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Abstract

This paper studies learning in an evolutionary model of the hold-up problem.
One player decides upon the investment level and the resulting surplus is then
divided with another player in a bargaining game. Players learn about their
opponents’ bargaining behavior from past situations that differ with respect to
the available surplus. They rely on inferences about either absolute or relative
bargaining demands. The interplay of these two learning heuristics will overcome
the hold-up problem. The payoff for the investor is lower than in the existing
literature, where players only learn from past instances of identical bargaining
situations.
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1. Introduction

The hold-up problem has been studied extensively in the literature on vertical
integration (e.g., Grout, 1984; Grossman and Hart, 1986; Tirole, 1986). It
describes how inefficiency might emerge in situations that feature relation-
specific investment. The inefficiency arises if it is impossible to write a contract
on the investment level and on the compensation of the investor. Because the
investment is relation-specific, the concerned parties will bargain over the terms
of the transaction after the investment costs are sunk. If the bargaining parties
obtain shares according to some fixed rule, like the Nash bargaining solution
(Nash, 1950), then there is necessarily underinvestment, as the marginal return
on investment will not be fully captured by the investing party.

∗Phone: +43 1 4277 37449; Fax: +43 1 4277 9374
Email address: julian.kolm@univie.ac.at (Julian Kolm)

1



2

If the bargaining game exhibits multiple Nash equilibria, as in the case of
the Nash demand game1 (Nash, 1953), then multiple equilibria with efficient
and inefficient investment exist. The evolutionary literature has focused on the
question of whether evolutionary learning will select an equilibrium with efficient
investment. Tröger (2002) and Ellingsen and Robles (2002), TER henceforth2,
find a unique stochastically stable convention where the most efficient investment
level is chosen. The investing player obtains a payoff that is larger than the
whole net surplus generated by every other investment level. If investment levels
are very similar this implies that the investing player will obtain almost all the
surplus.3

Models of learning in extensive form games traditionally assume that players
learn independently for each information set (e.g., Fudenberg and Levine, 1998).
Learning is thus restricted to identical situations which neglects the fact that
players can learn from “similar”, albeit different, situations. Learning across
“similar” situations, however, is clearly a feature of real world learning.4

Also TER consider players who learn only from identical situations. In
Ellingsen and Robles (2002), players update their strategies independently for
each bargaining subgame, based on the strategy distribution of the population. In
Tröger (2002), players’ beliefs about a bargaining subgame are based exclusively
on past bargaining behavior that followed the same investment level.

Contrary to the literature, I consider players who learn across “similar”, albeit
different, bargaining games. Learning across different bargaining situations seems
to be natural because they do indeed have a very similar structure. Players
treat different bargaining subgames as “similar” in the sense that they believe
that their opponents will make similar bargaining demands independently of
the investment levels. Players’ beliefs about bargaining behavior following a
specific investment level are based on the observed bargaining behavior following
all investment levels. This notion of similarity is consistent with the concept of
“analogous” situations proposed by Jehiel (2005).

Different investment levels, however, imply that players bargain about sur-
pluses of different sizes. In such a context, it is not clear what constitutes similar
demand in different bargaining subgames. Two possibilities seem to be natural:
First, two bargaining demands are similar if they are of the same absolute size.

1This is also the case for the Rubinstein-Ståhl bargaining game, if there exists a smallest
money unit (Van Damme et al., 1990).

2These two papers consider exactly the same game and derive the same results. The
modeling details of the evolutionary learning process, however, differ because Tröger (2002)
extends the model of Young (1993b) while Ellingsen and Robles (2002) apply the framework
of Nöldecke and Samuelson (1993).

3Dawid and MacLeod (2001, 2008) show that if investment is two sided, then the Hold-up
problem persists in evolutionary models.

4Moreover, the assumption commonly made in evolutionary learning models, that the
different past instances of the situation players find themselves in are exactly the same, is, of
course, a fiction employed to model the idea that players face similar, albeit slightly different,
situations.
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Second, two bargaining demands are similar if they claim the same relative share
of the available surplus.

I allow for both interpretations to coexist in the model: Some players form
beliefs about absolute demands, while others form beliefs about relative demand
shares. This allows me to account for the fact that different players might indeed
employ different learning heuristics.5 The number of players who form their
beliefs according to either one of this heuristics has no impact on the results as
long as each heuristic is used by some players.

I find that evolution will overcome the hold-up problem. I also show that
the distribution of the stochastically stable conventions will be such that the
investing players obtain a payoff that is (weakly) larger than the equal split
and (weakly) lower than in TER. If the investment levels are very similar, the
difference to TER can amount to almost half the gross surplus of the efficient
investment level.

In fact, efficient investment-bargaining norms emerge directly from the best
response behavior of the players. Thus, evolution solves the hold-up problem
whether the players make errors or not.

My result is driven by the interplay of the two learning heuristics. Players who
believe that their opponents will make a constant absolute demand essentially
consider themselves to be residual claimants. Thus, these players will choose
efficient investment if they expect to obtain any positive payoff, accounting for
their investment cost. Players who believe that their opponents will demand the
same relative share in all bargaining subgames will choose high investment if
their share of the gross surplus is large enough. If this is the case, then choosing
efficient investment maximizes their payoff accounting for their investment costs.

Because some players consider themselves to be residual claimants, no con-
vention with inefficient investment will be stable. The evolutionary bargaining
process will ensure that players coordinate on a stable convention with the
efficient investment level. These conventions are stable because the distribution
of the surplus will adapt, such that all players have an incentive to choose efficient
investment.

In the stochastically stable states, the investing players get a share of the gross
surplus that is high enough that both types of players choose high investment.
The number of errors necessary to displace one convention for another convention
closer to the Nash bargaining solution is lower than for a displacement in the
reverse direction.6 Thus it follows that the distribution of the gross surplus is as
close to the Nash bargaining solution as possible under the constraint that this
distribution can be a stable convention i.e., the share of the investing players is
not to low.

The remainder of the paper is structured as follows. Section 2 discusses the
formal model. Section 3 introduces the concepts used to analyze the long-run

5In an earlier paper (Kolm, 2010), I considered a similar model where all players only
considered the absolute size of past bargaining demands.

6This is also the case in Young (1993b).
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properties of the players’ learning process. Section 4 presents and discusses the
results. Section 5 concludes. Formal proofs are relegated to the Appendix.

2. The Model

I consider a model with two finite populations. Every period t = 1, 2, ... a
player, α, is randomly selected from the first population and another player, β,
is randomly selected from the second. These two players are matched to play
the following two stage investment-bargaining game.

2.1. The Game
At the investment stage, a player α chooses an investment level I, which is

associated with a private cost CI . The investment of the player creates a gross
surplus of the size VI .

At the bargaining stage, the players divide the gross surplus by playing a
Nash demand game. Players α and β simultaneously make demands x and y,
respectively. Players receive their respective demand if, and only if, the sum
of their demands is smaller than or equal to the gross surplus that is available.
The surplus of α and β in the investment bargaining game is then given by

(πα(I, x, y), πβ(I, x, y)) =

{
(x− CI , y) if x+ y ≤ VI
(−CI , 0) otherwise

Two demands x and y are said to be compatible if given I , x+ y ≤ VI .
Because every division is a Nash equilibrium of the Nash demand game (Nash,

1953), every investment level that yields a positive net surplus VI − CI can be
supported in a subgame perfect Nash equilibrium. To see this, consider the
following strategy combination: At the investment stage, the player α chooses an
investment any I. In the bargaining subgame following this investment level, the
players choose bargaining demands xI and yI such that xI +yI = VI and xI−CI
and yI are greater than zero. In the bargaining subgames following all other
investment levels I ′, the strategies of players are given by xI′ = 0 and yI′ = VI′ .
It is obvious that, given these strategies, players α do not have an incentive to
deviate from their investment level because this would yield a negative payoff
of −CI′ . Because every division of the surplus that satisfies x + y = V is a
Nash equilibrium of the Nash bargaining game, the above strategies constitute a
subgame perfect Nash equilibrium. The above game thus allows for subgame
perfect Nash equilibria with an inefficient investment level, but it also allows
for equilibria where efficient investment is chosen. The aim of the following
evolutionary analysis is to identify those equilibria that are most likely to occur
in the long run.

For technical reasons it is assumed that the action sets of players are finite.
The investment levels I are chosen from the finite set I ={I0, I1, . . . , IN}. Let
δ be a base unit that is chosen such that for all possible investment levels, VIδ ,
CI
δ , and maxI∈I VI

2δ are integers. The demands of the players are assumed to be
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elements of the set of possible demands X = {δ, 2δ, . . .maxI∈I(VI) − δ}. The
lower bound of this set is motivated by the fact that a demand of zero is weakly
dominated by any other demand that a player could make. The upper bound of
this set is justified by the fact that, given the lower bound of X, the demand
maxI∈I(VI) is dominated by all other demands in X. The action sets of players
α and β are then given by the finite sets I×X and X, respectively.

To make the analysis more tractable, I assume that there only exist two
investment levels, high investment, H and low investment, L. The number of
investment levels is not crucial, but must be finite. I assume further that high
investment is efficient, which is the case if

VH − CH > VL − CL (1)

This clearly is the relevant case for the discussion of the hold-up problem.

2.2. Players’ Behavior

Players consider all bargaining situations analogous in the sense of Jehiel
(2005), i.e., they expect their opponents to make bargaining demands similar
to those in previous bargaining situations. As mentioned in the introduction,
the different sizes of the available surplus allow for two intuitive notions of
similarity: First, they can be considered similar if they claim the same absolute
value. Second, they can be considered similar if they claim the same share of
the surplus.7

Let us assume that both populations of players consist of players of both
types.8 Players who interpret past bargaining demands as absolute values are
denoted by αa and βa, and players who interpret past bargaining demands as
relative shares are denoted by αr and βr. In what follows, relative demand
shares xt/VItand yt/VIt will be denoted by χt and υt.

The beliefs of the players about their opponents’ strategies are based on
partial observations of the history of plays. Every period the active player α
draws a sample A, which consists of kα entries from the last m records of play.
Similarly, player β draws a sample B consisting of kβ entries from the last m
records of play.

The beliefs of players αr regarding the bargaining behavior of players β are
given by the observed cumulative distribution of relative demand shares Fr(υt|A).
The beliefs of players αa are given by the observed cumulative absolute bargaining

7Heterogeneity of agents with respect to their belief formation has been explored in Saez-
Marti and Weibull (1999) and Matros (2003). In their models a fraction of “clever” players
does not play a best response to the history of their opponents’ past actions, but rather a best
response to their opponents’ best response to their own past actions. Matros (2003), however,
shows that this modification does not change the minimal curb set in generic finite two player
games as long as the share of “clever” players is below one in all populations.

8Alternatively, it could be assumed that whenever a player is chosen to play the investment
bargaining game, he randomly selects whether to interpret past bargaining demands as absolute
demands or relative share. It is only important that in every period, there exists a positive
probability for both types of players to play.
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demands Fa(yt|A). Analogously the beliefs of βr and βa can be characterized by
Fr(χt|B) and Fa(xt|B), respectively.

Thus, given an investment level I, the payoff expected by players αr demand-
ing x is given by

Er(πα(x)|I, A) = xFr(1−
x

VI
|A)− CI

The payoff expected by players αa is given by

Ea(πα(x)|I, A) = xFa(VI − x|A)− CI

The beliefs of players βr and βa are defined analogously.

2.2.1. Best response behavior
Given their beliefs, the players choose a myopic best response, that is, players

α choose arg maxx∈X,I∈IE(πα(x)|I, A) and players β choose arg maxx∈X E(πβ(y)|I,B).
If multiple action profiles yield the highest expected payoff for some player, then
this player plays a probability distribution over these action profiles. The support
of this distribution is given by the set of action profiles that yield the maximum
expected payoff and for which there exists a compatible demand from their
opponent, given the investment level I. That is, any action profile (I, x, y) that
is played with positive probability satisfies x < VI and y < VI , respectively. This
is motivated by the fact that a bargaining demand x ≥ VI or y ≥ VI is weakly
dominated by every other bargaining demand in X given I.

It is possible that some past play (I, x, y) was such that the expected bar-
gaining demands (given this past play) are not compatible with any feasible
bargaining demand. For a player αr, this is the case when given a different
investment level I ′, (1 − y

VI
)VI′ < δ, e.g., when y = VI − δ and VI > VI′ . For

a player αa, this is the case when given a different investment level I ′, y ≥ VI′ .
Analogous conditions apply for players βr and βa. This can be interpreted as
a player’s insecurity about the distribution of an opponent’s demand, in which
case the player does not regard this instance of past play as informative and
expects that the worst case will happen, i.e., that no coordination will take place.
If for all demands in the sample there does not exist a compatible demand (given
the chosen investment level), then the expected payoff of all demands is zero
and, consequently, the player will play a probability distribution with support
{z ∈ X : z < VI}.

In addition, players make occasional mistakes. With probability ε, a player
α makes a mistake at the bargaining stage and with the same probability ε, a
player α or β makes a mistake a the bargaining stage. The joint distribution
of making an error at the investment stage and the bargaining stage does not
matter for the results of this paper. If a player makes an error at some stage of
the game, he or she chooses a random action from a distribution that has full
support over the action set of this stage.



7

3. Conventions

The subsequent analysis will largely focus on states where players behave
uniformly over time. Such states will be called conventions.

The play in period t is denoted by (It, xt, yt), which is abbreviated by (I, x, y)t.
Let S be the set of all truncated histories of plays of length m. Let a state st ∈ S
denote the play in the last m periods in at period t, i.e.,

st = ((I, x, y)t−m, (I, x, y)t−m+1, ...(I, x, y)t).

As the players draw their samples from the last m periods of play, their
behavior at time t only depends on st. Thus, the behavior of players determines
a Markov chain P ε on S. This Markov chain is called the perturbed investment-
bargaining process. Because the strategy spaces of players I × X and X are
finite, the state space S is finite as well.

3.1. Stability

One concept to describe the long run behavior of the investment-bargaining
process is provided by the notion of stability.9 Stability describes those sets of
states that will only be left by the investment-bargaining process if players make
errors.

Let P 0 denote the Markov chain that is determined exclusively by the best
response behavior of players, i.e., when ε = 0. This Markov chain is called the
unperturbed investment bargaining process.

Definition. A set of states Si is stable if for all states s, s′ ∈ Si there exists a
positive transition probability from s to s′ under P 0 and for all states s− /∈ Si
there does not exist a positive transition probability from s to s− under P 0.

3.2. Conventions

States where players behave uniformly are important because for these states,
the beliefs of players are the same for all samples that can be drawn from the
history of plays.

Definition. A state s ∈ S is a convention σ if it consists of m identical records,
and the demands of the players are compatible. A convention is stable if it is a
stable set.

Stable conventions are the only states where all possible beliefs of players
coincide with all possible best response actions of their opponents. Thus, as
long as the process is in a stable convention, beliefs of players will constantly be
confirmed.

9These sets are called “absorbing” by Ellingsen and Robles (2002) and “recurrent communi-
cation classes” by Young (1993a)
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3.3. Stochastic stability

The concept of stochastic stability was introduced by Foster and Young
(1990); it describes the long run probability that a state occurs. It provides a
stronger notion than stability and draws on constant perturbations of the best
response dynamic.

The perturbed investment-bargaining process P ε is irreducible and aperi-
odic.10 From the theory of Markov Processes, it follows that there exists a
unique stationary distribution µε of the Markov process P ε where µε(s) is the
cumulative relative frequency with which a state s will occur if the process P ε
runs for a very long time.

Definition. A state s ∈ S is stochastically stable if limε→0 µ
ε(s) > 0.

Let S∗ denote the set of stochastically stable states. For very small error
probabilities ε, the process P ε will be in S∗ most of the time. Young (1993a)
has shown that the set of stochastically stable states must be a subset of the
union of all stable states.

4. Results

In this section, it will be shown that the set of stable states consists of stable
conventions with efficient investment. The distribution of the surplus will be
such that the investing players who believe that they get the same relative
share of the gross surplus independently of the investment level will have an
incentive to choose the efficient investment level. The surplus distribution of
the stochastically stable conventions is such that the investing players get either
exactly as much as necessary to make high investment profitable for them (given
the above belief), or the investing players get a share of the gross surplus that
corresponds to the (generalized) Nash-bargaining solution.

As a point of reference, briefly consider the case where the surplus VI is split
among both players according to the Nash-bargaining rule that attributes VI/2
to each player. Clearly, in this case, a player α will choose high investment if
VH
2 −CH > VL

2 −CL. It follows then that the hold-up problem would lead to an
inefficient, low level of investment if

VH − VL ∈ (CH − CL, 2CH − 2CL).

The following evolutionary analysis will analyze the case where VH > VL and
CH > CL, which is a necessary condition for the hold-up problem to arise.

10To see this, suppose that P ε is in state st at time t. Suppose further that both players
make errors at the investment and the bargaining stage for m consecutive periods. After this
m periods, the state st+m consists entirely of random demands. Consequently, the state st+m
can be every state in S, which implies irreducibility. Clearly, the same state could also be
reached after m+ 1 periods of consecutive errors, which implies aperiodicity.
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4.1. Stable High Investment

The first result concerns the set of stable conventions.

Lemma 1. Assume that (CH−CL)/(VH−VL)VH and (CH−CL)/(VH−VL)VL
are multiples of δ. If the shares of players αr, αa, βr, and βa are strictly
positive in the populations of players α and β, respectively, then the set of
stable conventions Σ is given by the set of conventions (H, ξ, VH − ξ) with ξ >
(CH − CL)/(VH − VL)VH .

Proof. see Appendix.

To discuss the idea behind the proof, I introduce the following notation:
Denote the lower bound of the gross surplus that investing players may receive
in a stable convention by ξ := (CH − CL)/(VH − VL)VH and denote the lower
bound of the relative shares of the gross surplus that investing players may
receive in a stable convention by χ := (CH − CL)/(VH − VL).

The fact that the set of stable conventions contains only conventions with
high investment is driven by the presence of players αa in the population. Those
players believe that all players β will make the same absolute bargaining demands,
irrespective of the investment level chosen. This implies that players αa believe
that they are the residual claimants. Consequently, they will maximize the total
surplus in order to maximize their own net surplus. Because high investment
is efficient, this implies that no stable convention can be associated with low
investment.

The fact that the share of the investing players must be larger than ξ is
driven by the presence of players αr in the population. Thus, players believe
that players β will demand the same share υ at all investment levels. This
implies that high investment is profitable if the following condition is met:
(1− υ)VH − CH > (1− υ)VL − CL. This is the case if and only if (1− υ) > χ,
which, given high investment, implies that ξ > ξ.

This result holds as long as the population of players α contains at least one
player of each type. The reason is that, as long as one player of each type is
present in the population, the probability for a player of each type to play in any
given period is positive. Hence, no convention can be stable that is not stable
given the best response correspondence of both types. Thus, if a population
consists of several types of players, then the set of stable conventions consists of
the intersection of the sets of conventions that are stable for a single type.

This line of reasoning also implies the following result:

Lemma 2. Let the population of players α consist of arbitrary player types and
let it contain a positive share of players αa. If the set of stable conventions is
non empty, it contains only conventions with high investment.

Proof. Follows from inspection of the Proof of Lemma 1 and the fact that every
stable convention must be a fixed point of the best response correspondence of
all players in the populations.
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The mechanism driving this result is that players αa will always choose
high investment. Hence, no convention with low investment can be stable if
the probability of a player αa to play in any given period is positive. Thus,
the presence of players who consider themselves to be the residual claimants is
sufficient to prevent the emergence of inefficient stable conventions.

The next result concerns the convergence of the evolutionary learning process
to the set of stable conventions with populations consisting of players αr, αa,
βr, and βa.

Proposition 1. Assume investment to be efficient and the sample lengths of
both players to be smaller or equal to m/3. Then, from any initial state s, the
unperturbed bargaining process P 0 converges almost surely to a stable convention.

The proof of this proposition shows that if players draw the “right” samples, it
is possible for them to coordinate on a stable convention. The following example
demonstrates how such coordination takes place.

Example 1. Let k := max{kα, kβ} and let At denote the last k records in st.
Abusing language, say that a player samples At if he draws a sample contained
in At.

Suppose that in period t + 1 to t + k, inclusive, players αa and βa sample
At. Thus, the best response behavior of players implies that they will play the
same actions in period t to t + k, inclusive. Hence, At+k consists of identical
records (I, x, y). Suppose that in period t+ k+ 1 to t+ 2k, inclusive, players αa
sample At and players βa sample At+k. With positive probability, player αa will
take the same actions as in the last k periods. Players βa will make bargaining
demands VI − x. Thus, At+2k consists of identical records (I, x, VI − x).

If (I, x, VI − x) satisfies the conditions of Lemma 1, then if players sample
At+2k in period t+ 2k + 1 to t+ k +m, inclusive, then st+k+m will be a stable
convention.

If (I, x, VI − x) does not satisfy the conditions of Lemma 1, then the proof
of Proposition 1 establishes that it is still possible to reach a stable convention
in finitely many periods. Indeed, as long as ξ ≤ ξ, it is possible to increase the
share players α get by a sequence of plays where investment levels alternate
between high and low. Such alternations are possible because for ξ ≤ ξ, players
αa choose high investment while players αr choose low investment. Players’
α share can increase because when investment changes from low to high, the
absolute share of players β remains constant with positive probability, thus
decreasing their relative share. Conversely, when investment changes from high
to low, the relative share of players β remains constant with positive probability,
thus decreasing their absolute share. This gives players α the possibility to
increase their share above ξ in finitely many periods. Hence, a stable convention
can be reached.

Because investment is high in all stable conventions, as stated in Lemma
1, Proposition 1 implies that the unperturbed investment bargaining process
will almost surely converge to a convention with high investment. This result is
consistent with the results of TER.
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My result, however, is driven by the interplay of two different learning
heuristics. A convention with high investment will emerge directly from the
best response behavior of players. Thus, it does not depend on whether players
make errors. In contrast to this, TER rely on the concept of stochastic stability
to show efficiency and, thus, use a limit result as the probability of players
making errors goes to zero. My result, therefore, adds support for the claim that
evolution can resolve the hold-up problem.

4.2. Surplus Distribution

The following theorem characterizes the distribution of the stochastically
stable convention in the limit as δ → 0.

In what follows, let ξN denote the asymmetric Nash bargaining solution

arg max
x

((x)k
α/m(VH − x)k

β/m).

If both players draw samples of the same length, then ξN = VH/2.

Theorem 1. Assume δ to be sufficiently small and k and m to be sufficiently
large. As δ → 0 the distribution of the surplus ξ of all stable conventions
(H, ξ, VH − ξ) converges to

ξ∗ = max

{
CH − CL
VH − VL

VH , ξ
N

}
(2)

Proof. see Appendix.

As stated in the Theorem, the investing players will at least get a share
according to the (asymmetric) Nash bargaining solution. If, however, this share
would not be sufficient to give players αr an incentive to choose high investment,
then the surplus will be higher. It will be just high enough to give players
αr an incentive to choose high investment. Thus the investing players will be
compensated for their investment only to the extent that this gives them an
incentive to invest, while the non-investing players will receive the remaining
surplus that is generated by the investment.

Essentially, the reason for this is that the number of errors that is necessary to
displace a convention in favor of a convention that is closer to the Nash bargaining
solution is lower than for a displacement in the reverse direction. This, of course,
only holds for stable conventions, which explains why ξ∗ > CH−CL

VH−VL VH . Thus,
the distribution ξ∗ is as close to the Nash bargaining solution as possible under
the constraint that the distribution provides an incentive for players αr to choose
high investment.

The proof of this Theorem combines an adaption of the ideas provided in
Young (1993b) with techniques developed in Ellison (2000).

It is useful to compare expression 2 to Proposition 4.1 in Tröger (2002) and
Proposition 4 in Ellingsen and Robles (2002), which state that as δ → 0 the
distribution of the stochastically stable convention converges to
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ξTER = max
{
VL − CL + CH , ξ

N
}

In TER, ξ ≥ VL − CL + CH is a necessary condition for a stable convention
because the beliefs about bargaining behavior following investment levels that
deviate from “conventional” play can “drift”, i.e., the beliefs can easily take a
random form over time. Thus, players can easily believe that they will obtain the
whole surplus after some “unconventional” investment level. Such extreme beliefs
can destabilize any investment-bargaining convention where ξ < VL − CL + CH .
Thus, the only stable conventions are those where the efficient investment level
is chosen and the investing players obtain a payoff that is higher than the whole
net surplus generated by any other investment level.

In the present model the investing players obtains a weakly smaller surplus
than in TER. This follows from simple rearrangement of terms in ξ∗ ≤ ξTER,
which yields VL((VH − VL) − (CH − CL)) ≥ 0. This inequality holds true for
efficient investment (equation 1).

If the investment levels are very similar, then the difference between ξ∗

and ξTER can be very large. For instance, suppose that VH = VL + 4δ and
CH = CL + 2δ. If both players draw samples of the same length, then this
implies that ξ∗ = 1

2VH and ξTER = VH − 2δ. Thus, the difference amounts to
almost half the gross surplus available under efficient investment.

The intuition behind this is that in the present model, the stochastically
stable convention must only be robust to the investing players believing that
they will get the same relative share of the gross surplus if they choose a different
investment level. In TER, however, the stochastically stable convention must
be robust to the investing players believing that they get the whole surplus
if they choose another investment level. However, it seems very unlikely that
players, in fact, believe that they will get the whole surplus if they choose another
investment level.

5. Conclusion

The presented model of the hold-up problem provides an example of a game
where different subgames clearly have a very similar structure. In the context of
evolutionary learning where players always learn from past situations, it seems
natural that players learn across different bargaining subgames.

Two different learning heuristics are plausible because the surplus available
in different bargaining subgames differs and, hence, it is not unambiguous when
two bargaining demands are similar. The flexibility of the evolutionary model
allows me to consider the interplay of two different learning heuristics. This is
an advantage of the evolutionary approach over the strategic model of analogy
based expectation equilibrium by Jehiel (2005).

Coordination on efficient conventions arises directly from the best response
behavior of the players. The reason for this is that some players consider
themselves to be residual claimants, which makes them very reluctant to choose
low investment.
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Learning across subgames imposes some consistency on the beliefs that
players can hold about different bargaining subgames. This consistency of beliefs
greatly alters the stability of investment-bargaining conventions. As a result,
the investing players obtain a (weakly) lower payoff than in Tröger (2002) and
Ellingsen and Robles (2002).

The present model shows how learning across similar situations can influence
the results of evolutionary learning. This is important because learning across
similar situations is clearly a feature of real-world learning.
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AppendixA. Proofs

AppendixA.1. Necessary Concepts

Techniques to characterize the set of stochastically stable states were pioneered
by Freidlin and Wentzel (1984) and further developed by Young (1993a,b) and
Ellison (2000). This subsection introduces several concepts and results from this
literature as well as the notation that will be used in the subsequent analysis.

Let a path ρ from s to s′ be a sequence of one period transitions that leads
from s to s′ where the probability of each one period transition in ρ under P ε
is larger than zero. The resistance of a path r(ρ) is the sum of the number of
errors that is necessary for each one period transition in ρ. For any two sets of
states S, S′ ⊆ S let r(S, S′) denote the least resistance of all paths that start in
S and end in S′.

AppendixA.1.1. Radius and Modified Coradius
This subsection is a slight adaption of the definitions in Ellison (2000):

Definition. For every union of stable sets ∪Si, let the radius R(∪Si) denote
the least resistance of all paths that start in ∪Si and end in some stable set
Sj * ∪Si
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The radius describes the minimal number of mistakes that is necessary to
enter the basin of attraction of a stable set outside of ∪Si and thus provides a
measure of its persistence.

Let (S1, S2, ...Sr) be the stable sets through which the path ρ passes. The
modified resistance of a path r∗(ρ) is given by r(ρ)−

∑r−1
i=2 R(Sr). For any two

sets of states S, S′ ⊆ S let r ∗ (S, S′) denote the least modified resistance of all
paths that start in S and end in S′.

Definition. For every union of stable sets ∪Si, let the modified coradius
CR∗(∪Si) denote

min
s′∈∪Si

max
s∈S\∪Si,

r∗(s, s′).

Theorem 2 in Ellison (2000) states that if R(∪Si) > CR∗(∪Si), then the set
of stochastically stable states must be a subset of ∪Si.

AppendixA.1.2. Stochastic potential
This subsection is a slight adaption of the definitions in Young (1993b, p.

154):
Define a graph G as follows. There is a vertex for every set Si and a directed

edge from every vertex to every other vertex. The “weight” or resistance of any
directed edge Si → Sj is given by r(Si, Sj).

An i-Tree is a collection of edges in G, such that from every Vertex Sj 6=i,
there is a unique directed path to its rootSi, and there are no cycles. Let Ti be
the set of all i-Trees.

Definition. The stochastic potential of a stable set Si is the least resistance
among all i-Trees with root Si:

γi = min
T∈Ti

∑
(S,S′)∈T

r(S, S′).

Theorem 2 in Young (1993a) states that the elements of a stable set Si are
stochastically stable if Si has the least stochastic potential among all stable sets
Sj ∈ S.

AppendixA.1.3. Notation
The following additional Notation will be used:
For any number z and every investment level I, let [z]x denote max{x ∈

XI : x ≤ z} and let [z]y denote max{y ∈ XI : VI − z ≤ VI − y}. If given an
investment level I, players αr face a distribution of identical relative demands
y/VI′ such that, given the current investment level I, VI − (y/VI′)VI /∈ Xδ, these
players will choose the bargaining demand [VI − (y/VI′)VI ]x. Similarly, if players
βr face a distribution of identical relative demands x/VI′ such that, given the
current investment level I, VI − (x/VI′)VI /∈ Xδ, these players will choose the
bargaining demand [VI − (x/VI′)VI ]y.

Write (I, x, y)l for a sequence of length l that consists of identical records
(I, x, y). Also, let At denote the last k records in st where k := max{kα, kβ}.
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Abusing language, say that a player samples At if he draws a sample contained
in At.

Also remember that ξ := (CH−CL)/(VH−VL)VH and χ := (CH−CL)/(VH−
VL).

AppendixA.2. Proofs of Lemma 1 and Proposition 1
Proof of Lemma 1. Suppose that in period t the state is the convention σ =
(I, x, y)m.

First, observe why no convention with low investment (L, x, y)m can be stable.
This follows from the fact that players who interpret their opponents’ demands
as absolute demands believe that their opponents will demand y at all investment
levels. But if investment is efficient, then VH −CH − y > VL−CL− y. Thus, for
all y < VH −CH +CL, players αa will choose high investment. Because for every
convention with low investment y ≤ VL < VH − CH + CL, no such convention
can be stable.

Second, observe why no convention with high investment (H,x, y)m and
χ ≤ χ can be stable. This follows from the fact that players who interpret their
opponents’ demands as relative shares believe that their opponents will demand
υVI at all investment levels. Hence, the expected payoff for players αr who choose
low investment is given by [(1−υ)VL]x−CL. Because (CH−CL)/(VH−VL)VH and
(CH−CL)/(VH−VL)VL are multiples of δ, (1−υ)VH−CH > [(1−υ)VL]x−CL ⇔
(1 − υ) > CH−CL

VH−VL = χ. Thus, if χ ≤ χ players αr will choose low investment
with positive probability. Hence, no such convention can be stable.

Consider a convention with high investment (H,x, y)m and χ > χ. By the
argument used in the previous paragraph, it follows that players αr will choose
high investment. Note that (1 − υ)VH − CH > (1 − υ)VL > 0 implies that
x − CH > 0, which implies y < VH − CH . Thus, players αa will choose high
investment as well. At the bargaining stage, players α and β will clearly make
demands x and y, respectively, because this maximizes their expected payoffs
given their beliefs.

Proof of Proposition 1. Suppose that in period t+ 1 to t+ k, inclusive, players
αa and βa sample At. Thus, with positive probability, they will play the same
actions in period t to t+k, inclusive, which implies that At+k consists of identical
records (I, x, y). Suppose that in period t+ k+ 1 to t+ 2k, inclusive, players αa
sample At and players βa sample At+k. With positive probability, players αa will
take the same actions as in the last k periods. Players βa will make bargaining
demands VI − x. Hence, At+2k consists of identical records (I, x, VI − x).

Let t′ := t + 2k and At′ = (H,χt′VH , υt′VH)k := At+2k. Distinguish three
cases:

Case 1. At+2k consists of identical records (H,x, VH − x) and (1− υt′) > χ.
Suppose that in period t′ + 1 to period m − k, inclusive, players αr and βr
sample At′ . From the condition defining this case, it follows that players αr will
choose high investment At the bargaining stage, players αr and βr will demand
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χt′VH and υt′VH . Thus At′+m−k = (H,χt′VH , υt′VH)k ≡ (H,x′, VH − x′)k.
Thus, st′+3k+m = (H,x′, VH − x′)m is a stable convention because it consists of
identical records, I = H and (1− υt′) > χ

Case 2. At+2k consists of identical records (H,x, VH − x) and(1− υt′) ≤ χ.
Consider the following sequence of events:

1. Suppose that in period t′ + 1 to period t′ + k, inclusive, players αr and βr
sample At′ . From the condition defining this case, it follows that players
αr will choose low investment. At the bargaining stage, because 1− υ = χ,
players αr and βr will demand [χt′VL]x and [υt′VL]y, which are smaller or
equal to χt′VL and υt′VL. Thus At′+k = (L, [χt′VL]x, [υt′VL]y)k.

2. Suppose that in period t′ + k + 1 to period t′ + 2k, inclusive, players
αa and βa sample At′+k. Because υt′VL ≤ VL, it follows that players
αa will choose high investment. At the bargaining stage, players αa and
βa will demand VH − [υt′VL]y and VH − [χt′VL]x, respectively. Thus,
At′+2k = (H,VH − [υt′VL]y, VH − [χt′VL]x)k.

3. Suppose that in period t′ + 2k + 1 to period t′ + 3k, inclusive, players
αa sample At′+k and players βa sample At′+2k. Players αa take the same
actions as in the previous k periods. Players βa will demand υt′VL at the
bargaining stage. Thus, At′+3k = (H,VH − [υt′VL]y, [υt′VL]y)k.

Clearly, υt′+3k ≤ υt′VL/VH . Thus, repeating the sequence described by (1)-(3),
n times starting in period t′ yields υt′+n3k ≤ υt(VL/VH)n. Because VL/VH < 1,
υt(VL/VH)n −→

n→∞
0. Thus, there exists a finite n for which 1 − υt′+n3k > χ,

and hence, there exists a positive probability of reaching a state st′+n3k where
At′+n3k = (H,x′, y′) fulfills the condition of case 1 above.

Case 3. At+2k consists of identical records (L, x, VL − x).
Suppose that in period t+ 2k + 1 to period t+ 3k, inclusive, players αa and βa
sample At+2k, which has positive probability. Because VL − x ≤ VL < VH −CH ,
players αa will choose high investment. At the bargaining stage, players αa
and βa will make demands VH − VL + x and VH − x, respectively. Thus,
At+3k = (H,VH − (VL − x), VH − x)k.
Suppose that in period t+ 3k + 1 to period t+ 4k, inclusive, players αa At+k
and βa sample At+2k. Players αa will take the same actions as in the previous k
periods. Players βa will make bargaining demands of VL − x. Thus, At+4k =
(H,VH − (VL − x), VL − x)k fulfills the conditions of case 1 or 2 above.

Together the above cases show that from any initial state there exists a positive
probability to reach a stable convention within finite time, which establishes the
Proposition.

AppendixA.3. Proof of Theorem 1
In this section, a slightly more general version of Theorem 1 is proved. The

proof uses several Lemmata: Lemma 3 is an adaption Lemma 1 in Young (1993b),
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Lemma 4 and 5 are concerned with the existence of two specific paths of least
resistance between two stable sets.

Lemma 3. Let Rδ(ξ) denote the least integer that is larger or equal to

rδ(ξ) = min

{
kα(1− ξ − δ

ξ
), kβ(1− VH − ξ − δ

VH − ξ
), kβ

VH − ξ
VH − δ

}
(A.1)

The minimum number of errors that is necessary to displace a stable conven-
tion

1. is given by Rδ where 1− υ > CH−CL+δ
VH−VL .

2. is smaller or equal than Rδ where 1− υ ≤ CH−CL+δ
VH−VL .

Proof. It will first be shown that rδ(ξ) is given by

min

{
kα(1− ξ − δ

ξ
), kβ(1− VH − ξ − δ

VH − ξ
), kβ

VH − ξ
VH − δ

, kα
ξ

VH − δ

}
(A.2)

It will then be argued why the rightmost term can be omitted.
Suppose first that the player who changes his or her best response interprets

demand shares as absolute demand shares. Such players take into account only
the absolute bargaining demands that their opponents have made, and not the
investment levels that have preceded those demands.

1. If players α make mistakes ξ′ that are higher than their conventional
demands ξ, then the minimal number of mistakes that is necessary to make
a player β choose VH − ξ′ is given by kβ(1 − VH−ξ′

VH−ξ ). This expression is
minimized by VH − ξ′ = VH − ξ − δ, which yields the second term of rδ.

2. If players β make mistakes (VH−ξ′) that are lower than their conventional
demands (VH − ξ), then the minimal number of mistakes that is necessary
to make a player α choose ξ′ is given by kα ξ

ξ′ . This expression is minimized
if ξ′ = VH − δ, which yields the fourth term of rδ.

3. If players β make mistakes (VH−ξ′) that are higher than their conventional
demands (VH − ξ), then the minimal number of mistakes that is necessary
to make a player α choose ξ′ is given by kα(1 − ξ′

ξ ). This expression is
minimized by ξ′ = ξ − δ, which yields the first term of rδ.

4. If players α make mistakes ξ′ that are lower than their conventional
demands ξ, then the minimal number of mistakes that is necessary to
make a player β choose VH − ξ′ is given by kβ VH−ξ

VH−ξ′ . This expression is
minimized by VH − ξ′ = VH − δ, which yields the third term of rδ.

Suppose now that the player who changes his best response interprets demand
shares as relative demand shares. In this case, the opponents’ relative demands
are derived from the chosen investment levels and the absolute demands following
them.
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5. If players α and/or β make mistakes such that players β demand a larger
share (VI − ξ′)/VI than their conventional share (VH − ξ)/VH , it might
become profitable for players α to choose low investment. This is because
for some υ′ = (VI − ξ′)/VI it can be the case that (1 − υ′)VL ∈ Xδ

but (1 − υ′)VH /∈ Xδ, which might imply that [(1 − υ′)VH ]x − CH <
(1− υ′)VL − CL and would make players αr choose low investment.
In the most extreme case [(1−υ)VH ]x can be almost as small as (1−υ)VH−δ.
Because

(1− υ)VH − δ − CH ≤ (1− υ)VL − CL ⇔ 1− υ ≤ CH − CL + δ

VH − VL

the set of stable conventions where [(1− υ′)VH ]x −CH ≤ (1− υ′)VL −CL
is possible is bounded by the above expression.
The minimal number of different demands that is necessary make a player
αr choose (H, [(1−υ′)VH ]x) is given by kα(1− [(1−υ′)VH ]x

ξ ). This expression
is minimized by [(1− υ)VH ]x = ξ − δ, which is fulfilled if players α do not
make an error, i.e., choose high investment, and players β make errors
VH − ξ′ = VH − ξ + δ. Thus, for m1− υ > CH−CL+δ

VH−VL the number of errors
is given by the first term of rδ and for 1−υ ≤ CH−CL+δ

VH−VL it must be smaller
than or equal to the first term of rδ.

6. If players α and/or β make mistakes such that players β demand a
smaller share (VI − ξ′)/VI than their conventional share (VH − ξ)/VH ,
then, by the same arguments as in num. 5, a player αr might either
choose high investment and [(1− (VI − ξ′)/VI)VH ]x or low investment and
[(1−(VI−ξ′)/VI)VL]x in response. The minimal number of errors that is nec-
essary for this is given by kα ξ

[(1−(VI−ξ′)/VI)VH ]x
and kα ξ+CL−CH

[(1−(VI−ξ′)/VI)VL]x
,

respectively. Clearly, both expressions are minimized at minI∈I,ξ′∈Xδ ((VI−
ξ′)/VI) = −δ/VH , which can be obtained if players β make errors VH−ξ′ =
δ and players α do not make errors, i.e., choose high investment. Because
kα ξ

[VH−δ]x = kα ξ
VH−δ < kα ξ+CL−CH

[((VH−δ)/VH)VL]x
for ξ < (CH − CL)VH/(VH −

VL), this yields the fourth term of rδ.
7. If players α make mistakes ξ′/VI that claim a larger share than their

conventional share ξ/VH , then the minimal number of mistakes that is
necessary to make a player β choose [(1− ξ′/VI)VH ]y is given by kβ(1−
[(1−ξ′/VI)VH ]y

VH−ξ ). This expression is minimized by [(1− ξ′/VI)VH ]y = VH −
ξ − δ, which is fulfilled if players α choose high investment and only make
errors ξ′ = ξ+ δ at the bargaining stage. This yields the second term of rδ.

8. If players α make mistakes ξ′/VI that demand a smaller share than their
conventional share ξ/VH , then the minimal number of mistakes that is neces-
sary to make a player β choose [(1−ξ′/VI)VH ]y is given by kβ VH−ξ

[(1−ξ′/VI)VH ]y
.

This expression is minimized by [(1−ξ′/VI)VH ]y = VH−δ, which is fulfilled
if players α make no errors at the investment stage and make errors ξ′ = δ.
This yields the third term of rδ.
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Thus, 1-8 together imply that for 1 − υ > CH−CL+δ
VH−VL the minimal number of

errors that is necessary to displace a convention is given by expression (A.2) and
that it constitutes an upper bound for 1− υ ≤ CH−CL+δ

VH−VL .

Because kβ
(

1− VH−ξ−δ
VH−ξ

)
and kα ξ

VH−δ are strictly increasing in ξ and kα(1−
ξ−δ
ξ ) and kβ VH−ξVH−δ are strictly decreasing in ξ and X is a grid, rδ is maximized

by a unique value ξ∗or two adjunct values ξ∗ and ξ∗ − δ.
Because of this, the minimal number of mistakes necessary to displace a

convention is only given by
⌈
kα ξ

VH−δ

⌉
if ξ < ξ∗ and kβ

(
1− VH−ξ−δ

VH−ξ

)
≥ kα ξ

VH−δ .

From this, it follows that ξ ≤ ξ̌ := VH
2 −

√
V 2
H

4 −
kβ

kα δ(VH − δ) because for δ small

enough, the determinant clearly is positive and VH
2 +

√
V 2
H

4 −
kβ

kα δ(VH − δ) > ξ∗.

Because, clearly, kβ

kα δ(VH − δ)−→δ→0
0, ξ̌ −→

δ→0
0. Thus, for δ small enough ξ̌ < ξ.

But Lemma 1 implies that for all s ∈ ΣH , ξ > ξ. Hence, the rightmost term of
expression (A.2) can be omitted and rδ is given by expression (A.1).

In what follows, let ξ denote [(CH − CL + δ)VH/(VH − VL) + δ]x and let ξ̂

denote VH
2 +

√
V 2
H

4 −
kα

kβ
δ(VH − δ).

Lemma 4. If the minimal number of mistakes that is necessary to displace a
convention (H, ξ, VH − ξ)m is given by

⌈
kβ VH−ξVH−δ

⌉
and δ is small enough, then

there exists a path with resistance
⌈
kβ VH−ξVH−δ

⌉
from (H, ξ, VH − ξ)m to a stable

convention (H, ξ′, VH − ξ′)m with Rδ(ξ′) <
⌈
kβ VH−ξ

′

VH−δ

⌉
and ξ′ > ξ.

Proof. Because kβ
(

1− VH−ξ−δ
VH−ξ

)
and kα ξ

VH−δ are strictly increasing in ξ and

kα(1 − ξ−δ
ξ ) and kβ VH−ξVH−δ are strictly decreasing in ξ, the minimal number

of mistakes necessary to displace a convention is only given by
⌈
kβ VH−ξVH−δ

⌉
if

ξ > ξ∗ and kα(1 − ξ−δ
ξ ) ≥ kβ VH−ξVH−δ . From this, it follows that ξ ≥ ξ̂ =

VH
2 +

√
V 2
H

4 −
kα

kβ
δ(VH − δ) because for δ small enough the determinant clearly

is positive and it can be shown that VH
2 −

√
V 2
H

4 −
kα

kβ
δ(VH − δ) < ξ∗. Observe

also that ξ̂ −→
δ→0

VH as clearly kα

kβ
δ(VH − δ)−→

δ→0
0.

In the reminder of this proof, let e denote
⌈
kβ VH−ξVH−δ

⌉
. Consider the following

sequence of events:

1. Suppose that the process is in state st = (H, ξ, VH − ξ)m at time t and
that ξ ≥ ξ̂ and χt > χ. Suppose then that in period t+ 1 to t+ e inclusive,
players α play (H, δ) by mistake and players β do not make any mistakes
and thus demand VH − ξ. Suppose that in period t + e + 1 to t + e + k,
inclusive, players α and β sample At+e. Thus, players α will play (H, ξ)
and players β will demand VH − δ. Thus, At+e+k = (H, ξ, VH − δ)k.
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2. Suppose that in period t + e + k + 1 to t + e + 2k, inclusive, players αr
and βr sample At+e+k. Because 1− VH−δ

VH
< χ, players αr will choose low

investment. Because δ(VL/VH) < δ, there does not exist a compatible
demand in Xδ and thus [δ(VL/VH)]x = {}. Thus, players αr will make a
random demand with support Xδ. Suppose that in period t + e + k + 1
to t + e + 2k inclusive, players αr make demands [ 1

2 (1 + χ)VL]x, which
has positive probability. Players βr will demand [(1 − χt)VL]y. Thus,
At+e+2k = (L, [ 1

2 (1 + χ)VL]x, [(1− χt)VL]y)k.
3. Suppose that in period t+ e+ 2k+ 1 to t+ e+ 3k, inclusive, players αr and
βa sample At+e+k and At+e+2k, respectively. Suppose that players αr take
the same actions as in the previous k periods. Then players βa will demand
VL−[ 1

2 (1+χ)VL]x. Thus, At+e+3k = (L, [ 1
2 (1+χ)VL]x, VL−[ 1

2 (1+χ)VL]x)k.
4. Suppose that in period t+ e+ 3k+ 1 to t+ e+ 4k, inclusive, players αr and
βr sample At+e+3k. Because χ < 1, VL − [ 1

2 (1 + χ)VL]x < (1− χ)VL for δ
small enough. Thus, players αr will choose high investment and will make
demands [[ 1

2 (1 + χ)VL]x(VH/VL)]x. Players βr will demand [(VL − [ 1
2 (1 +

χ)VL]x)(VH/VL)]y. Thus, At+e+4k = (H, [[ 1
2 (1 + χ)VL]x(VH/VL)]x, [(VL −

[ 1
2 (1 + χ)VL]x)(VH/VL)]y)k.

5. Suppose that in period t + e + 4k + 1 to t + e + 5k, inclusive, players
αr sample At+e+4k and players βa sample At+e+3k. Thus, players αr
will choose the same actions as in the previous k periods. Players βa
will choose VH − [[ 1

2 (1 + χ)VL]x(VH/VL)]x. Thus, At+e+4k = (H, [[ 1
2 (1 +

χ)VL]x(VH/VL)]x, VH − [[ 1
2 (1 + χ)VL]x(VH/VL)]x)k.

Let ξ′ = [[ 1
2 (1+χ)VL]x(VH/VL)]x, which can be reached with positive probability

as argued above. To see that ξ’ ∈ (ξ, ξ̂) observe [[ 1
2 (1 + χ)VL]x(VH/VL)]x ∈

[( 1
2 (1 + χ)VL − δ)(VH/VL) − δ, 1

2 (1 + χ)VL(VH/VL)]. Because χ < 1, clearly
1
2 (1 + χ)VL(VH/VL) < VH and thus smaller than ξ̂ for δ small enough. Also
note that ξ can be written as [χVH + δ(1 + VH

VH−VL )]x and that ( 1
2 (1 + χ)VL −

δ)(VH/VL)− δ < δ′ can be written as 1
2 (1 + χ)VH − δ(1− VH

VL
). Becasue χ < 1

it clearly follows that ξ′ > ξ for δ small enough.
Thus, if in period t+ e+ 5k+ 1 to t+ e+ 4k+m, inclusive, players α and β

sample At+5k, a stable convention (H, ξ′, VH − ξ′)m will be reached which proves
the Lemma.

Lemma 5. If a convention σ = (H, ξ, VH − ξ) with ξ < ξ̂ is displaced by Rδ(ξ)
or fewer errors in a way such that players αa or αr choose low investment, then
for δ small enough there exists a path with resistance smaller or equal to Rδ(ξ)
to a stable convention σ′ = (H, ξ′, VH − ξ′) with ξ̂ > ξ′ > ξ.

Proof. Num. 3 & 5 in the proof of Lemma 3 describe how a convention with
ξ < ξ̂ can be displaced by rδ(ξ) or fewer errors such that players α prefer to
choose low investment.

It is easy to see that if a convention is displaced in this way, players αr
will choose actions (L, x) with x ∈ [(CH − CL)VL/(VH − VL)− 2δ, (CH − CL +
δ)VL/(VH − VL)].
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Suppose that in period t, At is such that if a player αr samples At, it will
choose actions (L, x). Suppose that in period t+ 1 to t+ k, inclusive players αr
and β sample At. Thus At+k = (L, x, y)k.

Suppose that in period t+ k + 1 to t+ 2k, inclusive, players αr sample At
and players βa sample At+k. Then At+2k = (L, x, VL − x).

Suppose that in period t + 2k + 1 to t + 3k, inclusive, players αa and
β sample At+2k. Then players αa will choose (H,VH − VL + x) and thus
At+3k = (H,VH − VL + x, y′)k.

Suppose that in period t + 3k + 1 to t + 4k, inclusive, players αa sample
At+2k and players β sample At+3k. Then At+4k = (H,VH − VL + x, VL − x)k.

To see that VH − VL + x > CH−CL+δ
VH−VL VH + δ ≥ ξ note that because (CH −

CL)VL/(VH − VL)− 2δ ≤ x, and CH−CL
VH−VL < 1,

CH − CL + δ

VH − VL
VH + δ − x ≤ CH − CL + δ

VH − VL
VH −

CH − CL
VH − VL

VL + 2δ

=
CH − CL
VH − VL

(VH − VL) + δ(
VH

VH − VL
+ 2)

< VH − VL

for δ small enough.
To see that VH−VL+x < ξ̂ note that because x ≤ (CH−CL+δ)VL/(VH−VL),

VH − VL + x ≤ VH − VL + CH−CL+δ
VH−VL VL < VH . Thus, because ξ̂ −→

δ→0
VH ,VH −

VL + x < ξ̂ for δ small enough.
Thus, if in period t+ 4k+ 1 to t+ 3k+m, inclusive, players α and β sample

At+4k a stable convention (H,VH − VL + x, VL − x)m is reached which proves
the Lemma.

In what follows let ξ∗ denote min{arg maxξ∈Σ rδ(ξ)}.

Theorem ( 1’). Assume δ to be sufficiently small and kα, kβ and m to be
sufficiently large. Then

1. if ξ∗ > ξ the set of stochastically stable states is either given by a unique con-
vention (H, ξ∗, VH − ξ∗) or, at most, two adjunct conventions (H, ξ∗, VH −
ξ∗) and (H, ξ∗ + δ, VH − ξ∗ − δ).

2. if ξ∗ ≤ ξ the set of stochastically stable states is a subset of {σ ∈ Σ : ξ ≤ ξ}.

As δ → 0 the distribution of the surplus ξ of all stable conventions converges to

max

{
CH − CL
VH − VL

VH , ξ
N

}
The following Proof relies on the ideas developed in Young (1993b) and

combines them with techniques from Ellison (2000).

Proof. As already pointed out, kβ
(

1− VH−ξ−δ
VH−ξ

)
and kα ξ

VH−δ are strictly in-

creasing in ξ and kβ(1− ξ−δ
ξ ) and kβ VH−ξVH−δ are strictly decreasing in ξ. Becasue
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X is a grid, rδ is maximized by a unique value ξ∗or two adjunct values ξ∗
and ξ∗ − δ on X. For sufficiently large k, this implies that Rδ is also uniquely
maximized by one or two adjunct values.

Distinguish two cases:

Case 1. ξ∗ is smaller or equal to ξ.
Let S∗ be the set of stable conventions σ = (H, ξ, VH − ξ) with ξ ≤ ξ and R(σ) >
r := rδ(ξ + δ). Let σ := (H, ξ, VH − ξ)m, ξ̃ := min{ξ ∈ X : (H, ξ, VH − ξ) ∈ S∗}
and σ̃ := (H, ξ̃, VH − ξ̃).
To see that S∗ is non-empty note that by construction ξ/VH > (CH − CL +
δ)VH/(VH − VL). Thus, Lemma 3 implies that R(σ) is given by Rδ(ξ). Because
rδ is decreasing in ξ for ξ > ξ∗, rδ(ξ) > r, which implies Rδ(ξ) > dre for the
sample size kα high enough.
It will now be shown that CR∗(S∗) < R(S∗). By Theorem 2 in Ellison (2000),
this implies that the set of stochastically stable states must be contained in S∗

By construction, the Radius of S∗, R(S∗) is larger than dre.
To compute the CR∗(S∗), construct the following graph Gδ on (Σ \ S∗) ∪ σ ∪ σ̃:
1. For every stable convention (H, ξ, VH−ξ)m with ξ > ξ and rδ = kα(1− ξ−δ

ξ ),
put the directed edge ((H, ξ, VH − ξ)m, (H, ξ − δ, VH − ξ + δ)m) into Gδ.
From Lemma 3 num. 3 and 5, it follows that the resistance of these edges
is given by Rδ

2. For every stable convention (H, ξ, VH − ξ)m with ξ > ξ and rδ = kβ VH−ξVH−δ ,
put the directed edge ((H, ξ, VH − ξ)m, (H, ξ′, VH − ξ′)m) with ξ′ = [[ 1

2 (1 +
χ)VL]x(VH/VL)]x into Gδ. From Lemma 4, it follows that the resistance of
these edges is given by Rδ.

3. For every stable convention (H, ξ, VH − ξ)m with ξ < ξ and R(σ) < rδ(ξ),
put a directed edge ((H, ξ, VH − ξ)m, (H, ξ’, VH − ξ′)m) with ξ′ ∈

(
ξ, ξ̂
)
and

resistance R(σ) into Gδ. It follows from Lemma 5 that this is possible.
4. For every stable convention (H, ξ, VH − ξ)m with ξ < ξ and R(σ) = rδ(ξ),

put a directed edge ((H, ξ, VH − ξ)m, (H, ξ+ δ, VH − ξ− δ)m) into Gδ. From
Lemma 3 num. 1 and 7, it follows that the resistance of these edges is given
by Rδ.

This graph consists of two disjoint subgraphs, one i-tree T with root σ, and
another possibly degenerate i-tree T̃ with root σ̃.
For all σ ∈ Σ\S∗, let cr(σ) denote σ if σ is a vertex in T and σ̃ if σ is a vertex in
T̃ . Also, for all σ ∈ Σ \ S∗, let τCRσ denote the set of vertices that are contained
in the subgraph of Gδ that connects σ with cr(σ).
From Lemma 3 and the construction of the graph, it follows that for every edge
(σ, σ′) ∈ Gδ the resistance r(σ, σ′) = R(σ). Thus, for σ ∈ Σ \ S∗, r(σ, cr(σ)) ≤∑

σ′∈τCRσ
R(σ′) and the modified resistance

r∗(σ, cr(σ)) = r(σ, cr(σ))−
∑

σ′∈τCRσ \σ

R(σ′) ≤ R(σ).



AppendixA.3 Proof of Theorem 1 24

Because by construction rδ(ξ) ≤ r for all σ ∈ Σ \ S∗ with ξ < ξ + δ and rδ is
decreasing in ξ for ξ > ξ∗, maxσ∈Σ\S∗ R(σ) = dre. It follows that CR∗(S∗) =
maxσ∈Σ\S∗ r

∗(σ, cr(σ)) ≤ dre < R(S∗). Hence, it follows from Theorem 2 in
Ellison (2000) that the set of stochastically stable states must be contained in
S∗.

Case 2. ξ∗ is larger than ξ.

Construct the following i-tree T ∗ on Σ with root ξ∗.

1. For every stable convention (H, ξ, VH−ξ)m with ξ > ξ∗ and rδ = kα(1− ξ−δξ ),
put the directed edge ((H, ξ, VH − ξ)m, (H, ξ − δ, VH − ξ + δ)m) into T ∗.

2. For every stable convention (H, ξ, VH − ξ)m with ξ > ξ∗ and rδ = kβ VH−ξVH−δ ,
put the directed edge ((H, ξ, VH − ξ)m, (H, ξ′, VH − ξ′)m) with ξ′ = [[ 1

2 (1 +
χ)VL]x(VH/VL)]x into T ∗.

3. For every stable convention (H, ξ, VH − ξ)m with ξ < ξ∗and R(σ) < Rδ,
put a directed edge ((H, ξ, VH − ξ)m, (H, ξ’, VH − ξ′)m) with ξ′ ∈

(
ξ, ξ̂
)

and resistance R(σ) into T ∗.
4. For every stable convention (H, ξ, VH − ξ)m with ξ < ξ∗and R(σ) = Rδ =⌈

kβ(1− VH−ξ′
VH−ξ )

⌉
, put the directed edge ((H, ξ, VH − ξ)m, (H, ξ + δ, VH −

ξ − δ)m) into T ∗.

Lemmata 3-5 together imply that for every edge (σ, σ′) ∈ T ∗, r(σ, σ′) = R(σ).

If there exists a second maximizer of rδ on X with radius equal to rδ, then
construct an analogous tree T ∗∗ with root ξ∗ − δ.
Because ξ∗ and potentially ξ∗ − δ are the unique maximizers of rδ, T ∗ and
T ∗∗ are the unique minimal i-Trees for kα and kβ large enough. Together with
Theorem 2 in Young (1993a), this implies that for ξ∗ > ξ, (H, ξ∗, VH − ξ∗) and
possibly (H, ξ∗ + δ, VH − ξ∗− δ) are the unique stochastically stable conventions.

Together with Lemma 3 in Young (1993b), which shows that limδ→∞ arg maxξ∈X rδ(ξ)
equals the Nash bargaining solution and the fact that ξ −→

δ→0
(CH−CL)VH/(VH−

VL), this completes the proof of the Theorem.


