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Abstract: This paper studies a simple monetary model with a Ricardian fiscal policy in which equilibria

are indeterminate if monetary policy consists solely of a rule for fixing the short-term interest rate. We

introduce explicitly into the model the agents’ expectations of inflation which create the indeterminacy and

show that there are two types of policies—a term-structure rule or a forward-guidance rule for the short

rate—which can lead to determinacy. The first consists in fixing the interest rates on a family of bonds of

different maturities as function of realized inflation; the second consists in fixing the short-term interest rate

and the expected values of the short term interest rate for a sequence of periods into the future as a function

of realized inflation. If the monetary authority chooses an inflation process which satisfies conditions derived

in the paper and applies one of these rules, it can anchor agents’ expectations to this process, in the sense

that it is the unique inflation process compatible with equilibrium when the interest rates or expected future

values of the short rate are those specified by the term-structure or forward-guidance rule.
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1 Introduction

The possible indeterminacy of inflation expectations in forward-looking rational-expectations models over

an open-ended future when a monetary authority uses an interest-rate rule was first raised by Sargent and

Wallace (1975). For the price level to-day depends on agents’ consumption-savings decisions, and these in

turn depend on their anticipations of the price level in the future: this induces a forward-looking dynamics

which if not tied down by a condition at infinity has a continuum of possible solutions. Whether or not

a transversality condition ties down the equilibrium depends on the assumption on fiscal policy. If the

fiscal policy always adapts itself to the level of the government’s debt to ensure that the debt does not

grow faster than the interest rate—a policy which Sargent (1982) referred to as a Ricardian policy—then

the transversality condition does not tie down a unique path since every path automatically satisfies the

transversality condition, and there is a continuum of equilibria.

An extensive literature subsequently emerged1 which studies indeterminacy of equilibrium models with

Ricardian fiscal policy. Much of the literature is based on a local analysis around a steady state and it is

argued that an active monetary policy by which the short-term nominal interest rate is raised by more than

the increase in inflation leads to local determinacy of equilibrium. In a series of papers (Schmitt-Grohe and

Uribe (2000), Benhabib et al (2001a,b) have shown however that this result is sensitive to the way preferences

and technology are modeled and may no longer be valid when a global analysis of equilibrium is undertaken.

Furthermore, for the local analysis around a steady state, Cochrane (2011) has pointed out that when an

active monetary policy is used to eliminate possible equilibrium paths with accelerating inflation, there is

an issue with the credibility of a monetary authority rigidly adhering to such a policy which explicitly leads

the economy to hyperinflation.

It thus seems worthwhile to explore alternative approaches by which monetary policy can lead to determi-

nacy of equilibrium. The anticipatory mechanism creating multiple equilibria—namely that the consumption-

savings decision to-day which creates current inflation depends on agents’ expectations of inflation in the

future—makes clear that the many different equilibria arise from the many different self-fulfilling beliefs

regarding future inflation. Our approach consists in modeling explicitly the expectations of inflation which

can be self-fulfilling and asks if a monetary authority can determine a unique equilibrium by choosing a

specific expectations process, and by a suitable choice of its monetary policy instruments or procedures,

make this process the only possible expectations process compatible with equilibrium: when this is possible

we say that the monetary authority can anchor agents’ expectations of inflation. If the sole instrument of

1For a non-exhaustive list of references, see McCallum (1981, 1983, 2003), Leeper (1991), King (2000), Woodford (2003),
Walsh (2003).
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the monetary authority is the short-term nominal interest rate then it can only tie down the mean of the

probability distribution of the inflation rates next period. Since there are many probability distributions

with the same mean, agents’ expectations of inflation are indeterminate. To tie down the full probability

distribution more instruments are required and we show that the greater the precision with which the dis-

tribution is described the greater the number of policy instruments required by the monetary authority to

anchor agents’ expectations.

We study two types of policy instruments or procedures for anchoring agents’ expectations. The first

consists in extending the traditional policy of fixing the short-term interest rate to a policy of fixing the

interest rates (yields to maturity) on government bonds of several maturities, which we call a generalized

interest-rate rule or a term-structure rule. Analyzing the expectations processes which can be anchored by

such a rule, we show that it is not possible to anchor expectations that inflation will always be at target

or will return immediately to target if there is a deviation, even if the real side is deterministic. More

generally i.i.d. expectations cannot be anchored. As McCallum (1981) pointed out, reducing indeterminacy

of equilibrium requires using feedback rules. The interest-rate rules compatible with i.i.d. expectations

are constant and hence do not provide the requisite feedback. Thus expectations must vary systematically

with inflation which, as we shall see, amounts to permitting some permanence in the inflation expectations

process.

The second type of policy consists of a forward-guidance rule for the future short-term interest rate:

such a rule associates with each possible current inflation rate the short-term interest rate and the future

short-term interest rate which is expected to prevail for a sequence of T periods into the future: we call

this a forward guidance rule or an expected future interest-rate rule. From a mathematical point of view

this type of rule is approximately equivalent to a term-structure rule, since modulo a term premium, long-

term interest rates are averages of expected future short-term rates.2 Analyzing expectations which can be

anchored by such a forward guidance rule leads to essentially the same conclusions as those obtained with a

term-structure rule.

An important motivation for the present paper was the analysis of Nakajima and Polemarchakis (NP)

(2005) which analyzes the indeterminacy of monetary equilibrium with a Ricardian fiscal policy and a short-

term interest rate for the monetary authority, using the methods of general equilibrium theory. As in

2The importance of the mutual dependence between the long-term interest rates and agents’ expectations of future short-
term rates has been emphasized by Goodfriend (1991, 1993, 1998). Goodfriend notes that the term structure can be used by
the monetary authority to discover the private sector’s expectations of future inflation and future short-term rates. In essence
we reverse this logic and assume that the monetary authority fixes either the term structure or the future expected short-term
rates to anchor agents’ expectations.
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equilibrium theory they count the “degree of indeterminacy” of equilibrium.3 Adao-Correia-Teles (ACT)

(2010) noted that in the NP model with S exogenous “states of nature” at each date, fixing the prices of

bonds of S maturities could determine the equilibrium. Our model differs from NP and ACT in that the

states of nature are replaced by the different possible inflation rates—that is, the model we present is what

we have elsewhere called (Magill-Quinzii (2009a)) a “probability model”, in which uncertainty is modeled

by taking as given the possible values of the observable variables—here the possible inflation rates—and the

probability distribution on this support is endogenous. The probability model provides a more realistic model

of self-fulfilling expectations than the standard model of sunspots introduced by Cass-Shell (1983), since it

does not tie down agents’ beliefs to the occurrence of exogenously specified states of nature or sunspots

which are difficult, if not impossible, to identify in practice.

The results of this paper on uniqueness of equilibrium can also be compared with recent papers by Loisel

(2010) and ACT (2011) who obtain uniqueness by a short-term interest rate rule based on the expectations

of future inflation (Loisel, 2010) or future prices (ACT, 2011) to which they add an exogenous random

variable. In a rational-expectations equilibrium, agents’ beliefs about inflation must coincide with the random

variable incorporated into the short-term rule. Loisel and ACT interpret their rule as the monetary authority

adjusting its interest rate to the exogenous expectations of the agents, which can be any arbitrary process.

Thus uniqueness is obtained by changing the perspective on the way the interest rate rule is used: instead of

using the interest rate rule as a feedback rule to anchor agents’ expectations to a desired target, the monetary

authority adapts its interest rate to whatever expectations agents have, and these expectations determine

the process of inflation. In our approach the monetary authority seeks to communicate the random variable

(process) of its choice so that it becomes the belief of the agents i.e. the monetary authority seeks to direct

rather than adapt to agents’ expectations: but this requires using more than one instrument.

The paper is organized as follows. Section 2 presents the simplest deterministic economy with a cash-

in-advance constraint and studies the determinacy of equilibrium, showing uniqueness with a non-Ricardian

fiscal policy and one degree of indeterminacy with a Ricardian policy. Section 3 shows that the degree of

indeterminacy increases with a Ricardian policy when stochastic expectations are introduced. Section 4

introduces an explicit model of expectations of inflation and gives conditions under which a term-structure

rule leads to determinacy. Section 5 studies the other monetary policy—a forward-guidance rule for the

short rate—which, under appropriate conditions, leads to determinacy. Section 6 shows how the analysis of

the previous sections can be extended to a production economy subject to real shocks, and in Section 7 we

show how the analysis can be applied to model a policy of inflation targeting when monetary policy consists

3The method was introduced by Balasko-Cass (1989) and Geanakoplos-Mas-Collel (1989).

3



either of a term-structure rule or a forward-guidance rule for the short rate. Section 8 concludes.

2 Deterministic Exchange Economy

We begin with the simplest model of an exchange economy with a representative agent and a monetary-fiscal

authority financing an exogenously given debt inherited from the past and examine whether the monetary

authority can tie down the price level, i.e. the purchasing power of money. Although in an exchange economy

with a representative agent nominal variables do not have a real effect, as is standard in monetary theory

we study the determinacy of equilibrium in the exchange model and then check that the properties obtained

extend to more general models in which the nominal interest rate and /or inflation has a real effect on output.

Consider therefore a simple deterministic exchange economy with a (composite) good and a representative

agent. The agent has a constant endowment stream (e0, e1, ...et, ...) = (e, e, ..., e, ...) and additively separable

preferences

U(c0, c1, ..., ct, ...) =

∞∑

t=0

δtu(ct) (1)

over consumption streams (c0, c1, ..., ct, ...), with ct ∈ |R+. Money must be used to buy consumption ct, with

the usual timing of the cash-in-advance (CIA) model: an agent cannot directly consume his endowment

but must use money to buy his consumption from another agent: the money obtained from the sale of

his endowment is obtained after the opportunity to purchase consumption goods and so must be carried

into the next period. There is a monetary authority which can increase or decrease the amount of money in

circulation in the private sector by buying or issuing one-period nominal bonds; there is also a fiscal authority

which imposes taxes to be paid in money (or makes transfers to the private sector). For simplicity we omit

government expenses and assume that the government has a debt at date 0 to the private sector inherited

from the past. The evolution of the government debt as a function of the monetary and fiscal (tax) policy

is what distinguishes a Ricardian from a non-Ricardian policy.

The timing of the transactions (which allow us to follow how money is exchanged for goods and assets)

is such that financial markets open at the beginning of each period and agents pay taxes, then agents

buy goods with their money balances and finally at the end of the period receive money from the sale of

their endowment. This gives them money balances which they transfer to the next period. Let zt denote

the amount of the one-period government bond purchased by the representative agent in period t and let

qt = 1
1+rt

denote its price, where rt is the nominal interest rate in period t. The agent pays θt in taxes (if

θt > 0) or receives a transfer (if θt < 0). Let pt denote the dollar price of one unit of the good in period t,

then m̃t=ptct units of money must be kept to purchase the amount ct of the good for consumption in period
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t. The money balances mt = pte earned from the sale of the endowment in period t must then be carried

over into the next period t + 1. Focusing on a setting where the nominal interest rate is always positive, the

agent’s transactions and money holdings in period t must satisfy




m̃t + θt + qtzt = mt−1 + zt−1, t = 0, 1, ...

ptct = m̃t

mt = pte

which can be summarized as

ptct + θt + qtzt = pt−1e + zt−1, t = 0, 1, ... (2)

with (p−1, z−1) or equivalently (m−1, z−1) being exogenously given. The agent is to make a sequence of

consumption-portfolio choices (ct, zt)t≥0 which maximize (1) subject to (2). The date t budget constraint

induces a multiplier λt which is the marginal utility at date 0 of (a promise to deliver) one dollar at date t.

The necessary and sufficient conditions for a consumption-portfolio sequence to maximize (1) subject to (2)

are given by

δtu′(ct) = λtpt, t = 0, 1, ... (3)

λtqt = λt+1, t = 0, 1, ... (4)

lim
T→∞

(
λ

T

λ
0

) q
T

z
T

= 0 (5)

(3) is the FOC for ct and defines λt; (4) is the FOC for zt expressing equality of the marginal cost and

marginal benefit of an additional unit of the bond; (5) expresses the transversality condition — an asymptotic

property of the agent’s portfolio asserting that the agent does not allow himself to be a lender, nor seeks

to be a borrower, at infinity. For the government, we do not assign a specific objective function but rather

focus on the feasibility of monetary-fiscal policies and their consequences for the determinacy of equilibrium.

In period t the government chooses the price of the bond qt, the taxes θt, the amount Zt of the bond to issue

and the quantity of money Mt subject to its budget equation

Mt − Mt−1 + θt + qtZt = Zt−1, t = 0, 1, ...

with M−1 +Z−1 denoting its initial liabilities, where Z−1 = z−1 and M−1 = m−1 . Thus the government can

increase the money supply, use taxes or issue debt to pay off the debt Zt−1 inherited from t−1. Equilibrium

on the goods market, bond and money markets requires

ct = e, Zt = zt, Mt = mt, t = 0, 1, ...
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Since the monetary authority which fixes the interest rate must accommodate the private sector’s demand

for money and bonds, the equilibrium conditions Zt = zt and Mt = mt are automatically satisfied.

(3) and (4) imply that at equilibrium

qt =
δt+1u′(ct+1)

pt+1

pt

δtu′(ct)
=

δ

1 + πt+1

since ct = e, where πt+1 =
pt+1

pt
− 1 is the inflation rate in period t+1. Thus the constant consumption

stream implies that the Fisher relation takes the form

1

1 + rt

= qt =
δ

1 + πt+1
(6)

If the monetary authority fixes (q0, ..., qt, ...) or equivalently the interest rates (r0, ..., rt, ...) then the

inflation rates (π1, ..., πt+1, ...) are determined so that p1 = (1 + π1)p0, ..., pt = (1 + π1)...(1 + πt)p0. But

is p0 determined? This depends on the fiscal policy and there are two cases.

Case I: Taxes do not adjust to the current nominal government debt. The interpretation usually given is

that the rate at which output is taxed is exogenously given. The real tax τt is some given proportion βt of

real output τt = βte, 0 < βt < 1 and the nominal tax is θt = ptτt for all t = 0, 1, .... We discuss this case

assuming that θt = ptβt e for all t ≥ 0.

If the Fisher relation (6) holds then the consumption stream ct = e for all t ≥ 0 satisfies the FOC (3)

and (4) for all sequences of multipliers (λt)t≥0 such that

u′(e) = λ0p0, λt = λt−1qt−1, t ≥ 1

Since as we have seen the equilibrium conditions on money and bonds are automatically satisfied, re-

strictions additional to the market-clearing conditions ct = e and the Fisher relation (6) to determine an

equilibrium can only come from the budget equations (2) and the transversality condition (5). The equa-

tions (2) can be used sequentially, beginning with t = 0, to determine the equilibrium portfolio (zt)t≥0. A

particularly simple case, which illustrates the general property, occurs when the monetary authority chooses

a constant nominal interest rate

rt = r, t ≥ 0, δ(1 + r) = 1 (7)

so that πt+1 = 0, t ≥ 0. Thus the nominal interest rate is equal to the real interest rate and there is no

inflation. Multiplying the budget equation (2) at date t by qt (where q = 1
1+r

) and noting that since there
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is no inflation (pt − pt−1)e = 0 gives the sequence of present values

p0e + θ0 + qz0 = z−1 + m−1

qθ1 + q2z1 = qz0

q2θ2 + q3z2 = q2z1

. . .

qtθt + qt+1zt = qtzt−1

. . .

which when summed to date T implies

T∑

t=0

qtθt + qT+1zT = z−1 + m−1 − p0e

Since by (4),
λ

T

λ0
= qT = 1

(1+r)T and since θt = ptβte = p0βte

λ
T

λ
0

qz
T

=
qz

T

(1 + r)T
= m−1 + z−1 − p0e

(
1 +

T∑

t=0

βt

(1 + r)t

)

Thus the transversality condition (5) implies that the only value of p0 for which there is an equilibrium is

given by p0 =
m−1 + z−1

(1 +
∑∞

t=0
βt

(1+r)t )e
: the price level p0 at date 0 equates the present value of the infinite stream

of future real taxes to the total current real liabilities (m−1 +z−1)/p0 of the government. A tax policy which

takes the infinite stream (τt)t≥0 of future real taxes as exogenously given is referred to as a non-Ricardian

tax policy and this approach to determining the price level is often called the fiscal theory of the price level.4

Case II: Taxes are adjusted to accommodate the current nominal government debt. The idea is that tax

policy prevents government debt from growing indefinitely in the manner of a Ponzi scheme. A simple way

of implementing such a tax policy—which captures the essential elements of the general setting is to set

θt = αZt−1, with 0 < α < 1 so that, taxes in period t are used to pay back a fraction α of the debt Zt−1

carried into the current period.

To compare the outcome obtained in this case with the outcome in Case I we continue to assume that

the monetary authority sets the nominal interest rate equal to the real interest rate (as in (7)) so that

inflation is zero in every period: πt+1 = 0, t ≥ 0. Once again the equations which determine the equilibrium

are the market-clearing equations ct = e for all t, the Fisher relation (6), to which are added the budget

equations (2) and the transversality condition (5). As before the budget equations (2) can be used recursively,

4There is an extensive literature in monetary theory discussing assumptions on fiscal and monetary government policies and
their consequence for the determination of the price level: see in particular Sargent-Wallace (1981), Leeper (1991), Sims (1994),
Woodford (1994, 1995), Cochrane (2001).
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beginning with t = 0, to calculate the agents’ portfolio (zt)t≥0. Market clearing and zero inflation imply

(pt − pt−1)e = 0; this combined with the tax policy θt = αtZt−1 and Zt = zt implies that the date t budget

equation (2) for t ≥ 1 reduces to

zt

1 + r
+ αzt−1 = zt−1 ⇐⇒ zt = (1 − α)(1 + r)zt−1

Thus z
T

= (1 − α)T (1 + r)T z0 so that the transversality condition (5)

lim
T→∞

(
λ

T

λ
0

)qz
T

=
z

T

(1 + r)T+1
= (1 − α)T z0

1 + r
→ 0

it is satisfied for any z0. Any pair (p0, z0) satisfying the date 0 budget equation

p0e + qz0 = M−1 + (1 − α)Z−1

gives an equilibrium. Since the transversality condition is automatically satisfied for any z0, the price level

p0 indeterminate. Thus in Case II, equilibrium prices (pt)t≥0 = (p0, p0, ...) are indeterminate.

When Case II holds — tax policy always ensures that the government’s debt does not grow indefinitely

like a Ponzi scheme—fiscal policy is said to be Ricardian. A Ricardian policy formalizes the idea of a

responsible government whose fiscal policy does not let the debt grow without bound, and it provides the

reference case for much of monetary theory. This is the case we study in this paper.

As shown in the two cases studied above, given a sequence of consumption satisfying the market-clearing

equations and a sequence of prices, there is always a portfolio strategy which solves the budget equations (2).

Since the portfolio of the government is the mirror image of that of the representative agent, a Ricardian

policy implies that such a portfolio strategy necessarily satisfies the transversality condition. Thus the

equations which determine the equilibrium reduce to the market-clearing equations for goods, ct = et and

the Fisher relation qt = δ
1+πt+1

at each date t ≥ 0. Given a Ricardian rule all the other variables can be

recovered as a function of p0. The property that in a Ricardian equilibrium the equilibrium equations reduce

to the market-clearing equation and the Fisher relation continues to hold when the equilibrium prices are

stochastic, as we show in the next section.

3 Introducing Expectations of Inflation

In the deterministic model the difference between a Ricardian and a non-Ricardian policy may appear

trivial—after all when the monetary authority sets the nominal interest rate it does tie down inflation (that

is the content of the Fisher equation (6)): all that is missing is the determination of the initial price level p0.

However this apparently innocent indeterminacy opens the door to a much more pervasive indeterminacy of
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agents’ beliefs regarding the future course of inflation which arises when fiscal policy is Ricardian, but does

not arise when the policy is non-Ricardian.

To see this consider the same economy as in the previous section with the same monetary policy which

consists of setting the nominal interest rate equal to the real interest rate, rt = r = 1
δ
− 1, and the same

Ricardian fiscal policy θt = αZt−1.
5 Suppose agents come to to have beliefs at each date t that inflation next

period can take one of the three values {πl, πm, πh} with probabilities {Bl, Bm, Bh} which are consistent

with the nominal interest rate rule of the monetary authority

1

1 + r
= δ

[
Bl

1 + πl

+
Bm

1 + πm

+
Bh

1 + πh

]
⇐⇒

Bl

1 + πl

+
Bm

1 + πm

+
Bh

1 + πh

= 1 (8)

so that the expected purchasing power of money next period is the same as today. (8) is the Fisher equation

for economy in which ct = e at every date, and agents are uncertain about the purchasing power of money

next period. Since the market clearing and the Fisher equation at each date characterize an equilibrium,

there exists a stochastic equilibrium in which consumption is constant and inflation follows an i.i.d. process

taking the values {πl, πm, πh} with probabilities {Bl, Bm, Bh} in which agents’ expectations are self fulfilling.

Since any beliefs satisfying (8) generate an equilibrium there is a continuum of equilibria in which the interest

rate rule no longer determines the inflation process.

The property that under an interest rate rule expectations of inflation are indeterminate was first pointed

out by Sargent and Wallace (1975). McCallum (1981) subsequently introduced the idea that the indetermi-

nacy can be substantially reduced if the choice of interest rate is based on a “feedback rule” which links the

interest rate to realized inflation. The currently popular version of a feedback rule for controlling inflation

is a Taylor rule by which the nominal interest rate set by the central bank (CB) reacts more than one for

one to realized inflation. As a first step to anchoring expectations of inflation, the CB announces a target

inflation rate π∗ (in our simple economy π∗ = 0 is a natural candidate) and then increases or decreases the

nominal interest rate from the real rate r∗ = 1
δ
− 1 depending on the deviation of realized inflation from the

target π∗

rt = r∗ + α(πt − π∗) α > 1

With this rule, for all equilibria other than the deterministic one (rt = r∗, πt = π∗ = 0), there is a path

on which the inflation rate tends to ∞, and such equilibria are viewed as implausible. To illustrate the

idea suppose 1
δ

= 1.02 so that r∗ = 0.02. Consider the simplest scenario of uncertain expectations of

inflation: agents are only uncertain at date 0 about what inflation will be at t = 1: after that they expect

5It is less immediate to check that the transversality condition is satisfied in the stochastic case (see Magill-Quinzii (2009b)).
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inflation to be deterministic (but not necessarily equal to zero). Suppose the possible inflation rates at date

1 are {πl, πm, πh}={−0.01, 0, 0.01} with probabilities B = (Bl, Bm, Bh) satisfying (8). Then there are three

possible paths (rt, πt)t≥0 which are obtained by solving the pair of equations

{
rt = r∗ + α(πt − π∗)

rt = r∗ + E(πt+1)
t ≥ 0

where the usual linear approximation of the Fisher equation has been adopted. The three paths are shown

in Figure 1 for α = 2, with the interest and inflation rates expressed in %.
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Figure 1: The equilibrium trajectories with a Taylor rule rt = 2% + 2πt.

For the lower branch we have taken into account the zero lower bound on the nominal interest rate by

changing the feedback rule to rt = max{0, r∗+α(πt−π∗}: this ensures that the interest rate is non-negative

and here implies that on reaching zero, it stays there. The upper branch corresponds to the interpretation of

the Taylor rule by Cochrane (2011) as a “threat to blow up the world” if inflation is higher than the target

rate π∗ set by the central bank. The conventional argument used to justify focusing on the deterministic

steady state is that agents can foresee at date 0 that high inflation πh at date 1 will lead to hyperinflation

ever after, and conclude that such a path is “unrealistic”, and hence that the beliefs that lead to it are

“unreasonable”. The argument has two drawbacks. First, the indeterminacy has not been eliminated —

some equilibria are simply classified as “uninteresting” or “unrealistic” and are hence not analyzed. Second,
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for agents to believe that an inflation rate at date 1 higher than the target rate will lead to hyperinflation,

they must believe that the central bank will keep applying a Taylor rule when the economy follows the upper

path in Figure 1, when clearly the interest-rate rule pushes inflation to increase exponentially. Adhering

to such a policy does not seem credible when the principal objective, made explicit in the charters of most

central banks, is precisely to prevent accelerating inflation from ever occurring.

4 Stochastic Equilibria and Term-structure Rule

In the previous section we showed that in a simple deterministic exchange economy under a Ricardian

regime there are stochastic self-fulfilling equilibria based on agents’ beliefs that the purchasing power of

money next period is uncertain. The conventional argument, that a more than one for one response in the

short-term interest rate to inflation eliminates all potential equilibrium trajectories other than the steady

state, is not entirely convincing.6 Thus, we propose an alternative way for the monetary authority to control

private-sector agents’ expectations which does not rely on the asymptotic behavior of potential trajectories

to eliminate beliefs, but uses currently observable prices of bonds to confirm agents’ expectations. Suppose

the central bank recognizes that there are many stochastic equilibria associated with any short-term interest-

rate rule it may choose. The short-term interest rate ties down expected inflation next period but leaves

undetermined all other characteristics (moments) of the probability distribution characterizing agents’ beliefs.

To tie down these probability distributions, i.e. to really anchor agents’ expectations, more instruments

will be needed. Our goal is to study the stochastic processes of beliefs which can be induced as agents’

expectations if the central bank can control a sufficient number of instruments which, in this section, we

take to be the prices of nominal government bonds of different maturities.

We present a framework in which the different stochastic equilibria can be parameterized by probability

distributions, or more precisely by Markov processes on the space of possible inflation rates. The idea is that

agents’ beliefs about the future course of inflation are revealed through their trades on the bond markets

i.e. through their trades on bonds of different maturities, and that the central bank can seek to exploit this

property in order to influence their expectations. Thus instead of viewing a central bank as threatening the

private sector with possible hyperinflation if it does not hold the appropriate beliefs, we view the central

bank as seeking to coax agents to have the desired beliefs by trading with them in an appropriate way on

the bond market.

6As mentioned in the introduction, other potential problems for obtaining determinacy with a Taylor rule, which appear
in models with production or preferences for money balances, have been extensively explored by Schmitt-Grohé, Uribe (2000),
Benhabib & all (2001 a,b).
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The monetary authority is assumed to choose an inflation process B that it wants to induce agents in the

private sector to adopt as their beliefs. To simplify the analysis the process is taken to be Markovian, so that

the beliefs about inflation next period only depend on current realized inflation. The instruments that the

monetary authority uses to direct agents’ expectations are the prices, or equivalently the yields to maturity

(interest rates) on a family of bonds of maturities 1, . . . , T . Thus for each inflation state π the monetary

authority chooses the interest rates r(π) = (r1(π), . . . , rT (π)) that are equilibrium interest rates when the

inflation process is B. It then adopts r(π) as its rule for fixing the interest rates when the current inflation

is π. The question that we study is the following: when is this generalized interest-rate rule compatible

with only one inflation process (which then necessarily must be B) so that there is a unique equilibrium

associated with the monetary policy r(π) and a Ricardian fiscal policy? When there is only one inflation

process associated with r(π) we say that the beliefs B are anchored by the generalized interest-rate rule.

To obtain such a uniqueness result we consider Markov processes on a finite set of inflation rates. Such

processes may be considered as discrete approximations of processes with continuous support as shown

in Figure 2. Thus at each date, agents’ beliefs about inflation next period, which are characterized by a

probability distribution conditional on current inflation, are approximated by a discrete probability distri-

bution on a finite set Π = {π1, ..., πS}. A Markov process of beliefs is then represented by a Markov matrix

B = [Bss′]s,s′∈S where Bss′ is the probability that inflation is (lies in the interval summarized by) πs′ next

period when current inflation is πs. To express the idea the agents can have beliefs that express genuine

uncertainty about next period inflation we assume S > 1.

To study the uniqueness of equilibrium we extend the model of Section 2 to incorporate agents’ uncertainty

about future inflation, summarized by the Markov matrix B. As before we assume that the representative

agent has a constant endowment stream. The utility function is now

EB

∞∑

t=0

δtu(ct)

where B is the stochastic process for inflation. The uncertainty about the purchasing power of money gives a

role for bonds of different maturities for spanning purposes so we assume that government bonds of maturities

τ = 1, . . . , T can be traded, denoting by qτ
t the (random) price at date t of the bond of maturity τ . Let

qt = (q1
t , . . . , qT

t ) denote the vector of bond prices at date t. We assume that all bonds are zero-coupon

bonds so that the payoff at date t + 1 of a bond of maturity τ purchased at date t is qτ−1
t+1 , i.e. the price of

a (τ − 1)-bond next period. Let q̂t+1 = (1, q1
t+1, . . . , q

T−1
t+1 ) denote the vector of payoffs of the bonds at date

t + 1. The agent now chooses a portfolio zt = (z1
t , . . . , zT

t ) of the bonds at each date and the date t budget

12
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Figure 2: Approximating a continuous random variable by a discrete random variable: the support of the density function
is partitioned into a finite number of intervals and each interval is represented by a value (typically the midpoint, except
at the tails where the interval may be infinite) to which is assigned the probability that the random variable lies in the
corresponding interval. The finer the partition and the slimmer the tail the better the approximation.

equation (2) of Section (2) becomes

ptct + θt + qtzt = pt−1e + q̂tzt−1 (9)

Eliminating the multipliers induced by the budget constraints (9), the first-order conditions for the agent’s

choice of consumption and portfolio become

qτ
t = EB

t

(
δ
u′(ct+1)

u′(ct)

qτ−1
t+1

1 + πt+1

)
, τ = 1, . . . , T, t = 0, 1, . . . (10)

with the transversality condition at each date t, EB
t ∆t′

t qt′zt′ → 0, as t′ → ∞ where

∆t′

t =

t′−1∏

τ=t

( 1

1 + rτ

)
(11)

is the present value at date t of a promise to pay one dollar at date t′.

The government acts in a way similar to that in Section 2 except that now instead of choosing the short-

term bond price (interest rate) it chooses the prices qt = (q1
t , . . . , qT

t ) of a family of bonds of maturities

τ = 1, . . . , T at each date, accommodating the private-sector demand by issuing appropriate amounts of

money Mt and a portfolio Zt = (Z1
t , . . . , ZT

t ) of the bonds. Its overall policy (qt, Mt, Zt, θt) must satisfy the

budget equation

Mt + θt + qtZt = Mt−1 + q̂tZt−1, t = 0, 1, . . .
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at each date. In addition we assume that the fiscal policy is Ricardian in the sense that for all t, EB
t ∆t′

t qt′Zt′ →

0 as t′ → ∞, where ∆t′

t is given by (11). As before the market-clearing conditions are given by

ct = e, Zt = zt, Mt = ptct, t = 0, 1, . . . (12)

where the latter two equations express the fact that the government’s issues of money and bonds must

accommodate private-sector demand. When (12) is satisfied, the representative agent’s budget constraint is

the mirror image of that of the government, and since the transversality condition is automatically satisfied

for the government it also holds for the representative agent. Thus the equations which determine an

equilibrium reduce to the market-clearing equation for the good ct = e for all t ≥ 0, and the FOC’s for the

bonds (10).

If the monetary authority is to implement a given Markov process B for inflation by anchoring agents’

expectations to B, then it must set the prices of the bonds so as to be commensurate with the representative

agent’s FOC’s for the optimal choice of the portfolio of bonds of maturities τ = 1, . . . , T , for each current

inflation rate s = 1, . . . , S

qτ
s = δ

S∑

s′=1

Bss′

1 + πs′

qτ−1
s′ , s ∈ S, τ = 1, ..., T (13)

where we have used the fact that in equilibrium ct = e for all t so that pricing is risk neutral. If the bond

prices satisfy (13) we say that they are compatible with the inflation process B. Note that fixing the price

of a zero-coupon bond of maturity τ is equivalent to fixing the τ -period interest rate (yield to maturity)

since qτ
s = 1/(1+rτ

s )τ , so that a generalized interest-rate rule which consists in choosing the interest rates as

functions of realized inflation, can equivalently be described as a bond-pricing rule for choosing bond prices

as functions of current inflation, and the latter is often more convenient in view of (13).

Suppose the monetary authority seeks to implement the Markov inflation process B and uses equations

(13) to determine its bond-pricing rule. Consider all the rational-expectations equilibria which can be

generated by this bond-pricing rule. If there is another Markov matrix B̃ such that

qτ
s = δ

S∑

s′=1

B̃ss′

1 + πs′

qτ−1
s′ , s = 1, ..., S, τ = 1, ..., T

then the inflation process B̃ with consumption ct = e for all t is another rational-expectations equilibrium

associated with the same bond-pricing rule. Thus to obtain a unique equilibrium7 for the bond-pricing rule

7Note that since the prices (pt)≥0 only enter the equations through the inflation rate πt+1, the price p
0

is necessarily
undetermined. Thus when we define uniqueness of equilibrium, we mean uniqueness of the inflation process, the general price
level still being indeterminate.

14



we need to be sure that the system of equations (13) viewed as a system of linear equations in the unknowns

B = [Bss′ ]s,s′∈S with fixed coefficients q = [qτ
s ]s∈S,τ=1,...,T (determined by the bond-pricing rule) has a

unique solution.

A necessary condition for this is that (13) consists of S×S equations, which implies that the interest-rate

rule must involve bonds of T = S maturities. In addition the equations must be independent. To characterize

the conditions for independence let us introduce the notation

Dss′ =
δBss′

1 + πs′

(14)

where Dss′ is the present value in inflation state s of a promise to pay one dollar if inflation is s′ next period.

(13) gives a simple recursive way of calculating the prices of the bonds as functions of [Dss′]s,s′∈S . Since the

one-period bond promises to pay one dollar in every state s′ that can arise next period

q1
s =

S∑

s′=1

Dss′1, s ∈ S (15)

This gives the price of the one period bond in each possible state s to-day. Since a two-period bond becomes

a one-period bond next period, the payoff of the two-period bond in state s′ is q1
s′, and the price of the

two-period bond when the current state is s is given by

q2
s =

S∑

s′=1

Dss′ q1
s′, s ∈ S (16)

Proceeding recursively in this way the price of the τ -period bond in state s can be obtained

qτ
s =

s∑

s′=1

Dss′qτ−1
s′ , s ∈ S (17)

once the prices qτ−1
s′ of the (τ − 1)-period bond in each state s′ have been calculated.

Writing the pricing equations (15)-(17) in matrix form will quickly reveal the invertibility condition which

must be satisfied in order that there is a unique Markov matrix B which satisfies (13). Let D denote the

S×S matrix of present values defined by (15), let qτ = (qτ
1 , ..., qτ

s)′ denote the column vector of prices of the

τ -period bond for the S possible values of current inflation and let 1 = (1, ..., 1)′ denote the S-vector of sure

payment of one dollar in each of the possible inflation states next period (i.e. the payoff stream promised

next period by a one-period bond in any state s). Then (15)-(17) can be written as

[
q1, q2, ..., qT

]
= D

[
1, q1, ..., qT−1

]
(18)

Viewing (18) as a system of linear equations in [Dss′], the solution is unique if and only if T = S and the

matrix
[
1, q1, ..., qT−1

]
is invertible, or equivalently the vectors 1, q1, ..., qT−1 are linearly independent. Since
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by (14) there is a one-to-one relation between [Bss′ ] and [Dss′], and hence between B and D, the uniqueness

of D is equivalent to the uniqueness of B. Thus we have shown the following proposition.

Proposition 1: A Markov matrix B represents expectations which can be anchored if and only if the bond

prices of maturities τ = 1, ..., S − 1 which are compatible with B are such that the matrix of bond payoffs

satisfies

rank
[
1, q1, ..., qT−1

]
= S (R1)

This result while established in the simplified setting of a constant-endowment exchange economy, can

(as we show in Section 6) be extended to much more general settings. To understand the restrictions on an

inflation-expectations process implied by Proposition 1 we begin by exhibiting some inflation processes which

can not be anchored. The first and simplest is the expectation that, whatever inflation is to-day, it will revert

to the steady state π∗ = 0 next period. To see this, consider the example of Section 3 in which the real rate

of interest is 2% (1/δ = 1.02) and there are three possible inflation rates π1 = −1%, π2 = −0%, π3 = 1%.

Suppose the inflation process B is Markov with Bss′ = 0 if s′ 6= 2, Bss′ = 1 if s′ = 2 which implies that

inflation reverts to 0 after any deviation. Then the bond prices (interest rates) associated with B are given

by

q1
s =

1

(1 + r1
s)

= δ

′∑

s

Bss′

1 + πs′

=
δ

1 + π∗
= δ =⇒ q1

s = δ, i.e. r1
s = 2% for s = 1, 2, 3

q2
s =

1

(1 + r2
s)2

= δ

′∑

s

Bss′ q1
s′

1 + πs′

=
δ2

1 + π∗
= δ2 =⇒ q2

s = δ2, i.e. r2
s = 2% for s = 1, 2, 3

so that the matrix in (R1) is 


1 δ δ2

1 δ δ2

1 δ δ2




which has rank 1 < 3. More generally any Markov process on a set of inflation rates π1, . . . , πS which is i.i.d.

has identical rows (i.e. Bss′ independent of s) and hence yields bond prices which are identical across the

different inflation states qτ
s = qτ

s′, s′ 6= s, so that the rank of the matrix of bond prices in (R1) is one. Thus

fixing the prices of sufficiently many bonds does not suffice to tie down expectations: the bond prices must

also differ sufficiently across the different inflation states for the rank condition to be satisfied.

As these examples show, the property that the bond prices q vary sufficiently across the states for (R1)

to be satisfied, imposes restrictions on the inflation process B which the monetary authority can seek to

anchor, in particular the restriction that B be non-trivially Markov i.e. that the expectations of future
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inflation depend on the currently realized inflation. Actually the next proposition shows that the conditional

probabilities of future inflation must differ systematically from one inflation state to another.

Proposition 2. A necessary condition for an expectations matrix B to be anchored by an interest-rate rule

is that B is invertible.

Proof: We show that the vectors (1, q1, . . . , qT−1) are in the range of D. For the bond prices this is immediate

since qτ = Dqτ−1 , τ = 1, . . . , T − 1. For the vector 1, note that B1 = 1 implies D diag[ 1+π
δ

]1 = 1, where

diag[ 1+π
δ

] denotes the diagonal matrix with diagonal elements 1+πs

δ
. Thus 1 is the image of the vector

diag[ 1+π
δ

]1. By Proposition 1 the vectors (1, q1, . . . , qT−1) are linearly independent and since they are in

the range of D, D must be of rank S. Since D = B diag[ δ
1+π

] and 1 + πs > 0 for all s, D is invertible if and

only if B is invertible. 2

Proposition 2 leads to an intuitive interpretation of the rank condition (R1) on the bond prices. Since

the matrix of payoffs [1, q1, ..., qT−1] is invertible and we just showed that this implies that D is invertible,

it follows that when (R1) is satisfied the matrix of bond prices [ q1, . . . , qT ] is invertible. In order that the

rows [
q1
s, q

2
s, . . . , q

T
s

]
=

[
1

1 + r1
s

,
1

(1 + r2
s)

2
, . . . ,

1

(1 + rT
s )T

]
, s ∈ S

are linearly independent, the term structure of interest rates rs = (r1
s, r

2
s, . . . , r

T
s ) must be systematically

different when current inflation s varies. Propositions 1 and 2 show that what is needed to eliminate

indeterminacy is a monetary policy which provides a feedback rule between inflation and the term structure

of interest rates. This result is in essence a generalization of the idea originally introduced by McCallum

(1981) that a feedback rule can eliminate the indeterminacy of equilibrium first exhibited by Sargent-Wallace

(1975) for Ricardian models. In our model the term structure of interest rates serves as an instrument for

conveying to the agents in the private sector the inflation process chosen by the monetary authority. The

feedback is needed for the rule to be sufficiently informative: agents must deduce from it a unique process for

inflation. As we have seen if the term structures were the same for every current inflation, the information

would not be sufficient.

Since the companion paper Magill-Quinzii (2009b) has circulated we sometimes received the criticism that

the policy implications of our analysis are “unacceptable” and that it is impossible for a monetary authority

to control more than the short-term interest rate. To answer the criticism we need to distinguish between

what is proposed and possible within the model, and what is possible given the institutional framework

in which central banks operate in the real world. In the model there is no impossibility: the bonds of
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all maturities play essentially the same role and if bond prices are chosen which satisfy the consistency

condition (13) for some matrix B, and fiscal policy is Ricardian, then an equilibrium exists. Translated

literally to the institutional framework in the US, the model would require changing the way government

bonds are traded: currently the finance department of the government (the Treasury) chooses the quantities

of bonds of different maturities to auction and the demand determines the price in the auction. The model

would suggest that the Treasury sells the bonds of different maturities at the prices chosen by the monetary

authority (the Fed), selling the quantities that the “market” wants to buy at these prices. Taxes then adjust

to clear the government budget constraint. It would probably be difficult to change the current operating

procedure to implement our proposed policy in this way.

An alternative approach, which respects the separation of the monetary and finance branches of the

government is that the monetary authority participates in the trade on the bond market, influencing the

demand and thus the price of the bonds. This is close to what has been attempted in several episodes

in the US and other countries and is now practiced by several central banks (US, UK) under the label of

“quantitative easing”, policies which “alter the scale and the composition of their balance sheets” (Bernanke

2011). These policies are still controversial (does the central bank have sufficient buying power to influence

long-term interest rates?) and are typically used with the goal of influencing real activity through the real

interest rate rather than influencing expectations of inflation as in our model. However since the way a

nominal interest rate translates into a real interest rate depends on expectations of inflation, directly or

indirectly there is a need to control expectations of inflation.

From the theoretical point of view our model is a rational-expectations model in which the term-structure

rule is applied by the government, i.e. the model assumes commitment on the part of the monetary authority.

The advantage of a term-structure rule is that the commitment is immediate to verify—agents can easily

check that the interest rates corresponds to the announced rule—so that credibility is not an issue. Although

this may seem to make the policy too “inflexible” we show in Section 7, where we introduce production and

real shocks, that the rule can be made conditional on the shocks affecting the real side.

Since for institutional reasons it may be difficult for a central bank to use the “unconventional” policy

of acting on the term structure of interest rates on a regular basis, we show in the next section that a less

controversial policy consisting of forward guidance on the future path of the short-term interest rate can

also achieve the desired result, if the policy is applied in a systematic way and agents in the private sector

believe in the announcements of the central bank.
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5 Forward Guidance Rule

If a monetary policy based on a term structure of interest rates of the kind outlined above has not been used

until now on a regular basis, most central banks have felt the need to complement their short-term interest-

rate policy by a periodic announcement of the path of future expected short-term interest rates. Central

banks which practice inflation targeting regularly post “fan charts” with the path of expected values for

inflation, the short-term interest rate and output. The Federal Reserve, which follows an informal (recently

made official) policy of inflation targeting, has begun to make announcements of the path of the expected

future short-term rate and is considering making such announcements a systematic policy. It is instructive to

use our model to compare this practice, which Bernanke (2011) has referred to as “forward guidance about

the future path of policy rates”, with a monetary policy based on a term-structure rule like the one studied

in the previous section.

We formalize the policy of announcing the path of the expected future (short-term) interest rate by a

rule which associates to each inflation rate a sequence of future expected short-term bond prices, which

amounts to using the approximation Et

(
q1
t+τ

)
= Et

(
1

1+r1
t+τ

)
≈ 1 − Et(r

1
t+τ). A monetary policy based on

a rule for paths of short-term interest rates is then of the form
(
B,
[
q1
s , Es(q

1
τ), τ = 1, ..., T

]
s∈S

)
where q1

s is

the short-term interest rate (bond price) given current inflation s, Es(q
1
τ ) is the expected future short-term

interest rate τ periods in the future (given s), for a sequence of T periods into the future τ = 1, ..., T . As

before the vector of short-term bond prices q1 must be compatible with the expectations B

q1
s = δ

∑

s′∈S

Bss′

1 + πs′

, s ∈ S

as well as the expected prices τ periods ahead

Es(q
1
τ ) =

∑

s′∈S

Bτ
ss′q1

s′ , s ∈ S, τ = 1, ..., T

where Bτ denotes the τ th power of B. Suppose the monetary authority has a policy (B, q1, (Eτ )τ=1,...,T )

where q1 = (q1
s)s∈S and Eτ = (Eτ

s )s∈S with Eτ
s = Es(q

1
τ ). We say that (q1, (Eτ )τ=1,...,T ) anchors B if there

is only one Markov matrix B compatible with (q1, (Eτ)τ=1,...,T ). This is equivalent to requiring that the

system of equations

δ
∑

s′∈S
Bss′

1+πs′
= q1

s, s ∈ S
∑

s′∈S Bτ
ss′q1

s′ = Eτ
s , s ∈ S, τ = 1, ..., T

(19)

has a unique solution B = [Bss′ ]s,s′∈S . As written, this system of equations is non-linear in B since the

coefficients of the matrix Bτ are polynomials of degree τ in Bss′ . However, given the form of this system of
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equations it can be transformed into an equivalent linear system. Writing the equations in matrix form, i.e.

taking all values s ∈ S simultaneously gives

B
δ

1 + π
= q1, Bq1 = E1, B2q1 = E2, ..., BT q1 = ET

where δ
1+π

is the column vector with components δ
1+πs

, s ∈ S. Substituting Bq1 into the equations for

expectations of bond prices 2 periods ahead gives BE1 = E2; in the same way, substituting B2q1 for E2

gives BE2 = E3, and by successive substitutions BEτ−1 = Eτ . Thus the nonlinear system of equations (19)

is equivalent to the system of linear equations

B

[
δ

1 + π
, q1, E1, ..., ET−1

]
=
[
q1, E1, ..., ET

]
(19′)

If the monetary policy is consistent, then B is a solution of this system of equations. For B to be the only

solution, (19′) must be a system of S × S equations in which the matrix of coefficients is invertible.

Proposition 3: The Markov expectations matrix B is uniquely determined by a forward-guidance rule

(q, E1, ..., ET) for the expected future short-term interest rates if and only if T = S − 1 and

rank

[
δ

1 + π
, q1, E1, ..., ET−1

]
= S (R2)

(R2) is slightly different from (R1) in the previous section.8 As we have seen i.i.d expectations are never

compatible with (R1): however, i.i.d expectations are compatible with (R2) in the special case S = 2. For

then the condition reduces to

det

[
δ

1+π1
q1
1

δ
1+π2

q1
2

]
6= 0

8A knowledge of the term structure of interest rates is equivalent to the knowledge of the associated family of forward rates.
Even with risk neutral pricing as in Sections 4 and 5, the forward rates differ from the expected value of the corresponding
short-term rates, so that a term-structure rule and an expected future short-rate rule are not equivalent. To see this, let q1

s and
q2
s be the prices at date t in inflation state s of the bonds maturing respectively in 1 and 2 periods. Then

q2
s =

1

(1 + r1
s)(1 + rf

s )
= Es

 

δq1
t+1

1 + πt+1

!

where the first equality is the definition of the forward rate rf
s between periods t + 1 and t + 2, and the second equality is (13).

Since q1
s = Es

“

δ
1+πt+1

”

q2
s = q1

sEs(q
1
t+1) − covs

“

q1
t+1,

δ

1 + πt+1

”

Knowing (q1
s , q2

s) is not equivalent to knowing (q1
s , Es(q1

t+1)) because of the covariance term. In terms of the forward rate, using

the approximation 1
1+r

= 1 − r the relation can be written as

rf
s = Es(r1

t+1) + covs

“

q1
t+1,

δ

1 + πt+1
/Es(

δ

1 + πt+1
)
”
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and this condition is satisfied by an i.i.d process for which q1
1 = B1

δ
1+π

= q1
2 = B2

δ
1+π

(with Bs denoting

row s of B) provided π1 6= π2. The case S = 2 is not however realistic, since a continuous distribution will

never be well approximated by a discrete distribution with two points in the support and, as shown in the

next proposition, this is the only case where i.i.d expectations can be anchored.

Proposition 4: A necessary condition for B to lead to a path of expected future short-term interest rates

satisfying (R2) is that rank B ≥ S − 1.

Proof: The S − 1 vectors q1 = B δ
1+π

, E1 = Bq1, ..., ES−2 = BES−3 are in the range of B and must be

linearly independent by (R2). Thus the range of B must be at least of dimension S − 1. 2

The rank condition (R2) is a little harder to interpret than (R1). As we saw in the previous section

(R1) implies that B must be invertible and we conjuncture that, generically in the inflation rates (π1, ..., πs),

all invertible matrices B will satisfy (R1). Condition (R2) only requires that rank B ≥ S − 1 and it

is straightforward to construct examples of matrices B (e.g. 3 × 3) with rank S − 1 which satisfy (R2)

and thus do not satisfy (R1). Interpreting the requirement that the rank of B be at least S − 1 and that

{q1, E1, ..., ES−2} and δ
1+π

are not linearly dependent is less immediate. However, the spirit of the conditions

in Propositions 1 and 2 and Propositions 3 and 4 are the same: the rank condition (R2) requires that the

probability distributions for inflation next period depend in a systematic way on current inflation and that

the expected future path of inflation must be different in the different inflation states in order that at least

S − 1 rows
[

1
1+πs

, q1
s, E

1
s , . . . , ET

s

]
be linearly independent.

The most natural property of the Markov expectations which permits the rank conditions (R1) or (R2)

to be satisfied is to allow for some degree of permanence in the inflation process. If the CB wants to induce

expectations that inflation will return to a target, permanence in the mean-reverting Markov matrix will

create inertia, with different paths of expected future inflation, expected future interest rates, and different

term structures of interest rates for different realized inflation rates.

In standard monetary rational-expectations models, where the inflation process is driven by an exogenous

process of shocks known by all participants in the economy,9 agents are assumed to know the policy rule

r(π) for the short-term rate, and no additional information is conveyed by a “forward-guidance rule”, i.e. by

the knowledge of the expected future short-term rates. In contrast in our model where the inflation process

is endogenous, the forward guidance serves to tie down the inflation process which, when combined with

the short-term rule r1(π), justifies the expected values (Es(r
1
τ (π), s ∈ S, τ = 1, . . . , T ). Forward guidance

9e.g. the equilibrium trajectory close to the steady state studied in New-Keynesian models
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eliminates the indeterminacy not by conveying information on the short-rate policy rule, which is known

by the agents, but by conveying information about the process of inflation which would otherwise remain

indeterminate.

6 Extending Model to Production Economy

In this section we show how the previous analysis can be extended to more realistic models of economies in

which goods are produced, the technology is affected by real shocks and production decisions are affected by

the nominal interest rate. To keep the analysis simple we do not go all the way to a New-Keynesian model

which has the most realistic description of the feedback between nominal and real variables, adhering instead

to the simpler flexible-price model of production introduced by Lucas-Stokey (1987) and used by Schmitt-

Grohé-Uribe (2000) and Nakajima-Polemarchakis (2005) to study the indeterminacy of equilibrium when

monetary-fiscal policy is Ricardian. This amounts to changing the description of the private sector of the

economy in the following way. Instead of a constant endowment e of the good, the representative agent has a

constant endowment e of labor which is normalized to e = 1. The consumption good is produced from labor

with the constant-returns technology y = aL, where a is subject to real shocks. Let G = {1, . . . , G} denote

the possible shocks10 and let (ag)g∈G denote the resulting productivities of labor. We assume that the shocks

to productivity are driven by an exogenously given Markov process with transition matrix A = [Agg′ ]
g,g′∈G

where the matrix A is known by all agents in the economy. The assumption of constant returns implies that

the structure of the production sector does not matter—however we make the standard assumption of the

cash-in-advance model that an agent cannot transform his/her labor into output but needs to work for a

firm and is paid a salary at the end of the period, too late to buy consumption goods within the period. This

timing creates a cash-in-advance constraint in the purchase of the good. Apart from this change in the way

the consumption good enters the economy (through production rather than as an exogenous endowment)

the model is the same as in the previous sections. We focus on the case where monetary policy involves

fixing the term structure of interest rates, since this is the reference case of the earlier sections: the analysis

can be readily adapted to a policy of announcing the future path of the expected short-term interest rate.

As in Section 2, the representative agent’s transactions on the goods and financial markets must satisfy

sequential budget equations which here can be written

p0c0 + θ0 + q0z0 = W0

ptct + θt + qtzt = wt−1Lt−1 + q̂tzt−1, t = 1, 2, . . .
(20)

10For simplicity we use the same letter for the number and the set of shocks.
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where W0 = m1 + q̂0z−1 denotes the agent’s inherited wealth at date 0. At each date the agent gets income

wt−1Lt−1 (money carried over from the previous period) where wt−1 denotes the wage rate and Lt−1 the

labor sold in period t − 1. The agent buys a portfolio zt = (z1
t , . . . , zT

t ) of the bonds of maturities 1, . . . , T

at prices qt = (q1
t , . . . , qT

t ) and receives the income q̂tzt−1 from the portfolio acquired in the previous period,

where q̂t = (1, q1
t , . . . , q

T−1
t ) denotes the vector of payoffs of the bonds purchased at t− 1, which depends on

the bond prices at date t.

The agent seeks a sequence of consumption/leisure choices which maximizes

E

∞∑

t=0

δtu(ct, `t)

subject to being achievable through labor choices (Lt)t≥0 and portfolio choices zt satisfying (20). The

function u is an increasing, concave and differentiable function of current consumption ct and leisure `t,

where `t = 1 − Lt. The expectation E is taken with respect to the stochastic process of agents’ beliefs.

Monetary policy consists in fixing the prices qt = (q1
t , . . . , qT

t ) of the bonds as a function of the currently

realized inflation and productivity shock (s, g). Current inflation is determined by the amount qtzt that the

agent saves (or borrows) since this determines the amount of money mt = mt−1 + q̂tzt−1 − qtzt − θt that

the agent lays aside to spend on the goods market. This savings decision in turn depends on the agent’s

expectations of future inflation, future taxes and future wages, and hence of the future shocks to productivity

since, with constant returns to scale, the wage is equal to productivity: wt+τ = at+τ for τ ≥ 1.

The setting is now substantially richer than in Section 4: agents have to form beliefs Γηη′ about the

transition probabilities from the current inflation-productivity pair characterized by η = (s, g) to the possible

inflation-productivity pairs next period η′ = (s′, g′), where we retain the assumption that the inflation

expectations have a Markov structure. We assume that the productivity shocks are independent of inflation,

giving the following structure to agents’ expectations

Assumption MT (Markov Transition) Given the current inflation-productivity state η = (s, g), the agents’

expectations of inflation-productivity next period are given by the joint probability distribution

Γη,η′ = Bg
ss′Agg′ , η, η′ ∈ S × G

Bg is the matrix of expectations of the distributions of inflation rates next period, which can depend on

the current productivity shock g. For these expectations are induced by the monetary authority which may

want to induce differential expectations for different shocks g in order to use the nominal interest rate to
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counter the effect of the productivity shock.11 The transition matrix A for real shocks is exogenously given

and is independent of the realized inflation.

The role of monetary policy is to anchor agents’ expectations of inflation and perhaps partially to undo

the effect of the productivity shocks on production through an interest-rate policy q. In each period the

government accommodates the agents’ demands for bonds and money by issuing Zt = (Z1
t , . . . , ZT

t ) bonds

of maturities 1, . . . , T and setting the money supply Mt in such a way that Zt = zt and Mt = mt = ptct. We

assume that the fiscal policy is Ricardian i.e. the choice of taxes θt ensures that for any policy (Mt, Zt, qt)t≥0

the present value of the government debt qtZt tends to zero when t tends to infinity.12

As in Section 2 the characterization of equilibrium can be reduced to two collections of equations

(1) market clearing on the good and the labor markets

(2) first-order conditions for the representative agent and the representative firm.

Explicit market-clearing equations for the bonds and money are not needed since the government accommo-

dates the demand for bonds and money. Solving the equations (20) from date 0 forward, there always exist

portfolios satisfying the budget constraints (20) for any given consumption and tax processes. The Ricardian

policy then implies that the transversality condition is satisfied. Thus an equilibrium is characterized by the

equations

(i) ct = atLt, Lt + `t = 1, t ≥ 0

(ii) δtuc(ct, `t) = λtpt, δtu`(ct, `t) = Et(λt+1wt), wt = at, t ≥ 0

(iii) λtq
τ
t = Et(λt+1q

τ−1
t+1 ), q0

t+1 = 1, τ = 1, . . . , T, t ≥ 0

where (ii) and (iii) are the first-order conditions for the representative consumer and firm. Eliminating the

multipliers λt and solving (i) as `t = 1 − ct

at
, these equations reduce to

11The dependence of the expectations process, and thus of the interest-rate rule, on the productivity shock g is the analogue
in this model of the term involving the “output gap” in a Taylor rule.

12For the purpose of this paper the exact form of the fiscal policy does not matter, as long it is Ricardian. An example of
a Ricardian policy which is often considered (Benhabib-Schmitt-Grohé-Uribe (2001a), Nakajima-Polemarchakis (2005)) is the
following

θt = αMt−1

“

1 +
q̂tZt−1

Mt−1

”

−
r1
t Mt

1 + r1
t

, 0 < α < 1

Since in equilibrium Mt−1 = p
t−1

c
t−1

is the nominal value of aggregate consumption which is equal to aggregate output, each
period the government raises revenue equal to a fraction α of nominal aggregate output, increased or reduced by the factor
q̂tZt−1

Mt−1
which is the ratio of the debt to GDP. The revenue is the sum of the indirect seignorage tax

r1
t Mt

1+r1
t

and the direct tax

θt levied on the private sector. It is shown in Magill-Quinzii (2009b) that in a stochastic environment this fiscal policy ensures
that for every subtree starting at every date-event of the economy, the present value of the government debt at date t tends to
zero when t tends to infinity.
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(ii)′
uc

(
ct, 1−

ct

at

)

u`

(
ct, 1 − ct

at

) =
1 + r1

t

at

, t ≥ 0

(iii)′ uc

(
ct, 1−

ct

at

)
qτ
t = δEt




uc

(
ct+1, 1−

ct+1

at+1

)

1 + πt+1
qτ−1
t+1


 , τ = 1, . . . , T, t ≥ 0

Suppose the monetary authority wants to anchor the inflation expectations (Bg)g∈G in the private sector.

The goal of this section is to study which expectations can be anchored, and how many instruments (bond

prices) the monetary authority needs to control: a similar analysis could be carried out for a policy of

announcing the path of future expected short-term interest rates.

To this end we consider stationary solutions of the equilibrium equations (ii)′ and (iii)′, namely (c, r1) =

(cη, r1
η)η∈S×G satisfying

(ii)′′
uc

(
cη, 1 −

cη

ag

)

u`

(
cη, 1−

cη

ag

) =
1 + r1

η

ag

, η ∈ S × G

(iii)′′ uc

(
cη, 1 −

cη

ag

) 1

1 + r1
η

= δ
∑

η′=(s′,g′)∈S×G

Bg
ss′Agg′

uc

(
cη′ , 1 −

cη′

ag′

)

1 + πs′

, η ∈ S × G

where we have only written the pricing equation for the short-term bond (τ = 1) in (iii)′: the idea is to focus

on solving (ii)′′ and (iii)′′ first: this will give us the short-term bond prices and from these we can calculate the

long-term bond prices using the remaining equations in (iii)′. The equations (ii)′′ define optimal consumption

in state η as a function of the short-term interest rate r1
η i.e. cη(r1

η) for each η ∈ S × G. Substituting this

expression into (iii)′′ gives a system of S×G nonlinear equations for determining the equilibrium short-term

interest rate r1 = (r1
η)η∈S×G and this interest rate must be non-negative in every state r1

η ≥ 0. This implies

that some restrictions must be imposed on the expectations (Bg)g∈G. To see why, recall that the Fisher

equation can be written approximately as

r1
η = rreal

η + Eη(πη′)

where η′ denotes a state at date t + 1. If the shocks to productivity imply that consumption is expected

to fall, then the real interest rate can become negative and expectations of inflation must be sufficiently

high to compensate for this. In the same way, if there can be deflation and expectations are such that the

expectation of inflation on the right side is negative, then it may not be possible to find a non-negative

equilibrium interest rate for such expectations. Conditions for the existence of a non-negative short-term

25



interest rate r1 = (r1
η)η∈S×G satisfying (iii)′′ are given in Magill-Quinzii (2009b). The problem of possible

non-existence of equilibrium interest rates satisfying (ii)′′ and (iii)′′ arises from the presence of the zero lower

bound on the nominal interest rate and imposes a restriction on the permissible expectations of inflation,

requiring that enough weight be placed on inflation (as opposed to deflation) to ensure that the resulting

nominal interest rate is non-negative.

From now on we take as given that the pair [(Bg)g∈G, A] is such that (ii)′′ and (iii)′′ have a solution

(c, r1) = (cη, rη)η∈S×G with r1
η ≥ 0 for all η. For this solution let

φ
η

= uc

(
cη, 1−

cη

ag

)
, η ∈ S × G

denote the marginal utility of consumption when the current state is η = (s, g), and let q1
η = 1

1+r1
η

denote the

short-term bond price compatible with the expectations (Bg)g∈G. The first-order conditions (iii) for bond

holdings of all the maturities can be written as

qτ
η = δ

∑

η′∈S×G

Bg
ss′Agg′

1 + π′
s

φη′

φη

qτ−1
η′ , η ∈ S × G, τ = 1, . . . , T (21)

Given the price q1 = (q1
η)η∈S×G of the one-period bond, (21) permits us to calculate the price q2 = (q2

η)η∈S×G

of the two-period bond and so on until we obtain the T vectors (q1, q2, . . . , qT ) of the bond prices across the

inflation-productivity states η ∈ S × G which are compatible with the expectations (Bg)g∈G. Having found

the equilibrium bond prices compatible with (Bg)g∈G we now ask if these are the only expectations compatible

with these equilibrium prices. We say that (Bg)g∈G is anchored by the term-structure (q1, q2, . . . , qT ) if

(Bg)g∈G is the only family of expectations of inflation which solves (21). Formally this requires that the

system of equations (21) viewed as a system of linear equations in the unknowns [(Bg
ss′)s,s′∈S , g ∈ G], taking

(A, π, φ, q) as fixed, has a unique solution. Since the expectations involve G × S × S unknowns, we need

the same number of equations. For each maturity τ , there are S × G equations which determine the vector

(qτ
η )η∈S×G. Thus we need T = S maturities—perhaps surprisingly, the same as in the simple exchange

economy without productivity shocks.

The key to obtaining the appropriate restrictions on the expectations matrices (Bg)g∈G to obtain unique-

ness is to form appropriate averages over the productivity shocks g′ next period in (21). Consider first the

average marginal utility of income next period with respect to g′, given that the current shock is g, if inflation

next period is s′

φ̂g
s′ =

∑

g′∈G

Agg′φs′g′ , s′ ∈ S, g ∈ G

26



(21) can be written as

qτ
sg = δ

∑

s′∈S

Bg
ss′

1 + πs′

∑

g′∈G

Agg′φs′g′∑
g′∈G Agg′φs′g′ ,

φ̂g
s′

φsg

qτ−1
s′g′ (22)

This suggests replacing the objective probabilities Agg′ by the risk-neutral probabilities (the “equivalent

martingale measure”)

ρg
s′ (g

′) =
Agg′φs′g′∑

g′∈G Agg′φs′g′

, g′ ∈ G, s′ ∈ S, g ∈ G

ρg
s′(g′) is risk neutral since the marginal utility φs′g′ is incorporated into the probability of the productivity

shock g′ next period and is conditional on the current shock being g and on inflation next period being s′.

This measure leads naturally to average values of the bond prices with respect to productivity shocks

Eg
s′(q

τ ) =
∑

g′∈G

ρg
s′(g

′)qτ
s′g′ , s′ ∈ S, g ∈ G, τ = 1, . . . , T

The first-order conditions (22) can now be expressed as

qτ
sg = δ

∑

s′∈S

Bg
ss′

1 + πs′

φ̂g
s′

φsg

Eg
s′(q

τ−1), s ∈ S, g ∈ G, τ = 1, . . . , T (23)

Since these are just present-value equations linking the price of a τ -bond to its payoff next period, which is

the price of a τ − 1-bond, we should expect that the equations can be written in a form reminiscent of (18)

in Section 4. This can be seen by introducing for each g ∈ G the two diagonal matrices

Dg
1 = diag

(
1

φsg

)

s∈S

, D̂g
2 = diag

(
δφ̂g

s′

1 + πs′

)

s′∈S

and the present-value matrix

D̂g = Dg
1BgD̂g

2

where the marginal utilities next period in D̂g
2 have been averaged over the possible real shocks. The present-

value matrix D̂g is the generalization of (14) in Section 4 to the case where the stochastic discount factor

is not constant because the consumption varies with both the nominal interest rate and the productivity

shock. For each g ∈ G and each τ , (23) consists of S equations for determining the prices of the bond of

maturity τ in each inflation state s.

Expressing these equations in matrix form for the bonds of maturities 1, . . . , T gives the matrix equation

[
q1
g , q2

g, . . . , q
T
g

]
= D̂g

[
1, Eg(q1), . . . , Eg(qS−1)

]
, g ∈ G (24)

Viewing (24) as a system of linear equations in [D̂g
ss′ ] for each g ∈ G, the solution is unique if and only if

T = S and the matrix [1, Eg(q1), . . . , Eg(qS−1)] is invertible. Since the matrices Dg
1 and D̂g

2 are diagonal
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matrices with positive entries, there is a one-to-one relation between D̂g and Bg so that uniqueness of D̂g

for each g ∈ G implies uniqueness of Bg for each g ∈ G. Thus we have shown

Proposition 5. The family of Markov matrices
[
Bg , g ∈ G

]
represents inflation expectations which can

be anchored by a term-structure policy
[
qτ
g = (qτ

sg)s∈S , τ = 1, . . . , T, g ∈ G
]

if and only if the compatible

bond prices, averaged over the productivity shocks, satisfy

rank
[
1, Eg(q1), . . . , Eg(qS−1)

]
= S, for each g ∈ G (R3)

Condition (R3) is essentially the same as the rank condition (R1) for an exchange economy. In each

case bond prices fluctuate because of the endogenous effect of expectations of inflation. Here however bond

prices also fluctuate because of the exogenous fluctuations in productivity which lead to fluctuations in

the real rate of interest. As in Proposition 1, the matrix [1, Eg(q1), . . . , Eg(qS−1)] is an S × S matrix

and row s′, [1, Eg
s′(q1), . . . , Eg

s′(qS−1)] gives the payoffs in period t + 1 of the bonds of maturities 1, . . . , S

purchased in period t. Eg
s′(qτ ) is the average over the real shocks of the price of the τ -bond in inflation

state s′. (R3) requires that these average prices vary systematically with s′ so that the rows of the matrix

[1, Eg(q1), . . . , Eg(qS−1)] are linearly independent. Since for each row of the matrix the bond prices are

averaged over the shocks g′ using the same probability distribution, the variations across the rows can only

come from the systematic variation induced by the expectations of inflation [Bg
ss′ ]. Thus for each g ∈ G, R3

imposes essentially the same condition on Bg as the rank condition (R1).

7 Example of Inflation Targeting

The rank conditions (R1), (R2) or (R3) are not practical to enter as constraints for the choice of an inflation

process which maximizes a social welfare criterion because they are “open” conditions: the set of invertible

matrices is an open set. To see how the previous analysis can be made operational, consider an economy

in which a central bank has a target rate π∗ and seeks to induce expectations that inflation reverts to the

target rate whenever current inflation deviates from π∗. For simplicity we take the model of Section 6 with

G = 1, i.e. no real shock. However since the nominal interest rate affects the supply of labor, inflation has

real effects and the real interest rate fluctuates.

Suppose the interval of inflation rates is represented by Π = {−0.02,−0.01, . . . , 0.06}. The increments

are 0.01 so that Π consists of 9 inflation rates indexed by s = 1, . . . , 9. Suppose in addition that the target

rate is π∗ = 0.02, corresponding to the index s∗ = 5. We know from the analysis of the paper that it is not
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possible to anchor expectations of an immediate reversion to π∗, so the central bank chooses a mean-reverting

expectations matrix B of the following form

for s = 1 B(1,1) = b
s∗

, B(1,2) = 1 − b
s∗

, B(1,σ) = 0 otherwise

for 1 < s < s∗ B(s, s − 1) = ab
s∗−s+1

, B(s, s) =
(1−a)b
s∗−s+1

, B(s, s + 1) = 1 − b
s∗−s+1

, B(s, σ) = 0 otherwise

for s = s∗ B(s∗, s∗ − 1) = a, B(s∗, s∗) = 1 − 2a, B(s∗, s∗ + 1) = a, B(s∗, σ) = 0 otherwise

for s∗ < s < 9 B(s, s − 1) = b
s−s∗+1

, B(s, s) = (1−a)b
s−s∗+1

, B(s, s + 1) = ab
s−s∗+1

, B(s, σ) = 0 otherwise

for s = 9 B(s, s − 1) = 1 − b
s−s∗+1

, B(s, s) = b
s−s∗+1

, B(s, σ) = 0 otherwise

Whenever current inflation deviates from the target πs∗ it is drawn in the direction of the target (from s

to s+1 if s < s∗, and from s to s−1 if s > s∗) with a probability which increases with the deviation |s−s∗|

from the target. The intensity of the reversion to the target is determined by the parameter b: the smaller

b the higher the probability that inflation moves towards the target. For example for s = 2 the probability

of the transition to s = 3 is 1 − b
4 , and for s = 3 the probability of transition to s = 4 is 1 − b

3 . In each

case the remaining probability ( b
4 or b

3 respectively) is divided between staying at the current inflation (with

probability (1− a) b
4

or (1 − a) b
3
) and transitioning away from the target (with probability ab

4
or ab

3
). When

the target is reached, inflation next period deviates either up or down with probability a : the higher a, the

greater the probability of moving away from target. Thus a is a “noise” parameter which makes the process

fluctuate more.

In order that B be a Markov matrix we must have 0 ≤ a ≤ 1/2 and 0 ≤ b ≤ 2. Since the probability of

moving towards the target decreases when a and b increase, if the criterion were solely the rapidity of the

return to the target, the ideal value of the parameters would be (a, b) = (0, 0). But as discussed below, for

these parameter values the process B can not be anchored.

Suppose the preferences are given by u(c, `) = (c1−α + β`1−α)/(1 − α) with α = 3, β = 0.4 and with

discount factor δ = 0.98. Since the target inflation rate π∗ = 2% is sufficiently high, an equilibrium exists

for all parameter values satisfying 0 ≤< a ≤ 1
2
, 0 ≤ b ≤ 2. Let r(a, b) = (r1(a, b), . . . , r9(a, b)) denote the

short-term interest rates satisfying the equilibrium equations (ii)′′ and (iii)′′ in Section 6 for the parameter

values (a, b): from this we obtain the vector of marginal utilities φ(a, b) and the bond prices can be recursively

calculated using (23), leading to the two 9×9 matrices consisting of the bond prices and their payoffs at the

next date

Q(a, b) = [q1(a, b), . . . , q9(a, b)], Q̂(a, b) = [1, q1(a, b), . . . , q8(a, b)]

Solving the equations (ii)′′ and (iii)′′ using Matlab for the parameter values (a, b) = (0.1, 0.1) and (a, b) =

(0.3, 0.3) gives the associated 9 term structures of interest rates for the 9 possible current inflation rates
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(ii)   (a,b)=(0.3, 0.3)

Figure 3: Term structure rule: term structures associated with the expectations matrix B in the example. In (i),
(a, b) = (0.1, 0.1); in (ii), (a, b) = (0.3, 0.3). Each curve represents the yield curve (rτ

s )9τ=1 for a possible current inflation
rate πs.

shown in Figure 2(i) and Figure 2(ii) respectively. In each figure a curve represents the term structure or

yield curve (rτ
s )9τ=1 for a given current inflation rate πs: the top curve corresponds to πs = 6% and the lowest

curve to πs = −2%. For both pairs of parameter values, the yield curve (rτ
s )9τ=1 , viewed as a function of

current inflation πs increases with πs, the increase in the yield of the short- term bond typically being greater

than that on a long-term bond. Thus when the inflation process is mean reverting to a target the associated

term structure policy which ensures determinacy is in essence a “generalized Taylor rule”, the interest rate

on each maturity increasing whenever current inflation increases. In Figure 3(i) the term structure rises fast

if there is deflation or low inflation (πs ≤ 0%) and decreases fast when current inflation is high (πs ≥ 4%),

leading agents to anticipate a fast return to the target inflation rate of 2%. In Figure 3(ii), for each current

inflation rate the term structure is flatter, leading agents to anticipate more permanence and a more sluggish

return to the target rate.

If the matrix Q̂(a, b) is invertible, the present value matrix D = D1(a, b)BD2(a, b) (with the notation of

Section 6 can be uniquely recovered by solving the 9 × 9 system of equations

D Q̂(a, b) = Q(a, b) (25)

Standard linear algebra requires that det(Q̂(a, b)) 6= 0 for Q̂(a, b) to be invertible. This however is not a
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meaningful criterion from the point of view of numerical analysis. Since several operations are involved in

calculating Q̂ (including solving a fixed point) Q̂ can only be calculated approximately with the precision

of a computer. Even if the “true” value of the determinant is zero, the calculated value will be a “small

number”, but a small determinant is not necessarily indicative of a lack of invertibility.13 The criterion in

numerical analysis is that D can be recovered with sufficient precision by solving (25), and the precision of

the solution depends on the condition number κ(Q̂(a, b)) of the matrix Q̂(a, b).14

If we replace the condition of invertibility of Q̂(a, b) by the requirement that κ(Q̂(a, b)) ≤ κ∗ where κ∗

is an appropriate critical value, then we can determine the optimal parameters (a, b) from the point of view

of a central bank seeking to stabilize inflation around the target π∗. Given the symmetry of the Markov

matrix B around s∗, the associated invariant measure ρ(a, b) puts equal weight on inflation rates equidistant

from π∗, so that Eρ(π) = π∗. The smaller the standard deviation σρ(π) the greater the proportion of time

the inflation process spends close to the target, and the better the inflation process from the perspective

of the central bank. The smaller the values of the parameters (a, b), the smaller σρ(π), and the faster the

convergence of the anticipated probability distribution ρ(t) of inflation in t periods.

However as shown in Figure 3, the smaller the parameters (a, b) the closer the yield curves for different

inflation rates; in particular for (a, b) = (0.1, 0.1) the yield curves for the inflation rates in the vicinity of

the target (s = 4, 5, 6) are virtually indistinguishable. As a result the matrix Q̂(a, b) is badly conditioned

for small (a, b): the condition number is of the order of 1013 for (a, b) = (0.1, 0.1). Thus there is a trade off

between the conditioning of Q̂(a, b) and the variability of the inflation process around the target. In addition

there is a trade-off between increasing a (more noise) or increasing b (slower return to target) to decrease the

condition number. If we follow common usage and require that the condition number of Q̂(a, b) is less than

κ∗ = 1010, then we find numerically that the standard deviation of ρ(a, b) is minimized for the parameter

value (a, b) = (0.3, 0.3) which corresponds to the yield curves of Figure 3 (ii). The standard deviation of the

associated invariant measure ρ(0.3, 0.3) which is equal to 0.74% is relatively small.

If instead of a term-structure rule the monetary authority uses a forward-guidance rule, the analysis is sim-

ilar except that the condition number of the matrix ÊQ(a, b) ≡
[

δ
1+π

, q1(a, b), E1(q1(a, b)), . . . , E7(q1(a, b))
]

is somewhat higher than that of Q̂(a, b). The value of (a, b) which minimizes the standard deviation σρ(π),

while ensuring that the condition number of ÊQ(a, b) is less then 1010, is (a, b) = (0.3, 0.4). The correspond-

13There are matrices with a very small determinant which are easily invertible: for example if M = ε I where I is the n × n
identity matrix, then det(M ) = εn can be arbitrarily small.

14If x is the solution of Ax = b and x̃ is the solution of Ax̃ = b̃ with b̃ = b + r, then η =
‖e‖/‖x‖
‖r‖/‖b‖

measures the elasticity

of the solution (x) with respect to the ‘data’ (b) and is a measure of the ‘sensitivity’ of the solution. The condition number
κ(A) = ‖A‖ ‖A−1‖ of A bounds the sensitivity of the solution, 1

κ(A)
≤ η ≤ κ(A). See Judd (1998) and Trefethen-Bau (1997).
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Figure 4: Forward-guidance rule: paths of expected future short-term rates for the 9 possible current inflation rates, the
lower curve corresponding to -2% deflation, the upper curve to 6% inflation.

ing paths of the expected short-term rates are shown in Figure 4.

8 Conclusion

A recurrent theme in discussions of monetary policy is the idea that an important role of a central bank is

to anchor agents’ expectations of inflation, because any expectations once adopted can become self-fulfilling.

This idea can be formalized in a rational-expectations model only if there is an inherent indeterminacy

of equilibrium due to the self-fulfilling nature of the expectations. Such indeterminacy arises naturally in

monetary models in which fiscal policy is Ricardian, and we have used the simplest example of such a model

as the framework for our analysis.

The innovation of the paper is to incorporate explicitly into the model the set of possible expectations

of inflation which agents can potentially adopt, and to show that by an appropriate choice of its monetary

policy—either a term-structure rule or a forward-guidance rule for the short rate—the monetary authority

can lead the economy to the unique equilibrium of its choice.

The analysis has focused on the determinacy of equilibrium and on characterizing the inflation processes
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which can be anchored. The spirit of Propositions 1-5 which provide formal statements of these conditions

is that an inflation process which can be anchored must fluctuate across the different inflation rates and

do so with some permanence. We showed using an example how the analysis can be applied to selecting a

mean-reverting process around a target which spends as much time as possible close to target: however the

target rate and the minimum variance criterion were not derived “from first principles”. Thus the paper can

be viewed as a first step towards a richer analysis which simultaneously studies not only the determinacy

but also the optimality of the monetary policy. A more complete analysis along these lines would require

the introduction of some frictions to give a real effect to inflation, for example the price rigidities studied

in the New Keynesian models. Extending the analysis to a richer model which permits an optimal inflation

process to be derived, which can also be anchored, is left for future research.
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