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1 Introduction

Economists often assume that agents’ preferences are interdependent for informational or psy-

chological reasons. We know how to use Harsanyi type spaces to represent many kinds of such

interdependence of preferences. In this paper, we characterize when two types are strategically dis-

tinguishable in the sense that they are guaranteed to behave differently in some finite mechanism

mapping actions to outcomes.

Our characterization uses a universal type space of interdependent, higher-order, preferences of

a finite set of agents, analogous to the universal space of higher-order beliefs introduced by Mertens

and Zamir (1985). We assume common certainty that (i) agents are expected utility maximizers;

(ii) agents are not indifferent between all outcomes; and (iii) there is a worst outcome for each

agent. The universal space is mathematically isomorphic to the Mertens-Zamir universal belief

space (although it has a very different interpretation). We show that two types are strategically

distinguishable if and only if they map to different points in the universal space of interdependent

preferences.

This result gives a clean and straightforward answer to the question: what can you observe (and

be certain to observe) about agents’ interdependent preferences by seeing how they play games,

i.e., behave in strategic environments? Our answer is:

1. You can learn an agent’s first order (or unconditional) preferences: what are his preferences

over outcomes unconditional on anything other agents do or say?

2. Since you can learn all agents’ unconditional preferences, you can also learn an agent’s second

order preferences: what are his preferences over acts that are contingent on the first order

preferences of other agents?

3. And then you can learn his third order preferences. And so on.

You cannot learn any more than this. This implies, in particular, that it is not possible to dis-

tinguish between informational and psychological reasons for interdependence. And it implies that

interdependence of preferences can be observed only when there is uncertainty about preferences,

i.e., when I expect my preference to change on observing your preferences.

There are (at least) a couple of reasons why we believe that a systematic study of strategic

distinguishability may be of interest. First, economists’ traditional view of preferences is that they

are not directly observed but are best understood as being revealed by agents’ choices in actual or

hypothetical decision problems, and there is a developed revealed preference theory of individual
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choice behavior; we see this paper as being a step towards a strategic revealed preference theory.1

Second, the content of the specific modelling assumptions is not always transparent and this is espe-

cially true when talking about interdependent preferences. By mapping all types into a canonical

universal interdependent type space, we provide a clear operational definition of interdependent

types.

Our main result concerns one solution concept, equilibrium, and one equivalence class on agents’

interdependent types, strategic indistinguishability. We also discuss what happens if we consider an

appropriate but very permissive definition of rationalizability for our environment—dubbed interim

preference correlated rationalizability (IPCR)—and an alternative, more refined, equivalence class

on agents’ types: two types are said to be strategically equivalent if they have the same set of

rationalizable actions in all strategic environments (strategic distinguishability only required a

non-empty intersection of those sets). We show that the same universal interdependent preference

space characterizes strategic distinguishability for IPCR, and thus for any solution concept which

refines IPCR and coarsens equilibrium. We also show that the universal interdependent preference

space characterizes strategic equivalence for IPCR, so that, for IPCR, two types are strategically

distinguishable if and only if they are strategically equivalent. But for equilibrium, more information

than that contained in the universal interdependent preference space is required to capture strategic

equivalence (as shown by an example in Section 3).

We maintain the worst outcome assumption in order to exclude trivial types that are completely

indifferent over all outcomes and to maintain compactness of our type spaces which is necessary

for our results. In Section 8.1, we discuss how the worst outcome assumption can be relaxed while

maintaining non-triviality and compactness of preferences.

Our results are closely tied to a number of existing literatures. Most importantly, our formal

contribution can be viewed as an extension of results of Abreu and Matsushima (1992) from fi-

nite to more general type spaces. They characterize (full) virtual Bayesian implementability of

social choice functions for a finite type space under the solution concept of iterated deletion of

strictly dominated strategies. A necessary condition is a “measurability” condition that, in the

language of this paper, requires that the social choice function gives the same outcome to strate-

gically indistinguishable types. They provide a characterization of the measurability condition

that essentially states that types are strategically distinguishable if and only if they differ in their

preference hierarchies. Iterated deletion of strictly dominated strategies is equivalent to a refined

version of rationalizability—interim correlated rationalizability—that is intermediate between equi-

librium and IPCR. They also show that the measurability condition is necessary for virtual Bayesian
1This is discussed further in Section 8.3.
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implementation in equilibrium, and so their argument establishes a characterization of strategic dis-

tinguishability for equilibrium as well. We extend the analysis of Abreu and Matsushima (1992)

to infinite type spaces. As well as raising new technical challenges, a benefit of the extension is

that the equivalence relation between preference hierarchies and strategic distinguishability can

be stated in terms of a universal space and thus without reference to a specific type space from

which the types are drawn. In Section 8.2, we discuss how the analysis in this paper is related to

Bergemann and Morris (2009), which showed that robust virtual implementation is possible only

if there is not too much interdependence in preferences.

As we noted above, our universal interdependent preference space construction is mathemat-

ically equivalent to the construction of the universal belief space of Mertens and Zamir (1985),

although we are giving it a quite different interpretation. Epstein and Wang (1996) construct a

universal space of hierarchies of non-expected utility preferences, incorporating non-expected util-

ity preferences such as ambiguity aversion, but maintaining monotonicity as well as additional

regularity conditions. We must dispense with monotonicity to incorporate the interdependence of

preferences we want to capture. We relax monotonicity to the worst outcome assumption, but

impose independence to get an expected utility representation. Di Tillio (2008) allows general pref-

erences, and thus does not require Epstein and Wang’s monotonicity condition or independence,

but restricts attention to preferences over finite outcomes at every level of the hierarchy.

A number of authors have considered problems that arise in behaviorally identifying psycho-

logically motivated properties of preferences that involve interdependence (see Levine (1998) and

Weibull (2004)) such as conditional altruism (e.g. I want to be generous only to those people who

are generous themselves). Our leading example below will concern conditional altruism. Motivated

by such problems, Gul and Pesendorfer (2007) construct a universal space of interdependent pref-

erence types and our objective of constructing a universal interdependent preference space follows

their exercise. They identify a maximal set of types which captures all distinctions that can be

expressed in a natural language. When they consider applications of their universal space to in-

complete information settings, they treat incomplete information separately and thus they do not

address the interaction (and indistinguishability in a state dependent expected utility setting) of

beliefs and utilities. Our focus is on static games and solution concepts (equilibrium and ratio-

nalizability) without sequential rationality or other refinements of those solution concepts. This

implies that, in a complete information setting, it is not possible to identify any interdependence in

agents’ types (a point emphasized in our leading example of Section 3). Thus our universal space of

interdependent types ends up being much coarser than that of Gul and Pesendorfer (2007). In par-

ticular, their types reflect much counterfactual information (what preferences would be conditional

on other agents’ types) that cannot be strategically distinguished in our sense. An interesting topic
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for future work is the extent to which finer behavioral distinctions, such as strategic equivalence,

and dynamic games with sequential rationality refinements (where behavior will reflect counterfac-

tual information) can reveal the fine information contained in Gul and Pesendorfer (2007) types.

Recent work on dynamic mechanism design in “payoff type” environments, as Müller (2009) and

Penta (2009), may be relevant for such extensions.

A recent literature (Dekel, Fudenberg and Morris [DFM] (2006, 2007), Ely and P ↪eski (2006),

Liu (2009), Sadzik (2009)) has examined what can be learned about agents’ beliefs and higher-

order beliefs about a state space Θ when it is (informally) assumed that there is common certainty

of agents’ “payoffs” as a function of their actions in a game and the realized state θ ∈ Θ. Our

results can be understood as a relaxation of the assumption of common certainty of payoffs in that

literature. In particular, that literature can be summarized as follows. DFM show that two types

have the same interim correlated rationalizable (ICR) actions if and only if they have the same

higher-order beliefs, i.e., they map to the same Mertens and Zamir [MZ] (1985) type. Thus, in

the language of this paper, MZ types characterize strategic equivalence for ICR under the common

certainty of payoffs assumption. ICR is a permissive solution concept that allows agents’ actions

to reveal information about others’ actions and the payoff relevant state. If restrictions are put on

what can be revealed, as in the interim independent rationalizability (IIR) of DFM (2007), then

finer distinctions over types are required to characterize strategic equivalence. Ely and P ↪eski (2006)

describe richer hierarchies than MZ types which characterize IIR in two player games. Liu (2009)

and Sadzik (2009) discuss even richer information needed to characterize Bayesian Nash equilibrium

(BNE). Although not highlighted in this literature, it is easy to deduce from these existing results

that MZ types characterize strategic indistinguishability for all three solution concepts (ICR, IIR

and BNE); in other words, two types have an ICR/IIR/BNE action in common in every mechanism

if and only if they have the same MZ type. To see why, note that we can always find a BNE action

they have in common by looking for pooling equilibria where redundant information is ignored.

Thus a summary of the “common certainty of payoffs” literature is:

strategically equivalent strategically indistinguishable

ICR Mertens-Zamir space Mertens-Zamir space

IIR Ely-P ↪eski space Mertens-Zamir space

BNE richer Liu/Sadzik space Mertens-Zamir space

Our results in this paper offer a clean generalization of this picture. This literature combines beliefs

and higher-order beliefs about some payoff relevant states with common certainty of a mapping

from action profiles and payoff relevant states to payoffs. Relaxing the common certainty of payoffs

assumption, we must construct a universal space of higher-order (expected utility) preferences. We
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show that this characterizes strategic indistinguishability for equilibrium, for IPCR and for any

solution concept in between. We show that it also characterizes strategic equivalence for IPCR but

not necessarily for more refined versions of rationalizability and equilibrium.

The paper is organized as follows. Section 2 describes our setting and poses the strategic dis-

tinguishability question for equilibrium. Section 3 considers in detail an example with conditional

altruism to motivate the approach and results in the paper. Section 4 describes the construc-

tion of the universal space of interdependent preferences. Section 5 reports our main result: our

universal space characterizes equilibrium strategic distinguishability. Section 6 introduces the so-

lution concept of interim preference correlated rationalizability, and presents the proof that our

universal space characterizes strategic distinguishability for equilibrium, IPCR and everything in

between. Section 7 formally introduces the finer strategic equivalence relation, shows that our

universal space characterizes IPCR strategic equivalence and discusses the formal connection with

the common certainty of payoffs literature. Section 8 concludes.

2 The Setting and Benchmark Question

An outside observer will see a finite set of agents, I = {1, ..., I}, making choices in strategic

situations, where there is a finite set of outcomes Z and a compact and metrizable set of observable

states Θ. We will maintain the assumption that, for each agent i, there is an outcome wi ∈ Z

which is a worst outcome for that agent; in Section 8.1, we discuss relaxations of this assumption.

We are interested in what the outside observer can infer about agents’ (perhaps interdependent)

preferences by observing agents’ rational choices in strategic situations. We will consider standard

Harsanyi type space models of agents’ perhaps interdependent preferences. A type space consists

of a measurable set of unobservable states, Ω, and for each agent i, a measurable space of types

Ti, a measurable belief function νi : Ti → ∆ (Θ× Ω× T−i) and a bounded and measurable utility

function ui : Θ×Ω×T ×Z → R. Consistent with the assumption that agent i has a worst outcome

wi ∈ Z, we require

ui (θ, ω, t, z) ≥ ui (θ, ω, t, wi)

for all θ ∈ Θ, ω ∈ Ω, t ∈ T and z ∈ Z. In addition, we will make the non-triviality assumption that

for every ti ∈ Ti and νi (· |ti )-almost every (θ, ω, t−i) ∈ Θ× Ω× T−i, there exists some z ∈ Z such

that ui (θ, ω, t, z) > ui (θ, ω, t, wi). Thus a Harsanyi type space is given by T =
(
Ω, (Ti, νi, ui)i∈I

)
.

We define a belief-closed subset of the type space to be a product set of agents’ types where

each agent is sure to be in that subset. Formally, a product set T̃ =
∏
i T̃i of types with measurable

T̃i ⊆ Ti is belief-closed if for every i ∈ I and ti ∈ T̃i, νi
(

Θ× Ω× T̃−i |ti
)

= 1.
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A strategic situation is modelled as a mechanism, where each agent i has a finite set of actions

Ai and an outcome function g : Θ×A→ ∆ (Z). Thus a mechanism is defined byM =
(
(Ai)i∈I , g

)
.

The pair (T ,M) describes a game of incomplete information. A strategy for agent i in this

game is a measurable function σi : Ti → ∆ (Ai). We extend the domain of g to mixed strategies in

the usual way. Bayesian Nash equilibria do not always exist on large type spaces. However, even

when equilibria do not exist on large type spaces, equilibria may exist on belief-closed subsets of

the large type space. We will follow Sadzik (2010) in defining such “local” equilibria.

Definition 1 A strategy profile σ = (σi)i∈I is a local equilibrium of the game (T ,M) on the

belief-closed subspace T̃ if, for every i ∈ I and ti ∈ T̃i, σi (ti) maximizes∫
Θ×Ω×T−i

ui(θ, ω, (ti, t−i) , g (θ, (ai, σ−i(t−i))))dνi(ti)(θ, ω, t−i).

Let Ei(ti, T ,M) be the set of all local equilibrium actions of type ti, i.e., the set of actions played

with positive probability by ti in any local equilibrium of (T ,M) on any belief-closed subspace T̃

with ti ∈ T̃i.

We say that a type ti is countable if there exists a countable belief-closed subspace T̃ =
∏
j T̃j

with ti ∈ T̃i. By Kakutani’s fixed-point theorem, Ei(ti, T ,M) 6= ∅ if ti is countable.

The main relation between types that we seek to characterize in this paper is the following.

Definition 2 Two types of agent i, ti in T and t′i in T ′, are strategically indistinguishable if, for

every mechanism M, there exists some action that can be chosen by both types, so that

Ei(ti, T ,M) ∩ Ei(t′i, T ′,M) 6= ∅

for every M. Conversely, ti and t′i are strategically distinguishable if there exists a mechanism in

which no action can be chosen by both types, so that

Ei(ti, T ,M∗) ∩ Ei(t′i, T ′,M∗) = ∅

for some M∗.

Our main result will be a characterization of strategic distinguishability. Before reporting our

result, we report examples to motivate and provide intuition for results.
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3 Examples and Motivation

In this section, we illustrate by means of examples, that there are many equivalent ways of describing

a type’s beliefs and utilities, which all give rise to the same preferences and thus behavior. We refer

to this multiplicity in the representation of preferences as redundancy. Our purpose in analyzing

these examples is to describe the redundancy, use it to motivate a canonical representation of

interdependent types, and give an intuition why this representation exactly captures strategic

distinguishability as described in the previous section. We begin with the well known case of

decision-theoretic redundancy and then discuss strategic redundancy.

3.1 Decision Theoretic Redundancy

Consider the following setting. There are two agents 1 and 2. There are three outcomes: each

agent receives nothing (outcome 0); agent 1 receives a prize (outcome 1); or agent 2 receives the

prize (outcome 2). Thus the environment consists of two agents, an outcome space Z = {0, 1, 2}
and no observable states. Outcome 0 will be a worst outcome for both agents.

The Harsanyi type space can be described as follows. There are two equally likely but un-

observable states, L and H, interpreted as representing situations where the agent are either un-

related or siblings. Each agent i observes a conditionally independent signal si ∈ {l, h}, with

Pr (l|L) = Pr (h|H) = 2
3 . If the agents are unrelated, then each one cares only about the proba-

bility that he/she gets the prize. If the agents are siblings, then each one is altruistic with weight
1
2 on the sibling’s consumption. Thus agent 1 is indifferent between a 50% chance of getting the

prize for herself and agent 2 getting the prize. Now the type space consists of unobservable states

Ω = {L,H}; type spaces T1 = T2 = {l, h}; and utility functions of the form

ui (ω, t, z) = ui (ω, (t1, t2) , z) =


0, if z = 0

1, if z = i
1
2 , if z = 3− i and ω = H

0, if z = 3− i and ω = L

;

and beliefs on Ω× T1 × T2 consistent with the following common prior:

ω = L :

t1\t2 l h

l 2
9

1
9

h 1
9

1
18

ω = H :

t1\t2 l h

l 1
18

1
9

h 1
9

2
9

.

In this example, there are no observable states Θ, and so we suppress them in our notation.

While this is one formal representation, there are many equivalent ways of describing a type’s

beliefs and utilities that give rise to the same preferences and thus behavior. We refer to this as
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decision theoretic redundancy. A first simple and well known observation is that states that are not

observed by any agent are redundant and can be integrated out. See, for example, Milgrom (2004),

page 159, for a discussion of this point. Thus an alternative Harsanyi type space representation

of the above example is the following. There are no unobservable states, the type spaces remain

T1 = T2 = {l, h}; but the utility functions have the form:

ui ((t1, t2) , z) =



0, if z = 0

1, if z = i
1
10 , if z = 3− i and (t1, t2) = (l, l)
1
4 , if z = 3− i and (t1, t2) = (l, h) or (h, l)
2
5 , if z = 3− i and (t1, t2) = (h, h)

;

and beliefs on T1 × T2 consistent with the following common prior:

t1\t2 l h

l 5
18

2
9

h 2
9

5
18

This model has a natural interpretation in terms of conditional altruism: type h is nice and

type l is nasty. Both types are altruistic, type h is more altruistic than type l, and both are more

altruistic when the other is more altruistic. This mirrors the modelling of conditional altruism in,

for example, Levine (1998). But importantly, there is no way to distinguish conditional altruism

(intuitively, a property of the “utility”) from the informational story of a sibling relationship.

Another redundancy in the description of Harsanyi types is that since the utility function is

allowed to depend on types, the distinction between “utility” and “beliefs” is arbitrary and all we

can observe is the product of the two. Another way of making this point is to observe that the

choice of numeraire is arbitrary but affects whether independence is reflected in beliefs or utilities.

We can illustrate this with three more equivalent representations of the above example.

One re-normalized representation is to let an agent assign utility 1 to the other agent getting

the prize, and adjust beliefs and other utilities accordingly. This gives rise to the following utility

functions:

ui ((t1, t2) , z) =



0, if z = 0

10, if z = i and (t1, t2) = (l, l)

4, if z = i and (t1, t2) = (l, h) or (h, l)
5
2 , if z = i and (t1, t2) = (h, h)

1, if z = 3− i

;

where the beliefs on T1 × T2 must now be adjusted to ensure that the product of probabilities and
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an agent’s utility of an outcome remain in the same proportion:

t1\t2 l h

l 1
9

2
9

h 2
9

4
9

A second re-normalization is to let the numeraire take the canonical form of a uniform distribu-

tion over all non-worst outcomes. In this case, we normalize the expected utility of a 50/50 lottery

between the siblings getting a prize equal to 1. This gives rise to the utility functions:

ui ((t1, t2) , z) =



0, if z = 0
20
11 , if z = i and (t1, t2) = (l, l)
8
5 , if z = i and (t1, t2) = (l, h) or (h, l)
10
7 , if z = i and (t1, t2) = (h, h)
2
11 , if z = 3− i and (t1, t2) = (l, l)
2
5 , if z = 3− i and (t1, t2) = (l, h) or (h, l)
4
7 , if z = 3− i and (t1, t2) = (h, h)

;

and beliefs on T1 × T2 consistent with the common prior:

t1\t2 l h

l 11
45

2
9

h 2
9

14
45

The correlation of types changed as we changed the numeraire. In fact, we can choose beliefs any

way we like and still find an equivalent representation.

A third re-normalization comes from letting beliefs be uniform and independent:

t1\t2 l h

l 1
4

1
4

h 1
4

1
4

,

implying that the utility functions must then be proportional to:

ui ((t1, t2) , z) =



0, if z = 0

10, if z = i and (t1, t2) = (l, l) or (h, h)

8, if z = i and (t1, t2) = (l, h) or (h, l)

1, if z = 3− i and (t1, t2) = (l, l)

2, if z = 3− i and (t1, t2) = (l, h) or (h, l)

4, if z = 3− i and (t1, t2) = (h, h)

.
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These re-normalizations are possible because of the well-known property of state dependent utility

representations of expected utility preferences that they do not pin down probabilities. This point

is discussed, for example, in Myerson (1991) (on page 72) - he labels two incomplete information

games where one is such a re-normalization of the other as representing “fully equivalent games” -

and it is well known to empirical researchers on auctions (see Paarsch and Hong (2006)). He labels

two incomplete information games where one is such a re-normalization of the other as representing

“fully equivalent games”.

Our solution to these two forms of decision theoretic redundancy (unobserved states and insepa-

rability of beliefs and utilities) will be to work with preference type spaces, where unobserved states

are integrated and types are identified with preferences over Anscombe-Aumann acts contingent

on observable states and others’ types. Thus we will abstract from numeraires, beliefs and utilities

in the preference type space representation. In the example, type h of agent 1 will be characterized

by the fact that if given a choice between f : T2 → ∆ (Z) and f ′ : T2 → ∆ (Z), he will weakly prefer

f to f ′ if and only if

5f(h)(1) + 4f(l)(1) + 2f(h)(2) + f(l)(2)

≥ 5f ′(h)(1) + 4f ′(l)(1) + 2f ′(h)(2) + f ′(l)(2)

Mapping Harsanyi type spaces into preference type spaces is straightforward. However, it neither

gives a natural language to express types nor ensures that types are strategically distinguishable.

We will therefore introduce a natural canonical way to represent interdependent types. Consider

type h of agent 1. What can we say about how this type will behave in different strategic situations?

A first level observation is that this type will have an unconditional altruism (i.e., the marginal

rate of substitution between her opponent and herself getting the prize) of 1
3 (= 2

3 ×
1
2). This is all

we could find out about this type’s preferences in a single person choice setting. But in a richer

strategic setting, we could identify that type’s altruism conditional on her opponent’s unconditional

altruism. In particular, type h of agent 1 will not give up anything in exchange for prizes conditional

on agent 2’s unconditional altruism being anything other than 1
3 or 1

6 . Conditional on agent 2’s

unconditional altruism being 1
6 , agent 1 would be prepared to “pay” (i.e., give up unconditional

probability of getting the prize) 4
9 for the prize and 1

9 (= 4
9 ×

1
4) for agent 2 to get the prize.

Conditional on agent 2’s unconditional altruism being 1
3 , agent 1 would be prepared to pay 5

9 for

the prize and 2
9 (= 5

9 ×
2
5) for agent 2 to get the prize.

Our main result will involve a generalization of this description. In Section 4, we provide a formal

description of a universal space of possible expected utility types, consisting of (i) unconditional

(expected utility) preferences; (ii) preferences conditional on others’ unconditional preferences; and

so on. In Section 5, we confirm that two types are guaranteed to behave differently in equilibrium
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of some mechanism if and only if they correspond to different types in this universal space. But

before we move to the general analysis, we will give another example demonstrating how two types

that may look quite different in a preference type space, and are decision theoretically distinct,

map to the same preference hierarchy in the universal type space. We refer to this phenomenon as

strategic redundancy.

3.2 Strategic Redundancy

Suppose we start with the example described earlier. But now assume that, in addition to agent

i’s altruism generated by kinship, she puts an additional weight on her sister’s consumption of 1
6

only if si = l. Now we will have the same common prior probability distribution over type profiles

(t1, t2):
t1\t2 l h

l 5
18

2
9

h 2
9

5
18

but now we add 1
6 to the agent’s type conditional on being the low type only, giving

ui ((t1, t2) , z) =



0, if z = 0

1, if z = i
4
15 , if zi = 3− i and (ti, tj) = (l, l)
1
4 , if zi = 3− i and (ti, tj) = (h, l)
5
12 , if zi = 3− i and (ti, tj) = (l, h)
2
5 , if zi = 3− i and (ti, tj) = (h, h)

;

Now the unconditional altruism of the low type of each agent is 5
9

(
4
15

)
+ 4

9

(
5
12

)
= 1

3 , while the

unconditional altruism of the high type of each agent is 5
9

(
2
5

)
+ 4

9

(
1
4

)
= 1

3 , i.e., the same. This

immediately implies that both types will map to the same type in the universal preference space,

and will therefore be strategically indistinguishable from each other in equilibrium, and from any

“complete information” type with common certainty that the unconditional altruism is 1
3 . This

example illustrates a form of redundancy analogous to (but different from) the redundancy present

in Mertens and Zamir (1985) and Dekel, Fudenberg and Morris (2007).

While types l, h and the complete information type with unconditional altruism 1
3 are strate-

gically indistinguishable, it is easy to construct a game where equilibrium actions of one type are

not equilibrium actions of the other type. Suppose agent 1 has action U and D and agent 2 has

actions L and R. The following table shows the probabilities that agents 1 and 2 get the prize as

12



a function of the action profile:
L R

U 1
2 ,

1
2

1
3 ,

1
3

D 151
240 , 0

1
3 − ε,

1
3 − ε

for some small ε > 0.

The payoffs in the game are asymmetric. Each agent has the same probability of getting the

prize unless action profile (D,L) is chosen. Observe that if agent 1 chooses D rather than U when

her opponent plays L, she is getting a 31
120 probability of getting the prize for each unit of probability

that agent 2’s probability is reduced. She will only want to do this if her relative valuation of agent

2 getting the prize is less than 31
120 .

Now observe that on the “reduced” complete information type space (without redundant types),

agent 1 must choose U in equilibrium: if she expects agent 2 to choose R, this gives strictly higher

probability to both agents getting the prize; if she expects agent 2 to choose L, her valuation of

agent 2 getting the prize is 1
3 , which is more than 31

120 .

On the “rich” Harsanyi type space (with redundant types), there will also be an equilibrium

where all types of the two agents choose U and L respectively. Thus types with the same preference

hierarchy do indeed have an equilibrium action in common, as shown by our main theorem. How-

ever, there will also a strict equilibrium where, for agent 1, type l chooses U and type h chooses D,

and for agent 2, type l chooses L and type h chooses R. To see why, note that if agent 1 was type h

and sure that agent 2 was type l choosing L, she would have a strict incentive to choose D, as her

valuation of agent 2 getting the prize is 1
4 , which is less than 31

120 ; and ε gain to choosing U if agent

2 chooses R will not reverse this strict preference for small ε. On the other hand, if agent 1 was

type l and sure that agent 2 was type l choosing L she would have a strict incentive to choose U ,

as her valuation of agent 2 getting the prize is 4
15 , which is more than 31

120 ; and ε gain to choosing

U if agent 2 chooses R will ensure she wants to choose U .

Now observe that for agent 2, independent of her type, L is a best response if she expects agent

1 to be type l playing U , and R is a best response if she expects agent 1 to be type h playing D.

But now one can verify that, as types are correlated and each type attaches probability 5
9 to the

other agent being the same type, agent 2 has a best response to play L if type l and R if type h.

The detailed calculations appear in the Appendix A.

This example illustrates that while the complete information type and the rich type are guar-

anteed to have an equilibrium action in common, they may not have the same set of equilibrium

actions. In this sense, the types are not strategically equivalent. This feature is not special to

the equilibrium solution concept. U is also the unique undominated action, in the sense that it

is the unique best response for any beliefs about agent 2’s action given the complete information

13



preferences, and thus it is the unique interim correlated rationalizable (ICR) action (Dekel, Fuden-

berg and Morris (2007)) for the complete information type (by the same argument that worked for

equilibrium), but since D is an equilibrium action of type l in the rich Harsanyi type space, it must

also be an ICR action.

In section 6, we study both strategic indistinguishability and strategic equivalence under alter-

native solutions concepts, equilibrium and various versions of rationalizability. We will show that

our strategic indistinguishability result holds for all the alternative solution concepts, as illustrated

by this example.

But we will see that there are subtleties in defining rationalizable outcomes. In the solution

concept of ICR, each agent is allowed to have conjectures in which opponents’ actions and observable

states are correlated in the minds of the agent, so that the opponents’ actions reveal information

about the observable state in the agent’s mind. Analogously, in our context, it is natural to allow

agents’ conjectures to reveal information about their own preferences. We will formally describe a

generalization of ICR, called interim preference correlated rationalizability, and show that two types

are strategically equivalent under this solution concept if and only if they map to the same type

in the universal space of interdependent preferences. However, for more refined solution concepts

(such as equilibrium and interim correlated rationalizability), strategical equivalence generates a

finer partition than our universal space.

We can illustrate this with our example. Consider the complete information type, with common

certainty that each agent’s unconditional altruism is 1
3 . But suppose that each agent’s uncondi-

tional altruism arose from the belief that the other agent is a sibling with probability 2
3 and not

with probability 1
3 , and suppose that agent 1 believed that her opponent was going to choose R

only if he was her sibling. Then D would be a best response. Thus both actions are interim pref-

erence correlated rationalizable in this example. As the example illustrates, this solution concept

is extremely permissive.

4 Preference Types

We introduce preference type spaces that capture interdependent preferences and have no decision

theoretic redundancy. We then construct a universal preference type space, which consists of

preference hierarchies.

4.1 State-Dependent Preferences

We first define state-dependent preferences for a single agent in the framework of Anscombe and

Aumann (1963). We begin with a measurable space X of states and a finite set Z of outcomes with
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|Z| ≥ 2. An (Anscombe-Aumann) act is a measurable mapping from X to ∆(Z). The set of all

such acts is denoted by F (X) and endowed with the sup norm. For y, y′ ∈ ∆(Z) and measurable

E ⊆ X, yEy′ is the act that yields the lottery y over E and the lottery y′ over X \E. We consider

the following conditions on binary relation % over F (X). For a fixed worst outcome w ∈ Z, we

define Pw(X) to be the set of all binary relations over F (X) that have a non-trivial state-dependent

expected utility representation respecting the worst outcome:

Definition 3 A binary relation over F (X) is a (w worst outcome) expected utility preference if

there exists µ ∈ ∆(X × (Z \ {w})) that satisfies

f % f ′ ⇔
∫
X×(Z\{w})

f(x)(z)dµ(x, z) ≥
∫
X×(Z\{w})

f ′(x)(z)dµ(x, z)

for any f, f ′ ∈ F (X).

This representation can be axiomatized with a simple variant of standard arguments in decision

theory.

1. completeness: for every f, f ′ ∈ F (X), f % f ′ or f ′ % f .

2. transitivity : for every f, f ′, f ′′ ∈ F (X), if f % f ′ and f ′ % f ′′, then f % f ′′.

3. independence: for every f, f ′, f ′′ ∈ F (X) and λ ∈ (0, 1], f % f ′ if and only if λf +(1−λ)f ′′ %

λf ′ + (1− λ)f ′′.

4. continuity : for every f, f ′, f ′′ ∈ F (X), if f � f ′ � f ′′, then there exists ε ∈ (0, 1) such that

(1− ε)f + εf ′′ � f ′ � (1− ε)f ′′ + εf .

5. monotone continuity : for every z, z′, z′′ ∈ Z with z � z′ and decreasing sequence {En}n∈N

of measurable subsets of X with
⋂
nEn = ∅, there exists n ∈ N such that z′′Enz � z′ and

z � z′′Enz′.

6. non-triviality : there exist f, f ′ ∈ F (X) with f � f ′.

7. w worst outcome: for every f ∈ F (X), f % w.

Proposition 1 % ∈ Pw(X) if and only if it satisfies completeness, transitivity, independence,

continuity, monotone continuity, non-triviality and w worst outcome.

An event E ⊆ X is %-null if zEw ∼ w for every z ∈ Z. For % represented by µ ∈ ∆(X × (Z \
{w})), E is %-null if and only if µ(E × (Z \ {w})) = 0. An event E is %-certain if X \E is %-null.

15



For a preference % ∈ Pw(X) and a measurable space Y , a measurable mapping ϕ : X → Y

induces a preference ϕP (%) ∈ Pw(Y ) given by

f ϕP (%) f ′ ⇔ f ◦ ϕ % f ′ ◦ ϕ

for any f, f ′ ∈ F (Y ). In particular, for a preference % ∈ Pw(X × Y ), the projection from X × Y
to X induces the marginal preference of %, mrgX% ∈ Pw(X), which is the restriction of % to acts

over X × Y that do not depend on the Y -coordinate.

Pw(X) is treated as a measurable space with the σ-algebra generated by {% ∈ Pw(X) | f % f ′}
for any f, f ′ ∈ F (X). If X is a topological space, then Pw(X) is also endowed with the weak

topology generated by {% ∈ Pw(X) | f � f ′} for any continuous f, f ′ ∈ F (X).

We will sometimes work with redundant representations of state-dependent preferences in which

we distinguish between beliefs and utilities. For a belief ν ∈ ∆ (X) and a bounded and measurable

utility function u : X × Z → R with u (x, z) ≥ u (x,w) for all x ∈ X and z ∈ Z, with strict

inequalities for ν-almost every x ∈ X and some z ∈ Z, we write %ν,u ∈ Pw(X) for the induced

preference, i.e.,

f %ν,u f ′ ⇔
∫
X
u (x, f(x)) dν(x) ≥

∫
X
u
(
x, f ′(x)

)
dν(x)

for any f, f ′ ∈ F (X).

4.2 Preference Type Spaces

Fix a finite set I = {1, . . . , I} of agents with I ≥ 2 and a compact and metrizable set Θ of states

of nature. Each agent i has the worst outcome wi ∈ Z. We write Pi(X) ≡ Pwi(X).

Definition 4 A preference type space T = (Ti, πi)i∈I consists of, for each i ∈ I, a measurable

space Ti of agent i’s types and a measurable mapping πi : Ti → Pi(Θ× T−i) that maps his types to

preferences over acts over observable states and his opponents’ types, where T−i =
∏
j∈I\{i} Tj.

Similarly to Harsanyi type spaces, a product T̃ =
∏
i T̃i of measurable sets T̃i ⊆ Ti is preference-

closed if for every i ∈ I and ti ∈ T̃i, Θ× T̃−i is πi(ti)-certain. A type ti is countable if there exists

a countable preference-closed subspace T̃ =
∏
j T̃j with ti ∈ T̃i.

For a given Harsanyi type space T =
(
Ω, (Ti, νi, ui)i∈I

)
, we have observed in Section 3.1 two

forms of decision theoretic redundancy: first, we can integrate out unobserved states; second,

the distinction between beliefs and utilities is not relevant. In particular, a type ti of agent i is

characterized in the Harsanyi type space by a belief νi (ti) ∈ ∆(Θ×Ω×T−i) and a utility function

ui (ti) : Θ× Ω× T−i × Z → R. Together, they induce the preference relation

πνi,uii (ti) ≡ mrgΘ×T−i%
νi(ti),ui(ti)
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over F (Θ× T−i). Thus the preference type space T = (Ti, π
νi,ui
i )i∈I embodies decision theoretically

non-redundant information in the Harsanyi type space, and we will abuse notation by writing T for

both when no confusion arises. We will refer to (Ti, π
νi,ui
i )i∈I as the preference type space induced

by Harsanyi type space
(
Ω, (Ti, νi, ui)i∈I

)
and refer to types ti as belonging to both a Harsanyi

type space and its induced preference-type space.

4.3 The Universal Preference Type Space

We now construct the universal preference type space à la Mertens and Zamir (1985) and Branden-

burger and Dekel (1993). In the light of the isomorphism between preferences Pi(X) and probability

measures ∆(X × (Z \ {wi})) that represent them, this is straightforward and we report standard

results with minimal comments.

Let Xi,0 = {∗} be initialized with a single element, and let Xi,n = Xi,n−1 × Pi(Θ × X−i,n−1)

for each n ≥ 1. Note that Xi,n =
∏n−1
k=0 Pi(Θ × X−i,k). Let Xi,∞ =

∏∞
n=0 Pi(Θ × X−i,n). Each

Xi,n is compact and metrizable, and thus Xi,∞ is compact and metrizable. Let Yi,0 =
∏∞
n=0 ∆(Θ×

X−i,n × (Z \ {wi})) be the set of hierarchies of probability measures for agent i. A hierarchy of

probability measures, {µi,n}∞n=1 ∈ Yi,0, is coherent if mrgΘ×X−i,n−2×(Z\{wi})µi,n = µi,n−1 for every

n ≥ 2. Let Yi,1 ⊂ Yi,0 be the set of all coherent hierarchies of probability measures.

For each µi,n ∈ ∆(Θ×X−i,n−1× (Z \{wi})) with n ≥ 1, let ρi,n(µi,n) ∈ Pi(Θ×X−i,n−1) denote

the preference represented by µi,n. Let ρi : Yi,0 → Xi,∞ be the collection of such mappings ρi,n.

Similarly, for each µi,∞ ∈ ∆(Θ×X−i,∞ × (Z \ {wi})), let ρi,∞(µi,∞) ∈ Pi(Θ×X−i,∞) denote the

preference represented by µi,∞.

By the Kolmogorov extension theorem, there is a homeomorphism ψi : Yi,1 → ∆(Θ×X−i,∞ ×
(Z \ {wi})). Let Ti,1 = ρi(Yi,1) ⊂ Xi,∞. Note that every {%i,n}∞n=1 ∈ Ti,1 satisfies coherency, i.e.,

mrgΘ×X−i,n−2
%i,n = %i,n−1 for every n ≥ 2. We convert ψi to a mapping between preference spaces

and obtain a homeomorphism ψi,P = ρi,∞ ◦ ψi ◦ ρ−1
i : Ti,1 → Pi(Θ×X−i,∞).

For n ≥ 2, let

Ti,n = {ti ∈ Ti,1 | Θ× T−i,n−1 is ψi,P (ti)-certain}

and T ∗i =
⋂∞
n=1 Ti,n. Note that Ti,n is compact for every n ≥ 1, and hence T ∗i is also compact.

Thus we obtain a homeomorphism π∗i = ψi,P |T ∗i : T ∗i → Pi(Θ× T ∗−i). We call T ∗ = (T ∗i , π
∗
i )i∈I the

universal preference type space.

Definition 5 For two preference type spaces T = (Ti, πi)i∈I and T = (T ′i , π
′
i)i∈I , a profile (ϕi)i∈I

of measurable mappings ϕi : Ti → T ′i preserves preferences if

π′i ◦ ϕi = (idΘ × ϕ−i)P ◦ πi
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for every i ∈ I.

Fix a preference type space T = (Ti, πi)i=1,2. For each type ti ∈ Ti of agent i, let π̂i,1(ti) =

mrgΘπi(ti) and π̂i,n(ti) = (idΘ× (π̂−i,1, . . . , π̂−i,n−1))P (πi(ti)) for each n ≥ 2. Each π̂i,n(ti) denotes

the n-th order preference of ti, and π̂i(ti) = {π̂i,n(ti)}∞n=1 the hierarchy of preferences of ti. For

any Harsanyi type space, T =
(
Ω, (Ti, νi, ui)i∈I

)
and ti ∈ Ti, we also write π̂i(ti) the hierarchy of

preferences of ti, constructed for the induced preference type space T = (Ti, π
νi,ui
i )i∈I .

Proposition 2 For each preference type space T = (Ti, πi)i∈I , (π̂i)i∈I is a preference-preserving

mapping from T to the universal type space T ∗.

We write π̂i(ti, T ) for the hierarchy of preferences of ti when we emphasize the preference type

space T to which ti belongs.

Definition 6 Two types ti in T and t′i in T ′ have equivalent preference hierarchies if they map to

the same type in T ∗i , i.e., π̂i(ti, T ) = π̂i(t′i, T ′).

5 Equilibrium Strategic Distinguishability

To give a characterization of equilibrium strategic distinguishability, we must require types to be

countable in order to ensure existence. Now we have:

Theorem 1 Two countable types are strategically indistinguishable if and only if they have equiv-

alent preference hierarchies.

Countability is required only to show the existence of a local equilibrium, and any other set

of conditions ensuring existence of a local equilibrium would be sufficient. Proposition 3 below

establishes that if two types have equivalent preference hierarchies, then they are strategically

indistinguishable. The argument is as follows: suppose agent i expects other agents to follow

strategies that are measurable with respect to their higher-order preferences. Then it is a best

response to choose a strategy that is measurable with respect to his own higher-order preferences.

To show the converse, we will construct a mechanism in which any pair of types that do not

have equivalent preference hierarchies have disjoint equilibrium actions. We postpone this proof to

Section 6.2.

Lemma 1 For every pair of type spaces T and T ′, if ϕ = (ϕi)i∈I is a preference-preserving map-

ping from T to T ′, then Ei(ti, T ,M) ⊇ Ei(ϕi(ti), T ′,M) for every i ∈ I, ti ∈ Ti and mechanism

M.
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Proof. Pick any local equilibrium σ′ = (σ′i) of (T ,M) associated with preference-closed sub-

space T̃ ′ =
∏
i T
′
i of T ′. Let T̃i = ϕ−1

i

(
T̃ ′i

)
and σi = σ′i ◦ ϕi. Since ϕ preserves preferences,

T̃ =
∏
i T̃i is a preference-closed subspace of T and σ = (σi) is a local equilibrium of (T ,M)

associated with T̃ .

Proposition 3 For two countable types ti in T and t′i in T ′ with π̂i(ti, T ) = π̂i(t′i, T ′), we have

Ei(ti, T ,M) ∩ Ei(t′i, T ′,M) 6= ∅ for any mechanism M.

Proof. By Proposition 2, π̂(·, T ) and π̂(·, T ′) are preference-preserving mappings from T and

T ′ to the universal space T ∗, respectively. By Lemma 1, we have Ei(ti, T ,M) ∩ Ei(t′i, T ′,M) ⊇
Ei(t∗i , T ∗,M), where t∗i = π̂i(ti, T ) = π̂i(t′i, T ′). Since ti is countable in T , t∗i is also countable in

T ∗, thus Ei(t∗i , T ∗,M) 6= ∅.

6 Rationalizability

We introduce a natural definition of interim preference correlated rationalizability (IPCR) for the

worst outcome preference environments studied in this paper. We then show how our characteri-

zation of strategic indistinguishability for equilibrium reported in Theorem 1 continues to hold for

this definition of rationalizability. As a corollary, the equivalent preference hierarchies characterize

strategic indistinguishability for any solution concept which coarsens equilibrium and refines IPCR.

We then report a proof of this result, which will imply the part of Theorem 1 which we did not yet

prove.

6.1 Interim Preference Correlated Rationalizability

Fix a preference type space T = (Ti, πi)i∈I . Write Γi : Ti ⇒ Ai for a correspondence specifying for

each type ti of agent i, a set of actions Γi (ti) that are available to type ti. Fix a profile Γ−i of

correspondences of all agents except i. Suppose that agent i were convinced that each agent j of

type tj will choose an action in Γj (tj). We will say that action ai is a best response for ti against

Γ−i if there exists a preference for type ti in Pi (Θ× T−i ×A−i) under which (1) there is certainty

that action-type profiles of agents other than i are consistent with Γ−i; (2) the marginal preference

over F (Θ × T−i) is consistent with type ti’s original preferences; and (3) ai is a best response. A

correspondence profile Γ = (Γi)i∈I is a best response correspondence if every action allowed for any

type of any agent is a best response to the behavior of other agents. An action is interim preference

correlated rationalizable for a given type if it is a possible action for that type in a best response

correspondence. More formally:
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Definition 7 Fix a type space T and a mechanism M. An action ai ∈ Ai is a best reply for type

ti ∈ Ti against Γ−i if there exists %i ∈ Pi (Θ× T−i ×A−i) such that Θ× graph(Γ−i) is %i-certain,

mrgΘ×T−i%i = πi (ti) and

∀a′i ∈ Ai, g(·, ai, ·) (mrgΘ×A−i%i) g(·, a′i, ·).

Γ = (Γi)i∈I is a best reply correspondence if, for every i ∈ I, ti ∈ Ti, and ai ∈ Γi(ti), ai is a best

reply for type ti against Γ−i. An action ai is interim preference correlated rationalizable (IPCR)

for type ti if there exists a best reply correspondence Γ with Γi(ti) 3 ai.

We write Ri(ti, T ,M) for the set of IPCR actions for type ti in type space T and mechanism

M. As usual, we can define Ri(ti, T ,M) recursively: let Ri,0(ti, T ,M) = Ai for every i ∈ I and

ti ∈ Ti, and, for every n ≥ 1, let Ri,n(ti, T ,M) be the set of all best replies for type ti against

R−i,n−1(·, T ,M). One can show that Ri(ti, T ,M) =
⋂
n≥0Ri,n(ti, T ,M), which is nonempty.

IPCR is a very permissive notion of rationalizability. In particular, it allows agents to believe

that others’ actions convey information about their own preferences over outcomes (consistent with

the maintained worst outcome assumption). In the example of Section 3.2, both actions were

IPCR even though action D was dominated if one assumed that the opponent’s action did not

convey payoff relevant information. Morris and Takahashi (2010) show a formal sense in which this

definition of rationalizability captures the implications of common certainty of rationality, under

the assumption of expected utility preferences that respect worst outcomes.

Definition 8 Two types of agent i, ti in T and t′i in T ′, are IPCR strategically indistinguishable

if, for every mechanism M, there exists some action that can be chosen by both types, so that

Ri(ti, T ,M) ∩ Ri(t′i, T ′,M) 6= ∅ for every M. Conversely, ti and t′i are IPCR strategically dis-

tinguishable if there exists a mechanism in which no action can be chosen by both types, so that

Ri(ti, T ,M∗) ∩Ri(t′i, T ′,M∗) = ∅ for some M∗.

Theorem 2 Two types are IPCR strategically indistinguishable if and only if they have equivalent

preference hierarchies.

Under the countability assumption, the direction that if two types are HOP equivalent, then they

are IPCR strategically indistinguishable follows from Proposition 3, which proved the corresponding

step in Theorem 1, as equilibrium actions are a subset of IPCR actions. However, IPCR actions

always exist even for uncountable types. In this case, an analogous argument goes through, but we

must appeal to Theorem 3, which shows that two types with equivalent preference hierarchies are

IPCR strategically equivalent.
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6.2 Proof of Theorems 1 and 2

Let d∗i be a metric compatible with the product topology on the universal space T ∗i ⊂
∏∞
n=0 Pi(Θ×

X−i,n). The remaining direction of Theorems 1 and 2 follows from the next proposition.

Proposition 4 For every ε > 0, there exists a mechanism M∗ such that

d∗i (π̂i(ti, T ), π̂i(t′i, T ′)) > ε⇒ Ri(ti, T ,M∗) ∩Ri(t′i, T ′,M∗) = ∅

for every pair of type spaces T and T ′, i ∈ I, ti ∈ Ti, and t′i ∈ T ′i .

Note that Proposition 4 is stronger than necessary to prove Theorems 1 and 2. In particular,

the construction ofM∗ depends on ε, but is independent of any details of type spaces T and T ′ or

any pair of two types ti and t′i that we want to distinguish.

Abreu and Matsushima (1992) proved such a result for finite type spaces. In the universal

belief type space (the space of Mertens-Zamir hierarchies), Dekel, Fudenberg, and Morris (2006,

Lemma 4) construct a discretized direct mechanism in which only actions close to truth telling

are interim correlated rationalizable. As we discuss below in Section 7.3, their result corresponds

to Proposition 4 under the restriction of common certainty of payoffs. Our proof uses a similar

mechanism to both papers, with agents essentially reporting their first level (belief or preference)

type, their second level type, and so on. Agents can be given individual incentives to report

their first level types truthfully and then inductively, if all agents report their kth level types

truthfully, each agent can be given an incentive to report his (k + 1)th level type truthfully by

making outcomes contingent on kth level report of other agents. Two complications may potentially

destroy the agents’ incentives for truth-telling: (i) Outcomes are not necessarily private goods, and

in particular the social planner cannot necessarily give a reward to one agent without affecting the

other agents’ incentives. Especially, an agent’s incentives to report her lower-order preferences are

affected by how the social planner uses her reports to solicit other agents’ higher-order preferences.

(ii) As an agent sends less accurate reports about her lower-order preferences, other agents become

less willing to report their higher-order preferences accurately. (i) originates the issue, whereas

(ii) “multiplies” it.2 The finiteness assumption allows Abreu and Matsushima (1992) to deal with

both issues by making higher level reports have uniformly lower impact on agents’ preferences

than lower level reports. Dekel, Fudenberg, and Morris (2006) implicitly assume private goods,

removing problem (i). We must carefully exploit our structural assumptions, such as compactness

and metrizability of Θ, continuity and monotone continuity of preferences, and existence of the

worst outcome, to deal with these issues from the original truth-telling mechanism. The next two

subsections are devoted to the proof of Proposition 4.
2Inaccurate reports may occur in Dekel, Fudenberg, and Morris (2006), but they come purely from discretization.
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6.2.1 Single-Agent Revelation Mechanisms

As a preliminary step, here we analyze a single-agent mechanism that reveals her preferences. In

this subsection, fix a compact metric space X of states with metric d. Let dP be a metric compatible

with the topology on Pw(X). For each % ∈ Pw(X), we define the indicator function of %, χ%, that

maps pairs of acts f, f ′ ∈ F (X) to 0, 1/2, or 1 as follows:

χ%(f, f ′) =


1 if f � f ′,

1/2 if f ∼ f ′,

0 if f ≺ f ′

for any f, f ′ ∈ F (X). Let Fc(X) ⊆ F (X) be the set of continuous acts over X. Since X is a

compact metric space, by the Stone-Weierstrass theorem, there exists a countable dense subset

F = {f1, f2, . . .} ⊂ Fc(X) in the sup norm. Fix such an F .

We consider the following direct mechanism M0 = (Pw(X), g0) for a single agent with action

set Pw(X) and outcome function

g0(·, a) =
∞∑
k=1

∞∑
l=1

2−k−l+1χa(fk, fl)fk (1)

for each a ∈ Pw(X). Under the mechanism M0, the agent reports her preference. Then the social

planner randomly draws a pair of acts from F and assigns the agent with her preferred act according

to her reported preference.3

In Lemma 2 below, we show that truth telling is a dominant strategy in M0 for every type.

Indeed, by invoking the compactness of X, we show a “robust” version of strategy proofness:

in every mechanism close to M0, the agent strictly prefers reporting almost true preferences to

reporting others according to almost true preferences.

Recall that, for each report a ∈ Pw(X), g0(·, a) is an act over X, which determines an out-

come z with probability g0(x, a)(z) when the nature chooses x ∈ X. We consider two sources of

perturbations to this act. First, the outcome may not be chosen according to g0(x, a) with small

probability. Formally, for each δ > 0 and measurable space C, we consider perturbed outcome func-

tion g : X×Pw(X)×C → ∆(Z) such that |g(·, ·, c)− g0| = supx∈X,a∈Pw(X) |g(x, a, c)− g0(x, a)| ≤ δ
for every c ∈ C. Second, nature may choose x′ in a neighborhood of x when instead nature is

supposed to choose x. Formally, for each δ > 0, let Dδ be the δ-neighborhood of the diagonal of
3Strictly speaking,M0 is not a mechanism according to our definition, for its action set is infinite. The mechanism

we will construct in the next subsection to prove Proposition 4, however, has finite actions.
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X ×X, {(x, x′) ∈ X ×X | d(x, x′) ≤ δ}. For each δ > 0, % ∈ Pw(X), and measurable space C, let

P δ,Cw (%) =

mrg2,3%
′ ∈ Pw(X × C) |

∃%′ ∈ Pw(X ×X × C) s.t.

(1) mrg1%
′ = %,

(2) Dδ × C is %′-certain,

 , (2)

where mrgΛ%
′ with Λ ⊂ {1, 2, 3} denotes the marginal of %′ with respect to the coordinates in Λ.

In words, P δ,Cw (%) is the set of preferences over noisy acts induced by the original preference %.

Lemma 2 For every ε > 0, there exists δ > 0 such that the following holds: for every preference

% ∈ Pw(X), every pair of reports a, b ∈ Pw(X) that satisfy dP (%, a) ≤ δ and dP (%, b) > ε, every

measurable space C, and every perturbed outcome function g : X×Pw(X)×C → ∆(Z) that satisfies

|g(·, ·, c)− g0| ≤ δ for every c ∈ C, the agent strictly prefers g(·, a, ·) to g(·, b, ·) according to every

preference in P δ,Cw (%).

Proof. See Appendix.

6.2.2 Proof of Proposition 4

Let dΘ be a metric compatible with the topology on Θ. For each i ∈ I and n ≥ 1, let dP,i,n be a

metric compatible with the topology on the set of agent i’s n-th order preferences, Pi(Θ×X−i,n−1),

and let di,n be

di,n((θ, t−i,1, . . . , t−i,n), (θ′, t′−i,1, . . . , t
′
−i,n)) = max

{
dΘ(θ, θ′), max

1≤k≤n,j 6=i
dP,j,k(tj,k, t′j,k)

}
,

which is a metric compatible with the product topology on Θ × X−i,n = Θ ×
∏n−1
k=0

∏
j 6=i Pj(Θ ×

X−j,k).

Fix any ε > 0. Recall that d∗i is a metric compatible with the product topology on T ∗i ⊂∏∞
n=0 Pi(Θ×X−i,n). By the definition of the product topology, there exist ε̄ > 0 and N ∈ N such

that, for every ti = {ti,n}∞n=1, t
′
i = {t′i,n}∞n=1 ∈ T ∗i , if d∗i (ti, t

′
i) > ε, then there exists some n ≤ N

such that dP,i,n(ti,n, t′i,n) > ε̄. Pick such ε̄ and N .

For each i ∈ I and n ≤ N , substitute X = Θ × X−i,n−1, d = di,n−1, and dP = dP,i,n in

Section 6.2.1. Pick a countable dense subset of Fc(Θ × X−i,n−1), and define g0
i,n : Θ × X−i,n−1 ×

Pi(Θ ×X−i,n−1) → ∆(Z) as in (1). For δ > 0, define Dδ
i,n as the δ-neighborhood of the diagonal

of Θ×X−i,n−1 ×Θ×X−i,n−1. For δ > 0, %i,n ∈ Pi(Θ×X−i,n−1), and measurable space C, define

P δ,Ci,n (%i,n) as in (2). By Lemma 2, there exist 0 < ε0 ≤ ε1 ≤ · · · ≤ εN−1 ≤ εN ≤ ε̄/2 such that, for

every i ∈ I and n ≤ N , for every preference %i,n ∈ Pi(Θ×X−i,n−1), every pair of reports ai,n, bi,n ∈
Pi(Θ × X−i,n−1) that satisfy dP,i,n(%i,n, ai,n) ≤ εn−1 and dP,i,n(%i,n, bi,n) > εn, every measurable
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space C, and every perturbed outcome function gi,n : Θ×X−i,n−1 × Pi(Θ×X−i,n−1)×C → ∆(Z)

that satisfies |gi,n(·, ·, c) − g0
i,n| ≤ εn−1 for every c ∈ C, player i strictly prefers gi,n(·, ai,n, ·) to

gi,n(·, bi,n, ·) according to every preference in P
εn−1,C
i,n (%i,n).

We define a mechanism M∗ = ((A∗i )i∈I , g
∗) as follows. For each i ∈ I and n ≤ N , let A∗i,n be

any εn−1-dense finite subset of Pi(Θ×X−i,n−1) with respect to dP,i,n, and A∗i =
∏N
n=1A

∗
i,n. Define

g∗ : Θ×A∗ → ∆(Z) by

g∗(θ, a) =
1− δ

I(1− δN )

I∑
i=1

N∑
n=1

δn−1g0
i,n(θ, a−i,1, . . . , a−i,n−1, ai,n)

for each θ ∈ Θ and a = (ai,n) ∈ A∗, where δ > 0 is small enough to satisfy (1− δ)/δ ≥ (I − 1)(1−
ε0)/ε0.

Claim 1 For every type space T = (Ti, πi)i∈I and n ≤ N , we have

ai ∈ Ri,n(ti, T ,M∗)⇒ dP,i,n(π̂i,n(ti, T ), ai,n) ≤ εn

for every i ∈ I and ti ∈ Ti.

Proof. The proof is by induction on n. Suppose that, for every k ≤ n−1, ai ∈ Ri,n−1(ti, T ,M∗)
implies dP,i,k(π̂i,k(ti, T ), ai,k) ≤ εk ≤ εn−1 for every i ∈ I and ti ∈ Ti. Suppose that there exists

a∗i ∈ Ri,n(ti, T ,M∗) such that dP,i,n(π̂i,n(ti, T ), a∗i,n) > εn. Then there exists %i ∈ Pi(Θ×T−i×A∗−i)
such that Θ×graph(R−i,n−1(·, T ,M∗)) is %i-certain, mrgΘ×T−i%i = πi(ti), and player i weakly

prefers g∗(·, a∗i , ·) to g∗(·, ai, ·) for every ai ∈ A∗i according to mrgΘ×A∗−i%i.

Let C =
∏N
k=nA

∗
−i,k and ϕ−i : Θ × T−i × A∗−i → Θ × X−i,n−1 × Θ × X−i,n−1 × C such that

ϕ−i(θ, t−i, a−i) = (θ, π̂−i,1(t−i, T ), . . . , π̂−i,n−1(t−i, T ), θ, a−i,1, . . . , a−i,n−1, a−i,n, . . . , a−i,N ). Col-

lect all the terms in g∗ that depend on ai,n and define g∗i,n : Θ × X−i,n−1 × A∗i,n × C → ∆(Z)

by

g∗i,n(θ, a−i,1, . . . , a−i,n−1, ai,n, a−i,n, . . . , a−i,N )

= K

g0
i,n(θ, a−i,1, . . . , a−i,n−1, ai,n) +

∑
j∈I\{i}

N∑
k=n+1

δk−ng0
j,k(θ, a−j,1, . . . , a−j,k−1, aj,k)

 ,

where ai,k = a∗i,k for k 6= n when they appear in the second term, and K is a positive normalization

constant. Since we chose sufficiently small δ, we have |g∗i,n(·, ·, c) − g0
i,n| ≤ ε0 ≤ εn−1 for every

c ∈ C. Let %′i = (ϕ−i)P (%i). By the induction hypothesis, ϕ−i(Θ×graph(R−i,n−1(·, T ,M∗))) ⊆
D
εn−1

i,n × C is %′i-certain. Thus, we have mrgΘ×A∗−i%i ∈ P
εn−1,C
i,n (π̂i,n(ti, T )). Since A∗i,n is εn−1-

dense in Pi(Θ × X−i,n−1), there exists a′i,n ∈ A∗i,n such that dP,i,n(π̂i,n(ti, T ), a′i,n) ≤ εn−1. By
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Lemma 2, mrgΘ×A∗−i%i strictly prefers g∗i,n(·, a′i,n, ·) to g∗i,n(·, a∗i,n, ·), thus mrgΘ×A∗−i%i strictly

prefers g∗(·, a′i,n, a∗i,−n, ·) to g∗(·, a∗i , ·). This is a contradiction.

We can now complete the proof of Proposition 4.

Proof of Proposition 4. Pick any pair of type spaces T and T ′, i ∈ I, ti ∈ Ti, and t′i ∈ T ′i .
Suppose that there exists ai = (ai,1, . . . , ai,N ) ∈ Ri(ti, T ,M∗) ∩ Ri(t′i, T ′,M∗). For every n ≤ N ,

since ai ∈ Ri,n(ti, T ,M∗) ∩Ri,n(t′i, T ′,M∗), we have

dP,i,n(π̂i,n(ti, T ), π̂i,n(t′i, T ′))

≤ dP,i,n(π̂i,n(ti, T ), ai,n) + dP,i,n(π̂i,n(t′i, T ′), ai,n) ≤ 2εn ≤ ε̄

by Claim 1. Thus d∗i (π̂i(ti, T ), π̂i(t′i, T ′)) ≤ ε.

7 Rationalizability and Strategic Equivalence

Our notion of strategic distinguishability is very demanding: in some game, two types have no

equilibrium (or rationalizable) actions in common. The notion of strategic indistinguishability is

correspondingly undemanding: it is enough that the two types have any equilibrium (or rational-

izable) action in common in some game. In this section, we will study the alternative notion of

strategic equivalence. Two types are strategically equivalent if they have the same set of equilibrium

(or rationalizable) actions. For any (nonempty-valued) solution concept, strategic equivalence is a

stronger requirement than strategic indistinguishability and thus implies a finer partition of types.

The corresponding notion of strategic non-equivalence will then be easier to satisfy than strategic

distinguishability.

While the characterization of strategic distinguishability is the same for most solution concepts,

i.e., for equilibrium, a very permissive definition of rationalizability and everything in between,

we will see that strategic equivalence characterizations are sensitive to the solution concept. To

understand strategic equivalence and its sensitivity, it is useful to introduce a family of rationaliz-

ability notions refining interim preference correlated rationalizability, which impose restrictions on

the preferences supporting a best response. Our definition of IPCR allows agents’ ex post prefer-

ences over lotteries, conditional on others’ actions and types, to be anything consistent with the

worst outcome assumption. Suppose that we impose a further restriction on agents’ possible ex

post preferences. A given restriction gives rise to a definition of rationalizability, where preferences

supporting a best response must have ex post preferences consistent with the restriction. We show

that if we restrict attention to types that belong to type spaces where a given preference restriction

holds, then two types are strategically equivalent under the version of rationalizability satisfying

that restriction if and only if they have equivalent preference hierarchies.
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This result has two important special cases. First, if no restrictions other than the worst

outcome assumption are imposed on rationalizability, i.e., if we stick to our earlier definition of

IPCR, then this result implies that two types are IPCR strategically equivalent if and only if they

have equivalent preference hierarchies. Second, if we impose the restriction that ex post preferences

are fixed, i.e., there is common certainty of payoffs, then this result reduces to (a generalization of)

the result of Dekel, Fudenberg and Morris (2006, 2007) that, with common certainty of payoffs as

a maintained assumption, two types have the same interim correlated rationalizable actions if and

only if they have the same Mertens-Zamir higher-order belief hierarchy.

7.1 Ex Post Preference Restrictions

For each % ∈ Pw(X) and measurable E ⊆ X, we write %E for the conditional preference over

lotteries defined by

y %E y
′ ⇔ yEy

′′ % y′Ey
′′

for any y, y′ ∈ ∆(Z) and some y′′ ∈ ∆(Z). By independence of %, the choice of y′′ does not affect

the definition of %E .

An ex post restriction on agents’ preferences will specify a set of possible conditional preferences

for each agent. Thus U = (Ui)i∈I , where each Ui is a non-empty set of linearly independent vectors

in ∆ (Z \ {wi}) ⊂ RZ\{wi}.4 The interpretation is that we will impose the requirement that agent

i’s preferences are representable by convex combinations of Ui, even if they are conditioned on

observable states and other agents’ types and actions.

We will say that agent i’s preference relation %i ∈ Pi(X) is Ui-consistent if, for any non-%i-null

event E ⊆ X, the conditional preference %i,E is represented by a convex combination of Ui. A type

space T = (Ti, πi)i∈I is U-consistent if, for each i ∈ I and ti ∈ Ti, πi(ti) is Ui-consistent. A type

ti is U-consistent if it belongs to a U-consistent preference-closed subspace.

We can now define a family of rationalizability concepts for a game (T ,M) on ex post preference

restrictions.

Definition 9 Fix a type space T and a mechanism M. An action ai ∈ Ai is a Ui-best reply

for type ti ∈ Ti against Γ−i if there exists %i ∈ Pi (Θ× T−i ×A−i) such that %i is Ui-consistent,

Θ× graph(Γ−i) is %i-certain, mrgΘ×T−i%i = πi(ti) and

∀a′i ∈ Ai, g(·, ai, ·) (mrgΘ×A−i%i) g(·, a′i, ·).
4Linear independence is a condition imposed on utility representations, but, given the isomorphism between

Pi({∗}) and ∆(Z \ {wi}), one can provide an equivalent condition on preferences over lotteries. For more details, see

Morris and Takahashi (2010).
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Γ = (Γi)i∈I is a U-best reply correspondence if, for every i ∈ I, ti ∈ Ti, and ai ∈ Γi(ti), ai is a

Ui-best reply for type ti against Γ−i. An action ai is interim U-rationalizable for type ti if there

exists a U-best reply correspondence Γ with Γi(ti) 3 ai.

Let RU
i (ti, T ,M) be the set of U-rationalizable actions for type ti in game (T ,M). Let

RU
i,0(ti, T ,M) = Ai for every i ∈ I and ti ∈ Ti, and, for every n ≥ 1, let RU

i,n(ti, T ,M) be the set of

Ui-best replies for type ti against RU
−i,n−1(·, T ,M). We have RU

i (ti, T ,M) =
⋂
n≥0R

U
i,n(ti, T ,M).

Note that RU
i (ti, T ,M) is non-empty if and only if ti is U-consistent.

Battigalli and Siniscalchi (2003) define a family of definitions of rationalizability, called “∆-

rationalizability”, by imposing restrictions on first order beliefs within the solution concept. “Pay-

offs” are not incorporated in their type spaces and thus they implicitly maintain common certainty

of payoffs over outcomes. U-rationalizability parallels ∆-rationalizability in imposing restrictions

within the solution concept on beliefs/preferences, but these restrictions concern conditional pref-

erences rather than interim beliefs.

We are most interested in two rationalizable notions, which correspond to the minimal and

maximal conditional preference restrictions, respectively. For the minimal case, we have Ui = {ūi},
a singleton, for each agent i. The solution concept RU then corresponds to “interim correlated

rationalizability” with the restriction that agent i’s preferences over lotteries are always represented

by ūi. We will discuss this case in detail in Section 7.3. For the maximal case, we have Ui = {ui,z |
z ∈ Z \ {wi}}, where ui,z is the unit vector with 1 on outcome z, thus the convex hull of Ui
is equal to ∆(Z \ {wi}). Then conditional preference restrictions become vacuous, and interim

U-rationalizability corresponds to IPCR.

Definition 10 Two types of agent i, ti in T and t′i in T ′, are RU strategically indistinguishable

if, for every mechanism M, there exists some action that can be chosen by both types, so that

RU
i (ti, T ,M) ∩ RU

i (t′i, T ′,M) 6= ∅ for every M. Conversely, ti and t′i are RU strategically dis-

tinguishable if there exists a mechanism in which no action can be chosen by both types, so that

RU
i (ti, T ,M∗) ∩RU

i (t′i, T ′,M∗) = ∅ for some M∗.

An immediate corollary of Theorems 1 and 2 is:

Corollary 1 For any conditional preference restrictions U, two U-consistent types are RU strate-

gically indistinguishable if and only if they have equivalent preference hierarchies.

7.2 Strategic Equivalence

We introduced the notion of strategic equivalence in Section 3.2. A formal definition is as follows:
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Definition 11 Two types of agent i, ti in T and t′i in T ′, are RU strategically equivalent if, for

every mechanism M, RU
i (ti, T ,M) = RU

i (t′i, T ′,M) for every M.

Now we have:

Theorem 3 For any conditional preference restrictions U, two U-consistent types are RU strate-

gically equivalent if and only if they have equivalent preference hierarchies.

We report a proof for finite type spaces. The proof is close to the proof of Proposition 1 of

Dekel, Fudenberg and Morris (2007) and the proof for general type spaces mirrors the proof of

Lemma 1 of Dekel, Fudenberg and Morris (2007), the extension of Proposition 1 to general type

spaces.

Proof. We will establish by induction on n ≥ 1 that, if π̂i,n (ti, T ) = π̂i,n (t′i, T ′), then

RU
i,n (ti, T ,M) = RU

i,n (t′i, T ′,M). Suppose that this holds for n− 1, that π̂i,n (ti, T ) = π̂i,n (t′i, T ′)
and that ai ∈ RU

i,n (ti, T ,M). Let µi ∈ ∆ (Θ× T−i × Ui) and µ′i ∈ ∆
(
Θ× T ′−i × Ui

)
be probability

measures that represent πi(ti) and π′i(t
′
i), respectively. Since ai is a Ui-best reply for ti against

RU
−i,n−1(·, T ,M) in (T ,M), there exists νi ∈ ∆ (Θ× T−i ×A−i × Ui) such that:

(1) νi (θ, t−i, a−i, ui) > 0⇒ a−i ∈ RU
−i,n−1(t−i, T ,M),

(2)
∑

a−i∈A−i

νi (θ, t−i, a−i, ui) = µi(θ, t−i, ui) for all θ ∈ Θ, t−i ∈ T−i, ui ∈ Ui,

(3) ai ∈ arg max
a′i∈Ai

∑
θ,t−i,a−i,ui,z

g(θ, (a′i, a−i))(z)νi(θ, t−i, a−i, ui)ui(z).

Let

D−i,n−1 = {π̂−i,n−1(t−i, T ) | t−i ∈ T−i}.

For π̂−i,n−1 ∈ D−i,n−1, let

µ̂i (θ, π̂−i,n−1, ui) =
∑

π̂−i,n−1(t−i,T )=π̂−i,n−1

µi (θ, t−i, ui) .

Since π̂i,n (ti, T ) = π̂i,n (t′i, T ′), µi and µ′i represent the same n-th order preference. Since Ui is

linearly independent, µi = µ′i induce the same probability distribution over Θ×D−i,n−1 × Ui, i.e.,

µ̂i (θ, π̂−i,n−1, ui) =
∑

π̂−i,n−1(t′−i,T ′)=π̂−i,n−1

µ′i
(
θ, t′−i, ui

)
for all θ ∈ Θ, π̂−i,n−1 ∈ D−i,n−1 and ui ∈ Ui.

For each (θ, π̂−i,n−1, ui) such that µ̂i(θ, π̂−i,n−1, ui) > 0, set

σ−i (a−i|θ, π̂−i,n−1, ui) =
1

µ̂i(θ, π̂−i,n−1, ui)

∑
π̂−i,n−1(t−i,T )=π̂−i,n−1

νi (θ, t−i, a−i, ui) .
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Note that, for each (θ, t−i, ui) such that µ̂i(θ, π̂−i,n−1(t−i, T ), ui) > 0, we have

σ−i (a−i|θ, π̂−i,n−1(t−i, T ), ui) > 0 only if a−i ∈ RU
−i,n−1(t−i, T ,M).

Let

ν ′i
(
θ, t′−i, a−i, ui

)
= µ′i(θ, t

′
−i, ui)σ−i

(
a−i|θ, π̂−i,n−1(t′−i, T ′), ui

)
.

Note that ν ′i is well defined because, whenever µ′i(θ, t
′
−i, ui) > 0, we have µ̂i(θ, π̂−i,n−1(t′−i, T ′), ui) >

0.

Now we show that ai is a Ui-best reply for ti against R−i,n−1(·, T ′,M) in (T ′,M). First,

suppose that ν ′i
(
θ, t′−i, a−i, ui

)
> 0. Then there exists t−i ∈ T−i such that π̂−i,n−1(t−i, T ) =

π̂−i,n−1(t′−i, T ′). Since we have µ̂i (θ, π̂−i,n−1(t−i, T ), ui) = µ̂i
(
θ, π̂−i,n−1(t′−i, T ′), ui

)
> 0 and

σ−i (a−i|θ, π̂−i,n−1(t−i, T ), ui) = σ−i
(
a−i|θ, π̂−i,n−1(t′−i, T ′), ui

)
> 0, we have

a−i ∈ RU
−i,n−1(t−i, T ,M), which is equal to RU

−i,n−1(t′−i, T ′,M) by the induction hypothesis.

Second, by the construction of ν ′i, the marginal distribution of ν ′i over Θ× T−i × Ui is equal to

µ′i, which represents π′i(t
′
i).

Third, since we have∑
t′−i

ν ′i
(
θ, t′−i, a−i, ui

)
=
∑
t′−i

µ′i(θ, t
′
−i, ui)σ−i

(
a−i|θ, π̂−i,n−1(t′−i, T ′), ui

)
=

∑
π̂−i,n−1∈D−i,n−1

µ̂i (θ, π̂−i,n−1, ui)σ−i (a−i|θ, π̂−i,n−1, ui)

=
∑
t−i

µi(θ, t−i, ui)σ−i (a−i|θ, π̂−i,n−1(t−i, T ), ui)

=
∑
t−i

νi (θ, t−i, a−i, ui) ,

νi and ν ′i have the same marginal distribution over Θ × A−i × Ui. Thus ai is a best reply with

respect to ν ′i in (T ′,M).

Since IPCR corresponds to vacuous conditional preference restrictions, an immediate corollary

is:

Corollary 2 Two types are IPCR strategically equivalent if and only if they have equivalent pref-

erence hierarchies.

7.3 Common Certainty of “Payoffs”

DFM (2006, 2007) show a strategic equivalence result for the solution concept of ICR. In particular,

they consider “games” G =
(
(Ai)i∈I , ĝ

)
, where Ai is a finite action set for agent i, and a measurable

function ĝ : Θ × A → [0, 1]I describes “payoffs” as a function of observable states Θ and action
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profiles. “Payoffs” in correspond to von-Neumann-Morgenstern indices in our setting, and since

the function ĝ is taken to be common certainty among the agents, it is implicitly assumed that

there is common certainty of “payoffs” or von-Neumann-Morgenstern indices. DFM show that

two types have the same set of interim correlated rationalizable actions in all games G if and only

if they have the same MZ hierarchy of beliefs and higher-order beliefs about Θ. In particular,

Lemma 4 of DFM (2006) establishes that types with distinct MZ hierarchies must have distinct

ICR actions; Proposition 1 (for finite type spaces) and Lemma 1 (for infinite type spaces) of DFM

(2007) establish that types with the same MZ hierarchy have the same set of ICR actions.

Lemma 4 of DFM (2006) is a special case of our Proposition 4. To see why, let Z =
∏
i Zi

with Zi = {0, 1}, and Ui = {ui} with ui(z1, . . . , zI) = zi. In this case, any belief type space

T = (Ti, µi)i∈I with µi : Ti → ∆(Θ × T−i) induces a preference type space T ′ = (Ti, πi)i∈I by

πi(ti) = %µi(ti),ui . Then IPCR in (T ′,M) is more permissive than U-rationalizability in (T ′,M),

which reduces to ICR in (T ,G) (as defined in DFM (2006, 2007)) in the game G =
(
(Ai)i∈I , ĝ

)
with

ĝi (θ, a) =
∑
z

g(θ, a)(z)ui(z) =
∑
z−i

g(θ, a)(1, z−i).

Thus our Proposition 4 implies Lemma 4 of DFM (2006).5 Similarly, Proposition 1 and Lemma 1

of DFM (2007) are a special case of our Theorem 3.

Examples in DFM (2007) and Ely and P ↪eski (2006) show that under less permissive versions

of rationalizability—for example, IIR in DFM (2007)—MZ types do not characterize strategic

equivalence. Ely and P ↪eski (2006) provide a characterization of strategic equivalence for IIR in two-

player games. Liu (2009) and Sadzik (2010) provide characterizations of “redundant” components

required for equilibrium strategic equivalence. Thus the message of this “common certainty of

payoffs” literature is that strategic equivalence is sensitive to the solution concept considered.

Although the point was not highlighted in this literature, it is easy to see that Mertens-Zamir

higher-order beliefs characterize strategic distinguishability in this common certainty of payoffs

setting. Our Corollary 1 makes this point without common certainty of payoffs.

Thus there is a clean parallel between results for the two environments of “common certainty

of payoffs” literature and the general case studied in this paper. Independent of the solution

concept, strategic distinguishability is characterized by MZ higher-order beliefs and higher-order

preferences, respectively. Characterizations of strategic equivalence depend on the solution concept.
5Indeed, one can show from our Proposition 4 that MZ hierarchies characterize strategic distinguishability even

if restrictions are imposed on payoffs across agents. That is, one can use only measurable functions ĝ : Θ × A → V

to strategically distinguish distinct MZ types, where V is a convex subset of [0, 1]I such that, for any agent i, there

exist vi, ṽi ∈ V such that vii 6= ṽii .
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ICR strategic equivalence is characterized by MZ higher-order beliefs, and IPCR strategic equiva-

lence is characterized by higher-order preferences. More refined solution concepts may require finer

descriptions of types to characterize strategic equivalence.

8 Discussions

8.1 Relaxing the Worst Outcome Property

We have assumed so far that, for each agent i, there is common certainty that an outcome wi

is worse than any other outcome for that agent. There are two roles which the worst outcome

assumption plays in our analysis. First, combined with the non-triviality assumption, it rules out

the possibility of types that are completely indifferent between all outcomes. Second, it ensures

the space Pw(X) of all possible preferences is isomorphic to ∆(X \ (Z \ {w})), which is compact

and metrizable if X is compact and metrizable. Both results are indispensable for our results.

Clearly, every action is rationalizable for a completely indifferent type and thus such a type cannot

be strategically distinguished from any other type. Also, we can show that—even after ruling

out complete indifference—if the set of all possible preferences is not compact, then not only

do technical difficulties arise in the construction of a universal preference type space, but more

importantly, it is no longer the case that two types with distinct preference hierarchies can be

strategically distinguished. This point is discussed in Morris and Takahashi (2010) and is related

to the negative results in Ledyard (1986).

The worst outcome assumption is a convenient way of ruling out complete indifference and

guaranteeing compactness of the space of possible preferences. However, weaker assumptions will

work as well. For λ ∈ (0, 1/2], we say that a binary relation % over F (X) is λ-continuous if there

exist two outcomes z, z′ ∈ Z with z � z′ and, for every f, f ′ ∈ F (X), we have

(1− λ) z + λf % (1− λ) z′ + λf ′.

For a general state-dependent preference, preferences over outcomes may depend on states. λ-

continuity requires that the strength of such state dependency be bounded in the sense that, even

if an agent receives state-dependent acts with probability λ, it does not alter her preference between

state-independent outcomes z and z′.

The notion of λ-continuity is a weak requirement. To see this, note that every binary rela-

tion % over F (X) that satisfies completeness, transitivity, independence, continuity and monotone

continuity is represented by a finite signed measure µ on X × Z:

f % f ′ ⇔
∫
X×Z

f(x)(z)dµ(x, z) ≥
∫
X×Z

f ′(x)(z)dµ(x, z).
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If a preference is not indifferent over lotteries, then it is λ-continuous for a sufficiently small λ > 0.

For example, one can take λ > 0 such that

λ

1− λ
≤ ‖mrgZµ‖

‖µ‖
,

where mrgZµ is the marginal of µ on Z given by (mrgZµ)({z}) := µ(X×{z}), and, for ν = µ,mrgZµ,

‖ν‖ := supE,E′(ν(E)− ν(E′)) (E and E′ vary over all measurable sets) denotes the total variation

of ν. Also, every preference in Pw(X) is λ-continuous with any 0 < λ ≤ 1/|Z|.
Then we focus on preference type spaces where there is common certainty that all agents’

preferences are λ-continuous for some fixed λ > 0. Such spaces include preference type spaces

with the worst outcome property, studied in the body of this paper, and other settings, such as

finite type spaces of Abreu and Matsushima (1992) and “compact and continuous” type spaces (see

Proposition 6 in Appendix C).

For such preference type spaces, we can construct a universal preference type space, consisting

of coherent hierarchies of preferences, for each λ > 0. Also, we can show Theorems 1 and 2,

i.e., the universal space characterizes strategic distinguishability for equilibrium, interim preference

correlated rationalizability that respects λ-continuity, and everything in between.6 Details are given

in Appendix C.

8.2 Payoff Type Environments

As part of an analysis of robust virtual implementation, Bergemann and Morris (2009) analyze

a variant of the strategic distinguishability question. Consider a payoff type environment, where

there is a finite set Z of outcomes and a finite set of agents, I = {1, ..., I}, each with a payoff type

ϕi drawn from a finite set Φi and a (perhaps interdependent) utility function ûi : Φ × Z → R.

Common certainty of utility functions (ûi)i∈I - and thus agents’ ex post preference conditional on

the profile of known φ - is (implicitly) assumed. Now a type space T = (Ti, bi, ϕ̃i)i∈I specifies for

each agent i a set of possible types Ti, and mappings bi : Ti → ∆ (T−i) and ϕ̃i : Ti → Φi identifying

the beliefs and (known) own payoff type of each types. Expressing the strategic distinguishability

question of Bergemann and Morris (2009) in the language of this paper, we can identify the set

of (say) equilibrium actions Ei (ti, T ,M) of type ti from type space T playing mechanism M.

Now say that payoff types ϕi and ϕ′i are strategically distinguishable if there exists a mechanism

where—whatever their beliefs and higher-order beliefs about other agents’ payoff types—they have

no action in common; formally, if there exists a mechanismM∗ such that for all ti in type space T
6We do not expect to have a strategic equivalence result such as Theorem 3
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with ϕ̃i (ti) = ϕi and t′i in type space T ′ with ϕ̃′i (t′i) = ϕ′i,

Ei (ti, T ,M∗) ∩ Ei
(
t′i, T ′,M∗

)
= ∅.

Conversely, payoff types ϕi and ϕ′i are strategically indistinguishable if, for every mechanism M,

there exist types ti in type space T with ϕ̃i (ti) = ϕi and t′i in type space T ′ with ϕ̃′i (t′i) = ϕ′i such

that

Ei (ti, T ,M) ∩ Ei
(
t′i, T ′,M

)
6= ∅.

Bergemann and Morris (2009) present a characterization of strategically indistinguishable payoff

types and show that strong interdependence in utilities gives rise to strategic indistinguishability.

For example, in a quasi-linear environment where agent i has payoff type ϕi ∈ [0, 1] and his valuation

of an object is given by vi (ϕ) = ϕi + γ
∑

j 6=i ϕj for some γ ∈ R+, two distinct payoff types of any

agent are strategically distinguishable if and only if γ ≤ 1
I−1 .

8.3 Strategic Revealed Preference

Suppose we knew that an agent i would choose a1 when playing mechanism M1, a2 when playing

mechanism M2, and so on. This might be because the agent made these choices in real time

(and we knew his/her preferences—and implicitly information—were stable over time), or these

might reflect hypothetical choices that the agent would make. If we had a finite data set given

by (ak,Mk)
K
k=1, we could ask if there exists a type that could have generated that set of data by

rational strategic choice. If we interpret rational strategic choice as choosing according to some

solution concept, say, IPCR, i.e., then this “strategic revealed preference” question becomes: is

there a type ti in some type space T such that ak ∈ Ri (ti, T ,Mk) for every k?

This is a strategic analogue to the classical revealed preference question of Afriat (1967). In the

single person case, without the linear indifference curves generated by expected utility preferences

over lotteries, we know that a finite data set is consistent with a rational preference if and only if it

satisfies the weak axiom of revealed preference (WARP). To get to our strategic revealed preference

question described above, we must first require the outcome space to be a lottery space and impose

expected utility preferences, which will require independence as well as WARP in the data. Second,

we must translate a choice problem, where an agent picks a most preferred outcome from a set of

lotteries, to a strategy setting where many agents make simultaneous (and perhaps interdependent)

choices. Our mechanism is a many agent choice problem where outcomes depend not only on an

agent’s choice but also on others’ choices.

Our characterization of strategic distinguishability answers a related but different question.

Suppose that all the data that you have observed so far are consistent with an agent being type ti
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or type t′i. Does there exist a mechanism by which one could be sure to distinguish them at the

next round? It would be a natural next step to ask how much distinguishing could be done with

smaller mechanisms and thus give a characterization of behavioral implications of interdependent

preferences in a small set of mechanisms rather than quantify over all mechanisms.

There is a small existing literature developing strategic analogues of classic single agent decision

theory. Sprumont (2000) considers static Nash equilibrium in static games, and thus may be the

closest to our setting. But the extension from one agent to many agent choice problems is carried

out in a very different way. First, he does not consider mixed strategies and does not maintain—

as we do—the hypothesis of expected utility preferences. Second, and more importantly, our

many agent decision problems (mechanisms) put no structure on the set of choices—there may be

arbitrary action sets—but the outcome function may impose restriction. For example, the outcome

resulting from one action profile may be identical to that resulting from another action profile, and

we implicitly assume that there is common certainty of this fact. By contrast, Sprumont (2000)

fixes agents’ finite action sets and studies choices when there is common certainty that they are

restricted to subsets of these actions sets. But he imposes no restrictions on how the outcomes

from different action profiles may relate to each other.
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A Calculations for the Example of Section 3.2

Observe that on the “reduced” complete information type space (without redundant types), agent

1 must choose out U in equilibrium. If agent 1 is sure her opponent is choosing L, her payoff gain

to choosing U is
1
2

+
1
2

(
1
3

)
− 151

240
=

160− 151
240

=
3
80

> 0;

but if an agent is sure her opponent is choosing R, her payoff gain to choosing out is

4
3

(
1
3

)
− 4

3

(
1
3
− ε
)

=
4
3
ε > 0.

On the “rich” Harsanyi type space (with redundant types), there will also be an equilibrium where

all types choose (U,L) for sure. Thus types with the same preference hierarchy do indeed have an

equilibrium action in common, as shown by our main theorem. However, there will also a strict

equilibrium where, for agent 1, type l chooses U and type h chooses D, and for agent 2, type l

chooses L and type h chooses R. Under this strategy profile, when agent 1 is type l, her expected

payoff to choosing U is
5
9

(
1
2

(
1 +

4
15

))
+

4
9

(
1
3

(
1 +

5
12

))
;

while her expected payoff to choosing D is

5
9

(
151
240

)
+

4
9

((
1
3
− ε
)(

1 +
5
12

))
;

This gain to choosing U is then

5
9

(
152
240
− 151

240

)
+

4
9
ε

(
1 +

5
12

)
> 0.

When agent 1 is type h, her expected payoff to choosing U is

4
9

(
1
2

(
1 +

1
4

))
+

5
9

(
1
3

(
1 +

2
5

))
;

while her expected payoff to choosing D is

4
9

(
151
240

)
+

5
9

((
1
3
− ε
)(

1 +
2
5

))
;

This gain to choosing D is then

4
9

(
151
240
− 150

240

)
− 5

9
ε

(
1 +

2
5

)
> 0.

Under this strategy profile, when agent 2 is type l, his expected payoff to choosing L is

5
9

(
1
2

(
1 +

4
15

))
+

4
9

(
151
240

(
5
12

))
=

379
648

;
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while his expected payoff to choosing R is

5
9

(
1
3

(
1 +

4
15

))
+

4
9

((
1
3
− ε
)(

1 +
5
12

))
=

4
9
− 17

27
ε;

This gain to choosing L is then

379− 288 + 408ε
648

=
91 + 408ε

648
> 0.

When agent 2 is type h, his expected payoff to choosing L is

4
9

(
1
2

(
1 +

1
4

))
+

5
9

(
151
240

(
2
5

))
=

451
1080

;

while his expected payoff to choosing R is

4
9

(
1
3

(
1 +

1
4

))
+

5
9

((
1
3
− ε
)(

1 +
2
5

))
=

4− 2ε
9

;

This gain to choosing R is then

480− 240ε− 451
1080

=
29− 240ε

1080
> 0.

B Proof of Lemma 2

Suppose not. Then, there exist ε > 0 such that, for every n ∈ N, there exist %n, an, bn ∈ Pw(X),

measurable space Cn, perturbed outcome function gn : X × Pw(X)×Cn → ∆(Z) with |gn(·, ·, c)−
g0| ≤ 1/n for every c ∈ Cn, and %′n ∈ Pw(X×X×Cn) such that dP (%n, an) ≤ 1/n, dP (%n, bn) ≥ ε,
mrg1%

′
n = %n, D1/n ×Cn is %′n-certain, and mrg2,3%

′
n weakly prefers gn(·, bn, ·) to gn(·, an, ·). For

each n, let νn ∈ ∆(X×X×Cn×(Z \{w})) be a probability measure that represents %′n. Note that

µn := mrg1,4νn represents %n, and νn(D1/n × Cn × (Z \ {w})) = 1.7 Since X is a compact metric

space, by taking a subsequence if necessary, we can find %∗, b∗ ∈ Pw(X) and µ∗ ∈ ∆(X×(Z \{w}))
such that %n → %

∗, bn → b∗, and µn → µ∗ as n → ∞. Note that an → %∗ as n → ∞, %∗ 6= b∗,

and µ∗ represents %∗.

Claim 2 For every k0 ∈ N, there exists n0 ∈ N such that, for every n ≥ n0 and k, l ≤ k0, if %n
strictly prefers fk to fl, then an weakly prefers fk to fl.

Proof. Fix any k0. Suppose not. Then there exists a pair of k, l ≤ k0 and a subsequence of

(%n, an) such that %n strictly prefers fk to fl, and an strictly prefers fl to fk. Since %n and an

converge to the same limit, this is a contradiction.
7mrgΛνn with Λ ⊂ {1, 2, 3, 4} denotes the marginal of νn with respect to the coordinates in Λ.
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Claim 3 There exist k∗, l∗ such that %∗ strictly prefers fk∗ to fl∗ while b∗ strictly prefers fl∗ to

fk∗.

Proof of Claim 3. Since %∗ 6= b∗, there exist f, f ′ ∈ Fc(X) such that %∗ and b∗ have different

preferences between f and f ′. Since %∗ and b∗ satisfy the continuity, we can assume without loss

of generality that %∗ strictly prefers f to f ′ and b∗ strictly prefers f ′ to f . (To see this, suppose,

for example, that %∗ is indifferent between f and f ′ while b∗ strictly prefers f ′ to f . Then, replace

f by (1−λ)f +λf ′′ and f ′ by (1−λ)f ′+λf ′′′ for sufficiently small λ > 0, where %∗ strictly prefers

f ′′ to f ′′′. A similar trick works when %∗ strictly prefers f to f ′ while b∗ is indifferent between f

to f ′.) Since F is dense in Fc(X) in the sup norm, by the continuity of %∗ and b∗, we can assume

f, f ′ ∈ F without loss of generality.

Claim 4 There exists n0 ∈ N such that, for every n ≥ n0, bn strictly prefers fl∗ to fk∗.

Proof of Claim 4. Follows from bn → b∗ as n→∞.

It follows from Claim 3 that there exists η > 0 such that

7η < 2−k
∗−l∗+1

∫
(fk∗ − fl∗)dµ∗.

Pick k0 ≥ max{k∗, l∗} such that ∑
max{k,l}>k0

2−k−l+1 < η.

Claim 5 There exists n1 ∈ N such that, for every n ≥ n1 and k, l ∈ N such that max{k, l} ≤ k0,

if %∗ strictly prefers fk to fl, then an also strictly prefers fk to fl.

Proof of Claim 5. Follows from an → %∗ as n→∞.

Note that

(χan(fk, fl)− χbn(fk, fl))
∫
fkdµ

∗ + (χan(fl, fk)− χbn(fl, fk))
∫
fldµ

∗

= (χan(fk, fl)− χbn(fk, fl))
∫

(fk − fl)dµ∗

since χan(fl, fk) = 1− χan(fk, fl) and χbn(fk, fl) = 1− χbn(fl, fk).

Claim 6 For every n ≥ max{n0, n1}, we have

(χan(fk, fl)− χbn(fk, fl))
∫

(fk − fl)dµ∗
=

∫
(fk∗ − fl∗)dµ∗ if (k, l) = (k∗, l∗),

≥ 0 if max{k, l} ≤ k0.
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Proof of Claim 6. By Claims 4 and 5, χan(fk∗ , fl∗) = 1 and χbn(fk∗ , fl∗) = 0; χan(fk, fl) =

1 ≥ χbn(fk, fl) and
∫

(fk − fl)dµ∗ > 0 if %∗ strictly prefers fk to fl; χan(fk, fl) = 0 ≤ χbn(fk, fl)

and
∫

(fk − fl)dµ∗ < 0 if %∗ strictly prefers fl to fk;
∫

(fk − fl)dµ∗ = 0 if %∗ is indifferent between

fk and fl.

Claim 7 There exists n2 ∈ N such that, for every n ≥ n2 and k ≤ k0, we have∣∣∣∣∫ fkd(mrg2,4νn)−
∫
fkdµn

∣∣∣∣ ≤ η.
Proof of Claim 7. Since X is a compact metric space, every continuous function is uniformly

continuous. Therefore, there exists n2 ∈ N such that |fk(x) − fk(x′)| ≤ η for every k ≤ k0 and

(x, x′) ∈ D1/n2 . For every n ≥ n2, we have∣∣∣∣∫ fkd(mrg2,4νn)−
∫
fkdµn

∣∣∣∣
=
∣∣∣∣∫ (fk(x′)(z)− fk(x)(z))d(mrg1,2,4νn)(x, x′, z)

∣∣∣∣
≤
∫
|fk(x′)(z)− fk(x)(z)|d(mrg1,2,4νn)(x, x′, z) ≤ η

since |fk(x′)(z)− fk(x)(z)| ≤ η for (mrg1,2,4νn)-almost every (x, x′, z).

We can now provide the proof of Lemma 2.

Proof of Lemma 2. Since µn → µ∗ as n → ∞, there exists n ≥ max{n0, n1, n2, 1/η} such

that, for every k ≤ k0, |
∫
fkdµn−

∫
fkdµ

∗| < η. We decompose
∫

(gn(·, an, ·)−gn(·, bn, ·))d(mrg2,3,4νn)

into the following four terms:∫
(gn(·, an, ·)− gn(·, bn, ·))d(mrg2,3,4νn)

=
∑

max{k,l}≤k0

2−k−l+1(χan(fk, fl)− χbn(fk, fl))
∫
fkdµ

∗

+
∑

max{k,l}≤k0

2−k−l+1(χan(fk, fl)− χbn(fk, fl))
(∫

fkd(mrg2,4dνn)−
∫
fkdµ

∗
)

+
∑

max{k,l}>k0

2−k−l+1(χan(fk, fl)− χbn(fk, fl))
∫
fkd(mrg2,4νn)

+
∫

[(gn(·, an, ·)− g0(·, an))− (gn(·, bn, ·)− g0(·, bn))]d(mrg2,3,4νn).
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The first term is larger than 7η by Claim 6. The other terms are at least as large as −4η, −η, and

−2η, respectively, since
∑

max{k,l}≤k0
2−k−l+1 < 2, |χan − χbn | ≤ 1,∣∣∣∣∫ fkd(mrg2,4dνn)−

∫
fkdµ

∗
∣∣∣∣

≤
∣∣∣∣∫ fkd(mrg2,4dνn)−

∫
fkdµn

∣∣∣∣+
∣∣∣∣∫ fkdµn −

∫
fkdµ

∗
∣∣∣∣

< 2η

by Claim 7,
∑

max{k,l}>k0
2−k−l+1 < η, |fk| ≤ 1, and |gn(·, ·, c) − g0| ≤ 1/n ≤ η for every c ∈ Cn.

Thus %′n strictly prefers gn(·, an, ·) to gn(·, bn, ·), which is a contradiction.

C λ-Continuity

We present now a version of the universal preference type space where there is common certainty

that all agents’ preferences are λ-continuous for some fixed λ > 0. Such spaces include preference

type spaces with the worst outcome property, studied in the body of this paper, and other settings,

such as finite type spaces of Abreu and Matsushima (1992) and “compact and continuous” type

spaces.

Let P0(X) be the set of binary relations over F (X) that satisfy completeness, transitivity,

independence, continuity and monotone continuity, and are not indifferent over lotteries. P0(X) is

endowed with the σ-algebra generated by {% ∈ Pλ(X) | f % f ′} for any f, f ′ ∈ F (X). When X is

a compact metrizable space, then P0(X) is endowed with the topology generated by {% ∈ Pλ(X) |
f � f ′} for any f, f ′ ∈ Fc(X). (Recall that Fc(X) ⊆ F (X) is the set of continuous acts.)

For each λ > 0, let Pλ(X) be the set of preferences in P0(X) that satisfies λ-continuity. For

any pair of outcomes z, z′ ∈ Z with z 6= z′, let Pz,z′(X) be the set of preferences in P0(X) such

that z % z′′ % z′ for any z′′ ∈ Z. We have P0(X) =
⋃
λ>0 Pλ(X) =

⋃
z 6=z′ Pz,z′(X). For any pair of

outcomes z, z′ ∈ Z with z 6= z′ and λ > 0, let Pz,z′,λ(X) = % ∈ Pλ(X) ∩ Pz,z′(X).

Let Mz,z′(X ×Z) be the set of finite signed measures µ on X ×Z such that 1 = µ(X × {z}) ≥
µ(X × {z′′}) ≥ µ(E × {z′}) = 0 for any z′′ ∈ Z and any measurable E ⊆ X. A preference relation

% belongs to Pz,z′(X) if and only if there exists a unique µ ∈Mz,z′(X × Z) such that

f % f ′ ⇔
∫
X×Z

f(x)(z)dµ(x, z) ≥
∫
X×Z

f ′(x)(z)dµ(x, z)

for any f, f ′ ∈ F (X). Thus, we can identify Pz,z′(X) and Mz,z′(X × Z) (endowed with the weak*

topology if X is compact and metrizable). Moreover, if % ∈ Pz,z′(X) is λ-continuous, then ‖µ‖ ≤
|Z|(1−λ)/λ; if ‖µ‖ ≤ (1−λ)/λ, then % is λ-continuous. Let Mz,z′,r(X×Z) = {µ ∈Mz,z′(X×Z) |
‖µ‖ ≤ r}.

39



For any signed measure µ on X × Z, let |µ| denote the total variation measure on X × Z, i.e.,

|µ|(E) = ‖µ(· ∩ E)‖ for each measurable E ⊆ X × Z.

C.1 Compactness and Metrizability

Proposition 5 If X is compact and metrizable and λ > 0, then Pλ(X) is also compact and metriz-

able.

Proposition 5 follows from the next two lemmas.

Lemma 3 If X is compact and metrizable, then P0(X) is Hausdorff.

Proof. Pick any pair of preferences %,%′ ∈ P0(X) such that % 6= %′. Then there exist

f, f ′ ∈ F (X) such that % and %′ have different preferences between f and f ′. By the trick we used

in the proof of Claim 3 in Appendix B, we can assume without loss of generality that f � f ′ and

f ′ �′ f .

Let µ and µ′ be finite signed measures on X × Z that represent % and %′, respectively. Let

ν = |µ|+ |µ′|. We define the L1-norm on measurable functions ϕ : X ×Z → R (after identifying all

|µ|-a.e. equivalent functions) by

‖ϕ‖ =
∫
X×Z

|ϕ(x, z)|dν(x, z).

Since Fc(X) is norm dense in F (X) (Aliprantis and Border (1999, Theorem 12.9)), we can assume

that f and f ′ are continuous.

Lemma 4 If X is compact and metrizable and λ > 0, then Pz,z′,λ(X) is compact and metrizable

for z, z′ ∈ Z with z 6= z′.

Proof. Recall that Pz,z′,λ(X) ⊂ Mz,z′,r(X × Z) with r = |Z|(1 − λ)/λ. By the Riesz repre-

sentation theorem and Alaoglu’s theorem, Mz,z′,r(X × Z) is weak*-compact. Also, by the Stone-

Weierstrass theorem and Aliprantis and Border (1999, Theorem 6.34), Mz,z′,r(X × Z) is weak*-

metrizable. Thus we only need to show that Pz,z′,λ(X) is a closed subset of Mz,z′,r(X × Z).

Take any sequence {%n} on Pz,z′,λ(X) that converges to %. We want to show that

(1− λ)z + λf % (1− λ)z′ + λf ′ (3)

for any f, f ′ ∈ F (X). Note that (3) for continuous acts f, f ′ ∈ Fc(X) immediately follows from the

definition of the topology on P0(X).
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Pick a signed measure µ ∈ Mz,z′,r(X × Z) that represents %. As in the proof of Lemma 3,

Fc(X) is dense in F (X) with respect to the L1-norm with measure |µ|. Thus (3) extends from

Fc(X) to F (X).

Note that Lemma 5 relies on λ-continuity. To see this, notice that the set of finite signed

measures (without a uniform bound on total variations) on an infinite metric space is neither

weak*-compact nor metrizable.

Proof of Proposition 5. By Lemma 4, Pλ(X) is a finite union of compact subspaces

Pz,z′,λ(X), which is compact. Also, by Lemmas 3 and 4, Pλ(X) is a finite union of closed and

metrizable subspaces Pz,z′,λ(X), which is metrizable. (See Nagata (1985, Theorem 6.12), which

follows from the Nagata-Smirnov metrization theorem.)

C.2 Preference Type Spaces

We define a preference type space as T = (Ti, πi)i∈I , where, for each i ∈ I, Ti is a measurable

space of agent i’s types, and πi : Ti → P0(Θ × T−i) is a measurable mapping that maps his types

to preferences.

As we argued in Section 8.1, λ-continuity is a weak requirement. There is common certainty

of λ-continuity with some λ > 0 if there is common certainty of the worst outcome property, or if

the preference type space is finite. The second sufficient condition is generalized to compact and

continuous type spaces as follows. We say that a preference type space T = (Ti, πi)i∈I is compact

and continuous if, for each i ∈ I, Ti is compact and metrizable, and πi : Ti → P0(Θ × T−i) is

continuous.

Proposition 6 If a preference type space is compact and continuous, then there exists λ > 0 such

that there is common certainty that preferences are λ-continuous.

This follows immediately from the following lemma.

Lemma 5 Assume that X is a compact metric space. For any compact subset Q of P0(X), there

exists λ > 0 such that any preference in Q is λ-continuous.

Proof. For each pair of outcomes z, z′ ∈ Z with z 6= z′, let Qz,z′ = Q ∩ Pz,z′(X). Since

Pz,z′(X) is closed in P0(X), Qz,z′ is a weak*-compact subset of Mz,z′(X × Z). By the uniform

boundedness principle, Qz,z′ is bounded in the total variation norm. Pick rz,z′ < ∞ such that

Qz,z′ ⊆ Mz,z′,rz,z′
(X × Z). Then Qz,z′ ⊆ Pz,z′,λz,z′ with λz,z′ = 1/(1 + rz,z′). Then any preference

in Q is λ-continuous with λ = minz 6=z′ λz,z′ .
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C.3 The Universal Preference Type Space

The construction of the universal preference type space is analogous to Section 4.3. Given Proposi-

tion 5, all we have to do is to modify probability measures to signed measures. We use a generaliza-

tion of the Kolmogorov extension theorem given by Van Haagen (1981), which requires coherency

as well as uniform boundedness of total variations.

More specifically, let Xλ,0 = {∗} and Xλ,n = Xλ,n−1 × Pλ(Θ × XI−1
λ,n−1) for each n ≥ 1. Let

Xλ,∞ =
∏∞
n=0 Pλ(Θ×XI−1

λ,n ). For a pair z, z′ ∈ Z with z 6= z′, let Yz,z′,λ,0 =
∏∞
n=0Mz,z′,|Z|(1−λ)/λ(Θ×

XI−1
λ,n × Z). Note that, for any {µn} ∈ Yz,z′,λ,0, {µn} has uniformly bounded total variations. Let

Yz,z′,λ,1 be the set of coherent hierarchies of signed measures in Yz,z′,λ,0, i.e., {µn} ∈ Yz,z′,λ,0 such

that mrgΘ×XI−1
λ,n−2×Z

µn = µn−1 for any n ≥ 2.

For each {µn} ∈ Yz,z′,λ,1, by Van Haagen’s (1981) generalization of the Kolmogorov extension

theorem, there exists a signed measure µ∞ on Θ×XI−1
λ,∞×Z such that mrgΘ×XI−1

λ,n−1×Z
µ∞ = µn for

any n ≥ 1 and ‖µ∞‖ = supn ‖µn‖ ≤ |Z|(1−λ)/λ. It is easy to check that µ∞(Θ×XI−1
λ,∞×{z}) = 1

and µ∞(Θ×XI−1
λ,∞×{z

′}) = 0, so we have µ∞ ∈Mz,z′,|Z|(1−λ)/λ(Θ×XI−1
λ,∞×Z). Thus we construct a

homeomorphism ψz,z′,λ : Yz,z′,λ,1 →Mz,z′,|Z|(1−λ)/λ(Θ×XI−1
λ,∞×Z). Let Tλ,1 be the set of all coherent

hierarchies of preferences in Xλ,∞, i.e., {%n} ∈ Xλ,∞ such that mrgΘ×XI−1
λ,n−2
%n = %n−1 for any

n ≥ 2. We convert ψz,z′,λ to a mapping between preference spaces and obtain a homeomorphism

ψλ,P : Tλ,1 → Pλ(Θ×XI−1
λ,∞).

For n ≥ 2, let

Tλ,n = {t ∈ Tλ,1 | Θ× T I−1
λ,n−1 is ψλ,P (t)-certain}.

For i ∈ I, let T ∗i,λ =
⋂∞
n=1 Tλ,n and a homeomorphism π∗i,λ = ψλ,P |T ∗i,λ : T ∗i,λ → Pλ(Θ × T ∗−i,λ).

Thus we obtain T ∗λ = (T ∗i,λ, π
∗
i,λ)i∈I , the universal preference type space in which there is common

certainty of λ-continuity.

C.4 Strategic Distinguishability

Once we understand equivalent preference hierarchies and interim preference correlated rational-

izability (IPCR) as notions that respect λ-continuity, Theorems 1 and 2 hold verbatim for every

λ > 0. Proposition 4 also holds, but now the construction of truth-telling mechanismM∗ depends

both on ε and λ. Proofs require minor modifications. For example, in the proof of Claim 7 in

Appendix B, since νn is no longer a probability measure in ∆(X × X ×W × (Z \ {w})), but a

signed measure in Mz,z′,|Z|(1−λ)/λ(X ×X ×W × Z) with some z, z′ ∈ Z, the last inequality needs

to be replaced by∫
|fk(x′)(z)− fk(x)(z)|d(mrg1,2,4νn)(x, x′, z) ≤ η‖νn‖ ≤ η

|Z|(1− λ)
λ

.
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