) vh or vl in that case.

As for feasible actions, each seller can choose to give his good to either of the
two buyers, or to keep it. He can also choose to make transfers to either or both
buyers. We will simply ignore the fact that the set of feasible transfers isn’t finite.
Similarly, buyers can offer to trade with either of the sellers or not to trade at all.
They can also make transfers to either or both sellers.

First of all, we describe the analog of the (Cremer and McLean 1988) result for
this environment. We would like to have an allocation rule that is ex post efficient
in the sense that a buyer trades with some seller if and only if his valuation exceeds
vm. Furthermore, we want the interim expected payoff of each buyer to be zero.
Notice that we can accomplish this in a centralized mechanism because the buyer
who has type vl believes that the other buyer has type vl with probability q, while
the buyer with type vh believes the other buyer has type vl with probability 1− q.
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Then assuming we have the high type buyer trade with one of the sellers at price
vm, we need to design a pair of transfers (pl, ph) so that

vh − vm + qph + (1− q) pl = 0

and

(1− q) ph + qpl = 0.

Since q > 1
2 and vh > vm, this pair exists and is unique. It is straightforward that

pl > 0, and ph < 0. Adding the two equations together gives (vh − vm)+ph+pl = 0
Our centralized mechanism has each buyer report his or her type. A buyer who

reports vh is given a unit of output and pays a price vm. He also pays a fee ph
if the other buyer’s reported type is vh, and receives the transfer pl if the other
buyer’s reported type is vl. A buyer who reports a type vl doesn’t get any output,
but still pays the fee or receives the transfer depending on the reported type of the
other buyer. It is straightforward that a high type buyer doesn’t want to misreport
because he loses the good but still ends up paying a positive amount. Similarly for
the low type.

The surplus earned by sellers under this scheme is (vh − vm) /2, which is the
surplus sellers earn with complete information. To explain why the mechanism is
individually rational, we need to explain what happens when one of the players
unilaterally decides not to participate. Mechanism design as it is described in (2.2)
assumes that participating players can impose arbitrary punishments. To start,
assume we impose the obvious punishment that participants refuse to trade with
non-participants. Then refusing to participate yields every player a payoff 0 and
the mechanism is individually rational as in (2.2).

An obvious use of competing mechanisms is to try to explain away this odd result
by using the argument that it can’t be an equilibrium for competing sellers to leave
both buyers with zero expected surplus. However, we can support such an outcome
with reciprocal mechanisms. Each seller’s mechanism takes input from the other
seller and both buyers. We describe a set of direct mechanisms that implement
the outcome. As no one randomizes in this outcome, we don’t need signals at all.
Seller i uses mechanism dsi which commits to sell to buyer i at a price vm if buyer
i reports a high valuation, otherwise seller i keeps his good. Seller i commits to
pay buyer i a transfer pl if buyer j reports type vl. Buyer i uses mechanism dbi
which commits to buy from seller i and pay a price vm if buyer j reports type vl,
and to pay seller i vm − ph otherwise (recall that ph < 0). Recall that these target
mechanisms commit the buyers to send the same messages to everyone.

To complete the description of the corresponding reciprocal mechanisms, we
need to describe the punishments that go along with these direct mechanisms.
This is straightforward here, all players simply commit not to trade when there is
a deviation. Recall these are commitments built into contracts, not presumptions
about how players will play a continuation game. The punishment p∗ commits to
no trade, zero transfers for all messages. So we have the reciprocal mechanisms

θj
{(ds

i
,p∗),(db

i
,p∗)}

i=1,2

=







p∗ (v1, v2) ∃!k : θ′k 6= θk
{(ds

i
,p∗),(db

i
,p∗)}

i=1,2

dj (v1, v2) otherwise.
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6. Literature

We have shown that all equilibria of competing mechanism games can be un-
derstood using reciprocal mechanisms. The advantage of this is that reciprocal
mechanisms are conceptually no more difficult to work with than ordinary direct
mechanisms. So reciprocal mechanisms provide a useful analytic approach for prob-
lems in which a broad class of mechanisms is feasible.

One consequence of this observation is that the set of allocations that can be
supported as equilibrium with competing mechanisms is large. This fact has been
observed before. Starting with the large literature on delegation games ((Fershtman
and Judd 1987, Fershtman and Kalai 1997)), a number of papers have shown large
equilibrium sets for special cases ((Katz 2006, Tennenholtz 2004, Yamashita 2007,
Peters and Troncoso-Valverde 2009)). Our paper differs from these in two ways.
First we impose no restrictions on the environment. (Katz 2006, Tennenholtz 2004),
for example, assume complete information. (Yamashita 2007) assumes that players
who offer contracts have no private information, and restricts the number of players.
(Peters and Troncoso-Valverde 2009) restricts the number of players. We impose
none of these restrictions.

Secondly, like the papers by (A.T. Kalai and Samet 2007)7 and (Peters and
Szentes 2008) we provide a complete characterization of supportable equilibrium
outcomes rather than simply illustrating that a large number of equilibrium out-
comes can be supported. However we do not assume, as do (A.T. Kalai and Samet
2007) that players have complete information. We do not restrict the set of feasible
mechanism nor the set of equilibrium outcomes as in (Peters and Szentes 2008).

Like direct mechanisms, reciprocal mechanisms make it possible to understand
equilibrium outcomes with competition without worrying about the intricacies of
particular indirect mechanisms that are used in practice. Apart from the standard
logic of incentive constraints, reciprocal mechanisms simply add the logic that if
everyone else wants to do something, it is simple to write a contract that commits
you to do it too.
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