
Majority rule in the absence of a majority

Klaus Nehring∗and Marcus Pivato†

September 5, 2011

Abstract

What is the meaning of ‘majoritarianism’ in a judgement aggregation problem
when the propositionwise majority view is logically inconsistent? We argue that the
majoritarian ideal is best embodied by the principle of supermajoritarian efficiency

(SME): it is acceptable to overrule a supermajority in one proposition, but only if
this allows us to agree with a larger supermajority in some other proposition. We
show that for certain judgement spaces, the SME outcome is generically unique. For
most spaces, however, there are a range of SME judgement aggregation rules. We
show that SME, along with separability, characterizes the class of additive support

rules. We then show that the median rule is the unique additive support rule which
satisfies reinforcement, upper hemicontinuity, and a weak regularity condition; this
can be seen as a judgement aggregation analog of a classic result by Young and
Levenglick.

1 Introduction

Let K be a finite set, representing a collection of propositions. A judgement on K is
an element x ∈ {±1}K, where xk = 1 if x ‘asserts’ proposition k, and xk = −1 if x
‘denies’ proposition k. A judgement space is a subset X ⊆ {±1}K; typically X the set of
judgements which are ‘admissible’ or ‘logically consistent’ according to our interpretation
of the elements of K.

For example, let A ∈ N, and let A := [1 . . . A] represent a set of A social alternatives.
Let K := {(a, b) ∈ A2; a < b}. Then any judgement x ∈ {±1}K can be interpreted as a
complete, antisymmetric binary relation (i.e. a tournament) ≺ on A, where a ≺ b if and
only if either xa,b = 1 or xb,a = −1. (Recall that exactly one of (a, b) or (b, a) is in K.) Now
let X pr

A ⊂ {±1}K be the set of judgements representing transitive tournaments (i.e. strict
preference orders) on A; this space is sometimes called the permutahedron. Judgement
aggregation over X pr

A therefore corresponds to classical Arrovian preference aggregation.
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Judgement spaces can be used to encode a variety of decision problems. These include:
allocating a finite budget over two or more expenditure categories; selecting a committee
from a set of candidates; classifying a set of objects into equivalence classes or into a
taxonomic hierarchy; designing a communications network; or deciding the truth values of
a set of logically interconnected propositions. Nehring and Puppe (2007), Nehring et al.
(2011), and Nehring and Pivato (2011a) provide many other interesting examples.

Let X ⊂ {±1}K be a judgement space, and let ∆(X ) be the set of all functions µ :
X−→R+ such that

∑
x∈X µ(x) = 1. An element µ ∈ ∆(X ) is called a profile, and describes

a population of (weighted) voters; for each x ∈ X , the value of µ(x) is the fraction of
(weighted) voters who endorse judgement x. The data (K,X , µ) is called a judgement
aggregation problem.

For example, let N be a finite set of voters, and let ω : N−→R+ be a ‘weight function’
such that

∑
n∈N ω(n) = W for some W < ∞ (reflecting, e.g. the differing expertise or

priority of different voters). For all n ∈ N , let yn ∈ X describe the opinion of voter n.
The profile determined by this data is the function µ : X−→[0, 1] defined by

µ(x) =
1

W

∑
{ω(n) ; n ∈ N and yn = x}, for all x ∈ X . (1)

Observe that µ ∈ ∆(X ). (If ω(n) = 1 for all n ∈ N , then µ is an ‘anonymous’ profile; we
do not generally assume anonymity.)

Judgement aggregation is the problem of selecting the element from X which best
represents the ‘collective will’ of the voters described by profile µ. Versions of this problem
were studied by Guilbaud (1952), Wilson (1975), Rubinstein and Fishburn (1986), and
Barthélémy and Janowitz (1991). Since the work of List and Pettit (2002), there has been
much interest in this area; see List and Puppe (2009) for a recent survey.

Fix a set K and a judgement space X ⊆ {±1}K. A judgement aggregation rule on X is a
multifunction F : ∆(X ) ⇉ X ; for any µ ∈ ∆(X ), it yields a nonempty (usually singleton)
subset F (µ) ⊆ X , which represents the social consensus given the profile x. Sometimes we
restrict F to a smaller domain. For example, if ω : N−→R+ is a weight function, let ∆ω(X )
be the set of all profiles obtained as in equation (1) for some assignment {yn}n∈N ⊂ X of
opinions to the individual voters. We shall sometimes consider a rule Fω : ∆ω(X ) ⇉ X .

On the other hand, we sometimes define F over a larger domain. For example, let X be
a collection of judgement spaces (possibly with varying choices of K). Let ∆(X) be the set
of all ordered pairs (X , µ), where X ∈ X and µ ∈ ∆(X ). A (judgement) aggregation rule
on X is a multifunction F : ∆(X) ⇉

⋃
X∈XX such that, for each X ∈ X and µ ∈ ∆(X ),

we have F (X , µ) ⊆ X . (Even in this case, we will indicate F (X , µ) by “F (µ)” if X is clear
from context.)

Condorcet admissibility. Treat {±1}K as a subset of the vector space RK. For any
profile µ ∈ ∆(X ), we define the tally vector µ̃ ∈ RK by

µ̃k :=
∑

x∈X

xk µ(x), for all k ∈ K. (2)

Thus, µ̃ ∈ conv(X ) (the convex hull of X in RK). The vector µ̃ tallies how much ‘voter
support’ there is for each of the propositions in K. For any k ∈ K, we have µ̃k > 0 (resp.
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< 0) if a majority asserts (resp. denies) proposition k, and µ̃k = 1 (resp. −1) if the voters
unanimously assert (resp. deny) proposition k. For any x ∈ {±1}K, let

M(µ,x) := {k ∈ K ; xk µ̃k ≥ 0}. (3)

This is the set of all propositions where x agrees with the majority view. Let Maj(µ) :=
{x ∈ {±1}K; M(µ,x) = K}. This set is always nonempty, and is usually a singleton,
unless there is a ‘perfect tie’ on some propositions. (If Maj(µ) = {x}, then we will abuse
notation by writing “Maj(µ) = x” and defining Majk(x) := xk for all k ∈ K.)

If Maj(µ) ∩ X 6= ∅, then it is possible to comply with the majority opinion on every
proposition, while still respecting the logical constraints defining X . Unfortunately, this is
generally not the case —often Maj(µ) ∩ X = ∅. (In the case of aggregation over X pr

A with
|A| ≥ 3, this problem was first observed by Condorcet (1785).)

We say that x is Condorcet admissible if M(µ,x) is maximal in X —that is, there
exists no y ∈ X such that M(µ,x) ( M(µ,y). Let Cond (X , µ) be the set of all Con-
dorcet admissible elements. This set is always nonempty, and its elements are the ‘best
approximations’ of Maj(µ) which are feasible given the logical constraints of X . Thus,
a ‘majoritarian’ judgement aggregation rule should always select from Cond (X , µ). Un-
fortunately, for many judgement aggregation problems, the set Cond (X , µ) is quite huge
—indeed, in some cases Cond (X , µ) = X ; see Nehring et al. (2011). Thus, it is necessary
to refine the notion of Condorcet admissibility in some way.

Supermajoritarian efficiency. Let µ ∈ ∆(X ) and let q ∈ [0, 1]. For any x ∈ X , let

γµ,x(q) := #{k ∈ K ; xk µ̃k ≥ q}. (4)

This measures the number of coordinates of x for which the popular support exceeds
the supermajoritarian threshold q. For example, γµ,x(0) is the number of coordinates
where x receives a bare majority, γµ,x(0.5) is the number of coordinates where x receives a
75% supermajority, and γµ,x(1) is the number of coordinates where x receives unanimous
support.

For any x,y ∈ X , write “x �
µ

y” if γµ,x(q) ≥ γµ,y(q) for all q ∈ (0, 1], with at least one
strict inequality. Then �

µ
is a partial order on X . An element x ∈ X is supermajoritarian

efficient (SME) if x is undominated in the poset (X , �
µ

). This means that it is impossible
to change some coordinates of x to capture one more supermajority of size q, without losing
some other supermajority of size q′ ≥ q. This refinement of Condorcet admissibility is based
on the idea that it is acceptable for the aggregation rule F to overrule a supermajority
in one coordinate, but only if this allows F to agree with a larger supermajority in some
other coordinate.

Let SME (X , µ) be the set of SME elements in X . An aggregation rule F : ∆(X ) ⇉ X
is supermajoritarian efficient if F (µ) ⊆ SME (X , µ) for all µ ∈ ∆(X ). For example, the
median rule is defined:

Median (X , µ) := argmax
x∈X

(x • µ̃), for all µ ∈ ∆(X ), (5)

where x • µ̃ :=
∑

k∈K

xk µ̃k, for any x ∈ X .
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In the setting of Arrovian preference aggregation (i.e. when X is a permutahedron), this
corresponds to the Kemeny (1959) rule, which has been analyzed by Young and Levenglick
(1978) and Young (1986, 1988, 1995, 1997). As a general-purpose judgement aggrega-
tion rule, the median rule has been studied by Barthélémy and Monjardet (1981, 1988),
Barthélémy (1989) and Barthélémy and Janowitz (1991).

A (real-valued) gain function is an increasing function φ : [−1, 1]−→R. For any judge-
ment space X ⊆ {±1}K and any gain function φ, we define the additive support rule
Fφ : ∆(X ) ⇉ X as follows:

for all µ ∈ ∆(X ), Fφ(µ) := argmax
x∈X

(
∑

k∈K

φ(xk µ̃k)

)
. (6)

For example, fix s > 0, and suppose φ(r) = s r for all r ∈ [−1, 1]; then Fφ is the median
rule. More generally, fix d ∈ (0,∞), and define φd : [−1, 1]−→R by φd(r) := sign(r) · |r|d

for all r ∈ [−1, 1]. (If d was an odd integer, we could simply write φd(r) := rd.) The
corresponding additive support rule Hd := Fφd is called the homogeneous rule of degree d.
If d = 1, then Hd is the median rule. If 0 < d < 1, then the function φd is ‘S-shaped’; this
means that Hd magnifies the distinction between majorities and minorities, but diminishes
the distinction between small supermajorities and large ones. On the other hand, if d > 1,
then the function φd is ‘inverse S-shaped’; thus, Hd diminishes the distinction between
majorities and minorities, but magnifies the distinction between small supermajorities and
large ones. As d→∞ it is increasingly the case that one large supermajority (especially a
unanimous one) can overrule many small supermajorities.

Any additive support rule is SME (see Proposition 1.1(b) below). Another SME rule
is the LexiMin rule. For any x,y ∈ X , write “x ≈

µ
y” if γµ,x = γµ,y; otherwise write

“x ≺
µ

y” if there exists some Q ∈ (0, 1] such that γµ,x(q) = γµ,y(q) for all q > Q, while
γµ,x(q) < γµ,y(q). Then �

µ
is a complete, transitive ordering of X . We then define

LexiMin (X , µ) := max(X , ≺
µ

). (7)

In other words, LexiMin first maximizes the number of coordinates which receive unan-
imous support (if any); then, for every possible supermajoritarian threshold q ∈ (0, 1],
LexiMin maximizes the number of coordinates where the support exceeds q, with higher
values of q given lexicographical priority over lower ones. This rule was proposed by Tide-
man (1987) in the setting of preference aggregation (he called it the ranked pairs rule; see
also Zavist and Tideman (1989)). The leximin rule can be seen as the ‘limit’ of the system
{Hd}d>0 of homogeneous rules as d→∞ (Nehring and Pivato, 2011b).

Strong supermajoritarian efficiency. For any probability measure ρ ∈ ∆(X ), and
any q ∈ (0, 1], define

γµ,ρ(q) :=
∑

x∈X

ρ(x) · γµ,x(q). (8)

Intuitively, suppose ρ describes the outcome of a ‘stochastic’ judgement aggregation rule,
which produces a ρ-random element of X as output. Thus, γµ,ρ(q) is the expected value of

4



γµ,•(q) for this stochastic rule. For any x ∈ X , define δx ∈ ∆(X ) by

δx(x) := 1, and δx(y) := 0, for all y ∈ X \ {x}. (9)

Clearly γµ,δx = γµ,x. For any ρ1, ρ2 ∈ ∆(X ), write “ρ1 �
µ
ρ2” if γµ,ρ1(q) ≥ γµ,ρ2(q) for all

q ∈ (0, 1], with at least one strict inequality. Then �
µ

is a partial order on ∆(X ). An
element x ∈ X is strongly supermajoritarian efficient (SSME) if δx is undominated in the
poset (∆(X ), �

µ
). Let SSME (X , µ) be the set of SSME elements in X . An aggregation

rule F is strongly supermajoritarian efficient if F (X , µ) ⊆ SSME (X , µ) for all X and µ.

Proposition 1.1 Let (K,X , µ) be a judgement aggregation problem.

(a) ∅ 6= SSME (X , µ) ⊆ SME (X , µ) ⊆ Cond (X , µ). In general, these inclusions
are strict.

If Maj(µ)∩X 6= ∅, then SSME (X , µ) = SME (X , µ) = Cond (X , µ) = Maj(µ)∩X .

(b) If φ any gain function, then the additive support rule Fφ is strongly superma-
joritarian efficient. In fact, if ΦI is the set of all odd, continuous, real-valued gain

functions, then
⋃

φ∈ΦI

Fφ(µ) = SSME (X , µ).

This paper studies the structure and properties of supermajoritarian efficient judgement
aggregation rules, and provides representation theorems and axiomatic characterizations
for several classes of such rules. One of our goals is to provide a ready-to-use ‘menu’ of
supermajoritarian efficient aggregation rules. An end-user seeking a rule with particular
properties can choose the appropriate item from this menu.

This paper is organized as follows. In §2 we show that the set SME (X , µ) is generically
a singleton whenever X satisfies a geometric condition called ‘proximality’. Proximality
holds whenever |K| = 3 (e.g. it holds for X pr

A when |A| = 3). It also holds for certain
‘committee selection’ problems. In §3 we introduce a more general class of additive support
rules (by allowing φ to range over a hyperreal field) and study some of their properties.
We introduce a time-consistency condition called separability; the first main result of this
paper states that a judgement aggregation rule F is SME and separable if and only if F
can be represented as an additive support rule Fφ.

Section 4 contains our second main result, which states that the median rule is the
only regular, upper hemicontinuous, additive support rule satisfying a condition called
reinforcement: if two sub-populations of voters both select a certain judgement x ∈ X ,
then the combined population of voters should also select x. This is analogous to the
classic result of Young and Levenglick (1978) characterizing the Kemeny rule. In §5,
we show that the set of homogeneous rules are the only regular, upper hemicontinuous,
additive support rules satisfying neutral reinforcement. This means that, for any x,y ∈ X ,
if one sub-population selects the judgements {x,y}, and the other population is evenly
split between x-supporters and y-supporters, then the combined population should also
select {x,y}. Finally, in §6 we consider what conditions under which the gain function φ is
continuous and/or unique up to scalar multiplication. Appendices A-D contain background
and technical results. Appendix E contains the proofs of all the main results.
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2 Proximality and supermajoritarian determinacy

A judgement space X is supermajoritarian determinate if, for any µ ∈ ∆(X ), and any
x,y ∈ SME (X , µ), we have γµ,x = γµ,y. This means that all additive rules yield the same
output: Fφ(X , µ) = SME (X , µ) for all nondecreasing φ : [−1, 1]−→R. Also, generically,
SME (X , µ) is a singleton. Which judgement spaces are supermajoritarian determinate?

Let C := conv(X ) (a compact, convex polyhedron in RK). Thus, µ̃ ∈ C for any
µ ∈ ∆(X ). Let D := dim[C]. For any x,y ∈ X , let Bx,y := {c ∈ C; Median (c) ⊇ {x,y}}.
Equivalently, Bx,y := {c ∈ C; x • c = y • c ≥ z • c, for all z ∈ X}. Thus, Bx,y is a convex
sub-polyhedron of C (defined by a finite system of linear (in)equalities). Write “x ≡

X
y” if

dim(Bx,y) = D−1. The relation “ ≡
X

” defines a graph on X , which we will call the internal
graph.

For any x,y ∈ X , let K±(x,y) := {k ∈ K ; xk 6= yk}. Let d(x,y) := |K±(x,y)| be
the Hamming distance from x to y. Say X is proximal if d(x,y) ≤ 2 for all x ≡

X
y ∈ X .

Finally, say X is thick if dim[conv(X )] = K —that is, int (conv(X )) 6= ∅. This means that
no coordinate of X can be expressed as an affine function of other coordinates. Thickness
is a very mild condition which is satisfied by most ‘interesting’ judgement spaces.

Theorem 2.1 (a) If X is proximal, then X is supermajoritarian determinate.

(b) If X is thick and supermajoritarian determinate, then X is proximal.

Example 2.2. If |K| = 3, then any X ⊆ {±1}K is proximal, and thus, supermajoritarian
determinate. To see this, observe that d(x,y) ≤ 3 for all x,y ∈ {±1}K, and d(x,y) = 3 if
and only if x = −y, in which case clearly x 6 ≡

X
y.

In particular, if |A| = 3, then X pr

A is proximal, hence supermajoritarian determinate. ♦

For another example of proximality, let K represent a set of ‘candidates’. Any x ∈
{±1}K represents a ‘committee’ (where xk = 1 if and only if candidate k is on the com-
mittee). Let |x| := #{k ∈ K; xk = 1} be the size of this committee. Let 0 ≤ I ≤ J ≤ K,
and let X com := {x ∈ {±1}K; I ≤ |x| ≤ J}. Thus, X com represents the set of committees
drawn from K, containing at least I members and at most J members.

Proposition 2.3 X com is proximal, and thus, supermajoritarian determinate.

3 Separability and additive support rules

We will now show that the class of additive support rules is characterized by supermajori-
tarian efficiency along with a simple consistency condition involving multiple judgement
spaces. Let K1 and K2 be disjoint sets, and let K := K1 ⊔ K2. Let X1 ⊆ {±1}K1 , let
X2 ⊆ {±1}K2 and let X := X1 ×X2 ⊆ {±1}K. If x ∈ X , then we write x = (x1,x2) where
xn ∈ Xn for n = 1, 2. For any µ ∈ ∆(X ), let µ(1) ∈ ∆(X1) be the marginal profile of µ on
X1. That is:

for all x1 ∈ X1, µ(1)(x1) :=
∑

x2∈X2

µ(x1,x2). (10)
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Likewise, define µ(2) ∈ ∆(X2). (Observe that µ̃ = (µ̃(1), µ̃(2)), because µ̃
(1)
k = µ̃k for all

k ∈ K1 and µ̃
(2)
k = µ̃k for all k ∈ K2.)

For any judgement space X , and any n ∈ N, let X n := X ×X × · · · × X be the n-fold
Cartesian product of X . Let 〈X 〉 := {X n; n ∈ N}. Let F : ∆(X ) ⇉ X be a judgement
aggregation rule. For all n ∈ N, define the rule F n : ∆(X n) ⇉ X n as follows:

F n(µ) := F (µ(1)) × F (µ(2)) × · · · × F (µ(n)), for all µ ∈ ∆(X n). (11)

Here, µ(1), . . . , µ(n) ∈ ∆(X ) are the marginal profiles of µ onto the n copies of X which
comprise X n. If we define ∆〈X 〉 :=

⋃∞
n=1 ∆(X n), then we obtain a judgement aggrega-

tion rule F ∗ : ∆〈X 〉 ⇉
⋃∞
n=1 X

n. We say that F ∗ is supermajoritarian efficient if F n is
supermajoritarian efficient on ∆(X n) for all n ∈ N.

Fix W ∈ N. Let ∆W 〈X 〉 be the set of all profiles on 〈X 〉 involving exactly W equally
weighted (i.e. ‘anonymous’) voters. Thus, if QW := {1 − 2 k

W
; k ∈ [0 . . .W ]}, then QW =

{µ̃k; k ∈ K and µ ∈ ∆W 〈X 〉}. If µ ∈ ∆W (X n), then µ(1), . . . , µ(n) ∈ ∆W (X ). Thus, as
long as F is well-defined on ∆W (X ), the extended rule F ∗ is well-defined on ∆W 〈X 〉. We
say that F ∗ is supermajoritarian efficient on ∆W 〈X 〉 if F n is supermajoritarian efficient on
∆W (X n) for all n ∈ N.

Theorem 3.1 Let W ∈ N, let X be a judgement space, and let F : ∆W (X ) ⇉ X be a
judgement aggregation rule.

The rule F ∗ is SME on ∆W 〈X 〉 if and only if there is an increasing function φW :
QW−→R such that F n(µ) ⊆ FφW

(X n, µ) for all n ∈ N and µ ∈ ∆W (X n).

If W is fixed in advance, and all voters are anonymous, then Theorem 3.1 is sufficient
for most practical purposes. However, if W or the weights of individual voters are allowed
to vary, then the rule F must be well-defined on all of ∆(X ). Also, Theorem 3.1 only states
that F ∗ is contained in FφW

; if we want to ensure that F ∗ = FφW
, we need a continuity

condition which only makes sense if F is defined on all of ∆(X ).
To extend Theorem 3.1 this setting, we must extend the range of φ to hyperreal num-

bers. Loosely speaking, a hyperreal number field is a linearly ordered field ∗R which contains
the field R as a proper subfield, but which also contains a large number of ‘infinite’ and
‘infinitesimal’ elements, having a well-defined arithmetic. (Formally, ∗R is an ultrapower of
R; see Appendix A for details.) A (hyperreal) gain function is now any increasing function
φ : [−1, 1]−→ ∗R. (Note that a real-valued gain function is a special case, because R ⊂ ∗R.)
Given any hyperreal gain function φ, we define the additive support rule Fφ as in eqn.(6).

For example, let ∗d ∈ ∗R be any positive infinite1 hyperreal number, and define φ
∗d :

[−1, 1]−→ ∗R by φ
∗d(r) := sign(r) · |r|

∗d. Then Nehring and Pivato (2011b) show that the
additive support rule Fφ ∗d is the leximin rule introduced in §1.

If ∗r ∈ ∗R and x ∈ {±1}, then x · ∗r is also an element of ∗R. Thus, if ∗r ∈ ∗RK and
x ∈ {±1}K, then we can define x • ∗r :=

∑
k∈K xk ·

∗rk, an element of ∗R. In particular,
for any µ ∈ ∆(X ), we define φ(µ̃) := [φ(µ̃k)]k∈K ∈ ∗RK; then x • φ(µ̃) =

∑
k∈K xk · φ(µ̃k).

The function φ is odd if φ(−r) = −φ(r) for all r ∈ [−1, 1]. We can assume without loss of
generality that φ is odd, which yields a convenient expression for Fφ(X , µ):

1A positive hyperreal number ∗d is infinite if ∗d > M for every M ∈ N.
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Lemma 3.2 Let φ : [−1, 1]−→ ∗R be any gain function.

(a) There exists an odd function φ̂ : [−1, 1]−→ ∗R such that, for all judgement spaces
X and all µ ∈ ∆(X ), we have Fφ(X , µ) = Fbφ

(X , µ).

(b) If φ is odd, then for all judgement spaces X and all µ ∈ ∆(X ), we have Fφ(X , µ) =
argmax

x∈X
x • φ(µ̃).

A judgement aggregation rule F : ∆(X ) ⇉ X is upper hemicontinuous (UHC) if, for every
µ ∈ ∆(X ), each of the following two equivalent statements is true:

(a) There exists some ǫ > 0 such that, for any ǫ ∈ (0, ǫ) any other ν ∈ ∆(X ), we have
F (ǫ ν + (1 − ǫ)µ) ⊆ F (µ).

(b) For every sequence {µn}
∞
n=1 ⊂ ∆(X ), and every x ∈ X , if lim

n→∞
µn = µ, and x ∈ F (µn)

for all n ∈ N, then x ∈ F (µ).

Condition (a) is sometimes described as the ‘overwhelming majority’ property. Heuristi-
cally, the profile ǫ ν + (1− ǫ)µ represents a mixture of two populations: a small ‘minority’
described by the profile ν, and a large ‘majority’ represented by the profile µ. Condition
(a) says that, if the majority is large enough, then its views effectively overwhelm the
minority view (except that the minority can perhaps act as a ‘tie-breaker’ in some cases).
Condition (b) means that the outcome of judgement aggregation is robust under small
measurement errors or perturbations of public opinion.2 We now come to the extended
version of Theorem 3.1:

Theorem 3.3 Let X be a judgement space, and let F : ∆(X ) ⇉ X be an upper hemicon-
tinuous judgement aggregation rule.

The rule F ∗ is supermajoritarian efficient on ∆〈X 〉 if and only if there is an hyperreal
field ∗R and a gain function φ : [−1, 1]−→ ∗R such that F n(µ) = Fφ(X

n, µ) for all n ∈ N

and µ ∈ ∆(X n).

In fact, Theorems 3.1 and 3.3 are both special cases of a more general result. A
judgement monoid is a collection X of judgement spaces which is closed under Cartesian
products. That is: for any X ,Y ∈ X, we also have X × Y ∈ X. For example, 〈X 〉 is a
monoid, and the set of all judgement spaces is a judgement monoid. Fix some judgement
spaces X1, . . . ,XJ (for some J ∈ N), then we call the set X = {Xm1

1 × Xm2
2 × · · · × XmJ

J ;
m1, . . . ,mJ ∈ N} a finitely generated monoid.

We define ∆(X) :=
⋃
X∈X ∆(X ). A judgement aggregation rule F : ∆(X) ⇉

⋃
X∈XX

is separable if, for all X1,X2 ∈ X and all µ ∈ ∆(X1 × X2), we have F (X1 × X2, µ) =
F (X1, µ

(1)) × F (X2, µ
(2)) (here, µ(1) ∈ ∆(X1) and µ(2) ∈ ∆(X2) are the marginal profiles

of µ). For example: if F : ∆(X ) ⇉ X is a judgement aggregation rule, then the rule F ∗

defined by formula (11) is the unique extension of F to a separable rule on ∆〈X 〉.

2Note that a nontrivial judgement aggregation rule can never be lower hemicontinuous (because it is a
nonconstant function from ∆(X ) into a discrete set).
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A finitary weight function is a function ω : N−→R+ such that the set supp(ω) := {n ∈ N;
ω(n) > 0} is finite. (If |supp(ω)| = N , then ω represents a weight function for N voters.)
Let Ω be the set of all finitary weight functions. For any ω ∈ Ω, let ∆ω(X) be the set of all
profiles in ∆(X) generated using ω, in the sense of eqn.(1). Let Qω := {µ̃k; µ ∈ ∆ω(X) and
k ∈ K}. (For example, suppose W ∈ N, and ω(n) = 1 for all n ∈ [1 . . .W ] while ω(0) = 1
for all n > W ; then ∆ω〈X 〉 = ∆W 〈X 〉 and Qω = QW , as defined prior to Theorem 3.1.)
Here is the main result of this section, and one of the two main results of the paper:

Theorem 3.4 Let X be any judgement monoid, and let F be a separable judgement ag-
gregation rule on X.

(a) Let ω ∈ Ω and suppose X is finitely generated. The rule F is SME on ∆ω(X) if
and only if there is a gain function φω : Qω−→R such that F (X , µ) ⊆ Fφω

(X , µ) for
all X ∈ X and µ ∈ ∆ω(X ).

(b) The rule F is SME on ∆(X) if and only if there is a hyperreal field ∗R and a
gain function φ : [−1, 1]−→ ∗R such that F (X , µ) ⊆ Fφ(X , µ) for all X ∈ X and
µ ∈ ∆(X ). In this case, for all X ∈ X, there is a dense open subset O ⊆ ∆(X ) such
that F (X , µ) = Fφ(X , µ) and is single-valued for all µ ∈ O.

(c) Let F and φ be as in part (b). Fix X ∈ X, and suppose F is upper hemicontinuous
on ∆(X ). Then F (X , µ) = Fφ(X , µ) for all µ ∈ ∆(X ).

We finish this section by noting some other convenient properties of additive support rules.
For any µ ∈ ∆(X ), let X (µ) := {x ∈ X ; µ(x) > 0}. Let µ′ ∈ ∆(X ) and let y ∈ X . We
say that µ′ is more supportive than µ of y if µ′(y) > µ(y), while µ′(x) < µ(x) for all
x ∈ X (µ) \ {y}, and µ′(x) = µ(x) = 0 for all x ∈ X \ X (µ). For example: let δy ∈ ∆(X )
be the ‘point mass’ at y (so δy(y) := 1 and δy(x) := 0 for all x ∈ X \ {y}). Then
for any µ ∈ ∆(X ) and any r ∈ (0, 1], the convex combination r δy + (1 − r)µ is more
supportive than µ of y. A judgement aggregation rule F : ∆(X ) ⇉ X is monotone if, for
any µ, µ′ ∈ ∆(X ), and y ∈ F (µ), if µ′ is more supportive than µ of y, then F (µ′) = {y}.
In other words: if y is already one of the winning alternatives, then any slight increase in
the popular support for y at the expense of the support for other elements of X will make
y the unique winning alternative. The rule F is generically single-valued if there is an open
dense subset O ⊂ ∆(X ) such that F (µ) is single-valued for all µ ∈ O.

Proposition 3.5 Let ∗R be any hyperreal field, and let φ : [−1, 1]−→ ∗R be any gain
function. Then for any judgement space X , the additive support rule Fφ is (a) strongly
supermajoritarian efficient, (b) monotone, and (c) generically single-valued on ∆(X ).

Nehring and Pivato (2011b) give a partial converse to this result: if φ is not strictly
increasing, then there exists a judgement space X such that Fφ is not supermajoritarian
efficient, generically single-valued, or monotone on ∆(X ).

Proposition 3.6 Let φ : [−1, 1]−→R be any continuous, real-valued gain function. Then
for every judgement space X , the rule Fφ is upper hemicontinuous on ∆(X ).

9



The next section provides a partial converse to this result, but the details are subtle.
Nehring and Pivato (2011b) gives a different sort of partial converse to Proposition 3.6:
if φ is not continuous, then there exists a judgement space X such that Fφ is not upper
hemicontinous on ∆(X ). Furthermore, Proposition 3.6 is true even for continuous hyperreal
gain functions (under a suitable definition of ‘continuity’). However, any such continuous
hyperreal gain function is ‘equivalent’ to a real-valued gain function (Nehring and Pivato,
2011b). Thus, allowing φ to be hyperreal in Proposition 3.6 does not yield any additional
generality.

4 Reinforcement and the median rule

Let µ1, µ2 ∈ ∆(X ) be two profiles, describing two subpopulations of size S1 and S2. Let
c1 = S1/(S1 + S2) and c2 = S2/(S1 + S2). Then µ = c1µ1 + c2µ2 is the profile of the
combined population. If each subpopulation separately endorses some position x ∈ X ,
then the combined population presumably should also endorse this position. A judgment
aggregation rule F : ∆(X ) ⇉ X satisfies reinforcement if the following holds: for any
µ1, µ2 ∈ ∆(X ) with F (µ1) ∩ F (µ2) 6= ∅, and any c1, c2 ∈ (0, 1) with c1 + c2 = 1, if
µ = c1µ1 + c2µ2, then F (µ) = F (µ1) ∩ F (µ2). In other words, for any x ∈ X , we have
x ∈ F (µ1) ∩ F (µ2) if and only if x ∈ F (µ).

In the setting of preference aggregation, Young and Levenglick (1978) showed that the
Kemeny rule is the only rule which is neutral, anonymous, Condorcet admissible, and
satisfies reinforcement. The Kemeny rule is simply the median rule on the permutahedron.
The second main result of this paper is an analog of the Young-Levenglick theorem for
judgement aggregation.

A gain function φ : [−1, 1]−→ ∗R is regular if there exists some r2 > r1 > r0 > 0, such
that φ(r0)/(φ(r2) − φ(r1)) is finite. For example: any real-valued gain function is regular.
To be irregular, φ must either be infinitely large on (0, 1], or have infinitesimal slope on this
domain, or both. For example, if ∞ represents some infinite hyperreal, then the functions
φ(r) = sign(r) · (∞+log |r|) and φ(r) = sign(r) · (1+log |r|/∞) are irregular. A judgement
aggregation rule F : ∆(X ) ⇉ X is regular if F = Fφ for some regular φ. We now come to
our second main result.

Theorem 4.1 (a) The median rule is upper hemicontinuous and satisfies reinforce-
ment on every judgement space.

(b) Let X be a thick judgement space, and let F : ∆(X ) ⇉ X be any judgement
aggregation rule. Then F is regular, upper hemicontinuous and satisfies reinforcement
on ∆(X ) if and only if F is the median rule.3

Theorem 4.1 make it desirable to have an efficient way to compute the median rule. Of
course, any additive rule can be computed by solving a linear program on the polyhedron

3Nehring and Pivato (2011b) give another reinforcement characterization of the median rule, which
does not require X to be thick or require F to be UHC, but instead imposes a slightly stronger regularity
condition on the gain function near 0.
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conv(X ), but this may be quite time-consuming. However, for the median rule, there is
another, possibly faster method, by traversing the internal graph ( ≡

X
) from section 2.

Let µ ∈ ∆(X ). Define an orientation ;
µ

on the internal graph by setting x ;
µ

y if
x • µ̃ < y • µ̃, for any x ≡

X
y ∈ X . This is an acyclic binary relation. Let ≺

µ
be the

transitive closure of ;
µ

; then ≺
µ

is a strict partial order on X . Let max(X , ≺
µ

) be the set
of ( ≺

µ
)-undominated elements in X .

Proposition 4.2 For any judgement aggregation problem (X , µ), we have Median (X , µ) =
max(X , ≺

µ
).

5 Neutral reinforcement and homogeneous rules

Let µ1, µ2 ∈ ∆(X ), and let c1, c2 ∈ [0, 1] with c1+c2 = 1. If x ∈ F (µ1) and x ∈ F (µ2), then
the reinforcement axiom requires x ∈ F (c1µ

1 + c2µ
2). One objection to this requirement

is that the profiles µ1 and µ2 may choose x over other elements of X for two very different
and incompatible reasons, and neither reason may be applicable for the combined profile
c1µ

1+c2µ
2. For example, suppose x ∈ F (µ1) because there is some k ∈ K such that xk µ̃

1
k ≈

1, while x ∈ F (µ2) because there is some other k′ ∈ K \ {k} such that xk′ µ̃
2
k′ ≈ 1. But

perhaps there is no large supermajority supporting x in the combined profile c1µ
1 + c2µ

2;
thus, x might not be the best choice for F (c1µ

1 + c2µ
2). Reinforcement excludes this sort

of argument; in this way, it excludes rules like leximin, which are strongly oriented towards
satisfying large supermajorities. We will now consider a weakened form of reinforcement,
which more tightly controls the mixing population µ2.

For any x,y ∈ X , let δx,y := 1
2
δx + 1

2
δy. A judgement aggregation rule F : ∆(X ) ⇉ X

satisfies neutral reinforcement if, for any x,y ∈ X and µ ∈ ∆(X ), if F (µ) = {x,y}, then
F (rµ+(1− r)δx,y) = {x,y} for all r ∈ (0, 1]. Reinforcement implies neutral reinforcement
(because {x,y} ⊆ F (δx,y) for any supermajoritarian efficient rule F ), but the latter con-
dition is much weaker. For any d ∈ (0,∞), the d-homogeneous rule Hd : ∆(X ) ⇉ X is the
additive support rule defined by φd(r) := sign(r) · |r|d.

Theorem 5.1 (a) Any homogeneous rule is upper hemicontinuous and satisfies neu-
tral reinforcement on every judgement space.

(b) Let X be a thick judgement space, and let F : ∆(X ) ⇉ X be a judgement aggre-
gation rule. Then F is regular, upper hemicontinuous and satisfies neutral reinforce-
ment on ∆(X ) if and only if F = Hd for some d ∈ (0,∞).4

Homogeneous rules also satisfy two other, slightly stronger forms of neutral reinforcement.

Proposition 5.2 Let F : ∆(X ) ⇉ X be a homogeneous rule, let x,y ∈ X , and let
µ ∈ ∆(X ) such that x ∈ F (µ). Then:

4Nehring and Pivato (2011b) give another neutral reinforcement characterization of homogeneous rules,
which does not require X to be thick or F to be UHC, but instead imposes a stronger regularity condition
on the gain function near 0.
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(a) x ∈ F (rµ+ (1 − r)δx,y) for all r ∈ [0, 1].

(b) Suppose there exists ν ∈ ∆(X ) such that ν̃ = 0 (i.e. 0 ∈ conv(X )). Then
x ∈ F (rµ+ (1 − r)ν) for all r ∈ [0, 1].

The proofs of both (a) and (b) are very similar to the proof of Theorem 5.1(a). Con-
versely, these properties also characterize homogeneous rules, via statements analogous to
Theorem 5.1(b). However, these characterizations are less interesting, because the con-
dition of Proposition 5.2(a) logically implies neutral reinforcement (so it yields a weaker
characterization), and the condition of Proposition 5.2(b) only applies when 0 ∈ conv(X ).

6 Continuity and uniqueness

In §3 we showed that many SME rules can be represented as additive support rules. In
what sense is the gain function φ in this representation unique? When is φ real-valued
and continuous? In particular, Proposition 3.6 states that a real continuous gain function
yields an upper hemicontinuous rule. Is the converse true?

The answer to these questions depends upon the structure of the judgement space X .
To see this, suppose that X is supermajoritarian determinate, in the sense defined in §2.
Then for any gain functions φ and ψ, we have Fφ(X , µ) = Fψ(X , µ) for all µ ∈ ∆(X ).
In particular, the median rule and the leximin rule are identical on ∆(X ). Thus, the
additive representation is far from unique, and continuity of φ is not necessary for the upper
hemicontinuity of Fφ. This suggests that, in general, the additive representation of an SME
rule on ∆(X ) will be unique only to the extent that X deviates from supermajoritarian
determinacy. Furthermore, we shall see that the uniqueness, real value, and continuity of
the gain function φ can only be established in a subset Rφ

X ⊆ [−1, 1], the ‘domain of robust
tradeoffs’, which we now define.

Recall C := conv(X ). Let A be the affine subspace of RK spanned by C, and let int (C)
denote the relative interior of C as a subset of A (if X is thick, then this is just the interior
of C as a subset of RK). Let φ : [−1, 1]−→ ∗R be an odd, nondecreasing function. For any
x,y ∈ X , define

oBφx,y := {c ∈ int (C) ; Fφ(c) = {x,y}} (this set may be empty).

For all k ∈ K±(x,y), let Rk
x,y be the projection of oBFx,y onto the kth coordinate. Define

Rφ
X :=

⋃

x,y∈X
d(x,y)≥3

⋃

k∈K±(x,y)

Rk
x,y. (12)

Lemma 6.1 Let X be a judgement space which is not supermajoritarian determinate. If
φ is any gain function such that Fφ is upper hemicontinuous on ∆(X ), then Rφ

X is a
nonempty open set.

In particular, Lemma 6.1 implies that Rφ
X 6= ∅ if X thick and non-proximal. We now come

to a partial converse to Proposition 3.6.
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Theorem 6.2 Let X be a thick judgement space, and let φ : [−1, 1]−→ ∗R be a gain func-
tion such that Fφ : ∆(X ) ⇉ X is upper hemicontinuous and Rφ

X 6= ∅.

(a) Let R ⊆ Rφ
X be a connected component of Rφ

X , and fix r1, r2 ∈ R with 0 < r1 < r2.
Define φ : R−→R by

φ(r) := st

(
φ(r) − φ(r1)

φ(r2) − φ(r1)

)
,

for all r ∈ R. Then φ is continuous, real-valued, and increasing on R.

(b) Suppose there exists some s ∈ ∗R such that the function st (s φ) is continuous and

real-valued on cl
(
Rφ
X

)
. Then there exists a real-valued, continuous gain function

ψ : [−1, 1]−→R such that Fφ = Fψ.

The next result shows that, even on a thick, non-proximal space, the ‘full’ converse to
Proposition 3.6 is false: upper hemicontinuity of Fφ does not imply that φ is either con-
tinuous or real-valued everywhere on [−1, 1].

Proposition 6.3 Let M ∈ N, and let X pr

A be the permutahedron on M alternatives. Let
φ : [−1, 1]−→ ∗R be a gain function such that φ is continuous, real-valued, and unbounded
on
(
−1 + 2

M
, 1 − 2

M

)
, and φ is infinite on

[
−1, −1 + 2

M

]
⊔
[
1 − 2

M
, 1
]
. Then Fφ is upper

hemicontinuous.

Finally, we turn to the uniqueness of the additive representation. As with our results about
continuity, it is only possible to establish uniqueness inside the domain Rφ

X .

Theorem 6.4 Let φ : [−1, 1]−→R and ψ : [−1, 1]−→R be odd, continuous and increasing.
Let X be a thick judgement space, such that Rφ

X ∪ {0} is connected.
We have Fφ(X , µ) = Fψ(X , µ) for all µ ∈ ∆(X ) if and only if there is some s > 0 such

that ψ(r) = s φ(r) for all r ∈ Rφ
X .

Thus, the behaviour of Fφ on ∆(X ) uniquely determines the gain function φ (up to positive

scalar multiplication) inside the region Rφ
X . However, outside of Rφ

X , the gain function φ
can be redefined arbitrarily, without changing the behaviour of Fφ.

When is Rφ
X ∪ {0} is connected? A subset S ⊂ RK is star-shaped (at 0) if, for any

nonzero s ∈ S, the line segment conv{0, s} is contained in S. For example, any convex set
containing 0 is star-shaped. Let C := conv(X ). For any φ : [−1, 1]−→R and c ∈ C, recall
that φ(c) := φ(ck)k∈K ∈ RK. Then define φ[C] := {φ(c); c ∈ C}, a subset of RK.

Proposition 6.5 (a) If φ[C] is star-shaped, then Rφ
X ∪ {0} is connected.

(b) If 0 ∈ C, then for any d ∈ (0,∞), there exists ǫ > 0 such that, if
∥∥φ− φd

∥∥
∞
< ǫ,

then Rφ
X ∪ {0} is connected.

(c) If Fφ : ∆(X ) ⇉ X satisfies neutral reinforcement, then Rφ
X ∪ {0} is connected.

Thus, Theorem 6.4 is applicable whenever φ is ‘close enough’ to some homogeneous rule.
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7 Further directions

Up until now, we have assumed that all voters have logically consistent judgements, so that
the ‘profile’ could be represented as a function µ : X−→R. Furthermore, while different
voters may have different weights, we assumed that a given voter should have the same
weight with respect to all propositions in K.

These assumptions are not always appropriate. Certain voters may have a special
‘expertise’ or ‘priority’ on certain propositions, but not on others. Indeed, perhaps they
shouldn’t have any weight at all on certain propositions. In a complex judgement aggrega-
tion problem, some voters might be ‘specialists’, whose judgement is reliable on a certain
subset of K, but whose overall judgement is not necessarily even an element of X .

Fortunately, these assumptions are not necessary for our results. Suppose there are
N voters, and for each k ∈ K, introduce a distinct weight function ωk : [1 . . . N ]−→R+

(summing to unity), describing the relative priority of different voters on proposition k. Let
{x1, . . . ,xN} ∈ {±1}K be the judgements of the voters. (Thus, some voters could provide
logically inconsistent judgements.) This information can no longer be be adequately
summarized with a function µ : {±1}K−→R. However, we can still define the vector
µ̃ ∈ [−1, 1]K by setting µ̃k :=

∑N

n=1 ωk(n)xnk for all k ∈ K.

A judgement aggregation rule must now be defined as a multifunction F̃ : [−1, 1]K ⇉ X .
The information in µ̃k is all that is required to define supermajoritarian efficiency using
the functions γeµ,x defined in eqn.(4), or to define the additive rule Fφ via eqn.(6). Most of
our results should generalize easily to this setting.

We have also assumed that all propositions in K should be treated as having equal
importance. But in some judgement aggregation problems, certain propositions should
receive special treatment. (For example, in truth-functional aggregation, ‘premise’ propo-
sitions should be treated differently from ‘conclusion’ propositions.)

To relax this assumption, we could introduce a weight vector λ ∈ RK+, where λk measures
the ‘importance’ of coordinate k. For any µ ∈ ∆(X ), x ∈ X , and q ∈ (0, 1], we then define
γµ,x(q) :=

∑
{λk; k ∈ K and xk µ̃k ≥ q}. We can then define supermajoritarian efficiency

as before. For any φ : [−1, 1]−→L, we define

Fφ(X , λ, µ) := argmax
x∈X

(
∑

k∈K

λk φ(xk µ̃k)

)
.

Again, most of our results should generalize easily to this setting.

Appendix A: Hyperreal fields

Let I be any infinite indexing set, and let RI be the space of all functions r : I−→R. A
free filter on I is a collection F of subsets of I satisfying the following axioms:

(F0) No finite subset of I is an element of F. (In particular, ∅ 6∈ F.)

(F1) If E ,F ∈ F, then E ∩ F ∈ F.
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(F2) For any F ∈ F and E ⊆ I, if F ⊆ E , then E ∈ F.

For any E ⊆ I, axioms (F0) and (F1) together imply that at most one of E or E∁ can be
in F. A free ultrafilter is filter F which also satisfies:

(UF) For any E ⊆ I, either E ∈ F or E∁ ∈ F.

Equivalently, F a ‘maximal’ filter: it is not a proper subset of any other filter. Heuristically,
elements of F are ‘large’ subsets of I: if F ∈ F and a certain statement holds for all i ∈ F ,
then this statement holds for ‘generic’ element of I. In particular, axioms (F0) and (UF)
imply that I ∈ F.

Ultrafilter lemma. Every free filter F is contained in some free ultrafilter

Proof sketch. Consider the set of all free filters containing F; apply Zorn’s Lemma to get
a maximal element of this set. 2

Let F be a free ultrafilter on I, and for all r, s ∈ RI , define r ∼
F
s if the set {i ∈ I;

r(i) = s(i)} is an element of F. Let ∗R := RI/( ∼
F

). Then ∗R is both a linearly ordered
field and a linearly ordered real vector space; it is called a hyperreal field. In particular, if
I = N, then ∗R is the field of hyperreal numbers (Anderson, 1991).

Appendix B: The internal graph

Let X be a judgement space, and let C := conv(X ). For any x,y ∈ X , write “x ←→
X

y” if
some edge of the polyhedron C connects x to y; this yields the edge graph of X . This section
will investigate the relationship between the internal graph and the edge graph. We will
also consider a third graph structure on X . For any x,y ∈ X , define K0(x,y) := {k ∈ K;
xk = xy}. Define [x,y] := {z ∈ X ; zk = xk = yk for all k ∈ K0(x,y)}. We write “x ⊲⊳

X
y”

if [x,y] := {x,y}; this is the adjacency graph of X .
For any x,y, z ∈ X , let med(x,y, z) ∈ {±1}K be the outcome of a propositionwise

majority vote amongst three voters who respectively endorse positions x, y, and z. (For-
mally: med(x,y, z) := (mk)k∈K, where for all k ∈ K, mk := sign(xk + yk + zk).) We say
X is a median space if med(x,y, z) ∈ X for all x,y, z ∈ X . Nehring and Puppe (2007)
have shown that X is a median space if and only if propositionwise majority vote on pro-
files in ∆(X ) always produces outcomes in X (i.e. majority vote is a viable judgement
aggregation rule); in this case all supermajoritarian efficient aggregation rules will agree
with the outcome of majority vote. At the opposite extreme, we say X is McGarvey if
0 ∈ int (conv(X )). Nehring and Pivato (2011a) have shown that X is a McGarvey space
if and only if propositionwise majority vote on profiles in ∆(X ) can produce any outcome
in {±1}K (so any conceivable ‘voting paradox’ is possible).

Proposition B.1 (a) ⊲⊳
X

is a subgraph of ≡
X

.

(b) If X is a median space, then ⊲⊳
X

is equal to ≡
X

.
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(c) ≡
X

is a subgraph of ←→
X

(d) If X is a McGarvey space, then ≡
X

is equal to ←→
X

.

(e) The diameter of ≡
X

is at most dim[C].

Proof of Proposition B.1. Let x,y ∈ X . Define B′x,y := {c ∈ C; Median (c) = {x,y}}.
Recall that D := dim[C].

Claim 1:
(
dim(Bx,y) = D − 1

)
⇐⇒

(
B′x,y 6= ∅

)
.

Proof: Let P := {c ∈ C; (x−y)•c = 0}; then B′x,y ⊆Bx,y ⊂ P. Clearly, dim(P) = D−1.
Thus, dim(Bx,y) = D − 1 if and only ifBx,y contains a relatively open subset of P .

“=⇒” For any z ∈ X \ {x,y}, let

Bx,y,z :=
{
c ∈Bx,y ; z ∈ F (c)

}
=

{
c ∈Bx,y ; (x − z) • c = 0

}
.

Then dim(Bx,y,z) = dim(Bx,y) − 1 = D − 2, because Bx,y,z is defined by imposing an
additional linear constraint onBx,y (and (x − z) is linearly independent of (x − y) if
z 6= y). Thus

B′x,y = Bx,y \
⋃

z∈X\{x,y}

Bx,y,z

is a (D− 1)-dimensional set minus a finite union of lower-dimensional sets; hence it is
nonempty.

“⇐=” Suppose B′x,y 6= ∅. Let b ∈ B′x,y. Then b ∈ P, and (x − z) • b > 0, for all
z ∈ X \ {x,y}. Let ǫ := min

z∈X\{x,y}
(x − z) • b; then ǫ > 0, because X is finite.

For any p ∈ RK, if ‖b − p‖1 < ǫ/2, then (x−z)•p > 0 for all z ∈ X \{x,y} (because
|(x− z) •p− (x− z) •b| < ‖x − z‖∞ · ‖p − b‖1 = 2 · ‖p − b‖1 < 2 · ǫ/2 = ǫ). Thus, if
p ∈ P and ‖b − p‖1 < ǫ/2, then p ∈ B′x,y. Thus, dim(B′x,y) = dim(P) = dim(C)−1 =
D − 1. But B′x,y ⊆Bx,y; thus, dim(Bx,y) = D − 1. 3 Claim 1

(a) Suppose x ⊲⊳
X

y. We must show that x ≡
X

y. Without loss of generality, suppose xk = 1 =
yk for all k ∈ K0(x,y). Define c := (x + y)/2. Then ck = 1 for all k ∈ K0(x,y), and
ck = 0 for all other k ∈ K. Thus, c•x = c•y = |K0(x,y)|. For any other z ∈ X , we have
c • z ≤ |K0(x,y)|, with equality if and only if z ∈ [x,y]. But x ⊲⊳

X
y, so [x,y] = {x,y}.

Thus, c • z < c • x = c • y for all z ∈ X \ {x,y}. Thus, F (c) = {x,y}, so c ∈ B′x,y.
Thus, B′x,y 6= ∅, so Claim 1 says dim(Bx,y) = D − 1 as desired.

(b) Suppose x 6 ⊲⊳
X

y; we must show that x 6 ≡
X

y. If x 6 ⊲⊳
X

y, then there exists some z ∈
[x,y] \ {x,y}; we will show that Bx,y = Bx,y,z; thus, B′x,y = ∅, and thus, Claim 1 implies
that x 6 ≡

X
y.

Let µ̃ ∈ Bx,y; then {x,y} ⊆ Median (X , µ). But X is a median space, so Median (X , µ) =
Maj(µ). Thus, {x,y} ⊆ Maj(µ). This means that sign(µ̃k) = xk = yk for all k ∈
K0(x,y), whereas sign(µ̃k) = 0 for all k ∈ K±(x,y). But z ∈ [x,y], so zk = xk = yk for
all k ∈ K0(x,y). Thus, z ∈ Maj(µ) also. Thus, z ∈ Median (X , µ). Thus, µ̃ ∈ Bx,y,z, as
claimed.
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(c) Suppose x ≡
X

y; we must show that x ←→
X

y. Let b ∈ B′x,y. Then argmax
z∈X

(b•z) = {x,y}.

Thus, argmax
c∈C

(b•c) = conv{x,y} (because X contains all extremal points of C). Thus,

conv{x,y} is the set of solutions to some linear program, so it is an edge of conv(X ).
Thus, x ←→

X
y.

(d) Suppose x ←→
X

y; we must show that x ≡
X

y. Since conv{x,y} is an edge of C, there exists
some vector v ∈ RK such that argmax

c∈C
(v • c) = conv{x,y}. Now, X is McGarvey,

so C contains a neighbourhood of 0, so there exists some r > 0 such that r · v ∈ C.
Find some µ ∈ ∆(X ) such that µ̃ = r · v. Then argmax

c∈C
(µ̃ • c) = conv{x,y}; thus,

argmax
z∈X

(µ̃ • z) = {x,y}. Thus, Median (X , µ) = {x,y}. Thus, µ̃ ∈ B′x,y, so B′x,y 6= ∅,

so dim(Bx,y) = D − 1 by Claim 1 above.

(e) Part (a) implies that it suffices to show that the diameter of the adjacency graph is
at most dim(C). Let x, z ∈ X . A monotone path from x to z is a sequence x =
y0 ⊲⊳

X
y1 ⊲⊳

X
y2 ⊲⊳

X
· · · ⊲⊳

X
yL = z, such that K±(x,y1) ⊂ K±(x,y2) ⊂ · · · K±(x,yL).

Claim 2: If d(x, z) = J , then there is a monotone path from x to z of length at most
J .

Proof: (by strong induction on J)

Base Case (J = 1). If d(x, z) = 1, then x ⊲⊳
X

z. Let y0 := x and y1 := z; then we have
a monotone path of length 1.

Induction. Suppose the claim is true for all x′, z′ ∈ X with d(x′, z′) < J . Let
x, z ∈ X with d(x, z) = J . If x ⊲⊳

X
z, then we are done. Otherwise, there exists

some y ∈ [x, z] \ {x, z}. Thus, xk = yk = zk for all k ∈ K0(x, z). Furthermore, for all
k ∈ K±(x, z), either yk = xk, or yk = zk (but not both). Thus, if J ′ := d(x,y) and
J ′′ := d(y, z), then we have

J ′ + J ′′ = #{k ∈ K±(x, z) ; yk 6= xk} + #{k ∈ K±(x, z) ; yk 6= zk}

= |K±(x, z)| = d(x, z) = J.

Also, J ′, J ′′ ≥ 1, because x 6= y 6= z. Thus, J ′ = J−J ′′ ≤ J−1 and J ′′ = J−J ′ ≤ J−1.
Thus, the induction hypothesis yields a monotone path from x to y of length at most
J ′, and a monotone path from y to z of length at most J ′′. Gluing these two paths
together yields a monotone path from x to z of length at most J ′+J ′′ = J . 3 Claim 2

Now, let x, z ∈ X ; we must show that there is some ( ⊲⊳
X

)-path from x to z of length at
most dim(C). Claim 2 says there is a monotone path x = y0 ⊲⊳

X
y1 ⊲⊳

X
y2 ⊲⊳

X
· · · ⊲⊳

X
yL = z,

for some L ∈ N. Since this path is monotone, the set Y := {(y1−y0), (y2−y0), . . . , (y
L−

y0)} is linearly independent, which means that dim(span(Y)) = L. But Y ⊆ X − X ,
so dim(span(Y)) ≤ dim(span(X − X )) = dim(C). Thus, we must have L ≤ dim(C), as
desired. 2
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Appendix C: Detecting identical SME aggregation rules

Throughout this section, let X ⊂ {±1}K be some judgement space. This section contains
technical results which are useful for showing that two judgement aggregation rules F and
G are actually identical. For example, the proofs of Theorems 2.1 and 3.4(c) both use the
following result.

Lemma C.1 Let F,G : ∆(X ) ⇉ X be two judgement aggregation rules. Suppose F (µ) ⊆
G(µ) for all µ ∈ ∆(X ), and G is monotone, and F is upper hemicontinuous. Then
F (µ) = G(µ) for all µ ∈ ∆(X ).

Proof: Let µ ∈ ∆(X ). We have F (µ) ⊆ G(µ) by hypothesis; we must show F (µ) ⊇ G(µ).
So, let x ∈ G(µ); we will show that x ∈ F (µ). Let δx ∈ ∆(X ) be the point mass at
x. For all n ∈ N, define µn := (1 − 1

n
)µ + 1

n
δx. Then µn is more supportive of x than

µ, so G(µn) = {x} because G is monotone. Thus, F (µn) = {x} because F ⊆ G, and
F (µn) must be nonempty. However, lim

n→∞
µn = µ, and F is upper hemicontinuous. Thus,

x ∈ F (µ), as desired. 2

A judgement aggregation rule F : ∆(X ) ⇉ X is a support rule if there exists a function

F̃ : conv(X ) ⇉ X such that F (µ) = F̃ (µ̃) for all µ ∈ ∆(X ). For example: for any odd gain
function φ : [−1, 1]−→ ∗R, the additive rule Fφ is a support rule, because Lemma 3.2(b)
says that Fφ(µ) is simply the set of x ∈ X which maximize the value of x • φ(µ̃).

Let C := conv(X ), and let F : C ⇉ X be a support rule. For any x ∈ X , we define

CFx := {c ∈ C ; x ∈ F (c)} and oCFx := {c ∈ C ; F (c) = {x}}.

Next, for any x,y ∈ X , we define

BFx,y := CFx ∩ CFy = {c ∈ C ; x,y ∈ F (c)}.

A key step in the proof of Theorem E.7 is the following result:

Proposition C.2 Let F,G : ∆(X ) ⇉ X be SME, UHC monotone support rules. Then

(
F = G

)
⇐⇒

(
oBFx,y ⊆BGx,y ∪ (C \ CGx ) for every x,y ∈ X with d(x,y) ≥ 3

)
.

In fact, Proposition C.2 follows from a more general result, which is also used to prove
Theorem 5.1(b).

Proposition C.3 Let F,G : ∆(X ) ⇉ X be UHC, monotone support rules. Then

(
F = G

)
⇐⇒

(
oBFx,y ⊆BGx,y ∪ (C \ CGx ) for every x,y ∈ X

)
.
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Remark. Note that, for any x,y ∈ X and any rules F,G : ∆(X ) ⇉ X , we have
(
oBFx,y ⊆BGx,y ∪ (C \ CGx )

)
⇐⇒

(
oBFx,y ∩ CGx ⊆ CGy

)
. (C1)

Thus, we can use the right hand side of eqn.(C1) when applying Propositions C.2 and C.3.
We need two preliminary lemmas to prove Proposition C.3.

Lemma C.4 Let F : ∆(X ) ⇉ X be an upper hemicontinuous, monotone support rule.
Let x ∈ X . Let ∂CFx be the relative boundary of CFx as a subset of C, and let int

(
CFx
)

be
the relative interior of CFx . (That is: ∂CFx := CFx ∩ cl

(
C \ CFx

)
and int

(
CFx
)

:= CFx \ ∂CFx .)
Then:

(a) int
(
CFx
)

= oCFx

(b) oCFx is connected.

(c) CFx = cl
(
oCFx
)
.

(d) ∂CFx =
⋃

y∈X\{x}

BFx,y =
⋃

y∈X\{x}

cl
(
oBFx,y

)
.

Proof: (c) “⊇” Clearly, CFx ⊇ oCFx . To show that CFx ⊇ cl
(
oCFx
)
, it suffices to observe that

CFx is closed, because F is upper hemicontinuous by hypothesis.

“⊆” Let c ∈ CFx . For any r ∈ (0, 1), let cr := rx + (1 − r)c. Clearly, lim
r→0

cr = c. Thus,

to show that c ∈ cl
(
oCFx
)
, it suffices to show that cr ∈ oCFx for all r > 0.

To see this, suppose c = µ̃ for some µ ∈ ∆(X ). Define δx ∈ ∆(X ) as in eqn.(9). Then
cr = µ̃r, where µ̃r = rδx + (1 − r)µ. Now, µ̃r is more supportive of x than µ; thus,

F (µ̃) = {x}, because F is monotone by hypothesis. Thus, F̃ (cr) = {x}; hence cr ∈ oCFx .

(b) For any c ∈ oCFx , the proof of part (c) shows that the line segment from x to c is in oCFx .
Thus, oCFx is path-connected, hence connected.

(a) To see int
(
CFx
)
⊇ oCFx , note that

oCFx := {c ∈ C ; F (c) = x} = C \
⋃

y∈X\{x}

CFy . (C2)

Now
⋃

y∈X\{x} C
F
y is closed because X is finite and CFy is closed for any y ∈ X (because

F is upper hemicontinuous). Thus, eqn.(C2) makes oCFx a relatively open subset of C;
thus, oCFx ⊆ int

(
CFx
)
.

To see int
(
CFx
)
⊆ oCFx , note that

cl
(
C \ oCFx

)
(∗)

⋃

y∈X\{x}

CFy (⋄)

⋃

y∈X\{x}

cl
(
oCFy
)

(†)
cl




⋃

y∈X\{x}

oCFy


 ⊆ cl

(
C \ CFx

)
.
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Here, (∗) is by eqn.(C2), (⋄) is by applying part (c) to each y ∈ X \ {x}, and (†) is
because X is finite.

Taking the complement of both sides, we get C \ cl
(
C \ oCFx

)
⊇ C \ cl

(
C \ CFx

)
, which is

equivalent to int
(
oCFx
)
⊇ int

(
CFx
)
, which means oCFx ⊇ int

(
CFx
)

(because oCFx is relatively
open).

(d) We must first establish some results about the geometry of CFx .

Claim 1: For any b ∈ int (C) ∩ ∂CFx , there exist arbitrarily small relative neighbour-
hoods V ⊆ C around b such that the set V \ CFx is path-connected.

Proof: Monotonicity implies that x ∈ oCFx . Thus, upper hemicontinuity implies that
there is some ǫ > 0 such that B(x, ǫ) ∩ C ⊆ oCFx (where B(x, ǫ) is the ǫ-ball around x
in RK). Let S := ∂B(x, ǫ) ∩ C; then S is homeomorphic to a ball in RD−1. Thus, the
Cartesian product S × [0, 1] is homeomorphic to a D-dimensional ‘cylinder’.

Let C∗ := C \ {x} and let C∗x := CFx \ {x}.

Claim 1.1: (a) There is a homeomorphism η : C∗−→S × (0, 1].

(b) There is a continuous function α : S−→(0, 1] such that η(C∗x) = {(s, t); s ∈ S and
0 < t ≤ α(s)}.

Proof: (a) For any c ∈ C∗, let Lc denote the unique ray in RK originating at x and
passing through c. Then Lc passes through S at a unique point —call this point
σ(c). This defines a continuous surjection σ : C∗−→S. Let T be the set of all faces
of the polyhedron C which do not contain x. Then for any c ∈ C∗, the line Lc

passes through T at a unique point —call this point τ(c). This defines a continuous
function τ : C∗−→T . Let ρ(c) := |c − x|/|τ(c) − x|; this defines a continuous
function ρ : C∗−→(0, 1] (with T = ρ−1{1}). Furthermore, for any fixed s ∈ S, the
restricted map ρ : Ls ∩ C∗−→(0, 1] is bijective. Now define η : C∗−→S × (0, 1] by
η(c) := (σ(c), ρ(c)); then η is a homeomorphism.

(b) For any c ∈ C∗, let (x, c] denote the line segment from x to c (a subset of Lc).
If c ∈ CFx , then (x, c] ⊂ CFx (because F is monotone). If η(c) = (s, r0), then this
means that η−1(s, r) ∈ CFx for all r ∈ (0, r0]. Thus, for any s ∈ S, if we define

α(s) := sup
{
ρ(c) ; c ∈ CFx ∩ Ls

}
= sup

{
r ∈ [0, 1] ; η−1(s, r) ∈ CFx

}
,

then η−1(s, r) ∈ CFx for all r < α(s). Thus, η−1(s, α(s)) ∈ CFx , because CFx is closed
because F is upper hemicontinuous. Furthermore, η−1(s, α(s)) ∈ ∂CFx if α(s) < 1
(again by upper hemicontinuity).
The set S is compact, and ρ : S−→(0, 1] is continuous; thus, M := min{ρ(s); s ∈ S}
exists, and M > 0. Clearly, α(s) ≥M for all s ∈ S (because S ⊂ CFx ).
To see that α is continuous, let {sn}

∞
n=1 ⊂ S be a sequence converging to some point

s ∈ S, and let tn := α(sn) for all n ∈ N. Then {tn}
∞
n=1 ⊂ [M, 1], by the previous

paragraph. The interval [M, 1] is compact, so the sequence {tn}
∞
n=1 must have

cluster points in [M, 1]. Let t be any cluster point of {tn}
∞
n=1; we must show that

α(s) = t. First suppose t < 1. By dropping to a subsequence if necessary, we can
ensure that tn < 1 for all large enough n ∈ N; thus η−1(s, tn) ∈ ∂CFx . The map η−1 is
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continuous; thus, η−1(s, t) is a cluster point of the sequence {η−1(sn, tn)}
∞
n=1 ⊂ ∂CFx ;

thus, η−1(s, t) ∈ ∂CFx (because ∂CFx is closed, by upper hemicontinuity). Thus,
α(s) = t (by definition of α).
Thus, if {tn}

∞
n=1 ⊂ S clusters at any point t < 1, then α(s) = t. Otherwise, we must

have lim
n→∞

tn = 1. But {η−1(sn, tn)}
∞
n=1 ⊂ CFx ; thus, η−1(s, 1) ∈ CFx (because CFx is

closed, by upper hemicontinuity). Thus, α(s) = 1. ▽ Claim 1.1

Now, let b ∈ int (C) ∩ ∂CFx , and let (s0, t0) := η(b). Then t0 < 1 (because b 6∈ ∂C
because b ∈ int (C)). But t0 = α(s0); thus, α(s) < 1 for all s sufficiently close to s0

(because α is continuous, by Claim 1.1(b)). Furthermore, for any ǫ > 0, there exists
some δ > 0 such that the set

{(s, t) ∈ S × (0, 1] ; |s − s0| < δ and α(s) < t < α(s0) + ǫ}

is path-connected (because α is continuous). Thus, there exist arbitrarily small neigh-
bourhoods U around (s0, t0) such that the set {(s, t) ∈ U ; α(s) < t < 1} is path
connected. Mapping this back through the homeomorphism η from Claim 1.1(a), this
means there exist arbitrarily small neighbourhoods V around b such that the set V\CFx
is path-connected. 3 Claim 1

For any Y ⊆ X , define oBFY := {c ∈ C ; F (c) = Y}. (Thus, if Y = {x,y}, then oBFx,y =
oBFY ∩ int (C).) If y ∈ Y and |Y| ≥ 2, then clearly oBFY ⊂ ∂CFy .

Claim 2: Let x0 ∈ Y ⊆ X with |Y| ≥ 3. Then every element of oBFY ∩ int (C) is a
cluster point of oBFY ′ for some Y ′ ( Y with x0 ∈ Y ′ and 2 ≤ |Y ′| ≤ |Y| − 1.

Proof: Suppose Y := {x0,x1, . . . ,xN} (for some N ≥ 2). Let b ∈ oBFY ∩ int (C). We will
show that b is a cluster point of oBFY ′ for some Y ′ ⊆ {x0,x1, . . . ,xN−1} with |Y ′| ≥ 2
and x0 ∈ Y ′.

There exists some relatively open neighbourhood V ⊂ C around b such that, for all
b′ ∈ V, we have F (b′) ⊆ Y (otherwise, we contradict the upper hemicontinuity of F ,
because F (b) = Y). Now, b ∈ (∂CFxN

) ∩ int (C); thus Claim 1 says we can choose V
such that the set V \ CFxN

is path-connected.

For any ǫ > 0, let bǫ0 := ǫx0+(1−ǫ)b and let bǫ1 := ǫx1+(1−ǫ)b. Then F (bǫ0) = {x0}
and F (bǫ1) = {x1} because F is monotone. If ǫ is small enough, then bǫ0,b

ǫ
1 ∈ V (it’s

a neighbourhood of b) and clearly bǫ0,b
ǫ
1 6∈ CFxN

; thus bǫ0,b
ǫ
1 ∈ V \ CFxN

, which is
path-connected. So, let βV : [0, 1]−→V \ CFxN

be a continuous path with βV(0) =
bǫ0 and βV(1) = bǫ1. Thus, F (βV(0)) = {x0} and F (βV(1)) = {x1}. Thus, upper
hemicontinuity of F yields some RV ∈ [0, 1) such that x0 ∈ F (βV(r)) for all r ∈ [0, RV ],
but x0 6∈ F (βV(r)) for all r ∈ (RV , 1]. But F (βV(r)) 6= ∅; thus, for all r ∈ (RV , 1],
we must have xn(r) ∈ F (βV(r)) for some n(r) ∈ [1 . . . N−1]. By letting r ց RV ,
invoking upper hemicontinuity, and dropping to a subsequence if necessary, we get
xn ∈ F (βV(RV)) for some n ∈ [1 . . . N−1]. Thus, we have {x0,xn} ⊆ F (βV(RV)) ⊆
{x1, . . . ,xN−1}. In other words, F (βV(RV)) = Y ′ for some Y ′ ⊆ {x0, . . . ,xN−1} with
|Y ′| ≥ 2 and x0 ∈ Y ′.

Let {Vn}
∞
n=1 be a sequence of neighbourhoods of b satisfying the conditions of Claim

1, whose diameters converge to 0. For every n ∈ N, construct bn := βVn(RVn
) as
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in the previous paragraph. Then bn−−−−
ǫ→0−→b, because bn ∈ Vn, and diam(Vn)−−−−n→∞

−→0.
By dropping to a subsequence if necessary, we can ensure there is some fixed subset
Y ′ ⊆ {x0, . . . ,xN−1} with |Y ′| ≥ 2 and x0 ∈ Y ′, such that F (bn) = Y ′ for all n ∈ N.
Thus, b is a cluster point of oBFY ′ . 3 Claim 2

Claim 3: Let x ∈ Y ⊂ X with |Y| ≥ 2. Then every element of oBFY is a cluster point
of oBFx,y for some y ∈ Y \ {x}.

Proof: Every element of oBFY is a cluster point of oBFY ∩ int (C). Thus, it suffices to prove
the claim for elements of oBFY ∩ int (C).

Let |Y| = N ≥ 2. If N = 2 then we are done. So suppose N > 2. Let b ∈ oBFY ∩int (C).
Claim 2 says that b = lim

n→∞
bn for some sequence {bn}

∞
n=1 ⊆

oBFY ′ , where Y ′ ( Y with

2 ≤ |Y ′| ≤ |Y| − 1 and x ∈ Y ′.

If |Y ′| = 2, then we are done. Otherwise, for each n ∈ N, Claim 2 implies that
bn = lim

m→∞
bn,m for some sequence {bn,m}

∞
m=1 ⊆

oBFYn
, where Yn ( Y ′ with 2 ≤ |Yn| ≤

|Y ′| − 1 and x ∈ Yn. By dropping to a subsequence of {bn}
∞
n=1 if necessary, we can

assume that Yn = Y ′′ for all n ∈ N, for some fixed Y ′′ ⊆ Y ′ with 2 ≤ |Y ′′| ≤ |Y ′| − 1
and x ∈ Y ′′. Now consider the diagonal sequence {bn,n}

∞
n=1. Clearly, bn,n−−−−n→∞

−→b;
thus, b is a cluster point of oBFY ′′ .

If |Y ′′| = 2, then we are done. Otherwise, repeat the argument of the previous
paragraph to construct a sequence {bn,n,n}

∞
n=1 ⊆ oBFY ′′′ , for some Y ′′′ ( Y ′′ with

2 ≤ |Y ′′′| ≤ |Y ′′| − 1 and x ∈ Y ′′′, such that bn,n,n−−−−n→∞
−→b.

Inductively, we can find a decreasing sequence Y ) Y ′ ) Y ′′ ) Y ′′′ ) · · · ) Y(k) )

· · · {x}, such that b is a cluster point of oBF
Y(k) and |Y(k)| ≥ 2 for every k. Since |Y| is

finite, we must eventually reach some k where |Y(k)| = 2 and x ∈ Y(k). 3 Claim 3

Now we have:

∂CFx ⊆
(∗)

⋃

y∈X\{x}

BFx,y ⊆
(†)

⋃

Y⊆X : x∈Y & |Y|≥2

oBFY ⊆
(⋄)

⋃

y∈X\{x}

cl
(
oBFx,y

)

⊆
(‡)

⋃

y∈X\{x}

BFx,y ⊆
(@)

∂CFx .

To see (∗), let b ∈ ∂CFx . Then b is a cluster point of CGx , but also a cluster point of CFy
for some y ∈ X \{x}. Then upper hemicontinuity of F implies that b ∈ CFx ∩CFy =BFx,y.
Next, (†) is because, for all y ∈ X \ {x}, we have BFx,y ⊆ oBFY for some Y ⊇ {x,y}.

Meanwhile, (⋄) is by Claim 3. Finally, (‡) is because for all x,y ∈ X , we have cl
(
oBFx,y

)
⊆

Bx,y by upper hemicontinuity.

To see (@), let y ∈ X \ {x}. For any b ∈BFx,y, monotonicity of F implies that b is a
cluster point of both oCFx and oCFy ; thus,Bx,y ⊆ ∂CFx . 2

Lemma C.5 Let F,G : ∆(X ) ⇉ R be upper hemicontinuous, monotone support rules.
The following are equivalent:
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(a) CFx ⊆ CGx for all x ∈ X .

(b) oCFx ⊆ oCGx for all x ∈ X .

(c) F = G.

Proof: The statement “(c) =⇒ (b)” is immediate. The statement “(b) =⇒ (a)” follows
Lemma C.4(c). It remains to show “(a) =⇒ (c)”. So suppose CFx ⊆ CGx for all x ∈ X .

Claim 1: For all x ∈ X , we have: (i) oCGx ⊆ oCFx , and (ii) cl
(
oCGx
)
⊆ cl

(
oCFx
)
.

Proof: (i) Suppose c ∈ oCGx . Then for all y ∈ X \ {x}, c 6∈ CGy ; hence the contrapositive
of hypothesis (a) says c 6∈ CFy , so y 6∈ F (c). Thus, if x 6∈ F (c), then F (c) = ∅, which
is impossible. Thus, x ∈ F (c), which means that F (c) = {x}; hence c ∈ oCFx .

(ii) Follows immediately by taking the closure in part (i). 3 Claim 1

Claim 2: For all x ∈ X , we have CGx = CFx .

Proof: Combining Claim 1(ii) and Lemma C.4(c), we get CGx ⊆ CFx . But CGx ⊇ CFx by
hypothesis. Thus, CGx = CFx . 3 Claim 2

Thus, for any c ∈ C and any x ∈ X , we have
(
x ∈ F (c)

)
⇐⇒

(
c ∈ CFx

)
⇐

(∗)
⇒
(
c ∈ CGx

)
⇐⇒

(
x ∈ G(c)

)
,

where (∗) is by Claim 2. Thus, F = G. 2

Proof of Proposition C.3. “=⇒” is obvious: if F = G, then oBFx,y = oBGx,y ⊆BGx,y for all
x,y ∈ X .

“⇐=” According to Lemma C.5, it suffices to establish the following statement:

CGx ⊆ CFx , for every x ∈ X . (C3)

To verify statement (C3), first note that

∂CFx (∗)

⋃

y∈X\{x}

cl
(
oBFx,y

)
⊆
(⋄)

⋃

y∈X\{x}

BGx,y ∪ cl
(
C \ CGx

)

(†)
∂CGx ∪ cl

(
C \ CGx

)
(‡)

cl
(
C \ CGx

)
. (C4)

Here, (∗) is by applying Lemma C.4(d) to ∂CFx , (⋄) is by the theorem hypothesis, and
(†) is by applying Lemma C.4(d) to ∂CGx . Finally (‡) is because ∂CGx ⊆ cl

(
C \ CGx

)
by

definition.

It follows that

int
(
CFx
)
⊔ int

(
C \ CFx

)
= C \ (∂CFx ) ⊇

(∗)
C \ cl

(
C \ CGx

)
= int

(
CGx
)
,

where (∗) is by equation (C4). But int
(
CGx
)

is connected, by Lemma C.4(b). Thus, we
must have either int

(
CGx
)
⊆ int

(
CFx
)
, or int

(
CGx
)
⊆ int

(
C \ CFx

)
. However, x ∈ int

(
CGx
)

and x ∈ int
(
CFx
)

(by monotonicity). Thus, we must have int
(
CGx
)
⊆ int

(
CFx
)
. Take the

closures and apply Lemma C.4(c) to get CGx ⊆ CFx , as desired. 2
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To go from Proposition C.3 to Proposition C.2, we need two more lemmas, which analyze
the way SME rules distinguish between elements of X with Hamming distance 1 or 2. The
first of these is also used in the proof of Proposition 3.6.

Lemma C.6 Let µ ∈ ∆(X ) and let x,y ∈ X with d(x,y) ≤ 2.

(a) If x • µ̃ < y • µ̃, then x �
µ

y, and thus, x 6∈ SME (X , µ).

(b) If x • µ̃ = y • µ̃, then γµ,x = γµ,y. Thus, x ∈ SME (X , µ) if and only if y ∈
SME (X , µ)

Proof: (a) Suppose d(x,y) = 1, and K±(x,y) = {j}. Then (x − y) • µ̃ = (xj − yj)µ̃j.
Suppose without loss of generality that yj = 1. Thus, xj = −1 and

(
x • µ̃ < y • µ̃

)
⇐⇒

(
(xj − yj)µ̃j < 0

)
=⇒

(
µ̃j > 0

)

(⋄)
=⇒

(
γx,µ(r) =

{
γy,µ(r) if r > µ̃

γy,µ(r) − 1 if r ≤ µ̃

)

=⇒
(
x �

µ
y
)

=⇒
(
x 6∈ SME (X , µ)

)
.

To see (⋄), recall that xk = yk for all k ∈ K \ {j}.

Now suppose d(x,y) = 2, and K±(x,y) = {i, j}. Then (x− y) • µ̃ = (xi − yi)µ̃i + (xj −
yj)µ̃j. Suppose without loss of generality that 0 ≤ µ̃i ≤ µ̃j. Thus

(
x • µ̃ < y • µ̃

)
⇐⇒

(
(xi − yi)µ̃i + (xj − yj)µ̃j < 0

)

⇐⇒
(
(xi − yi)µ̃i < (yj − xj)µ̃j

)
=⇒

(
yj = 1 and xj = −1

)
.

But xk = yk for all k ∈ K \ {i, j}. Thus:

• If xi = 1 and yi = −1, then γµ,x(r) =





γy,µ(r) if r > µ̃;
γµ,y(r) − 1 if µ̃i < r ≤ µ̃j;

γµ,y(r) if r ≤ µ̃i.

• If xi = −1 and yi = 1, then γµ,x(r) =





γy,µ(r) if r > µ̃;
γµ,y(r) − 1 if µ̃i < r ≤ µ̃j;
γµ,y(r) − 2 if r ≤ µ̃i.

Either way, x �
µ

y, and thus, x 6∈ SME (X , µ).

(b) The proof is similar to (a). In the case d(x,y) = 1, we deduce that µ̃j = 0. In the case
d(x,y) = 2, we deduce that µ̃j = µ̃j. Either way, we then deduce that γµ,x = γµ,y. 2

Lemma C.7 Let F,G : ∆(X ) ⇉ R be SME support rules. For any x,y ∈ X , if d(x,y) ≤
2, thenBFx,y ⊆ cl

(
C \ CGx

)
.
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Proof: Let b ∈BFx,y; we must show that b ∈ cl
(
C \ CGx

)
. Find µ ∈ ∆(X ) such that b = µ̃.

Claim 1: x • b = y • b.

Proof: First note that

(
x • b < y • b

)
(⋄)
=⇒

(
x 6∈ SME (X , µ)

)

(∗)
=⇒

(
x 6∈ F (b)

)
⇐⇒

(
b 6∈ CFx

)
. (C5)

Here, (⋄) is by Lemma C.6, while (∗) is because F is supermajoritarian efficient.

Conversely, if b ∈ CFx , then x • b ≥ y • b. Likewise, if b ∈ CFy , then x • b ≤ y • b.
Thus, if b ∈ BFx,y = CFx ∩ CFy , then x • b = y • b. 3 Claim 1

Now, for any r ∈ [0, 1], let br := ry+(1− r)b. Then x•br < y •br. Identical reasoning
to statement (C5) implies that br 6∈ CGx (because G is also supermajoritarian efficent);
hence br ∈ C \ CGx for all r > 0. But br−−−−

r→0−→b. Thus, b ∈ cl
(
C \ CGx

)
, as desired. 2

Proof of Proposition C.2. “=⇒” follows immediately from Proposition C.3.

“⇐=” follows from Lemmas C.7 and C.3. 2

Appendix D: Facts about additive rules

This appendix collects some technical results about additive judgement aggregation rules,
which are often used in the proofs in Appendix E. For example, the next lemma is used in
the proofs of Theorem 3.4(a) and Lemma D.2.

Lemma D.1 Suppose φ : [−1, 1]−→L is odd. Let X be a judgement space, and let µ ∈
∆(X ). For any x ∈ X , let M(µ,x) := {k ∈ K; xkµ̃k ≥ 0}. Then Fφ(X , µ) =

argmax
x∈X

∑

k∈M(x,µ)

φ |µ̃k|.

Proof: For any x,y ∈ X , define

K0 := {k ∈ K ; µ̃k = 0},

K++ := M(µ,x) ∩M(µ,y) \ K0 = {k ∈ K ; xkµ̃k = ykµ̃k > 0},

K+− := M(µ,x) ∩M(µ,y)∁ \ K0 = {k ∈ K ; xkµ̃k = −ykµ̃k > 0},

K−+ := M(µ,x)∁ ∩M(µ,y) \ K0 = {k ∈ K ; ykµ̃k = −xkµ̃k > 0},

and K−− := M(µ,x)∁ ∩M(µ,y)∁ \ K0 = {k ∈ K ; xkµ̃k = ykµ̃k < 0}.
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Then K = K0 ⊔ K++ ⊔ K+− ⊔ K−+ ⊔ K−−. Thus,
∑

k∈K

φ(xkµ̃k) −
∑

k∈K

φ(ykµ̃k) =
∑

k∈K

(
φ(xkµ̃k) − φ(ykµ̃k)

)

(⋄)

∑

k∈K+−

(
φ(xkµ̃k) − φ(ykµ̃k)

)
+

∑

k∈K−+

(
φ(xkµ̃k) − φ(ykµ̃k)

)

(∗)

∑

k∈K+−

(
φ (|µ̃k|) − φ (− |µ̃k|)

)
+

∑

k∈K−+

(
φ (− |µ̃k|) − φ (|µ̃k|)

)

(†)

∑

k∈K+−

(
φ |µ̃k| + φ |µ̃k|

)
+

∑

k∈K−+

(
− φ |µ̃k| − φ |µ̃k|

)

= 2
∑

k∈K+−

φ |µ̃k| − 2
∑

k∈K−+

φ |µ̃k|

(⋄)
2

∑

k∈K+−⊔K++⊔K0

φ |µ̃k| − 2
∑

k∈K−+⊔K++⊔K0

φ |µ̃k|

= 2
∑

k∈M(µ,x)

φ|µ̃k| − 2
∑

k∈M(µ,y)

φ |µ̃k| .

Here, both (⋄) are because φ(xkµ̃k) = φ(ykµ̃k) for all k ∈ K++ ⊔ K−− ⊔ K0. Next, (∗) is
by the definitions of K+− and K−+. Finally (†) is because φ is odd. Thus,

(∑

k∈K

φ(xkµ̃k) ≥
∑

k∈K

φ(ykµ̃k)
)

⇐⇒

( ∑

k∈M(µ,x)

φ|µ̃k| ≥
∑

k∈M(µ,y)

φ |µ̃k|
)
.

Thus, argmax
x∈X

(
∑

k∈K

φ(xk µ̃k)

)
= argmax

x∈X

∑

k∈M(x,µ)

φ |µ̃k| .

2

Let Γ be the space of all functions on (0, 1] of the form
∑N

n=1 an 1(qn,rn], where an ∈ R

and 0 ≤ qn < rn ≤ 1 for all n ∈ [1...N ]. Endow Γ with the supremum norm: ‖γ‖∞ :=
sup
r∈(0,1]

|γ(r)| for all γ ∈ Γ. Let Γ+ be the set of all elements of Γ which are nonnegative

everywhere A positive linear functional on Γ is a linear function P : Γ−→R which is ‖•‖∞-
continuous, such that P (γ) ≥ 0 for all γ ∈ Γ+. Let Γ∗+ be the set of all positive linear
functionals on Γ. The next result is used in the proofs of Propositions 1.1(b) and 3.5(a),
as well as Theorem 2.1(a).

Lemma D.2 Let Γ∗+ be the set of positive linear functionals on Γ. Let Φ
OND

be the set of
odd, nondecreasing functions from [−1, 1] into R.

(a) There is a bijective correspondence between Φ
OND

and Γ∗+ defined as follows. Given
any φ ∈ Φ

OND
, define φ∗ : Γ−→R by first defining φ∗

(
1(q,r]

)
:= φ(r) − φ(q) for all

q < r ∈ [0, 1], and then extending φ∗ to all of Γ by linearity. Then φ∗ ∈ Γ∗+.

To invert this map, suppose P ∈ Γ∗+. Define φ : [0, 1]−→R+ by setting φ(q) :=
P (1(0,q]) for all q ∈ [0, 1], and φ(q) := −φ(−q) for all q ∈ [−1, 0]. Then φ ∈ Φ

OND
,

and φ∗ = P .
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Let X be a judgement space, and let µ ∈ ∆(X ).

(b) For all x ∈ X and any φ ∈ Φ
OND

, we have γµ,x ∈ Γ+, and φ∗(γx,µ) =
∑

k∈M(x,µ)

φ |µ̃k|.

(c) Thus, for any φ ∈ Φ
OND

, we have Fφ(X , µ) = argmax
x∈X

φ∗(γµ,x).

Proof: (a) Given φ ∈ Φ
OND

, it is easy to check that φ∗ ∈ Γ∗+.

Conversely, let P ∈ Γ∗+ and define φ as above. By construction, φ is odd and φ(0) = 0.
To see that φ is nondecreasing, let q < r ∈ (0, 1]. Then

φ(r) = P (1(0,r]) = P
(
1(0,q] + 1(q,r]

)
= P (1(0,q])+P (1(q,r]) ≥

(∗)

P (1(0,q]) = φ(q). (D1)

(∗) because P (1(q,r]) ≥ 0 because P is positive, and 1(q,r] ∈ Γ+. Equation (D1) also
shows that P

(
1(q,r]

)
= φ(r) − φ(q) for q < r ∈ (0, 1]; thus P = φ∗.

(b) For any x ∈ X , we have

γx,µ =
∑

k∈M(x,µ)

1(0,|eµk|].

Thus, φ∗(γx,µ) =
∑

k∈M(x,µ)

φ∗(1(0,|eµk|]) =
∑

k∈M(x,µ)

φ |µ̃k| .

(c) follows from part (b) and Lemma D.1. 2

The proofs of Proposition 1.1(b) and Theorem 3.4(a) are based on separation arguments
involving finite-dimensional polyhedra. Fix Q ∈ N, and let R

Q
+ := {r ∈ RQ; rq ≥ 0,

for all q ∈ [1...Q]} be the non-negative orthant. The next lemma slightly strengthens a
well-known fact about Pareto optimality.

Lemma D.3 Let Q ∈ N. Let P ⊂ RQ be a closed, convex polyhedron in which 0 is Pareto
optimal (i.e. P ∩ R

Q
+ = {0}). Then there exists an all-positive vector v ∈ R

Q
+ such that

v • p ≤ 0 for all p ∈ P.

Proof: Let T := P − R
Q
+; then T is a closed, convex polyhedron.

Claim 1: T ∩ R
Q
+ = {0}.

Proof: (by contradiction) If t ∈ T , then t = p − r for some p ∈ P and r ∈ R
Q
+. Thus

p = t + r. Thus, if t ∈ R
Q
+ \ {0}, then p ∈ R

Q
+ \ {0} also, contradicting the Pareto

optimality of 0. 3 Claim 1

Thus, 0 lies on the boundary of the polyhedron T , so it is contained in some face. Let F
be the minimal-dimension face of T containing 0. Thus, if S ⊆ RQ is the linear subspace
spanned by F , then F = S ∩ T , and there exists some ǫ > 0 such that Bǫ ∩ S ⊂ F ,
where Bǫ ⊂ RQ is the ǫ-ball around 0.
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F is a face of T , so there exists some v ∈ RK such that F = argmaxt∈T (v • t). Clearly
v • 0 = 0; hence v • f = 0 for all f ∈ F , while v • t < 0 for all t ∈ T \ F . Thus, if
V ⊂ RQ is the hyperplane orthogonal to v, then F = T ∩ V.

Claim 2: v • r > 0 for all r ∈ R
Q
+ \ {0}.

Proof: For any r ∈ R
Q
+ \ {0}, we have −r ∈ T , so v • (−r) ≤ 0, so v • r ≥ 0. It remains

to show that v • r 6= 0. By contradiction, suppose v • r = 0. Then r ∈ V. Thus,
−r ∈ V. But −r ∈ T also, so −r ∈ T ∩ V = F = T ∩ S. But F contains a relative
neighbourhood around 0 in the subspace S, so if −r ∈ F , then there exists some ǫ > 0
such that ǫ r ∈ F ; hence ǫ r ∈ T . But ǫ r ∈ R

Q
+ \ {0}, so this contradicts Claim 1.

3 Claim 2

For any q ∈ [1...Q], let eq = (0, 0, . . . , 0, 1, 0, . . . , 0) be the qth unit vector. Then eq ∈ R
Q
+.

Thus, Claim 2 says that v • eq > 0. But this means that vq > 0, as desired. 2

Appendix E: Proofs of the main results

The proofs of Proposition 1.1 and Theorems 2.1, 3.4, and E.7(b) all depend upon Propo-
sition 3.5. Thus, we will prove Proposition 3.5 before anything else. Here is a preliminary
lemma.

Lemma E.1 Let X be a judgement space, and let F : ∆(X ) ⇉ X be a judgement aggre-
gation rule. If F is monotone, then F is generically single-valued on ∆(X ).

Proof: Suppose F is monotone. Fix y ∈ X . Define

∆y := {µ ∈ ∆(X ) ; y ∈ F (µ)} and ∆o
y := {µ ∈ ∆(X ) ; F (µ) = {y}}.

Claim 1: Suppose int (∆y) 6= ∅. Then there is an open subset Oy ⊂ ∆(X ) such that
Oy ⊂ ∆o

y but Oy is dense in ∆y.

Proof: Let ∆∗x := {µ ∈ ∆y; µ(x) > 0 for all x ∈ X}. Then ∆∗x is a dense open subset
of ∆y. For any µ ∈ ∆∗y, define Oµ := {µ′ ∈ ∆(X ); µ′(y) > µ(y) while µ′(x) < µ(x),
for all x ∈ X \ {y}}. Then Oµ is an open subset of ∆(X ). Furthermore, Oµ ⊂ ∆o

y

because F is monotone, and any element of Oµ is more supportive than µ of y. Note

that µ is a cluster point of Oµ. Now let Oy :=
⋃

µ∈∆∗
y

Oµ. Then every point in ∆∗y is a

cluster point of Oy. Thus, Oy is dense in ∆y, because ∆∗y is dense in ∆y. 3 Claim 1

Let Y := {y ∈ X ; int (∆y) 6= ∅}. Let ∆′ :=
⋃

y∈Y ∆y. Then ∆′ is dense in ∆(X )
(because its compliment has empty interior). Let O :=

⊔
y∈Y Oy. Then O is an open

subset of ∆(X ), and F is single-valued on O by definition. It remains to show that O is
dense in ∆(X ), and for this, it suffices to show that O is dense in ∆′. Let µ ∈ ∆′; then
µ ∈ ∆y for some y ∈ Y . Thus, µ is a cluster point of Oy by Claim 1, and thus, a cluster
point of O. Thus, O is dense in ∆′. 2
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Proof of Proposition 3.5 (a) Suppose φ is strictly increasing. We must show that Fφ(X , µ) ⊆
SSME (X , µ). Contrapositively, let y ∈ X , and suppose y 6∈ SSME (X , µ); we will show
that y 6∈ Fφ(X , µ).

Define φ∗ : Γ−→R as in Lemma D.2(a). For any ρ ∈ ∆(X ), we have γµ,ρ ∈ Γ 6−, and

φ∗ (γµ,ρ) (⋄)
φ∗

(
∑

x∈X

ρ(x) · γµ,x

)
=

∑

x∈X

ρ(x) · φ∗ (γµ,x) . (E1)

where (⋄) is by eqn.(8) defining γµ,ρ.

If y 6∈ SSME (X , µ), then there exists some ρ ∈ ∆(X ) such that ρ �
µ

y. Thus, γµ,ρ ≥ γµ,y,
and there exist q1 < q2 ∈ [0, 1] such that γµ,ρ(r) > γµ,y(r) for all r ∈ [q1, q2]. For any
ǫ > 0, let Rǫ := {r ∈ [q1, q2] ; γµ,ρ(r) − γµ,y(r) > ǫ}. If ǫ is small enough, then there
exist r1 < r2 ∈ [q1, q2] such that (r1, r2] ∈ Rǫ; thus, γµ,ρ − γµ,y ≥ ǫ · 1(r1,r2]. Thus,

φ∗ (γµ,ρ) − φ∗ (γµ,y) = φ∗ (γµ,ρ − γµ,y) ≥
(∗)

φ∗
(
ǫ1(r1,r2]

)

= ǫ · φ∗
(
1(r1,r2]

)
= ǫ

(
φ(r2) − φ(r1)

)
>
(†)

0. (E2)

Here, (∗) is because φ∗ is positive and γµ,ρ − γµ,y ≥ ǫ · 1(r1,r2], while (†) is because φ is
strictly increasing. Combine (E1) and (E2) to get

∑

x∈X

ρ(x) · φ∗ (γµ,x) > φ∗ (γµ,y) .

Thus, there is some x ∈ X such that φ∗ (γµ,x) > φ∗ (γµ,y). Thus, y 6∈ Fφ(X , µ), by
Lemma D.2(c).

(b) Let µ ∈ ∆(X ) and y ∈ Fφ(µ). Let µ′ ∈ ∆(X ) be more supportive than µ of y; we
must show that Fφ(µ

′) = {y}. By negating certain coordinates of X if necessary, we can
assume without loss of generality that y = 1.

Claim 1: For all k ∈ K, if there exists x ∈ X with xk = −1, then µ̃′k > µ̃k.

Proof: Recall that X (µ) := {x ∈ X ; µ(x) > 0}. If µ′ is more supportive than µ of y,
then X (µ′) ⊆ X (µ). Let X− := {x ∈ X (µ); xk = −1} and X+ := {x ∈ X (µ); x 6= y
but xk = 1}. Then

(µ̃′k − µ̃k) (⋄)

∑

x∈X (µ)

(
µ′(x) − µ(x)

)
xk

=
(
µ′(y) − µ(y)

)
yk +

∑

x∈X−

(
µ′(x) − µ(x)

)
xk +

∑

x∈X+

(
µ′(x) − µ(x)

)
xk.

(†)

(
µ′(y) − µ(y)

)
−
∑

x∈X−

(
µ′(x) − µ(x)

)
+
∑

x∈X+

(
µ′(x) − µ(x)

)

>
(∗)

(
µ′(y) − µ(y)

)
+
∑

x∈X−

(
µ′(x) − µ(x)

)
+
∑

x∈X+

(
µ′(x) − µ(x)

)

=
∑

x∈X (µ)

(
µ′(x) − µ(x)

)
= 1 − 1 = 0.
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Here, (⋄) is by defining equation (2), (†) is by definition of X− and X+, and (∗) is
because X− 6= ∅ (by the hypothesis of the claim), while µ′(x)−µ(x) < 0 for all x ∈ X−
by the definition of µ′. 3 Claim 1

Now, for any x ∈ X \ {y}, we will show that x 6∈ F (µ′). For all k ∈ K±(x,y), we have
yk = 1 and xk = −1, while Claim 1 says µ̃′k > µ̃k. Thus,

(y−x)•φ(µ̃′) =
∑

k∈K±(x,y)

2φ(µ̃′k) >
(⋄)

∑

k∈K±(x,y)

2φ(µ̃k) = (y−x)•φ(µ̃) ≥
(∗)

0,

(E3)
and thus, x 6∈ Fφ(µ

′). Here, (⋄) is because φ is increasing, and (∗) is because y ∈ Fφ(µ).

We conclude that x 6∈ Fφ(µ
′) for all x ∈ X \ {y}; thus, F (µ̃′) = {y}, as desired.

(c) follows immediately from part (b) and Lemma E.1. 2

Proofs from §1

Proof of Proposition 1.1. (a) SSME (X , µ) is nonempty because it is obtained by maxi-
mizing over a finite set. For any x,y ∈ X , observe that

(
M(x, µ) ⊃ M(y, µ)

)
=⇒

(
x �

µ
y
)

=⇒
(
δx �

µ
δy

)
.

Thus, if δy is undominated in (∆(X ), �
µ

), then y must be undominated in (X , �
µ

).
Likewise if y is undominated in (X , �

µ
), then y must be Condorcet efficient in X .

To see that, in general, SME (X , µ) ( Cond (X , µ), consider the Slater rule:

Slater (X , µ) := argmax
x∈X

|M(x, µ)| .

It is easy to see that Slater (X , µ) ⊆ Cond (X , µ). However, it is also possible to con-
struct examples where Slater (X , µ) 6⊂ SME (X , µ) (Nehring and Pivato, 2011b). Thus,
Cond (X , µ) \ SME (X , µ) 6= ∅.

It is also possible to construct an example where SSME (X , µ) ( SME (X , µ); see Nehring
and Pivato (2011b)

(b) “⊆” follows immediately from Proposition 3.5(a).

“⊇” Let Q(µ) := {|µ̃k| ; k ∈ K}, and write Q = {q1, q2, . . . , qN}, where 0 ≤ q1 < q2 <
· · · < qN ≤ 1. Define q0 := 0. Let Γ be the space of functions defined above Lemma D.2.
Define a linear injective map fµ : RN−→Γ by

fµ(r1, . . . , rN) :=
N∑

n=1

rn1(qn−1,qn] = r11(0,q1] + r21(q1,q2] + · · · + rN1(qN−1,qN ].

Let Γµ := fµ[R
N ] (a subspace of Γ); then γµ,ρ ∈ Γµ for all ρ ∈ ∆(X ). Let gµ := f−1

µ :
Γµ−→RN , and then define Gµ : ∆(X )−→RN by Gµ(ρ) := gµ(γµ,ρ). Let Pµ := Gµ[∆(X )];
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then Pµ is a convex, compact polyhedron in RN . For all x ∈ X , let Gµ(x) := gµ(γµ,x) ∈
Pµ. Let “<” be the Pareto relation on RN . Fix x ∈ X . We have

(
x �

µ
ρ
)

⇐⇒
(
Gµ(x) < Gµ(ρ)

)
, for all ρ ∈ ∆(X ).

Thus,
(
x ∈ SSME (X , µ)

)
⇐⇒

(
Gµ(x) is Pareto optimal in Pµ

)
.

Lemma D.3 now yields a strictly positive vector v ∈ RN
+ such that

v •Gµ(x) ≥ v • p, for all p ∈ Pµ. (E4)

Construct φ ∈ ΦI such that φ(qn)−φ(qn−1) = vn for all n ∈ [1...N ]. (For example, φ could
be piecewise linear, with vertices at q1, . . . , qN .) Let φ∗ : Γ−→R be the positive linear
functional defined by φ, as in Lemma D.2(a). Then for all y ∈ X , if Gµ(y) = p ∈ Pµ,
then

φ∗(γµ,y) = φ∗ (fµ(p)) = φ∗

(
N∑

n=1

pn1(qn−1,qn]

)
=

N∑

n=1

pnφ
∗
(
1(qn−1,qn]

)

=
N∑

n=1

pn

(
φ(qn) − φ(qn−1)

)
=

N∑

n=1

pnvn = v • p = v •Gµ(y).

Thus,
(
v •Gµ(x) ≥ v •Gµ(y)

)
⇐⇒

(
φ∗(γµ,x) ≥ φ∗(γµ,y)

)
.

Thus, equation (E4) implies that φ∗(γµ,x) ≥ φ∗(γµ,y) for all y ∈ X . Thus, Lemma D.2(c)
says that x ∈ Fφ(X , µ), as desired. 2

Proofs from §3

Proof of Lemma 3.2. (a) Define φ̂(r) := φ(r) − φ(−r) for all r ∈ [−1, 1]. Then φ̂ is odd.

Let x,y ∈ X . Recall that K±(x,y) := {k ∈ K ; xk 6= yk}. Then

∑

k∈K

φ(xkµ̃k) −
∑

k∈K

φ(ykµ̃k) =
∑

k∈K±(x,y)

(
φ(xkµ̃k) − φ(ykµ̃k)

)

(∗)

∑

k∈K±(x,y)

(
φ(xkµ̃k) − φ(−xkµ̃k)

)
(†)

∑

k∈K±(x,y)

φ̂(xkµ̃k)

(‡)

1

2

∑

k∈K±(x,y)

(
φ̂(xkµ̃k) − φ̂ (−xkµ̃k)

)
(∗)

1

2

∑

k∈K±(x,y)

(
φ̂(xkµ̃k) − φ̂(ykµ̃k)

)

=
1

2

(
∑

k∈K

φ̂(xkµ̃k) −
∑

k∈K

φ̂(ykµ̃k)

)
. (E5)

Here (∗) is because yk = −xk for all k ∈ K±(x,y). Meanwhile (†) is simply the definition

of φ̂, and (‡) is because φ̂ is odd, so φ̂(r) − φ̂(−r) = 2φ̂(r).
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Equation (E5) implies that

(∑

k∈K

φ(xkµ̃k) ≥
∑

k∈K

φ(ykµ̃k)
)

⇐⇒

(∑

k∈K

φ̂(xkµ̃k) ≥
∑

k∈K

φ̂(ykµ̃k)
)
.

Thus, Fφ(X , µ) = Fbφ
(X , µ).

(b) If φ is odd, then for any µ ∈ ∆(X ), x ∈ X , and k ∈ K, we have φ(xkµ̃k) = xkφ(µ̃k) (be-

cause xk = ±1). Thus,
∑

k∈K

φ(xk·µ̃k) =
∑

k∈K

xkφ(µ̃k) = x•φ(µ̃). Thus, argmax
x∈X

(
∑

k∈K

φ(xk µ̃k)

)
=

argmax
x∈X

x • φ(µ̃). 2

Fix ω ∈ Ω. Let Q := Qω ∩ [0, 1]; then RQ is a finite-dimensional vector space (because
Qω ⊂ [−1, 1] is a finite set). Let X be a judgement space, and let µ ∈ ∆(X ). For any
x ∈ X , we define g(x, µ) ∈ RQ by setting

gq(x, µ) :=
γµ,x(q)

|K|
=

#{k ∈ K ; xk µ̃k ≥ q}

|K|
, for all q ∈ Q.

We then define D(x;X , µ) := {g(y, µ) − g(x, µ) ; y ∈ X} ⊆ RQ. If F : ∆ω(X ) ⇉ X
is a judgement aggregation rule, then define

Dω(F,X ) :=
⋃

µ∈∆ω(X )

⋃

x∈F (X ,µ)

D(x;X , µ) ⊆ RQ.

Finally, let X be a judgement monoid. If F is a judgement aggregation rule on ∆ω(X),

then define Dω(F,X) :=
⋃

X∈X

Dω(F,X ) ⊆ RQ.

Lemma E.2 F is SME on ∆ω(X) if and only if Dω(F,X) ∩ RQ+ = {0}.

Proof: For any X ∈ X, µ ∈ ∆ω(X ), and x ∈ X , we have

(
x ∈ SME (X , µ)

)

⇐⇒
(
6 ∃ y ∈ X with gq(y, µ) ≥ gq(x, µ) for all q ∈ Q, and g(y, µ) 6= g(x, µ)

)

⇐⇒
(
(g(y, µ) − g(x, µ)) 6∈ RQ+ \ {0} for all y ∈ X

)

⇐⇒
(
D(x;X , µ) ∩ RQ+ = {0}

)
.

Thus, F is supermajoritarian efficient on ∆ω(X) if and only if D(x;X , µ) ∩ RQ+ = {0}
whenever x ∈ F (X , µ) for some (X , µ) ∈ ∆ω(X). The claim follows. 2

Let Pω(F,X) be the closure of Dω(F,X).
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Lemma E.3 Let X be a judgement monoid.

(a) If F is a separable judgement aggregation rule on ∆(X), then Pω(F,X) is a closed,
convex subset of RQ.

(b) Also, if X is finitely generated, then Pω(F,X) is a convex polyhedron in RQ.

Proof: (a) For any (X , µ) ∈ ∆(X), define D(F,X , µ) :=
⋃

x∈F (X ,µ)

D(x;X , µ). (Thus,

Dω(F,X ) =
⋃

µ∈∆ω(X )

Dω(F,X , µ).)

Claim 1: Let X1,X2 ∈ X, and suppose X1 ⊆ {±1}K1 and X2 ⊆ {±1}K2 for some finite
sets K1,K2. If X := X1 ×X2, then X ⊆ {±1}K, where K := K1 ⊔K2. Let s1 := |K1|/|K|
and s2 := |K2|/|K| (so s1 + s2 = 1).

(a) For any µ1 ∈ ∆(X1) and µ2 ∈ ∆(X2), there exists a profile µ = µ1 ⊗ µ2 ∈ ∆(X )
such that µ(1) = µ1 and µ(2) = µ2.

(b) For any x = (x1,x2) ∈ X , we have g(x, µ) = s1 g(x1, µ(1)) + s2 g(x2, µ(2)).

(c) D(F,X , µ) = {s1 d1 + s2 d2; d1 ∈ D(F,X1, µ
(1)) and d2 ∈ D(F,X2, µ

(2))}.

Proof: (a) For all x1 ∈ X1 and x2 ∈ X2, recall that (x1,x2) ∈ X . Define µ ∈ ∆(X ) by
setting µ(x1,x2) := µ1(x1) · µ2(x2), for all x1 ∈ X1 and x2 ∈ X2.

For any x1 ∈ X1, we have

µ(1)(x1) (∗)

∑

x2∈X2

µ(x1,x2) =
∑

x2∈X2

µ1(x1) · µ2(x2) = µ1(x1) ·
∑

x2∈X2

µ2(x2) = µ1(x1),

because
∑

x2∈X2

µ2(x2) = 1.

Here (∗) is by defining equation (10). Thus, µ(1) = µ1. Likewise, µ(2) = µ2.

(b) Note that µ̃ = (µ̃(1), µ̃(2)) ∈ RK. Thus, for both n ∈ {1, 2} and all k ∈ Kn, we have

xk · µ̃k = xnk · µ̃
(n)
k . Thus, for any q ∈ (0, 1], we have

{k ∈ K ; xk · µ̃k ≥ q} =
{
k ∈ K1 ; x1

k · µ̃
(1)
k ≥ q

}
⊔
{
k ∈ K2 ; x2

k · µ̃
(2)
k ≥ q

}
.

Thus, |K| · gq(x, µ) = |{k ∈ K ; xk · µ̃k ≥ q}|

=
∣∣∣
{
k ∈ K1 ; x1

k · µ̃
(1)
k ≥ q

}∣∣∣+
∣∣∣
{
k ∈ K2 ; x2

k · µ̃
(2)
k ≥ q

}∣∣∣

= |K1| · gq(x
1, µ(1)) + |K2| · gq(x

2, µ(2)).

now divide both sides by |K| to prove part (b).
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(c) Let x := (x1,x2) and y := (y1,y2) be elements of X ; Thus, x1,y1 ∈ X1 and x2,y2 ∈
X2. Let d := g(y, µ) − g(x, µ), and let dn := g(yn, µ

(n)) − g(xn, µ
(n)), for n ∈ {1, 2}.

Part (b) implies that

d = g(y, µ) − g(x, µ)

= s1 g(y1, µ
(1)) − s1 g(x1, µ

(1)) + s2 g(y2, µ
(2)) − s2 g(x2, µ

(2)) = s1 d1 + s2 d2.

But
(
d ∈ D(F,X , µ)

)
⇐⇒

(
x ∈ F (X , µ)

)
⇐

(∗)
⇒

(
xn ∈ F (Xn, µ

(n)) for n = 1, 2
)

⇐⇒
(
dn ∈ D(F,Xn, µ

(n)) for n = 1, 2
)
,

where (∗) is because F is separable. 3 Claim 1

For any N ∈ N, let ∆N :=
{
s ∈ RN

+ ;
∑N

n=1 sn = 1
}

be the N -simplex.

Claim 2: Let N ≥ 2, and let d1, . . . ,dN ∈ Dω(F,X). There exists a dense subset

S ⊆ ∆N such that, for any s = (s1, . . . , sN) ∈ S, we have
N∑

n=1

sndn ∈ Dω(F,X).

Proof: For all n ∈ [1...N ], there exists (Xn, µn) ∈ ∆ω(X) such that dn ∈ D(F,Xn, µn).
Let Kn = |Kn| for n ∈ [1...N ]. Define

S :=

{
(m1K1, m2K2, . . . ,mNKN)

m1K1 + · · · +mNKN

; m1, . . . ,mN ∈ N

}
. (E6)

Then S is a dense subset of ∆N .

Let s ∈ S and let m1, . . . ,mN be as in eqn.(E6). For all n ∈ [1 . . . N ], let Xmn
n denote

the mn-fold Cartesian power of Xn, and let

µ⊗mn

n := µn ⊗ µn ⊗ · · · ⊗ µn︸ ︷︷ ︸
mn

,

where the operator “⊗” is as defined in Claim 2(a). Finally, let X := Xm1
1 × Xm2

2 ×
· · · × XmN

N , and let µ := µ⊗m1
1 ⊗ µ⊗m2

2 ⊗ · · · ⊗ µ⊗mN

N . Then X ∈ X (because X

is a monoid) and µ ∈ ∆(X ), and inductive application of Claim 2(c) implies that
s1d1 + · · · + sNdN ∈ D(F,X , µ); thus, s1d1 + · · · + sNdN ∈ Dω(F,X). 3 Claim 2

Now, Pω(X, F ) is the closure of Dω(X, F ). Thus, for any d1, . . . ,dN ∈ Dω(X, F ) and
any (s1, . . . , sN) ∈ ∆N , Claim 2 implies that s1d1 + · · · + sNdN ∈ Pω(X, F ). Thus
Pω(X, F ) contains the convex hull conv[Dω(X, F )]. Thus, Dω(X, F ) ⊆ conv[Dω(X, F )] ⊆
Pω(X, F ) = Dω(X, F ); hence Pω(X, F ) = conv[Dω(X, F )], so Pω(X, F ) is the closure of
a convex set, and thus, itself convex.
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(b) Let X1, . . . ,XN be judgement spaces, and suppose X := 〈X1, . . . ,XN〉. Define

E :=
N⋃

n=1

⋃

µ∈∆ω(Xn)

D(F,Xn, µ).

Then E is a finite set, because for each n ∈ [1 . . . N ], the set ∆ω(Xn) is finite (because ω
is finitary), and for each µ ∈ ∆ω(Xn), the set D(F,Xn, µ) is finite (because Xn is finite).
Thus, conv(E) is the convex hull of a finite set, and thus, a closed, convex polyhedron
in RQ.

For any X ∈ X, if X = Xm1
1 ×Xm2

2 ×· · ·×XmN

N , then Claim 1(c) implies that every element
of Dω(F,X ) is a rational convex combination of elements from E . Thus, Dω(F,X ) ⊆
conv(E). This holds for all X ∈ X; thus, Dω(F,X) ⊆ conv(E). Since conv(E) is closed,
we deduce that cl (Dω(F,X)) ⊆ conv(E).

Conversely, Claim 2 shows that every convex combination of elements from E lies in
cl (Dω(F,X)). Thus, conv(E) ⊆ cl (Dω(F,X)).

Thus, conv(E) = cl (Dω(F,X)) = Pω(F,X). Thus, Pω(F,X) is a convex polyhedron. 2

Proof of Theorem 3.4. (a) “⇐=” If φ is strictly increasing, then for all X ∈ X and
µ ∈ ∆ω(X ), Proposition 3.5(a) says Fφ(µ) ⊆ SME (X , µ), and thus, F (µ) ⊆ SME (X , µ).
Thus, F is supermajoritarian efficient on ∆ω(X).

“=⇒” Let X be a finitely generate judgement monoid. If F is separable on ∆(X), then
Lemma E.3(b) says Pω(F,X) is a closed, convex polyhedron in RQ. If F is SME, then
Lemma E.2 implies that Pω(F,X) ∩ RQ+ = {0}. Thus, Lemma D.3 yields an all-positive
vector v ∈ RQ+ such that v • p ≤ 0 for all p ∈ Pω(F,X).

Now we define φ : Qω−→R as follows: for all r ∈ Qω, define

φ(r) :=
∑

q∈Q
q≤r

vq if r ≥ 0, and φ(r) := −φ(−r) if r ≤ 0. (E7)

Thus, φ is odd by construction, and φ is strictly increasing on Qω, because vq > 0 for
all q ∈ Qω.

Let X ∈ X and µ ∈ ∆ω(X ). For any x ∈ X , recall M(µ,x) := {k ∈ K; xkµ̃k ≥ 0}.

Claim 1: For any x ∈ X , we have |K| · v • g(x, µ) =
∑

k∈M(x,µ)

φ |µ̃k|.

Proof: For any r, q ∈ [−1, 1], define δrq := 1 if r ≥ q, whereas δrq := 0 if r < q. Then

|K| · v • g(x, µ) = |K| ·
∑

q∈Q

vq · gq(x, µ) =
∑

q∈Q

vq · #{k ∈ K ; xk µ̃k ≥ q}

=
∑

q∈Q

vq
∑

k∈K

δxk eµk
q =

∑

k∈K

∑

q∈Q

vq δ
xk eµk
q

=
∑

k∈K

∑

q∈Q
q≤xk eµk

vq (∗)

∑

k∈K
xk eµk≥0

φ(xk µ̃k) =
∑

k∈M(x,µ)

φ|µ̃k|.
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Here, (∗) is by definition (E7). 3 Claim 1

We must show that F (X , µ) ⊆ Fφ(X , µ). To see this, let x ∈ F (X , µ). For any other
y ∈ X , we have g(y, µ)− g(x, µ) ∈ Dω(F,X) ⊆ Pω(F,X), so v • (g(y, µ)− g(x, µ)) ≤ 0,
and hence v •g(y, µ) ≤ v •g(x, µ). Thus, F (X , µ) ⊆ argmax

x∈X
(v •g(µ,x)). Thus, Claim

1 and Lemma D.1 imply that F (X , µ) ⊆ Fφ(X , µ), as desired.

(b) “⇐=” exactly the same proof as part (a).

“=⇒” Let y be the set of all finitely generated sub-monoids of X. Let I := Ω × y. In
effect, I is the set of possible ‘inputs’ to the construction in part (a).

For any finite collection T := {(X1, µ1), (X2, µ2), . . . , (XN , µN)} ⊂ ∆(X), define IT :=
{(ω,Y) ∈ I; Xn ∈ Y and µn ∈ ∆ω(Xn) for all n ∈ [1 . . . N ]}. Then let E := {J ⊆ I;
IT ⊆ J for some nonempty finite T ⊂ ∆(X)}.

Claim 2: E is a free filter.

Proof: We must check axioms (F0)-(F2).

(F0) Let T := {(X1, µ1), (X2, µ2), . . . , (XN , µN)} ⊂ ∆(X). Fix ω ∈ Ω, and suppose
supp(ω) = [1 . . .W ]. LetM := W ·|X1|·|X2| · · · |XN |, and let β : [1 . . .M ]−→[1 . . .W ]×
X1 ×X2 × · · · × XN be some bijection. Define ω′ ∈ Ω as follows: for all m ∈ [1 . . .M ],
if β(m) = (w,x1, . . . ,xN), then let ω′(m) := ω(w) · µ1(x1) · · ·µN(xN). Let Y ⊂
X be any finitely generated sub-monoid containing the finitely generated monoid
〈X1, . . . ,XN〉. Then it is easy to check that (Xn, µn) ∈ ∆ω′(Y) for all n ∈ [1 . . . N ].
Thus, (ω′,Y) ∈ IT .

We can repeat this construction for any ω ∈ Ω; thus, IT is infinite. This holds for
any finite T ⊂ ∆(X). Every element of E must contain IT for some finite T ⊂ ∆(X);
thus, every element of E is infinite.

(F1) Let E ,F ∈ E. Then there exist finite sets S, T ⊂ ∆(X) such that IS ⊆ E and IT ⊆ F .
But then S ∪ T is also finite, and IS∪T = IS ∩ IT ⊆ E ∩ F ; thus, E ∩ F ∈ E.

(F2) Suppose E ∈ E and E ⊆ D. Then there is some finite T ⊂ ∆(X) such that IT ⊆ E .
But then IT ⊆ D; thus D ∈ E also. 3 Claim 2

Now Claim 2 and the Ultrafilter Lemma yields a free ultrafilter F with E ⊆ F. Let ∗R be
the hyperreal field defined by F (see Appendix A). We define φ : [−1, 1]−→ ∗R as follows.
First, for all (ω,Y) ∈ I, let φω,Y : Qω−→R be the odd, strictly increasing function from
part (a). Next, for any r ∈ [−1, 1], define the element φ(r) ∈ RI by:

φω,Y(r) :=

{
φω,Y(r) if r ∈ Qω;

0 if r 6∈ Qω.

Then define φ(r) ∈ ∗R to be the ( ∼
F

)-equivalence class of φ(r).

Claim 3: φ is odd and strictly increasing.
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Proof: Odd. Let r ∈ [−1, 1]. Find some X ∈ X and µ ∈ ∆(X ) such that µ̃k = r for
some k ∈ K; then for all (ω,Y) ∈ I{(X ,µ)} we have r ∈ Qω, and φω,Y(−r) = −φω,Y(r),
because φω,Y is odd by part (a). But I{(X ,µ)} ∈ F, by definition of F. Thus, we obtain
φ(−r) = −φ(r).

Increasing. Let q, r ∈ [−1, 1], with q < r. Find some X ∈ X and µ ∈ ∆(X ) such that
µ̃k = r and µ̃j = q for some j, k ∈ K; then for all ω ∈ Ω{(X ,µ)}, we have q, r ∈ Qω,
and φω,Y(q) < φω,Y(r), because φω,Y is increasing by part (a). But I{(X ,µ)} ∈ F by
definition of F. Thus, we obtain φ(q) < φ(r). 3 Claim 3

Now, let X ∈ X, µ ∈ ∆(X ) and let x ∈ F (X , µ); we must show that x ∈ Fφ(X , µ). For
all (ω,Y) ∈ I{(X ,µ)}, part (a) says that F (X , µ) ⊆ Fφω

(X , µ); thus, for all y ∈ X , we
have (x − y) • φω,Y(µ) ≥ 0. But I{(X ,µ)} ∈ F. Thus, (x − y) • φ(µ) ≥ 0. This holds for
all y ∈ X ; thus, x ∈ Fφ(X , µ).

This holds for all x ∈ F (X , µ); thus, F (X , µ) ⊆ Fφ(X , µ).

Since F (X , µ) must be nonempty, we must have F (X , µ) = Fφ(X , µ) whenever Fφ(X , µ)
is single-valued. But φ is strictly increasing, so Fφ is single-valued on a dense, open
subset of ∆(X ), by Proposition 3.5(c).

(c) The rule Fφ is monotone, by Proposition 3.5. Meanwhile F is UHC by hypothesis. Thus,
Lemma C.1 implies that F (µ) = Fφ(µ) for all µ ∈ ∆(X ). 2

Proof of Theorem 3.1. Let X := 〈X 〉. Fix W ∈ N, and define ω(n) := 1 for all n ∈ [1 . . .W ]
while ω(0) := 1 for all n > W ; then ∆ω〈X 〉 = ∆W 〈X 〉. Now apply Theorem 3.4(a) 2

Proof of Theorem 3.3. Let X := 〈X 〉, and apply Theorem 3.4(c) 2

Proof of Proposition 3.6. Fix K and X ⊆ {±1}K. Let {µn}∞n=1 ⊂ ∆(X ) and µ ∈ ∆(X ),
and suppose µn−−−−

n→∞
−→µ. Let x ∈ X , and suppose x ∈ Fφ(µ

n) for all sufficiently large

n ∈ N; we must show that x ∈ Fφ(µ). Let y ∈ X \ {x}. Then
(

lim
n→∞

µn = µ
)

(∗)
=⇒

(
lim
n→∞

µ̃n = µ̃
)

(†)
=⇒

(
lim
n→∞

φ(µ̃nk) = φ(µ̃k), for all k ∈ K±(x,y)
)

=⇒

(
lim
n→∞

∑

k∈K±(x,y)

(xk − yk)φ(µ̃nk) =
∑

k∈K±(x,y)

(xk − yk)φ(µ̃)
)

⇐⇒
(

lim
n→∞

(x − y) • φ(µ̃n) = (x − y) • φ(µ̃)
)

(‡)
=⇒

(
(x − y) • φ(µ̃) ≥ 0

)
.

Here, (∗) is because the map ∆(X ) ∋ µ 7→ µ̃ ∈ RK is continuous, while (†) is because φ
is continuous at µ̃k for all k ∈ K±(x,y), by hypothesis. Finally (‡) is because (x − y) •
φ(µ̃n) ≥ 0 for all large enough n ∈ N, because x ∈ Fφ(µ

n) by hypothesis.

Thus, x • φ(µ̃) ≥ y • φ(µ̃) for all y ∈ X . Thus, x ∈ Fφ(µ) as desired. 2
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Proofs from §6

The proof of Theorem 4.1(b) depends on results from §5, which in turn depend on results
from §6. Thus, we will first prove the results from §6, then §5, and finally, §4. We need some
preliminary lemmas before we can prove the results in from §6. Let φ : [−1, 1]−→ ∗R be odd
and increasing. Let C := conv(X ). For any x ∈ X , recall that Cφx := {c ∈ C ; x ∈ Fφ(c)}.
For any x,y ∈ X , recall that oBφx,y := {c ∈ int (C) ; F (c) = {x,y}}. Parts (c,d,e) of the
next result are used in the proofs of Theorems E.7(b) and 4.1(b). Part (f) is necessary to
derive Theorem 6.4 from Theorem E.7.

Lemma E.4 Let φ : [−1, 1]−→ ∗R be odd and increasing. Let X be a judgement space,
and suppose Fφ : ∆(X ) ⇉ X is upper hemicontinuous. Let x,y ∈ X , and let b ∈Bφx,y.

(a) Let k ∈ K±(x,y). For any ǫ > 0, if b + ǫxkek ∈ C, then b + ǫxkek ∈ C \ Cφy.

Now suppose X is thick and b ∈ oBφx,y.

(b) Let k ∈ K±(x,y). If ǫ is small enough, then b + ǫxkek ∈ Cφx \ Cφy.

(c) Let i, j ∈ K±(x,y). There exists ǫ0 > 0 and a continuous, increasing function
δij : (−ǫ0, ǫ0)−→R such that, for all ǫ ∈ (−ǫ0, ǫ0), we have b + ǫxiei + δij(ǫ)yjej ∈
oBφx,y.

(d) Rφ
X is always an open set.

(e) Every Fφ-pivotal class is an open subset of [−1, 1], and a union of connected

components of Rφ
X .

(f) Thus, if Rφ
X is connected, then X has only one Fφ-pivotal class.

Proof: (a) Find profiles µ, ν ∈ ∆(X ), such that µ̃ = b and ν̃ = b + ǫxkek. By hypothesis,
x,y ∈ Fφ(µ), so x • φ(µ̃) = y • φ(µ̃). Let δ := φ(bk + ǫ) − φ(bk); then δ > 0 (because φ
is increasing), and we have

x • φ(ν̃) = x • φ(µ̃) + δ;

and y • φ(ν̃) = y • φ(µ̃) − δ < x • φ(ν̃).

Thus, y 6∈ Fφ(ν). Thus, b + ǫxkek ∈ C \ Cφy .

(b) If b ∈ oBφx,y, then Fφ(b) = {x,y}. Thus, if ǫ is small enough, then Fφ(b+ǫxkek) ⊆ {x,y},
because Fφ is upper hemicontinuous. Thus, we must have b + ǫxkek ∈ Cφx \ Cφy .

(c) (by contradiction) First we consider the case when ǫ > 0.

There exists some ǫ1 > 0 such that c ∈ int (C) for all c ∈ RK with ‖c − b‖∞ < ǫ1
(because b ∈ int (C) by definition of oBφx,y). Next, there exists some ǫ2 ∈ (0, ǫ1) such that
Fφ(c) ⊆ {x,y} for all c ∈ C with ‖c − b‖∞ < ǫ2 —otherwise, we have a contradiction
of upper hemicontinuity.
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For all ǫ ∈ (0, ǫ2), part (b) says b + ǫxiei ∈ Cφx \ Cφy . We claim there exists ǫ0 > 0 such
that, for all ǫ ∈ (0, ǫ0), there exists δij(ǫ) ∈ (0, ǫ2) such that b + ǫxiei + δij(ǫ)yjej ∈
oBφx,y. Suppose not. Then for any ǫ0 ∈ (0, ǫ2), there exists some ǫ1 ∈ (0, ǫ0) such that
b + ǫ1xiei + δyjej ∈ Cφx \ Cφy for all δ ∈ (0, ǫ2).

Claim 1: For any ǫ ∈ (ǫ1, ǫ2), we have b + ǫ xiei + δ yjej ∈ Cφx \ Cφy for all δ ∈ (0, ǫ2).

Proof: (by contradiction) For any such ǫ and δ, we have b + ǫ xiei + δ yjej ∈ Cφx ∪Cφy by
construction of ǫ2. Suppose b+ǫ xiei+δ yjej ∈ Cφy for some ǫ ∈ (ǫ1, ǫ2) and δ ∈ (0, ǫ2).
Fix ǫ, and let δ′ ∈ (0, ǫ2) be the infimum of all δ ∈ (0, ǫ2) such that b+ǫ xiei+δ yjej ∈
Cφy . Then b + ǫ xiei + δ′ yjej ∈ Cφy , because Fφ is upper hemicontinuous. Meanwhile,
b + ǫ xiei + δ yjej ∈ Cφx for all δ ∈ (0, δ′). Thus, b + ǫ xiei + δ′ yjej ∈ Cφx , again by
upper hemicontinuity. Thus, b + ǫ xiei + δ′ yjej ∈

oBφx,y.

Thus, part (b) says that b + ǫ′ xiei + δ′ yjej ∈ Cφy \ Cφx for all ǫ′ ∈ (0, ǫ). In particular,
this means that b + ǫ1 xiei + δ′ yjej ∈ Cφy \ Cφx . But this contradicts the hypothesis
defining ǫ1. 3 Claim 1

Since we can make ǫ1 arbitrarily small, Claim 1 means that b + ǫxiei + δyjej ∈ Cφx \ Cφy
for all ǫ, δ ∈ (0, ǫ2). Now fix δ ∈ (0, ǫ2) and let ǫ go to zero; then upper hemicontinuity
implies that b + δyjej ∈ Cφx . But for all δ > 0, part (b) says b + δyjej ∈ Cφy \ Cφx .
Contradiction.

The proof for ǫ < 0 is similar, with the roles of x and y reversed.

A similar construction yields a function δji : (−ǫ1, ǫ1)−→R such that, for all ǫ ∈ (−ǫ1, ǫ1),
we have b + ǫyjej + δji(ǫ)xiei ∈ oBφx,y. Thus, δji = δ−1

ij . Thus, both δij and δji are
invertible. Clearly they are nondecreasing. It follows that they are continuous and
strictly increasing.

(d) If Rφ
X = ∅, then it is automatically open. So, suppose Rφ

X 6= ∅, and let r ∈ Rφ
X . Then

there exists x,y ∈ X with d(x,y) ≥ 3, and b ∈ oBφx,y, and i ∈ K±(x,y) such that r = bi.
But then part (c) yields some ǫ0 > 0 such that, for all r′ ∈ (r− ǫ0, r+ ǫ0), there is some
b′ ∈ oBφx,y with b′i = r′. Thus, (r − ǫ0, r + ǫ0) ⊆ Rφ

X ; thus, Rφ
X is an open set.

(e) Let r ∈ RF
X .

Claim 2: The set E1(r) := {q ∈ Rφ
X ; r ∼ q} is open.

Proof: If q ∈ E1(r), then there exist x,y ∈ X with d(x,y) ≥ 3, and b ∈ oBFx,y and
j, k ∈ K±(x,y), such that bk = r and bj = q. Since d(x,y) ≥ 3, there is some
i ∈ K±(x,y)\{j, k}. Let δij : (−ǫ0, ǫ0)−→R be as in part (c). Then for all ǫ ∈ (−ǫ0, ǫ0),
we have r ∼ q + δij(ǫ). 3 Claim 2

Inductively, for all n ∈ N, define En(r) :=
⋃
q∈En−1(r) E

1(q). Then Claim 2 implies

that En(r) contains a neighbourhood of each element of En−1(r). Finally, let E∞(r) :=⋃∞
n=1 E

n(r). Then E∞(r) is open, and is the pivotal class of r.

Claim 3: Let R′ be a connected component of RF
X . Then all elements of R′ are

(≈)-equivalent.
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Proof: Each (≈)-equivalence classes is an open subset of R, so its intersection with R′ is a
relatively open subset of R′. Thus, the (≈)-equivalence classes form an open partition
of R′. But R′ is connected, so this partition must contain only one element. In other
words, all elements of R′ are (≈)-equivalent. 3 Claim 3

It follows that each (≈)-equivalence class is a union of connected components of RF
X .

(f) follows immediately from part (e): if RF
X has only one connected component, then it can

have only one pivotal class. 2

Let φ : [−1, 1]−→ ∗R be a gain function. For all r ∈ [−1, 1], define G(φ, r) := { ∗r; ∗r ∈ ∗R

and | ∗r| < φ(r + ǫ1) − φ(r − ǫ2) for all ǫ1, ǫ2 > 0}. Observe that, for any hyperreal scalar
∗s > 0, the function st ( ∗s φ) is continuous at r if and only if G( ∗s φ, r) contains only
infinitesimal elements of ∗R. Otherwise, G( ∗s φ, r) measures the size of the ‘gap’ at r. The
proof of Proposition 6.2(a) uses the following lemma.

Lemma E.5 Let X be a thick judgement space, let φ : [−1, 1]−→ ∗R be a gain function,
and suppose Fφ is upper hemicontinuous on ∆(X ). If r ∼ s ∈ RF

X , then G(φ, r) = G(φ, s).

Proof: We will show that G(φ, s) ⊆ G(φ, r).

If s ∼ r, then there exist x,y ∈ X , with d(x,y) ≥ 3, and b ∈ oBφx,y, and i, j ∈ K±(x,y)
such that bi = r and bj = s. Let

C :=
∑

k∈K±(x,y)\{i,j}

(xk − yk)φ(bk).

Assume without loss of generality that xi = xj = 1 and yi = yj = −1. If b ∈ oBφx,y, then
2φ(bi) + 2φ(bj) + C = (x − y) • φ(b) = 0.

Lemma E.4(c) yields ǫ0 > 0 and a continuously increasing function δij : (−ǫ0, ǫ0)−→R

such that, for all ǫ ∈ (−ǫ0, ǫ0), we have b + ǫxiei + δij(ǫ)yjej ∈ oBφx,y. Thus, for all
ǫ ∈ (−ǫ0, ǫ0), we have

2φ(bi + ǫ) + 2φ(bj − δij(ǫ)) + C = 0.

Thus, for any ǫ1, ǫ2 > 0, we have

0 = 0 − 0 =
(
2φ(bi + ǫ1) + 2φ(bj − δij(ǫ1)) + C

)
−
(
2φ(bi − ǫ2) + 2φ(bj − δij(−ǫ2)) + C

)

= 2
(
φ(bi + ǫ1) − φ(bi − ǫ2)

)
+ 2

(
φ(bj − δij(ǫ1)) − φ(bj − δij(−ǫ2))

)

= 2
(
φ(r + ǫ1) − φ(r − ǫ2)

)
+ 2

(
φ(s− δij(ǫ1)) − φ(s− δij(−ǫ2))

)
.

Thus,
φ(r + ǫ1) − φ(r − ǫ2) = φ(s− δij(−ǫ2)) − φ(s− δij(ǫ1)). (E8)

Now, let g ∈ G(φ, s). Then |g| ≤ φ(s + δ2) − φ(s + δ1) for all δ1, δ2 > 0. Thus,
|g| ≤ φ(s− δij(−ǫ2))−φ(s− δij(ǫ1)) for all ǫ1, ǫ2 > 0. (Note that −δij(−ǫ2) > 0, because
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δij is increasing and δij(0) = 0.) Thus, equation (E8) says that |g| ≤ φ(r+ǫ1)−φ(r−ǫ2)
for all ǫ1, ǫ2 > 0. Thus, g ∈ G(φ, r), as desired. Thus G(φ, s) ⊆ G(φ, r).

An identical argument shows G(φ, r) ⊆ G(φ, s). We conclude G(φ, r) = G(φ, s). 2

Proof of Lemma 6.1. (a) Nonempty. (by contradiction) Suppose Rφ
X = ∅.

Claim 1: For any continuous, increasing gain function ψ : [−1, 1]−→R, we have
Fφ = Fψ.

Proof: Fψ is upper hemicontinuous by Proposition 3.6, while Fφ is upper hemicontinuous
by hypothesis. Meanwhile, Proposition 3.5(a,b) say that both Fφ and Fψ are SME
and monotone.

If Rφ
X = ∅, then for any x,y ∈ X with dH(x,y) ≥ 3, we must have oBφx,y = ∅. Thus,

the right-hand condition in Proposition C.2 is trivially satisfied. Thus, Fψ = Fφ.
3 Claim 1

In particular, let ΦI be the set of all odd, continuous, real-valued gain functions. Then
we have

SSME (X , µ)
(∗)

⋃

ψ∈ΦI

Fψ(µ)
(†)

Fφ(µ).

where (∗) is by Proposition 1.1(b), and (†) is by Claim 1.

Thus, X is supermajoritarian determinate. Contradiction.

Open follows from Lemma E.4(d). 2

Proof of Theorem 6.2. (a) For all r ∈ [−1, 1], define φ̂(r) := φ(r)−φ(r1)
φ(r2)−φ(r1)

, to obtain a function

φ̂ : [−1, 1]−→ ∗R. Define G(φ̂, r) as in Lemma E.5. Let I be the set of all infinitesimal
elements of ∗R.

Claim 1: For any r ∈ R, we have G(φ̂, r) ⊆ I.

Proof: (by contradiction) Suppose there exists some r ∈ R with some g ∈ G(φ̂, r) which
is not infinitesimal. Since G(φ̂, r) is symmetric under negation, we can assume g > 0
without loss of generality.

Let R′ := (r1, r2) ∩ R (an open subset of R). For any r′ ∈ R′, we have 0 = φ̂(r1) <
φ̂(r′) < φ̂(r2) = 1; thus, φ̂(r′) is finite. Furthermore, R is connected, so Lemma E.4(e)
says that r ∼ r′ for all r′ ∈ R. Thus, Lemma E.5 says that g ∈ G(φ̂, r′) for all r′ ∈ R′.
That is: for all s1, s2 ∈ R, if s1 < r′ < s2, then φ̂(s2) − φ̂(s1) > g. Since g 6∈ I and
φ̂(r′) ∈ [0, 1], this implies there is rational number qr′ ∈ Q ∩ [0, 1] such that for all
s1, s2 ∈ R, if s1 < r′ < s2, then φ̂(s1) < qr′ < φ̂(s2).

Furthermore, if r′ < r′′ ∈ R′, then qr′ < qr′′ (because for any s ∈ (r′, r′′), we have
qr′ < φ̂(s) < qr′′). Thus, the mapping R′ ∋ r 7→ qr ∈ Q ∩ [0, 1] is injective. But
R′ is uncountable (it is an open subset of R), whereas Q is countable. This is a
contradiction. 3 Claim 1
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Claim 2: φ is continuous on R.

Proof: Let r ∈ R. If φ is discontinuous at r, then G(φ̂, r) contains a non-infinitesimal
value, contradicting Claim 1. 3 Claim 2

Claim 3: For any r ∈ R, we have G(φ̂, r) ⊇ I.

Proof: (by contradiction) Suppose there exists some r′ ∈ R with some i ∈ I such that
i 6∈ G(φ̂, r′). Since G(φ̂, r′) and I are symmetric under negation, we can assume i > 0
without loss of generality. Then for all r ∈ R, Lemma E.5 says that i 6∈ G(φ̂, r). Thus,
there exists some ǫr > 0 such that φ̂(r+ǫr)− φ̂(r−ǫr) < i, and hence, |φ̂(s)− φ̂(r)| < i
for all s ∈ R ∩ (r − ǫr, r + ǫr). Thus, φ(s) = φ(r) for all s ∈ R ∩ (r − ǫr, r + ǫr).

Thus, if we fix some r0 ∈ R, and define c0 := φ(r), then the set R′ := {r ∈ R;
φ(r) = c0} is an open neighbourhood around r0 (because for all r′ ∈ R′, we have
(r′ − ǫr′ , r

′ + ǫr′) ⊆ R′). But R′ is also closed in R, because φ is continuous on R, by
Claim 2. But R is connected, so this implies that R′ = R. Thus, φ is constant on R.
But by definition, φ(r2) = 1 while φ(r1) = 0. Contradiction. 3 Claim 3

It remains to show that φ is increasing on R. Suppose not. Then there is some r ∈ R
and ǫ > 0 such that φ is constant on (r − ǫ, r + ǫ). But then there is some positive
i ∈ I such that |φ̂(s) − φ̂(r)| < i for all s ∈ (r − ǫ, r + ǫ), which means i 6∈ G(φ̂, r),
contradicting Claim 3.

(b) Let ψ : [−1, 1]−→R be a continuous gain function such that ψ(r) = st (s φ(r)) for
all r ∈ cl

(
RF
X

)
. (Such a continuous extension exists exists by the Tietze Extension

Theorem, because st (s φ) is continuous on cl
(
RF
X

)
and cl

(
RF
X

)
is a closed subset of

[−1, 1].) We will show that Fψ = Fφ.

Fφ is upper hemicontinuous by hypothesis, and Proposition 3.6 says that Fψ is upper
hemicontinuous, because ψ is continuous on [−1, 1]. Meanwhile, Proposition 3.5 says
that both Fψ and Fφ are monotone and SME. Thus, we can apply Proposition C.2.

Claim 4: For any x,y ∈ X , if dH(x,y) ≥ 3, then oBφx,y ∩ Cψx ⊆ Cψy .

Proof: Let b ∈ oBφx,y ∩ Cψx . Then

ψ(b) • (x − y) =
∑

k∈K±(x,y)

(xk − yk) · ψ(bk) (∗)

∑

k∈K±(x,y)

(xk − yk) · st (s φ(bk))

(⋄)
st


s

∑

k∈K±(x,y)

(xk − yk) · φ(bk)


 = st (s φ(b) • (x − y))

(†)
st (0) = 0.

Here, (∗) is because, for all k ∈ K±(x,y), we have bk ∈ RF
X , and thus, ψ(bk) =

st (s φ(bk)). Next, (⋄) is because the function st : ∗R−→R is a ring homomorphism,
so it preserves multiplication and addition. Finally, (†) is because b ∈ oBφx,y.

It follows that ψ(b) • y = ψ(b) • x. Thus, y ∈ Fψ(b), because x ∈ Fψ(b). 3 Claim 4

Proposition C.2 and Claim 4 imply that Fψ = Fφ, as desired. 2
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The next result is used to prove Proposition 6.3, but is also of independent interest. For
any µ ∈ ∆(X ), let KR(µ) := {k ∈ K; |µ̃k| ≥ R}. For any x ∈ X , let KR(µ,x) := {k ∈
KR(µ); xk = Majk(µ)}. The R-core of µ is the (possibly empty) set XR(µ) := {x ∈ X ;
xk = Maj(µ)k for all k ∈ KR(µ)}; the set of all elements of X which agree with every
majority of size (R + 1)/2.

Lemma E.6 Let φ : [−1, 1]−→ ∗R be a gain function. Let R ∈ (0, 1), and suppose that φ is
continuous, real-valued, and unbounded on (−R,R), and φ is infinite on [−1,−R]⊔ [R, 1].

(a) For any y ∈ Fφ(µ), and any other x ∈ X , we have KR(µ,x) ⊆ KR(µ,y).

(b) If Fφ is not upper hemicontinuous at µ, then XR(µ) = ∅.

(c) Conversely, if XR(µ) 6= ∅, then Fφ(µ) ⊆ XR(µ), and Fφ is upper hemicontinuous
at µ.

Proof: (a) (by contrapositive) Let x,y ∈ X , and suppose KR(µ,x) ⊃ KR(µ,y). Then
K±(x,y) ∩ KR(µ) 6= ∅. For all k ∈ K±(x,y) ∩ KR(µ), we have |µ̃k| ≥ R, so that
|φ(µ̃k)| = ∞; meanwhile, xk = Majk(µ) = −yk, so that (xk−yk)φ(µ̃k) = ∞. Meanwhile,
for all k ∈ K±(x,y) \ KR(µ), the value of (xk − yk)φ(µ̃k) is finite. Thus, (x − y) • φ(µ̃)
is (positive) infinite. Thus, y 6∈ Fφ(µ).

By contrapositive, if y ∈ Fφ(µ), then no such x ∈ X can exist.

(b) Suppose Fφ is not upper hemicontinuous at µ; then there exists some sequence {µn}∞n=1

such that µn−−−−
n→∞
−→µ, and some x ∈ X such that x ∈ Fφ(µ

n) for all n ∈ N, but x 6∈ Fφ(µ).

Claim 1: For any other z ∈ X , we have KR(µ, z) ⊆ KR(µ,x).

Proof: By contradiction, suppose there was some z ∈ X with KR(µ, z) ⊃ KR(µ,x). Then
K±(x, z) ∩ KR(µ) 6= ∅. For all k ∈ K±(x, z) ∩ KR(µ), we have µ̃nk−−−−n→∞

−→µ̃k, and hence
|φ(µ̃nk)|−−−−n→∞

−→∞. Meanwhile, zk = Majk(µ) = −xk, so that (zk − xk)φ(µ̃nk)−−−−n→∞
−→∞.

On the other hand, for all k ∈ K±(x,y)\KR(µ), there is some Rk < R such that |µ̃nk | ≤
Rk for all large enough n ∈ N; thus, there is some Mk <∞ such that |(xk−yk)φ(µ̃nk)| <
Mk for all large enough n ∈ N. Thus, if n is large enough, then z • φ(µ̃n) > x • φ(µ̃n),
which means x 6∈ Fφ(µ

n). Contradiction. 3 Claim 1

Now, by contradiction, suppose that XR(µ) 6= ∅. Then Claim 1 implies that x ∈ XR(µ).
Meanwhile, if y ∈ Fφ(µ), then part (a) implies that y ∈ XR(µ). Thus, K±(x,y) ⊆
K \ KR(µ). Thus,

(x − y) • φ(µ̃) =
∑

k∈K±(x,y)

(xk − yk)φ(µ̃k) =
∑

K\KR(µ)

(xk − yk)φ(µ̃k)

(⋄)

∑

K\KR(µ)

(xk − yk) lim
n→∞

φ(µ̃nk) = lim
n→∞

∑

K\KR(µ)

(xk − yk)φ(µ̃nk)

= lim
n→∞

∑

k∈K±(x,y)

(xk − yk)φ(µ̃nk) = lim
n→∞

(x − y) • φ(µ̃n) ≥
(∗)

0.
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Here, (⋄) is because µ̃nk−−−−n→∞
−→µ̃k ∈ (R,R) for all k ∈ K \ KR(µ), and φ is continuous on

(−R,R) by hypothesis. Meanwhile, (∗) is because (x − y) • φ(µ̃n) ≥ 0 for all n ∈ N,
because x ∈ Fφ(µ

n) for all n ∈ N.

We conclude that x•φ(µ̃) ≥ y•φ(µ̃); thus, x ∈ Fφ(µ), because y ∈ Fφ(µ). Contradiction.

(c) follows from (a) and the contrapositive of (b). 2

Proof of Proposition 6.3. (by contradiction) Let µ ∈ ∆(X ), and suppose Fφ is not upper
hemicontinuous at µ. Let R := 1 − 2

M
, and let KR(µ) := {k ∈ K; |µ̃k| ≥ R}. For any

subset J ⊆ K, let XJ (µ) := {x ∈ X pr

A ; xJ = Maj(µ)J }.

[Definition of forbidden/critical words. Fact: Any critical word in X pr

A represents a
‘preference cycle’; maximum length of such a critical word is M ].

Claim 1: (a) |KR(µ)| ≥M

(b) Any critical subword of Maj(µ)KR(µ) is a Condorcet cycle of length M .

(c) µ[Xk(µ)] = 1 − 1
M

for all k ∈ KR(µ).

Proof: For any k ∈ KR(µ), we must have µ[Xk(µ)] ≥ 1 − 1
M

. Thus, for any subset
J ⊆ KR(µ), we have

µ[XJ (µ)] ≥ 1 −
|J |

M
. (E9)

(a) If Fφ is not upper hemicontinuous at µ, and J := KR(µ), then Lemma E.6(b)
says XJ (µ) = ∅, which means that µ[XJ (µ)] = 0. Thus, inequality (E9) says that
|KR(µ)| ≥M .

(b) If |J | < M , then inequality (E9) implies that µ[XJ (µ)] > 0; hence XJ (µ) 6= ∅.
Thus, any subword of less than M coordinates of Maj(µ) is X pr

A -admissible. Thus, the
smallest forbidden words (i.e. the critical words) in Maj(µ)KR(µ) must have length M .
Such a critical word in X pr

A has the form of a Condorcet cycle of length M .

(c) (By contradiction) Suppose instead that there was some k ∈ K with µ[Xk(µ)] > 1− 1
M

.
By reasoning similar to inequality (E9), we conclude that, for any J ⊂ KR(µ) with
|J | = M , we have µ[XJ (µ)] > 1 − M

M
= 0. Thus, XJ (µ) 6= ∅. Thus, Maj(µ)J is not a

X pr

A -forbidden word. Thus, the smallest forbidden word containing k must have length
greater than M , which means there is a critical word in X pr

A of length greater than M ,
which is false. 3 Claim 1

Let J ⊆ K be a subset with |J | = M , such that Maj(µ)J is a maximal Condorcet cycle;
say it represents the cycle (a1 ≻ a2 ≻ · · · ≻ aM ≻ a1). For any i ∈ J , if coordinate
i represents the link “an ≻ an+1”, then let xi ∈ X pr

A represent the preference order
obtained by breaking the Condorcet cycle at this link (i.e. an+1 ≻ an+2 ≻ · · · aM ≻ a1 ≻
a2 ≻ · · · ≻ an). Let X ′ := {x1,x2, . . . ,xM}. It follows that Xi(µ) = X ′ \ {xi} (a set of
M − 1 elements).

Claim 1(c) says that µ[Xi(µ)] = 1− 1
M

for all i ∈ J . From this, it follows that µ[xi] = 1
M

for all i ∈ J . From this, it is easy to deduce that SME (X pr

A , µ) = X ′. Furthermore, from
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the symmetry of the profile µ, we deduce that φ(µ̃)•xi = φ(µ̃)•xj for all i, j ∈ [1 . . .M ];
thus, Fφ(µ) = X ′.

However, if Fφ is not upper hemicontinuous at µ; then there exists some sequence {µn}∞n=1

such that µn−−−−
n→∞
−→µ, and some x ∈ X such that x ∈ Fφ(µ

n) for all n ∈ N, but x 6∈ Fφ(µ).
Then Claim 1 in the proof of Lemma E.6(a) implies that x ∈ X ′. Thus, x ∈ Fφ(µ).
Contradiction. 2

Theorem 6.4 is actually a special case of a more general result. Let φ, ψ : [−1, 1]−→R be
odd gain functions, and let X be a judgement space. We say ψ is an X -compatible affine
transform of φ if there exist functions s : Rφ

X−→R+ and t : Rφ
X−→R such that:

(C1) s is constant on each Fφ-pivotal class of Rφ
X .

(C2) t is constant on each connected component of Rφ
X .

(C3) For all x,y ∈ X with d(x,y) ≥ 3, and all b ∈ oBφx,y,
∑

k∈K±(x,y)

(xk − yk)t(bk) = 0.

(C4) For all r ∈ Rφ
X , we have ψ(r) = s(r) · φ(r) + t(r).

If φ and ψ are odd and continuous, then (C4) holds at all points in the closure of Rφ
X ;

thus (C2) forces t to be constantly zero on any connected component of Rφ
X which has 0

in its closure. If all of Rφ
X is in one Fφ-pivotal class, then (C1) means that s is a constant.

If Rφ
X is connected, then (C1) and (C2) make both s and t constant functions, and then

(C3) forces t ≡ 0, so ψ is just a scalar multiple of φ on Rφ
X . Even if Rφ

X is not connected,
(C3) requires the (piecewise constant) values of t to satisfy a large, homogeneous system
of linear equations, which will usually force t ≡ 0; in this case, ψ is a ‘piecewise constant
scalar multiple’ of φ, with possibly different scalars on different Fφ-pivotal classes of Rφ

X .

Theorem E.7 Let φ, ψ : [−1, 1]−→R be odd, real-valued gain functions, and let X be a
judgement space. Suppose Fφ and Fψ are upper hemicontinuous on ∆(X ).

(a) If ψ is any X -compatible affine transform of φ, then Fφ(X , µ) = Fψ(X , µ) for all
µ ∈ ∆(X ).

(b) Conversely, suppose X is thick and φ and ψ are continuous on RF
X . If Fφ(X , µ) =

Fψ(X , µ) for all µ ∈ ∆(X ), then ψ is an X -compatible affine transform of φ.

Proof of Theorem E.7(a). Let C := conv(X ).

Claim 1: For any x,y ∈ X , if d(x,y) ≥ 3, then oBφx,y ⊆ Bψx,y ∪ (C \ Cψx ).
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Proof: Let s : Rφ
X−→R+ and t : Rφ

X−→R satisfy (C1)-(C4), and let b ∈ oBφx,y. Then

(x − y) • ψ(b) =
∑

k∈K±(x,y)

(xk − yk)ψ(bk)

(∗)

∑

k∈K±(x,y)

(xk − yk)
(
s(bk)φ(bk) + t(bk)

)

(†)
s

∑

k∈K±(x,y)

(xk − yk)
(
φ(bk) + t(bk)

)

= s (x − y) • φ(b) +
∑

k∈K±(x,y)

(xk − yk) t(bk)

(†)
0 +

∑

k∈K±(x,y)

(xk − yk) t(bk) (‡)
0. (E10)

Here, (∗) is by (C4). Next, (⋄) is because for all j, k ∈ K±(x,y), we have bj, bk ∈ Rφ
X ,

and bj ∼ bk, so that (C1) yields some s > 0 such that s(bk) = s for all k ∈ K±(x,y).
Finally, (†) is because b ∈ oBφx,y, and (‡) is by (C3).

If (x− z) •ψ(b) ≥ 0 for all z ∈ X , then statement (E10) implies that Fψ(b) ⊇ {x,y},
so b ∈ Bψx,y. Otherwise, if (x − z) • ψ(b) < 0 for some z ∈ X , then x 6∈ Fψ(b), so
b ∈ C \ Cψx . 3 Claim 1

Now Proposition C.2 and Claim 1 imply that Fφ(X , µ) = Fψ(X , µ) for all µ ∈ ∆(X ). 2

To prove Theorem E.7(b), we must first generalize a well-known result about solutions to
the Cauchy functional equation. Let W ⊆ [−1, 1] be an open subset, and let φ : W−→R.
We say φ has constant slope on W if there is some s ∈ R, and, for each connected component
W ′ ⊆ W, there is some constant t ∈ R such that φ(w) = sw + t for all w ∈ W ′. (In
particular, φ′(w) = s, for all w ∈ W.)

Lemma E.8 Let N ≥ 2, and let U ⊆ RN be a connected open subset. Let V := {u1 +u2 +
· · · + uN ; u ∈ U}. For all n ∈ N , let Un := πn(U), and let W := V ∪ U1 ∪ · · · ∪ UN ⊆ R.
Let τ : W−→R be a continuous, increasing function, such that τ(u1 + u2 + · · · + uN) =
τ(u1) + · · · + τ(uN) for all u ∈ U . Then φ has constant slope s > 0 on W.

Proof: For any q ∈ U1, let Vq := {u1 + u2 + · · · + uN ; u ∈ U and u1 = q}. Note that U1 is
an open subset of R (because U is an open subset of RN).

Claim 1: (a) For any q ∈ U1 and v ∈ Vq, there exists some ǫ > 0 such that v ∈ Vq′
for all q′ ∈ (q − ǫ, q + ǫ).

(b) If Q ⊆ U1 is any dense subset, then
⋃

q∈Q

Vq = V .

Proof: (a) Find u ∈ U with u1 = q and u2 + · · · + uN = v. For any ǫ > 0, let
B(u, ǫ) := {r ∈ RN ; |rn−un| < ǫ, for all n ∈ [1...N ]} (the ǫ-ball in the ∞-norm ). There
exists some ǫ > 0 such that B(u, ǫ) ⊂ U (because U is open). Let q′ ∈ (q − ǫ, q + ǫ).
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Define u′ by u′1 = q′ and u′2 = u2 + (q − q′), while u′n = un for n ∈ [3...N ]. Then
u′ ∈ B(u, ǫ), so u′ ∈ U . But by construction, u′1 = q′ and u′1 + · · · + u′N = v. Thus,
v ∈ Vq′ .

(b) From their definitions it is clear that
⋃

q∈U

Vq = V . Part (a) implies that it suffices

to take the union over a dense subset of U . 3 Claim 1

Claim 2: Let q ∈ U1. Suppose τ is differentiable at q, and τ ′(q) = s. Then τ ′(v) = s
for all v ∈ Vq.

Proof: Let v ∈ Vq; then v = u1 + u2 + · · ·+ uN for some u ∈ U with u1 = q. If ǫ is small
enough, then (u1 + ǫ, u2, . . . , uN) is also in U (because U is open). Thus

τ(v + ǫ) − τ(v) = τ(u1 + ǫ+ u2 + · · · + uN) − τ(u1 + u2 + · · · + uN)

(∗)

(
τ(u1 + ǫ) + τ(u2) + · · · + τ(uN)

)
−
(
τ(u1) + τ(u2) + · · · + τ(uN)

)

= τ(u1 + ǫ) − τ(u1) = τ(q + ǫ) − τ(q).

Thus, τ ′(v) = lim
ǫ→0

τ(v + ǫ) − τ(v)

ǫ
= lim

ǫ→0

τ(q + ǫ) − τ(q)

ǫ
= τ ′(q) = s,

as desired. Here, (∗) is by the hypothesis of the theorem. 3 Claim 2

Claim 3: There exists some constant s ≥ 0 such that τ ′(v) = s for all v ∈ V.

Proof: Since τ is nondecreasing and U1 is open, there is a dense subset Q ⊂ U1 such
that τ ′(q) exists for all q ∈ Q (Kolmogorov and Fomı̄n, 1975, Thm.6, §31.2, p.321).
Thus, Claim 2 says that τ ′(v) exists for all v ∈

⋃
q∈Q Vq, and is constant on Vq for

each q ∈ Q. Claim 1(a) says that Vq1 overlaps Vq2 if q1 and q2 are close; thus, τ ′ is
constant on Vq1 ∪Vq2 . Thus, τ ′ must be constant on each connected component of the

union
⋃

q∈Q

Vq. But Claim 1(b) says this union is all of V , which is connected (because

U is connected). Thus, τ ′ exists and is constant on V . 3 Claim 3

Claim 4: τ ′(u) = s for all u ∈ U1.

Proof: Let v ∈ Vu; then v = u1 + u2 + · · ·+ uN for some u ∈ U with u1 = u. If ǫ is small
enough, then (u1 + ǫ, u2, . . . , uN) is also in U (because U is open). Then, by exactly
the same reasoning as Claim 2, we have τ ′(u) = τ ′(v). But τ ′(v) = s, by Claim 3.
3 Claim 4

For any n ∈ [1...N ], a similar argument to Claim 4 shows that τ ′(u) = s for all u ∈ Un.
Thus, τ ′(w) = s for all w ∈ W. Also, s ≥ 0 since τ is nondecreasing. Thus, if W ′ ⊆ W
is any connected component, then τ is an affine function on W ′. That is, there exists
t ∈ R such that τ(w) = sw + t for all w ∈ W ′. 2
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Proof of Theorem E.7(b). Let x,y ∈ X , with d(x,y) ≥ 3. We will first show that
φ is an affine transformation of ψ in an open neighbourhood of each point in the set

Rx,y :=
⋃

k∈K±(x,y)

Rk
x,y.

Suppose that oBφx,y 6= ∅ (otherwise Rx,y = ∅ and there is nothing to prove). Let R′ :=
φ(Rx,y) and τ := ψ ◦ φ−1; it is equivalent to show that τ is locally affine on R′.

Without loss of generality, suppose K±(x,y) = [1...J ] for some J ≥ 3. Also suppose x1 =
1 and y1 = −1, whereas xj = −1 and yj = 1 for all j ∈ [2...J ]. Let O := (Rφ

X )J ×RK−J ;

then O is an open subset of RK (because Lemma E.4(d) says Rφ
X is open, because Fφ is

upper hemicontinuous and X is thick). Observe that oBFx,y ⊆ O (because πj(
oBFx,y) ⊆ Rφ

X

for all j ∈ [1 . . . J ], by definition of Rφ
X ). Let

C′ :=
(
O ∩ int (C)

)
\

⋃

z∈X\{x,y}

Cz.

Then C′ is an open subset of RK (because O and int (C) are open, while Cz is closed
for all z ∈ X , because Fφ is upper hemicontinuous). We have oBFx,y = {c ∈ C′;
(x − y) • φ(c) = 0}. By our assumption on the coordinates of x and y, this means

oBFx,y =

{
c ∈ C′ ; φ(c1) =

J∑

j=2

φ(cj)

}
. (E11)

Claim 1: Let R̃φ
X := φ(Rφ

X ) ⊆ R. Then φ : RF
X−→R̃φ

X is a homeomorphism.

Proof: φ is injective because φ is increasing on Rφ
X by hypothesis. Also, φ is continuous

on Rφ
X by hypothesis. It remains to show that φ is an open map on Rφ

X . To see this,
let S ⊂ Rφ

X be a relatively open subset; we must show that φ(S) is open. Let t ∈ φ(S);
then t = φ(s) for some s ∈ S. Since S is relatively open in Rφ

X , and Rφ
X is open in R by

Lemma E.4(d), there is some ǫ > 0 such that (s−ǫ, s+ǫ) ⊆ S. Now, φ(s−ǫ) < φ(s) <
φ(s+ǫ) because φ is strictly increasing. Thus, (φ(s− ǫ), φ(s+ ǫ)) is a neighbourhood of
t = φ(s). The Intermediate Value Theorem implies that (φ(s− ǫ), φ(s+ ǫ)) ⊆ φ(S),
because φ is continuous on RF

X . Thus, φ(S) contains a neighbourhood around t.
3 Claim 1

Note that Claim 1 implies that τ := ψ ◦ φ−1 is continuous on R̃φ
X .

Now, define φJ : O−→RJ by φJ(r) := (φ(rj))
J
j=1. Claim 1 implies that φJ is a continuous

and open function on O. Thus, if C̃ := φJ [C′], then C̃ is an open subset of RJ . Let

B̃x,y := φJ
(
oBφx,y

)
. Then equation (E11) becomes

B̃x,y =

{
c̃ ∈ C̃ ; c̃1 =

J∑

j=2

c̃j

}
. (E12)
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Let πJ : RJ−→RJ−1 be the projection onto coordinates [2 . . . J ]. Then B := πJ(B̃x,y)
is an open subset of RJ−1, by the Open Mapping Theorem. Let U ⊆ B be a connected
component of B, and let Ũ := π−1

J (U) ∩ B̃x,y. Equation (E12) implies that

ũ1 =
J∑

j=2

ũj, for all ũ ∈ Ũ . (E13)

So, let ũ ∈ Ũ , and suppose ũ := φJ(b), for some b ∈ oBφx,y. Then τ(ũ) = ψ(b).
Furthermore, b ∈ oBψx,y because Fφ(b) = Fψ(b) by hypothesis. Thus, we have

τ(ũ1) −
J∑

j=2

τ(ũj) = ψ(b1) −
J∑

j=2

ψ(bj) = (x − y) • ψ(b) = 0.

Thus, τ(ũ1) =
J∑

j=2

τ(ũj), for all ũ ∈ Ũ . (E14)

Combining equations (E13) and (E14), we get:

τ

(
J∑

j=2

uj

)
=

J∑

j=2

τ(uj), for all u ∈ U . (E15)

For all j ∈ [2 . . . J ], let Uj := πj(U). Let V := π1(Ũ), and let W := V ∪ U2 ∪ · · · ∪ UJ .

Then W ⊆ R̃F
X , so Claim 1 implies that τ is continuous on W . Also, τ is increasing,

because ψ and φ (and hence, φ−1) are increasing. Finally, equation (E13) says that
V = {u2 + · · · + uJ ; u ∈ U}. Then equation (E15) and Lemma E.8 imply that there is
some s > 0 and, for each connected subset W ′ ⊆ W, some t ∈ R such that τ(w) = sw+t
for all w ∈ W ′. Thus, if R′ := {φ−1(w); w′ ∈ W ′}, then we have ψ(r) = s φ(r) + t for
all r ∈ R′.

Proceeding in this way, we can define functions s : RF
X−→R+ and t : RF

X−→R satisfying
condition (C4). By construction, s and t are constant in an open neighbourhood around
each point in their domain. Thus, they must be constant on each connected component
of Rφ

X . This verifies (C2).

To prove (C1), let r1 ∼ r2 ∈ Rφ
X . There exist x,y ∈ X with d(x,y) ≥ 3, some b ∈ oBFx,y,

and some j, k ∈ K±(x,y) such that bj = r1 and bk = r2. But then in the above

construction, if we let Ũ be the connected component of B̃x,y containing φ(b), then we
end up with φ(r1), φ(r2) ∈ W, and thus, s(r1) = s(r2), as desired.

Finally, to establish (C3) let x,y ∈ X with d(x,y) ≥ 3, and let b ∈ oBφx,y Then b ∈ oBψx,y
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also, so

0 = (x − y) • ψ(b) =
∑

k∈K±(x,y)

(xk − yk)ψ(bk)

(∗)

∑

k∈K±(x,y)

(xk − yk)
(
s(bk)φ(bk) + t(bk)

)

(†)
s

∑

k∈K±(x,y)

(xk − yk)
(
φ(bk) + t(bk)

)

= s (x − y) • φ(b) +
∑

k∈K±(x,y)

(xk − yk) t(bk)

(†)

∑

k∈K±(x,y)

(xk − yk) t(bk).

Here, (∗) is by (C4), (⋄) is because (C1) yields some s > 0 such that s(bk) = s for all
k ∈ K±(x,y), and (†) is because b ∈ oBφx,y. 2

Proof of Theorem 6.4. If φ and ψ are continuous on [−1, 1], then Fφ and Fψ are upper
hemicontinuous on ∆(X ), by Proposition 3.6.

“⇐=” If ψ(r) = s φ(r) for all r ∈ RF
X , then ψ is certainly an X -compatible affine

transform of φ. Thus, Theorem E.7(a) says that Fφ(X , µ) = Fψ(X , µ) for all µ ∈ ∆(X ).

“=⇒” Suppose Rφ
X∪{0} is connected. If 0 ∈ Rφ

X , this means that Rφ
X itself is connected,

and hence, Lemma E.4(f) says it contains only one pivotal class.

Otherwise, Rφ
X has at most two connected components: R+ := Rφ

X ∩ (0, 1] and R− :=
Rφ
X ∩ [−1, 0). Lemma E.4(f) says that each of these contains at most one pivotal class,

and since pivotal classes are invariant under negation, we again conclude that Rφ
X has

only one pivotal class.

If φ and ψ are continuous on [−1, 1], and Fφ(X , µ) = Fψ(X , µ) for all µ ∈ ∆(X ), then
Theorem E.7(b) says that ψ is an X -compatible affine transform of φ. But RF

X contains
only one pivotal class, so (C1) implies that s is constant on Rφ

X ; thus, ψ(r) = s φ(r)+t(r)
for all r ∈ RF

X . Next, (C2) implies that the function t(•) takes a constant value on t+

on R+. But then we have

t+ = 0 + t+ = s(0) + t+
(∗)

lim
rց0

s φ(r) + t+ = lim
rց0

ψ(r)
(†)

0.

Here, (∗) is because φ is continuous and odd, while (†) is because ψ is continuous and
odd.

We conclude that t+ = 0. An identical argument, shows that t = 0 on R− also. We
conclude that ψ(r) = s φ(r) for all r ∈ RF

X . 2
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Proof of Lemma 6.5 (a) Fix x,y ∈ X , let b ∈ oBFx,y, and for any s > 0, define b(s) :=
φ−1(s φ(b)). Then we have z • φ(b(s)) = s z • φ(b) for all z ∈ X . Thus, for all
z ∈ X \ {x,y}, we have x • φ(b(s)) = y • φ(b(s)) > z • φ(b(s)), because x • φ(b) =
y • φ(b) > z • φ(b), because b ∈ oBFx,y. Thus, if b(s) ∈ C, then b(s) ∈ oBFx,y also.

But if φ(C) is star-shaped, then s φ(b) ∈ φ(C) for all s ∈ [0, 1]. Thus, we have b(s) ∈ oBFx,y
for all s ∈ (0, 1]. But this describes a continuous path from b to 0. Thus, for any
k ∈ K±(x,y), the map s 7→ bk(s) describes a continuous path from bk to 0.

This argument applies for any x,y ∈ X , any b ∈ oBFx,y, and any k ∈ K±(x,y). Thus,

every element of Rφ
X ∪ {0} is path-connected to 0.

(b) The function φd(r) = sign(r) |r|d is homogeneous. Thus, the function φd : RK−→RK

defined by φd(r) = (φd(rk))k∈K acts homogeneously on RK. By hypothesis, 0 ∈ C, and
C is convex, hence star-shaped. Thus, φd(C) is also star-shaped. Thus, if

∥∥φ− φd
∥∥
∞

is

sufficiently small, then φ(C) is also star-shaped. Thus, part (a) implies that Rφ
X ∪{0} is

connected.

(c) Let r ∈ RF
X . Suppose r > 0; we will show that (0, r] ⊆ RF

X . By definition, there exist
x,y ∈ X with d(x,y) ≥ 3 and b ∈ oBFx,y and k ∈ K±(x,y) such that bk = r. Now, for
all s ∈ (0, 1), let bs := sb+(1− s) (x+y)/2. Then bs ∈ oBFx,y by neutral reinforcement,
and bsk = s bk + (1 − s) (xk + yk)/2 = s r + (1 − s) 0 = s r. Thus, s r ∈ RF

X .

Thus, RF
X ∪ {0} is an interval; thus, it is connected. 2

Proofs from §5

Proof of Theorem 5.1. (a) Fix d ∈ (0,∞). Recall that we define φd(r) := sign(r) · |r|d,
and Hd := Fφd . Proposition 3.6 says that Hd is upper hemicontinuous, because φd is
continuous on [−1, 1]. Clearly, φd is regular. It remains to show that Hd satisfies neutral
reinforcement.

To see this, let x,y ∈ X , and let b ∈Bφ
d

x,y. Let s ∈ [0, 1], and let bs := sb + (1− s) (x +

y)/2. We must show that bs ∈Bφ
d

x,y. To see this, note that

(x − y) • φd(bs) =
∑

k∈K±(x,y)

(xk − yk) · φ
d(bsk) (∗)

∑

k∈K±(x,y)

(xk − yk) · φ
d(s bk)

=
∑

k∈K±(x,y)

(xk − yk) · s
dφd(bk) = sd

∑

k∈K±(x,y)

(xk − yk) · φ
d(bk)

= sd · (x − y) • φd(b)
(†)

0. (E16)

Here, (†) is because b ∈Bφ
d

x,y, while (∗) is because for all k ∈ K±(x,y), we have (xk +
yk)/2 = 0, and thus, bsk = s bk + (1 − s) (xk + yk)/2 = s bk.

51



Meanwhile, for any other z ∈ X , we have

(x − z) • φd(bs) =
∑

k∈K

(xk − zk) · φ
d(bsk)

=
∑

k∈K±(x,y)

(xk − zk) · φ
d(bsk) +

∑

k∈K0(x,y)

(xk − zk) · φ
d(bsk)

(∗)
sd

∑

k∈K±(x,y)

(xk − zk) · φ
d(bk) +

∑

k∈K0(x,y)

(xk − zk) · φ
d(bsk)

≥
(†)

sd
∑

k∈K±(x,y)

(xk − zk) · φ
d(bk) + sd

∑

k∈K0(x,y)

(xk − zk) · φ
d(bk)

= sd · (x − z) • φd(b) ≥
(⋄)

0.

Here (∗) is as in eqn.(E16), and (⋄) is because x ∈ Fφd(b) because b ∈ oBφ
d

x,y. To see (†),
let k ∈ K0(x,y). If xk = yk = 1, then bsk = s bk + (1 − s) > s bk, so φd(bsk) > φd(s bk) =
sd φd(bk). Meanwhile, (xk − zk) ≥ 0, so (xk − zk) · φ

d(bsk) ≥ (xk − zk) · s
d φd(bk).

If xk = yk = −1, then bsk = s bk − (1 − s) < s bk, so φd(bsk) < φd(s bk) = sd φd(bk). But
now (xk − zk) ≤ 0, so again (xk − zk) · φ

d(bsk) ≥ (xk − zk) · s
d φd(bk).

We conclude that x • φd(bs) = y • φd(bs) ≥ z • φd(bs) for all z ∈ X ; thus, bs ∈Bφ
d

x,y. 2

Theorem 5.1(b) “⇐=” is just a special case of Theorem 5.1(a). The proof of Theorem
5.1(b) “=⇒” follows from the next two lemmas.

Lemma E.9 Let X be a thick judgement space. If F : ∆(X ) ⇉ X is regular, upper
hemicontinuous and satisfies neutral reinforcement, then F = Fψ for some continuous
gain function ψ : [−1, 1]−→R.

Proof: If X is proximal, then Theorem 2.1 says that X is supermajoritarian determinate,
so any additive rule is identical to the median rule. Thus, F = Fφ where φ(r) = r for
all r ∈ [−1, 1]. So, assume X is not proximal.

Let φ : [−1, 1]−→ ∗R be any odd, regular gain function such that F = Fφ. Then Lemma
6.1 says that RF

X 6= ∅. Thus, Proposition 6.5(c) says that there is some R > 0 such
that either Rφ

X = (−R,R), or Rφ
X = (−R, 0) ⊔ (0, R). Fix r1 < r2 ∈ (0, R), and for all

r ∈ [−1, 1], define

φ̂(r) := st

(
φ(r)

φ(r2) − φ(r1)

)
and ϕ0 := lim

rց0
φ̂(r). (E17)

Since φ is regular, we can choose r1, r2 such that φ̂(r) is finite for some r ∈ R. Thus,
φ̂(r) is finite for all r close to zero.

For any r ∈ RK, let sign(r) := (sign(rk))k∈K ∈ {−1, 0, 1}K. We will say that Fφ satisfies
parity on X if, for all x,y ∈ X , and all b ∈ oBφx,y, we have sign(b) • (x − y) = 0

Claim 1: Either ϕ0 = 0, or Fφ satisfies parity.
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Proof: (by contradiction) Suppose ϕ0 > 0. Then there is some ǫ > 0 such that
ϕ0 ≤ φ̂(r) < (1 + 1

K
)ϕ0 for all r ∈ (0, ǫ). Dividing both sides by ϕ0 and using the fact

that φ̂ is odd, we conclude that

1 ≤
|φ̂(r)|

ϕ0

< 1 +
1

K
, for all r ∈ [−1, 1] with 0 < |r| < ǫ. (E18)

Suppose also that Fφ does not satisfy parity. Then there exist some x,y ∈ X and
b ∈ oBφx,y such that sign(b) • (x − y) = c 6= 0. Observe that c ∈ 2Z, because
sign(b) ∈ ZK and (x−y) ∈ 2ZK. Thus, without loss of generality (by switching x and
y if necessary) we can assume that c ≥ 2. Find µ ∈ ∆(X ) such that µ̃ = b. Recall

that δx,y ∈ ∆(X ) is the profile such that δx,y(x) = 1
2

= δx,y(y) (thus, δ̃x,y = 1
2
(x+y)).

Define ν := (1 − ǫ)δx,y + ǫ µ.

Claim 1.1: For all k ∈ K±(x,y), we have
∣∣∣φ̂(ν̃k)/ϕ0 − sign(µ̃k)

∣∣∣ <
c

2K
.

Proof: If k ∈ K±(x,y), then δ̃x,yk = 0, so |ν̃k| = ǫ |µ̃k| < ǫ, and thus, 1 ≤ |φ̂(ν̃k)|/ϕ0 <

1 + 1
K

, by statement (E18). In other words,
∣∣∣φ̂(ν̃k)/ϕ0 − sign(φ̂(ν̃k))

∣∣∣ < 1
K

≤ c
2K

,

where the last inequality is because c ≥ 2. But sign(φ̂(ν̃k)) = sign(ν̃k) = sign(ǫµ̃k) =
sign(µ̃k). The claim follows. ▽ Claim 1.1

Thus,

∣∣∣(x − y) •
(
φ̂(ν̃)/ϕ0 − sign(µ̃)

)∣∣∣ =

∣∣∣∣∣∣

∑

k∈K±(x,y)

(xk − yk)
(
φ̂(ν̃k)/ϕ0 − sign(µ̃k)

)
∣∣∣∣∣∣

≤
∑

k∈K±(x,y)

∣∣∣φ̂(ν̃k)/ϕ0 − sign(µ̃k)
∣∣∣ ≤

(∗)

∑

k∈K±(x,y)

c

2K
≤

c

2
, (E19)

where (∗) is by Claim 1.1. Thus,

st

(
(x − y) • φ(ν̃)

ϕ0 · (φ(r2) − φ(r1))

)
(†)

1

ϕ0

(x − y) • st

(
φ(ν̃)

φ(r2) − φ(r1)

)

(⋄)

1

ϕ0

(x − y) • φ̂(ν̃)

= (x − y) • sign(µ̃) + (x − y) •
(
φ̂(ν̃)/ϕ0 − sign(µ̃)

)

= c+ (x − y) •
(
φ̂(ν̃)/ϕ0 − sign(µ̃)

)
≥
(∗)

c−
c

2
=

c

2
> 0. (E20)

Here, (†) is because the map st : ∗R−→R is a ring homomorphism, and ϕ0 ∈ R, and
(x− y) ∈ RK, so st maps these objects to themselves. Meanwhile, (⋄) is by definition
(E17), and (∗) is by inequality (E19).

But ϕ0·(φ(r2)−φ(r1)) > 0. Thus, inequality (E20) implies that st ((x − y) • φ(ν̃)) > 0;
thus (x − y) • φ(ν̃) > 0, and thus, y 6∈ Fφ(ν). But this contradicts neutral reinforce-
ment. 3 Claim 1
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Now, fix S ∈ (0, R), and define ψ : [−1, 1]−→R by setting ψ(0) = 0 and ψ(r) :=
φ̂(S r) − ϕ0 for all r ∈ (0, 1], and ψ(r) := φ̂(S r) + ϕ0 for all r ∈ [−1, 0).

Claim 2: ψ is odd, real-valued, continuous, and increasing on [−1, 1].

Proof: ψ is odd because φ̂ is odd because φ is odd. Now, let φ be as defined in Theorem
6.2(a). Then for all r ∈ (0, 1], we have

ψ(r) = φ̂(S r) − ϕ0 = φ̂(S r) − φ̂(r1) + φ̂(r1) − ϕ0

(∗)
st

(
φ(S r) − φ(r1)

φ(r2) − φ(r1)

)
+
(
φ̂(r1) − ϕ0

)

= φ(S r) + (a real constant),

where (∗) is by substituting in definition (E17), and recalling that st : ∗R−→R is a
ring homomorphism. But Theorem 6.2(a) says that φ is real-valued, continuous, and
increasing on R, which in particular means it has these properties on (0, R). Since
S < R, it follows that ψ is real-valued, continuous, and increasing on (0, 1). Since
ψ is odd, it is also real-valued, continuous, and increasing on (−1, 0). Finally, by
construction we have

lim
rց0

ψ(r) = lim
rց0

φ̂(r) − ϕ0 (⋄)
ϕ0 − ϕ0 = 0,

where (⋄) is by definition (E17), Thus, ψ is right-continuous at 0. Since ψ is odd, it
is also left-continuous at 0. 3 Claim 2

It remains to show that Fψ = Fφ. The gain function φ is increasing by definition, while
ψ is increasing by Claim 2; thus, both Fφ and Fψ are monotone by Proposition 3.5. Fur-
thermore, ψ is continuous by Claim 2, so Fψ is upper hemicontinuous by Proposition 3.6.
Meanwhile, Fφ is upper hemicontinuous by hypothesis. Thus, we can apply Proposition
C.3.

Claim 3: For any x,y ∈ X , we have oBφx,y ∩ Cψx ⊆ Cψy .

Proof: Let b ∈ oBφx,y ∩ Cψx . We must show that y ∈ Fψ(b). Since x ∈ Fψ(b), it suffices
to show that ψ(b) • (x − y) = 0.

Recall that δ̃x,y := (x + y)/2. Thus,

φ (S b) • (x − y) =
∑

k∈K±(x,y)

φ (S bk) · (xk − yk)

(∗)

∑

k∈K±(x,y)

φ
(
S bk + (1 − S)δ̃x,yk

)
· (xk − yk)

= φ
(
S b + (1 − S) δ̃x,y

)
• (x − y)

(†)
0. (E21)

Here (∗) is because δ̃x,yk = 0 for all k ∈ K±(x,y), and (†) is because Fφ(S b + (1 −
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S)δ̃x,y) = {x,y}, by neutral reinforcement. Finally, observe that

ψ(b) = φ̂(S b) − ϕ0 · sign(b). Thus,

ψ(b) • (x − y) = φ̂(S b) • (x − y) − ϕ0 · sign(b) • (x − y)

(∗)
φ̂(S b) • (x − y)

(‡)
st

(
φ(S b)

φ(r2) − φ(r1)

)
• st (x − y)

(⋄)
st

(
φ(S b) • (x − y)

φ(r2) − φ(r1)

)
(†)

st (0) = 0.

here, (∗) is because Claim 1 asserts that either ϕ0 = 0 or sign(b) • (x − y) = 0.
Next, (‡) is by definition (E17), while (⋄) is because the map st : ∗R−→R is a ring
homomorphism. Finally, (†) is by eqn.(E21).

Thus, ψ(b) • y = ψ(b) • x. Thus, y ∈ Fψ(b), because x ∈ Fψ(b). This holds for all
b ∈ oBφx,y ∩ Cψx . Thus, oBφx,y ∩ Cψx ⊆ Cψy . 3 Claim 3

Combining Proposition C.3 and Claim 2 yields Fψ = Fφ. 2

Lemma E.10 Let X be a thick judgement space, and let φ : [−1, 1]−→R be a continuous
gain function. If Fφ satisfies neutral reinforcement on X , then Fφ = Hd for some d ∈
(0,∞).

Proof:

Claim 1: Fix s ∈ (0, 1). Define ψ : [−1, 1]−→R by ψ(r) := φ(s r). Then Fψ = Fφ.

Proof: We will use Proposition C.3. Let x,y ∈ X , and let b ∈ oBφx,y. We must show that
b ∈Bψx,y ∪ (conv(X ) \ Cψx ).

To see this, let bs := sb + (1 − s) (x + y)/2. Then

(x − y) • ψ(b) =
∑

k∈K±(x,y)

(xk − yk) · ψ(bk) =
∑

k∈K±(x,y)

(xk − yk) · φ(s bk)

(∗)

∑

k∈K±(x,y)

(xk − yk) · φ(bsk) = (x − y) • φ(bs)
(†)

0.

Here, (∗) is because for all k ∈ K±(x,y), we have (xk + yk)/2 = 0, and thus, bsk =
s bk + (1− s) (xk + yk)/2 = s bk. Next, (†) is because bs ∈Bφx,y, because b ∈ oBφx,y and
Fφ satisfies neutral reinforcement.

Thus, x • ψ(b) = y • ψ(b). If x • ψ(b) ≥ z • ψ(b) for all z ∈ X , then b ∈ Bψx,y;
otherwise, b ∈ conv(X ) \ CGx . 3 Claim 1

Claim 2: There exists a continuous, increasing function σ : (0, 1)−→R such that, for
all r ∈ Rφ

X and s ∈ (0, 1), we have φ(s r) = σ(s) · φ(r).
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Proof: Proposition 6.5(c) implies that Rφ
X ∪ {0} is connected. Fix s ∈ (0, 1) and define

ψ as in Claim 1. Then Claim 1 and Theorem 6.4 imply that there is some scalar
σ(s) > 0 such that ψ(r) = σ(s) · φ(r) for all r ∈ Rφ

X .

Finally, σ continuous and increasing because φ continuous and increasing. 3 Claim 2

Claim 3: For all s, t ∈ (0, 1], we have σ(s t) = σ(s) · σ(t).

Proof: Fix nonzero r ∈ Rφ
X . Proposition 6.5(c) says t r ∈ Rφ

X , because t ∈ (0, 1]. Thus,

σ(s t) · φ(r) = φ(s t r) = σ(s) · φ(t r) = σ(s) · σ(t) · φ(r),

where every equality is by Claim 2. Now divide both sides by φ(r). (Note that φ(r) 6= 0
because r 6= 0 and φ is strictly increasing, while φ(0) = 0 because φ is odd.) 3 Claim 3

Claim 4: There is some d > 0 such that σ(s) = sd for all d ∈ [0, 1].

Proof: Define λ(s) := log(σ(e−s)) for s ∈ (0,∞). Then λ is continuous and decreasing on
(0,∞) because σ continuous and increasing on (0, 1). However, Claim 3 implies that
λ satisfies the Cauchy functional equation: λ(s+ t) = λ(s) + λ(t) for all s, t ∈ (0,∞).
Thus, there exists some d > 0 such that λ(s) = d s for all s ∈ (0,∞). But this means
that σ(s) = sd for all s ∈ (0, 1). 3 Claim 4

Now fix R ∈ Rφ
X . Let C := φ(R)/Rd. For all r ∈ [0, R], we have

φ(r) = φ((r/R) ·R)
(⋄)
σ(r/R) · φ(R)

(∗)
(r/R)d · φ(R) = C · rd,

where (⋄) is by Claim 2, and (∗) is by Claim 4.

Since R is arbitrary, we conclude that there is some constant C > 0 such that φ(r) = C ·rd

for all positive r ∈ Rφ
X . Since φ is odd, this implies that φ(r) = C ·φd(r) for all r ∈ Rφ

X .
But then Theorem 6.4 implies that Fφ = Hd. 2

Proofs from §4

Lemma E.11 Let d ∈ (0,∞). If Hd satisfies reinforcement on X , then Hd is the median
rule on X .

Proof: If X is proximal, then Theorem 2.1(a) says X is supermajoritarian determinate;
thus, any SME additive rule on ∆(X ) acts as the median rule.

Now suppose X is not proximal. Then there exist x,y ∈ X with d(x,y) ≥ 3 and
oBφ

d

x,y 6= ∅. Let b0 ∈ oBφ
d

x,y, and find i, j ∈ K±(x,y) such that b0i 6= ±b0j . Lemma E.4(c)

yields some other point b1 ∈ oBφ
d

x,y such that b0 and b1 differ only in coordinates i and
j. Without loss of generality, suppose xi = 1 = −yi and yj = 1 = −xj.
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For all s ∈ [0, 1], let bs := sb1 + (1 − s)b0. Then bs ∈Bφ
d

x,y by reinforcement.

Let C :=
∑

k∈K±(x,y)\{i,j}

(xk − yk) · φ
d(b0k).

Then 0 = (x − y) • φ(bs) =
∑

k∈K±(x,y)

(xk − yk) · φ
d(bsk) (E22)

= (xi − yi)φ
d(bsi ) + (xj − yj)φ

d(bsj) + C

= 2φd(bsi ) − 2φd(bsj) + C. (E23)

(Note that C is a constant which is independent of s.) To show that Hd is the median
rule, we must show that d = 1. We will assume that d 6= 1, and derive a contradiction.

Let b′i := b1i − b0i and b′j := b1j − b0j ; then bsi = b0i + s b′i and bsj = b0j + s b′j. Suppose that
bsi , b

s
j ≥ 0. (The argument for the cases bsi , b

s
j ≤ 0 or bsi ≤ 0 ≤ bsj are similar.) Then

φd(bsi ) = (bsi )
d and φd(bsj) = (bsj)

d. Thus, (φd)′(bsi ) = d (bsi )
d−1 and φd(bsj) = d (bsj)

d−1.
Differentiating equation (E23) with respect to s, we have

0 = 2b′i φ
′
d(b

s
i ) − 2b′j (φd)

′(bsj) = 2b′id (bsi )
d−1 − 2b′jd (bsj)

d−1

Thus,
b′j
b′i

=

(
bsi
bsj

)d−1

.

Thus, if d 6= 1, then

(
b′j
b′i

) 1
d−1

=
bsi
bsj
, for all s ∈ [0, 1]. (E24)

Setting s = 0 and s = 1 in equation (E24), we get

b0i =

(
b′j
b′i

) 1
d−1

b0j and b1i =

(
b′j
b′i

) 1
d−1

b1j .

Thus, b0i − b1i =

(
b′j
b′i

) 1
d−1

(b0j − b1j), and thus,
b0i − b1i
b0j − b1j

=

(
b′j
b′i

) 1
d−1

.

That is: (b′i/b
′
j) = (b′j/b

′
i)

1
d−1 . Thus, (b′i/b

′
j)
d−1 = (b′j/b

′
i) = (b′i/b

′
j)
−1. At this point,

there are two possibilities: either b′i/b
′
j = ±1, or d = 0. But d > 0 by hypothesis, so we

must have b′i/b
′
j = ±1. Substituting this into (E24), we get bsi/b

s
j = (±1)

1
d−1 . The case

b′i/b
′
j = −1 is possible only if 1

d−1
is an integer. In any event, we have bsi/b

s
j = ±1 for all

s ∈ [0, 1]. In particular, setting s = 0 we have b0i = ±b0j . But this contradicts our initial
hypotheses that b0i 6= ±b0j .

To avoid this contradiction, we must have d = 1. 2

Proof of Theorem 4.1. (a) Proposition 3.6 implies that the median rule is upper hemicon-
tinuous, because the function φ1(r) = r is continuous on [−1, 1]. Clearly, φ1 is regular.
It remains to show that the median rule satisfies reinforcement.
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To see this, let µ1, µ2 ∈ ∆(X ), and let µ = c1µ1+c2µ2 for some c1, c2 ∈ [0, 1] with c1+c2 =
1. Let x ∈ Median (X , µ1) ∩ Median (X , µ2); we must show that x ∈ Median (X , µ).

Observe that µ̃ = c1µ̃1 + c2µ̃2. Thus, for any y ∈ X , we have

y • µ̃ = c1 y • µ̃1 + c2 y • µ̃2 ≤
(∗)

c1 x • µ̃1 + c2 x • µ̃2 = x • µ̃.

(Here, (∗) is because y • µ̃1 ≤ x • µ̃1 and y • µ̃2 ≤ x • µ̃2, because x ∈ Median (X , µ1)
and x ∈ Median (X , µ2).) Thus, we conclude that y • µ̃ ≤ x • µ̃ for all y ∈ X . Thus,
x ∈ Median (X , µ), as desired.

(b) “⇐=” is a special case of part (a).

“=⇒” Let φ be a regular gain function, and suppose Fφ is upper hemicontinous. If Fφ
satisfies reinforcement, then Fφ satisfies neutral reinforcement. (Observe that Fφ(δx,y) ⊇
{x,y}. Thus, if Fφ(µ) = {x,y}, then reinforcement implies that Fφ(c1µ + c2δx,y) =
{x,y} for any c1, c2 > 0 with c1 + c2 = 1.) Thus, Theorem 5.1 implies that Fφ = Hd

for some d ∈ (0,∞). Now Lemma E.11 implies that Fφ is the median rule. 2

Proof of Proposition 4.2. Let X ′ := max(X , ≺
µ

). Clearly, Median (X , µ) ⊆ X ′. We must
show that Median (X , µ) ⊇ X ′. Suppose x 6∈ Median (X , µ); we will show that x 6∈ X ′.
To do this, let Y(x) := {y ∈ X ; y ≡

X
x}; we must find some y ∈ Y(x) such that x ;

µ
y.

Let C := conv(X ). For any x,y ∈ X , define Cx := {c ∈ C ; x ∈ Median (c)} and Bx,y :=
Cx ∩ Cy = {c ∈ C; {x,y} ∈ Median (c)}. Then Cx and Bx,y are closed, because the
median rule is upper hemicontinuous by Corollary 3.6. The ‘internal boundary’ of Cx is
the set ∂∗ Cx := Cx ∩ cl (C \ Cx).

Claim 1: ∂∗ Cx =
⋃

y∈Y(x)

Bx,y.

Proof: “⊇” is clear by definition.

“⊆” Let D := dim(C); then dim(∂∗ Cx) = D − 1, because it is the boundary of a
relatively open subset of C. We have

∂∗ Cx = Cx ∩




⋃

y∈X\{x}

Cy


 =

⋃

y∈X\{x}

(Cx ∩ Cy)

=
⋃

y∈X\{x}

Bx,y =

(A)︷ ︸︸ ︷⋃

y∈Y(x)

Bx,y ∪

(B)︷ ︸︸ ︷⋃

y∈X\Y(x)

Bx,y .

Now, X \ Y(x) is a finite set, and every element in union (B) is a set of dimension
D− 2 or less (because it is defined by two or more linear constraints); thus union (B)
is nowhere dense in ∂∗ Cx. Thus, union (A) must be dense in ∂∗ Cx. But union (A) is
also closed (it is a finite union of closed sets). Thus, union (A) must cover all of ∂∗ Cx.
3 Claim 1
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Let D := {r ∈ RK; (y − x) • r ≤ 0, for all y ∈ Y(x)}; then D is a closed, convex
polyhedron.

Claim 2: Cx = D ∩ C.

Proof: Cx := {c ∈ C; (y − x) • r ≤ 0, for all y ∈ X}; thus Cx ⊆ D ∩ C. We must show
that Cx ⊇ D ∩ C. Suppose c 6∈ Cx; we will show that c 6∈ D ∩ C. Clearly x ∈ Cx. Let
L be the line segment connecting c to x. One end of L is inside Cx, while the other
end is in Cy for some y ∈ X \ {x}. Thus, L intersects ∂∗Cx at some point b (because
the median rule is upper hemicontinuous). Thus, Claim 1 says that b ∈ Bx,y for some
y ∈ Y(x). Thus, (y−x) •b = 0. Since (y−x) •x < 0, we must have (y−x) • c > 0,
which means that c 6∈ D. 3 Claim 2

Now, x 6∈ Median (X , µ), so µ̃ 6∈ Cx; hence Claim 2 implies that µ̃ 6∈ D (because µ̃ ∈ C).
Since D is closed and convex, the Separating Hyperplane Theorem yields some v ∈ RK

such that v• µ̃ > 0 ≥ v•d for all d ∈ D. A standard variant of Farkas’ Lemma says that
v can be written as a nonnegative linear combination of the constraint vectors defining
D —that is, there exist nonnegative coefficients py ≥ 0 for all y ∈ Y(x), such that

v =
∑

y∈Y(x)

py(y − x) (Bertsimas and Tsitsiklis, 1997, Theorem 4.7, p.166). But then we

have
0 < v • µ̃ =

∑

y∈Y(x)

py(y − x) • µ̃.

Now, py ≥ 0 for all y ∈ Y(x), so we must have (y − x) • µ̃ > 0 for some y ∈ Y(x). But
this means that x ;

µ
y. Thus, x is not maximal in (X , ≺

µ
); hence x 6∈ X ′. 2

Proofs from §2.

Proof of Theorem 2.1(a). In §4, we defined the ‘internal graph’ as a binary relation ≡
X

on X ; we also defined an orientation ;
µ

on this graph by setting x ;
µ

y if x • µ̃ < y • µ̃

Claim 1: For any µ ∈ ∆(X ), any odd increasing φ : [−1, 1]−→R, and any x ≡
X

y, we

have
(
x • φ(µ̃) < y • φ(µ̃)

)
⇐⇒

(
x ;

µ
y
)
.

Proof: Since X is proximal, there are only two cases.

If d(x,y) = 1 and K±(x,y) = {k}, then (x − y) • φ(µ̃) = (xk − yk)φ(µ̃k). Thus,

(
x • φ(µ̃) < y • φ(µ̃)

)
⇐⇒

(
(xk − yk) · φ(µ̃k) < 0

)

⇐
(∗)
⇒

(
(xk − yk) · µ̃k < 0

)
⇐⇒

(
x ;

µ
y
)
.

(∗) is because φ is sign-preserving because φ is increasing and φ(0) = 0 (because φ is
odd).
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If d(x,y) = 2, and K±(x,y) = {i, j}, then (x−y)•φ(µ̃) = (xi−yi)φ(µ̃i)+(xj−yj)φ(µ̃j).
Thus,

(
x • φ(µ̃) < y • φ(µ̃)

)
⇐⇒

(
(xi − yi) · φ(µ̃i) < (yj − xj) · φ(µ̃j)

)

⇐
(∗)
⇒

(
(xi − yi) · µ̃i < (yj − xj) · µ̃j

)
⇐⇒

(
x ;

µ
y
)
.

Here, (∗) is because φ is odd and increasing, and |xi − yi| = |xj − yj| = 2. 3 Claim 1

Let ≺
µ

be the transitive closure of ;
µ

, and let X ′ := max(X , ≺
µ

). Proposition 4.2 says
Median (X , µ) = X ′.

Claim 2: If φ : [−1, 1]−→R is odd and increasing, then Fφ(X , µ) ⊆ X ′.

Proof: For any x,y ∈ X (adjacent or not), write x �
φ

y if x • φ(µ̃) ≤ y • φ(µ̃). This is a

total ordering of X , and Fφ(X , µ) = max(X , �
φ

). However, Claim 1 shows that ;
µ

is a sub-relation of ≺
φ

(the asymmetric part of �
φ

); thus, ≺
µ

is also a sub-relation of
≺
φ

, so max(X , �
φ

) ⊆ max(X , ≺
µ

). 3 Claim 2

Claim 3: If φ : [−1, 1]−→R is odd, increasing and continuous, then Fφ(X , µ) =
Median (X , µ) for all µ ∈ ∆(X ).

Proof: Fφ is upper hemicontinuous on ∆(X ) by Proposition 3.6, because φ is continuous
on [−1, 1]. The median rule is monotone by Proposition 3.5(b), because the function
η(x) = x is strictly increasing. Claim 2 and Proposition 4.2 imply that Fφ(X , µ) ⊆
Median (X , µ) for all µ ∈ ∆(X ). Thus, Lemma C.1 shows that in fact Fφ(X , µ) =
Median (X , µ) for all µ ∈ ∆(X ). 3 Claim 3

Claim 4: (a) If ψ : [−1, 1]−→R is any odd, increasing, continuous function, then
SSME (X , µ) = Fψ(X , µ) for all µ ∈ ∆(X ).

(b) In particular, SSME (X , µ) = Median (X , µ) for all µ ∈ ∆(X ).

Proof: Let ΦI be the set of all odd, continuous, increasing functions from [−1, 1] into R.
Then

SSME (X , µ)
(∗)

⋃

φ∈ΦI

Fφ(X , µ)
(†)

⋃

φ∈ΦI

Median (X , µ)

= Median (X , µ)
(†)

Fψ(X , µ).

Here, (∗) is by Proposition 1.1(b), and both (†) are by Claim 3. 3 Claim 4

Claim 5: γµ,x = γµ,y for all x,y ∈ SSME (X , µ).

Proof: By contradiction, suppose there exist x,y ∈ SSME (X , µ) with γµ,x 6= γµ,y. Then
we can find some continuous, increasing φ : [−1, 1]−→R such that φ∗(γµ,x) 6= φ∗(γµ,y).
Thus, Lemma D.2(c) implies that at most one of x or y is in Fψ(X , µ), contradicting
Claim 4(a). 3 Claim 5
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Claim 6: SME (X , µ) ⊆ SSME (X , µ) for all µ ∈ ∆(X ).

Proof: By contrapositive, suppose z ∈ X \ SSME (X , µ). Then there exists some ρ ∈
∆(X ) such that z �

µ
ρ —i.e. such that γµ,z ≤ γµ,ρ with at least one strict inequality.

Without loss of generality, suppose that ρ is ( �
µ

)-maximal in ∆(X ). Then supp(ρ) ⊆
SSME (X , µ). Fix y ∈ SSME (X , µ); then Claim 5 says that γµ,x = γµ,y for all other
x ∈ SSME (X , µ); thus, γµ,ρ = γµ,y (because γµ,ρ is a convex combination of {γµ,x;
x ∈ SSME (X , µ)}). Thus, γµ,z ≤ γµ,y, with at least one strict inequality. Thus, z �

µ
y.

Thus, z 6∈ SME (X , µ). 3 Claim 6

Now Proposition 1.1(a) and Claim 6 imply that SSME (X , µ) = SME (X , µ). Then
Claim 5 implies that X is supermajoritarian determinate.

(b) (by contrapositive) Define φ(r) := r for all r ∈ [−1, 1] (so Fφ is the median rule).
Suppose X is not proximal. Then there exist x,y ∈ X with d(x,y) ≥ 3, such that
oBφx,y 6= ∅. Thus, if k ∈ K±(x,y), then Rk

x,y 6= ∅; thus, Rφ
X 6= ∅.

Now, the median rule satisfies neutral reinforcement, by Theorem 5.1(a). Thus, Rφ
X∪{0}

is connected, by Lemma ??. Thus, Theorem 6.4 is applicable. Let ψ : [−1, 1]−→R be
another odd, continuous, increasing function, such that ψ is not a scalar multiple of φ
on Rφ

X . Then the contrapositive of Theorem 6.4 implies that Fφ 6= Fψ. Thus, X is not
supermajoritarian determinant. 2

Proof of Proposition 2.3. Let x, z ∈ X com with d(x, z) ≥ 3; we must show that x 6 ≡
X

z. In
fact, we will show that x 6←→

X
y (see Appendix B). We define

K++ := {k ∈ K ; xk = 1 = zk}, K+− := {k ∈ K ; xk = 1, zk = −1}

K−− := {k ∈ K ; xk = −1 = zk}, and K−+ := {k ∈ K ; xk = −1, zk = 1}.

We have |x| = |K++| + |K+−| and |z| = |K++| + |K−+|. Thus,

I − |K++| ≤ |K+−|, |K−+| ≤ J − |K++|.

Now, |K+−|+ |K−+| = d(x, z) ≥ 3, so either |K+−| ≥ 2 or |K−+| ≥ 2. If |K+−| ≥ 2, then
let ∅ 6= K1

+− ( K+−; otherwise set K1
+− := ∅. If |K−+| ≥ 2, then let ∅ 6= K1

−+ ( K−+;
otherwise set K1

−+ := ∅. Let K2
−+ := K−+ \ K1

−+ and K2
+− := K+− \ K1

+−. Thus,
|K+−| = |K1

+−|+ |K2
+−| and |K−+| = |K1

−+|+ |K2
−+|. We can always choose these sets so

that

I − |K++| ≤ |K1
+−| + |K2

−+| ≤ J − |K++|,

and I − |K++| ≤ |K2
+−| + |K1

−+| ≤ J − |K++|.

Now define y1,y2 ∈ NL as follows:

y1
k :=

{
1 if k ∈ K1

+− ⊔ K++ ⊔ K2
−+;

−1 if k ∈ K2
+− ⊔ K−− ⊔ K1

−+;

and y2
k :=

{
1 if k ∈ K2

+− ⊔ K++ ⊔ K1
−+;

−1 if k ∈ K1
+− ⊔ K−− ⊔ K2

−+.
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Then I ≤ |y1|, |y2| ≤ J , so y1,y2 ∈ X com. For every k ∈ K, we have

y1
k + y2

k =





2 if k ∈ K++

0 if k ∈ K+− ⊔ K−+

−2 if k ∈ K−−



 = xk + zk.

Thus, (y1 + y2)/2 = (x + z)/2, so conv{x, z} ∩ conv{y1,y2} 6= ∅, so the line segment
conv{x, z} is not an edge of conv(X ). Thus, x 6←→

X
y. Thus, Proposition B.1(c) says that

x 6≡
X

z.

This holds whenever d(x,y) ≥ 3. Thus, X com is proximal. 2
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