
Dynamic Contracts when Agent’s Quality is
Unknown�

Julien Pratyand Boyan Jovanovicz

January 2012

Abstract

We solve a long-term contracting problem with symmetric uncertainty
about the agent’s quality, and a hidden action of the agent. As information
about quality accumulates, incentives become easier to provide because the
agent has less room to manipulate the principal’s beliefs. This result is op-
posite to that in the literature on "career concerns" in which incentives via
short-term contracts get harder to provide as the agent’s quality is revealed
over time.

Keywords: Principal-agent model, optimal contract, learning, private in-
formation, reputation, career

JEL Codes: D82, D83, E24, J41

�Previous versions circulated under the title "Dynamic Incentive Contracts under Parameter
Uncertainty". We thank Heski Bar-Isaac, Pieter Gautier, Robert Kohn, Albert Marcet, Ennio Stac-
chetti as well as seminar participants at the IMT Institute in Lucca, the Tinbergen Institute, Uni-
versity of Cergy-Pontoise, University of Essex, Stockholm Institute for International Economic
Studies (IIES), and the Minnesota Macro Workshop for comments and suggestions. We acknowl-
edge the support of the Kauffman Foundation and of the Barcelona GSE .

yIAE (CSIC), Barcelona GSE, IZA and CEPR
zNew York University

1



Dynamic Contracts when Agent’s Quality is Unknown

1 Introduction

In an agency problem the agent may have not just a hidden action, but also
an unknown quality. Many relationships between firms and workers, between
shareholders and CEOs, or between lenders and borrowers, are of this kind. Yet,
little is known about the optimal design of multi-period contracts in such situa-
tions. For example, the question remains open as to whether quality uncertainty
encourages effort.

When risk-neutral principals and agents deal in spot markets and quality is
fixed over time, Holmström (1999) provides a clear answer: Quality uncertainty is
good for incentives because it creates a reputational concern. Gibbons and Mur-
phy (1992) confirm this result for one-period incentive contracts and risk averse
agents.

We find that the opposite holds true under full commitment: Quality un-
certainty harms incentives. Our conclusion differs from Holmström’s because
markets reward perceived talent whereas contracts are designed to extract effort;
once committed to the relationship, it is never in the interest of the principal to
discourage the agent by punishing him for having a low productivity. This cre-
ates an incentive for the agent to manipulate the principal’s beliefs about quality
through his choice of effort.

An agent that has provided less effort than expected knows that output would
have been higher had he taken the recommended action. Such private informa-
tion drives a persistent wedge between the principal’s and the agent’s posteriors,
with shirkers remaining more optimistic about quality. This motivates the ma-
nipulation an agent might undertake: By inducing the principal to underestimate
his productivity, a shirker anticipates that he will benefit from overestimated in-
ferences about his effort in future periods and thus higher rewards. Hence, of
two agents with identical performance histories, the shirker will enjoy a higher
expected future utility.

The benefits of manipulating the principal’s belief downward is reminiscent
of the “ratchet effect” discussed in Laffont and Tirole (1988).1 In order to pre-
vent such belief manipulation, contracts under quality uncertainty must link pay
more tightly to performance, which lowers the welfare of the risk-averse agent.
Since true quality is constant in our model, belief manipulation is more effective

1In contrast to Laffont and Tirole (1988) our model features no adverse selection from the
outset. Instead, we model a pure moral hazard problem where the principal and agent share
the same prior. Asymmetric information can arise only off the equilibrium path through the
persistent influence of past actions on posteriors.
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early on when posteriors put higher weight on new information, and the sensi-
tivity of pay to performance declines over time.

We use a first-order approach to characterize the optimal contract. We focus
on the necessary conditions for recommended effort to be incentive compatible
and derive sufficient conditions under which the agent’s problem is globally con-
cave. Then we solve the contract in closed form when the agent has exponential
utility.2

We cast our model in continuous time so as to use the optimization tech-
niques originally introduced by Schättler and Sung (1993). Their methodology
has already been extended by Williams (2011) to an environment with persistent
private information. There are several differences between our paper and that of
Williams; he assumes that the agent observes his productivity and that it evolves
stochastically, whereas we keep productivity fixed but neither the agent nor the
principal know its actual value. Second, Williams assumes that the initial ability
is common knowledge. It therefore remains commonly known when the agent
reports truthfully and the equilibrium features no learning. In contrast, we have
a common learning process along the equilibrium path. Modeling it requires that
we introduce contract duration as an additional state. Third, we use a proof strat-
egy that does not rely on the stochastic maximum principle. Instead, we follow
the approach proposed by Cvitanić et al. (2009) and use a variational argument
to derive the first order conditions.

Our paper seems to be the first to study commitment in a repeated agency
problem when the agent’s quality is unknown and constant, and where the prin-
cipal makes transfers to the risk-averse agent in each period. A few papers have
analyzed the interactions between quality and moral hazard but under different
assumptions about the structure of payments or the timing of actions. Giat et
al. (2010) add initial private information to Holmström and Milgrom (1987) so
that there is a single transfer at the end of the contracting horizon. Conversely,
Hopenhayn and Jarque (2007) analyze persistent unknown quality when the ef-
fort decision occurs solely in the first period. Adrian and Westerfield (2009) as-
sume that principal and agent disagree about the resolution of uncertainty and

2Establishing incentive compatibility when private information is fully persistent entails the
following technical issue: As the duration of the relationship increases, the state space becomes
unbounded because the entire history of actions matters for evaluating the agent’s options off
the equilibrium path. A recursive approach to the problem quickly becomes intractable since,
as originally explained by Fernandes and Phelan (2000), it takes the beliefs of the agent and of
the principal as separate states. The first order approach bypasses this difficulty by focusing on
the equilibrium path. Then the challenge consists in deriving sufficient conditions. To the best
of our knowledge, the only proof in discrete time is by Kapicka (2006) and is rather specific to
the reporting problem analyzed in his paper. One remedy is to numerically check the incentive
compatibility of the contract, as in Abraham and Pavoni (2008).
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let the two parties agree to disagree. DeMarzo and Sannikov (2008) study a prob-
lem which is similar in structure to ours but consider that agents are risk neutral
and impose a stationary Markov process on the agent’s quality.

The paper proceeds as follows. Section 2 lays out the model. The agent’s nec-
essary and sufficient conditions are derived in Section 3. Section 4 displays the
contract under exponential utility that is optimal for the principal. It character-
izes the set of parameters and initial beliefs under which the agent’s first-order
conditions represent a global optimum. Section 5 discusses the properties of
the optimal contract and equilibrium wage schedule. Section 6 contrasts our
full-commitment contract with the no-commitment model of Holmström (1999).
Section 7 sums up our findings whereas the proofs of the main Propositions and
Corollaries are in Appendix A. We relegate the proofs of some tangential claims
to Appendix B.

2 The Problem

Production process.— Let fBtgt�0 be a standard Brownian Motion on a probability
space (
;F ; P ). The cumulative output Yt of a match of duration t is observed by
both parties and satisfies the stochastic integral equation

Yt =

Z t

0

(� + as)ds+

Z t

0

�dBs : (1)

The time-invariant productivity is denoted by � whereas at 2 [0; 1] is the effort
provided by the agent. The agent’s action shifts average output without affecting
its volatility.

Learning.— No one knows � at the outset and common priors are normal with
mean m0 and precision h0. Posteriors over � depend on Yt and on cumulative
effort At ,

R t
0
asds. Conditional on (Yt; At; t), they are also normal with mean

�̂(Yt � At; t) , Et [�jYt; At] =
h0m0 + ��2 (Yt � At)

ht
; (2)

and with precision
ht , h0 + ��2t : (3)

Focusing on normal priors over the mean of a normally distributed process en-
ables us to summarize all the statistically significant information with three vari-
ables: cumulative output Y , cumulative effort A and elapsed time t. Especially
useful for the characterization of optimal contracts is the fact that beliefs depend
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on the history of a through A alone. Hence it is sufficient to keep track of cumu-
lative effort instead of the whole effort path.3

Preferences.—The agent is risk averse and cannot borrow and lend. For all
t � 0 and any given event ! 2 
, we define a wage function w : R+ � 
! R. The
agent preferences as of time 0 read

U0 ,
Z 1

0

e��tU (wt (!) ; at) dt ; (4)

with � > 0. Our specification of wages is quite general since they can depend on
the entire past and present fYs; 0 � s � tg of the output process.

The principal is risk neutral and seeks to maximize output net of wages. His
inter-temporal preferences are

�0 ,
Z 1

0

e��t (dYt � wt (!)) dt ; (5)

where we have imposed a common discount rate for the agent and principal.

Long-term contract.—We assume that the parties are able to commit to a long-
term contract which can depend on realized history in an arbitrary way. We fol-
low the usual practice of adding recommended effort a� to the contract definition.
Accordingly, since a given output path is a random element of the space
, a con-
tract is a mapping (w; a�) : R+ � 
 ! R � [0; 1] that associates at each time t a
wage-effort pair to any output path. The mapping must be measurable based on
information that the principal has, and so, can depend on past output but not
on past effort. Otherwise contracts remain general since they can depend on the
entire sample path fYs; 0 � s � tg of the output process.4

Beliefs.—The principal assumes that the agent always takes his equilibrium
action a�t . His beliefs are governed by (2) in which A = A� and by (3). By contrast,
the agent’s beliefs incorporate the actual level of effort a which only he knows.
Thus his beliefs are governed by (2) in which A and not A� enters. Let Fa

t ,
� (Ys; as; 0 � s � t) denote the filtration generated by (Y; a) and Fa , fFa

t gt�0
the P�augmentation of this natural filtration. Denote by Zt the cumulative sur-
prise of someone who believes that Yt was accompanied by the effort sequence

3This is why most of the literature on career concerns, Holmström’s (1999) model included,
focuses on the additive normal case. Dewatripont et al. (1999) discuss in their Remark on page
186 the complications that arise when more general production functions are considered.

4Given the diffusion property of the output process, one should think of 
 = C ([0; T ] ;R) as
the space of continuous functions ! : [0; T ] ! R and of the process defined in (6) Zt (!) = ! (t),
0 � t � T , as the coordinate mapping process with Wiener measure P on

�

;FYt

�
. Accordingly a

contract is a mapping (w; a�) : R+ � C ([0; T ] ;R)! R� [0; 1] :
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fas; 0 � s � tg. The filtering theorem of Fujisaki et al. (1972) implies that the in-
novation process

dZt ,
1

�
[dYt � (�̂(Yt � At; t) + at)dt] (6)

is a standard Brownian motion on the probability space (
;Fa; P ).5 Moreover, �̂
is a P�martingale with decreasing variance6

d�̂(Yt � At; t) =
��1

ht
dZt : (7)

The agent is restricted to the class of control processesA , fa : R+ � 
! [0; 1]g
that are Fa�predictable.7 Given that the principal does not observe actual effort,
the information available to him is restricted to the filtrationFY

t , � (Ys; 0 � s � t)
generated by Y whose augmentation we denote by FY ,

�
FY
t

	
t�0. An effort

path is an equilibrium path when recommended and actual effort coincide, i.e.,
if at = a�t for all (t; !).

3 Incentive Compatible Contracts

This section focuses on the agent’s problem. We derive the necessary conditions
for a given action to be optimal and then establish a restriction under which they
are also sufficient. We impose a terminal date T on the contracting horizon. Un-
til then, both principal and agent are fully committed to the relationship. The
agent’s continuation value at time t reads

vt , max
a2A

E

�Z T

t

e��(s�t)U
�
w(Y s); as

�
ds+ e��(T�t)W

�
Y T

�����Fa
t

�
; (8)

where the output path is denoted by Y t , fYs; 0 � s � tg andW (�) is the terminal
utility which depends on output history.8 The agent computes his continuation

5As shown in Section 10.2. of Kallianpur (1980), the linearity of the filtering problem implies
that the filtrations generated by the output and innovation processes coincide. More formally, for
FZt , � (Zs; 0 � s � t), we have Fat = FZt .

6Equation (7) follows directly from Ito’s lemma. Let Xt , Yt � At denote cumulative output
net of cumulative effort so that

d�̂(Xt; t) =
@�̂(Xt; t)

@t
dt+

@�̂(Xt; t)

@Xt
dXt = �

��2

ht
�̂(Xt; t) +

��2

ht
(�̂(Xt; t) + �dZt) =

��1

ht
dZt :

7A mapping is predictable when it is P�measurable, with P denoting the �-algebra of pre-
dictable subsets of the product space R+ � 
, i.e. the smallest �-algebra on R+ � 
 making
measurable all left-continuous and adapted processes.

8Since we shall let T ! 1, we have assumed a tractable form for W . It is straightforward to
letW also depend on cumulative effort A. Then one would have to adjust the stochastic process
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value by taking a conditional expectation under the filtration Fa
t which varies

with the level of cumulative effort. The principal, on the other hand, does not ob-
serve actual actions. Thus he needs to keep track of continuation values for any
potential level of cumulative effort. We shall simplify the problem by adopting a
first order approach: We focus on the continuation value along the equilibrium
path and then establish conditions under which our solution is indeed globally
optimal.

3.1 Necessary conditions

The optimization problem (8) cannot be analyzed with standard methods be-
cause the objective function depends on the processwt which is non-Markovian.
We instead use a martingale approach. Faced with a contract (w; a�), the agent
controls the distribution of wages through his choice of effort. Under this inter-
pretation, the agent chooses the probability measure over realizations ofwt. This
approach renders our optimization problem treatable with optimal control tech-
niques because the Radon–Nikodym derivative associated with any effort path is
a Markovian process.

The idea of treating distributions as controls in order to solve principal-agent
models goes back to Mirrlees (1974). The learning process complicates our prob-
lem as past efforts affect not only current wages but also future expectations. We
show in the Appendix how this difficulty can be handled through an extension of
the proof by Cvitanić et al. (2009) which leads to the necessary condition stated
below.

Proposition 1 There exists a unique decomposition for the agent’s continuation
value

dvt = [�vt � U (wt; at)] dt+ t�dZt ; (9)

vT = W (YT ) ; (10)

where  is a square integrable predictable process. The necessary condition for a�t
to be an optimal control reads�

t + Et

�
�
Z T

t

e��(s�t)s
��2

hs
ds

�
+ Ua (wt; a

�
t )

�
(a� a�t ) � 0 ; (11)

for all a 2 [0; 1] :

p defined in equation (13) by replacing W
�
Y T
�

with WA

�
Y T ; AT

�
. One can verify that our re-

sults hold with few or no changes under this more general definition. The specification of the
terminal utility would matter if we were to focus on repeated contracts, with W capturing the
agent’s outside option and the ability of the principal to reward him at the end of the relation-
ship. We do not consider such generalizations because this paper focuses on the limit situation
where both parties are forever committed. Then, as long as standard transversality conditions
hold, the specification of the terminal utility is immaterial to the analysis.
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An increase in current effort has two effects: it raises the promised value along
the equilibrium path and increases cumulative effort. The first effect is propor-
tional to the process  which measures the sensitivity of the agent’s value to out-
put surprises. The second effect is captured by the expectation term in (11). This
term vanishes when � is known, since then ��2=hs = 0 for all s � t. As a special
case of our model, we then get the necessary condition in Sannikov (2008) which
says that an optimal control must maximize the expected change in continuation
value  minus the marginal cost of effort Ua (�).

Quality uncertainty leads to the addition of the expected future sensitivities
weighted by their precision ratios because they capture the marginal impact of
current effort on expected earnings. To see this, observe that @�̂(Ys�As; a)=@at =
���2=hs for all s � t. Hence a marginal increase in at lowers date-s posteriors
about � by the amount ��2=hs. The impact in utils follows multiplying these mar-
ginal output surprises by the expected sensitivity s of the promised value.

Analytically, (11) is more convenient when re-written as follows:�
��2

ht
pt + t + Ua (wt; a

�
t )

�
(a� a�t ) � 0 ; for all a 2 [0; 1] ; (12)

where

pt , htE

�
�
Z T

t

e��(s�t)s
1

hs
ds

����Fa
t

�
(13)

is a stochastic process capturing the value of private information.
The reformulated necessary condition (12) involves two stochastic variables,

t and pt. This is a usual result for dynamic contracts with private information.9

First, we recover the now standard technique of using the promised value to en-
code past history. A related interpretation can be inferred for p noticing that the
incentive constraint implied by (12) is

t � �Ua (wt; at)�
��2

ht
pt : (14)

Given that the agent is risk averse, it is reasonable to conjecture that the princi-
pal will minimize the volatility parameter . Hence, as long as a�t > 0 for all t;

9This feature was originally noticed by Werning (2001) considering principal-agent problems
with hidden savings. He proved that one has to introduce both continuation value and expected
marginal utility from consumption. A general approach has been recently proposed by Pavan et
al. (2010). They establish an envelope formula for the derivative of an agent’s equilibrium payoff.
When applied to adverse selection problems with Markovian types, the envelope formula leads
to the definition of an additional recursive variable.

To the best of our knowledge, Williams (2008) was the first to introduce two separate stochastic
processes in order to solve dynamic incentive problems in continuous time. He also explains how
one of them can be dispensed with when the utility function is exponential. We show in Section
4 that a similar simplification holds in our set-up.
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the necessary condition (12)will hold with equality almost everywhere along the
equilibrium path. We show below that this indeed holds true when the agent has
exponential utility. We therefore replace t by the expression implied for it when
(12) binds and, as shown in Appendix B.1., obtain the following solution:

pt = E

�Z T

t

e��(s�t)Ua (ws; as) ds

����Fa
t

�
< 0 : (15)

Since the stochastic variable pt is negative, it follows from (12) that, for any
recommended level of effort a�t and any given wagewt, the volatility of the agent’s
promised value t has to be higher with quality uncertainty than without. The
implication does not hinge on any particular specification of the utility func-
tion. It only requires that the incentive constraint (12) binds everywhere along
the equilibrium path, thereby illustrating the generality of our main finding: An
uncertain environment makes it harder to motivate the agent and so leads to
greater exposure to risk.

Intuition behind p.— The second state variable p is equal to the expected dis-
counted marginal cost of future efforts. Multiplying it by the ratio ��2=ht yields
the marginal effect of cumulative effort on the continuation value. The intuition
for this result can be laid out considering mimicking strategies. Fix Y t and lower
cumulative effort by � > 0. Then define a strategy enabling the agent to repro-
duce the payoffs of an agent with the reference level A�t of past effort. Let a�t de-
note the optimal effort at time t of the reference policy with cumulative effortA�t .
By providing a�t = a�t � ���2=ht,10 the agent with cumulative effort A�t � � ensures
that cumulative output will have the same drift as along the reference path

�̂(Yt � (A�t � �) ; t) + a�t =
h0m0 + ��2 (A�t � �)

ht
+ a�t �

��2

ht
� = �̂(Yt � A�t ; t) + a�t :

Assume now that a similar strategy is employed afterwards, so that a�s = a�s �
(��2=ht) � for all s � t. Cumulative effort will be A�s = A�s � [1 + (��2=ht) (s� t)] �
leading to the following output drift

�̂(Y s�A
�
s; s) + a�s =

h0m0+�
�2 (A�s� [1+ (��2=ht) (s� t)] �)

hs
+a�s�

��2

ht
�

= �̂(Y s�A
�
s; s) + a

�
s�
��2

hths

264�ht+��2 (s� t)
�| {z }

=hs

� hs

375= �̂(Y s�A�s; s) + a�s :
10Such strategies are not feasible when the reference control is at the lower bound, i.e., when

a�t = 0. One should therefore interpret our discussion of mimicking strategies as an heuristic one.

The rigorous interpretation being that of the expectation term E
h
�
R T
t
s

��2

hs
ds
���Fat i laid-out in

the paragraph above.
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As desired, the mimicking strategy reproduces the distribution of Ys for all s � t
and the product � (��2=ht) pt measures its expected discounted return in utils.11

It is positive because it took the agent with cumulative effort A�t more work to
produce Yt, implying that his productivity is likely to be lower. Returns decrease
as t increases because the influence of output on beliefs is lower when � is known
more precisely. This suggests that incentives become easier to provide over time,
a result that we will discuss at length in Section 5.

3.2 Sufficient conditions

First-order conditions rely on the premise that the agent’s objective is globally
concave. Unfortunately, principal-agent problems do not always fulfill such a re-
quirement. In our case, establishing concavity is complicated by the persistence
of private information: Excluding one shot deviations does not necessary rule
out multiple deviations because any departure from recommended effort drives
a permanent wedge between the beliefs of the agent and that of the principal.
Thus we have to verify the sufficiency of our necessary conditions. Only then can
we be sure that the agent finds it indeed optimal to provide recommended effort
when assigned the wage function satisfying the local incentive constraint (12).

How to establish incentive compatibility for discrete time contracts with per-
sistent information remains an open question.12 By contrast, when the model
is cast in continuous time, the sufficiency of the necessary conditions and thus
the incentive compatibility of the effort path can be established directly.13 In our
case, sufficiency holds when the requirements stated in the following proposition
are fulfilled.

Proposition 2 A control a is incentive compatible if (11) and

�2Uaa (wt; at) � e�t�t�
2ht (16)

11The correction term ��2=ht required to mimic the output distribution remains constant over
time because of two countervailing mechanisms. One the one hand, as hs increases, the impact
of past deviations on posteriors decreases over time. On the other hand, the mimicking strategy
involves repeated deviations so that the gap between A�s and A�s widens over time. When the
output distribution is normal, these two opposite forces offset each other.

12The difficulties arising in discrete time settings are thoroughly discussed by Abraham and
Pavoni (2008). To circumvent them, they propose a numerical procedure verifying ex-post the
implementability of contracts with hidden effort and savings. See also Kocherlakota (2008) for a
discussion of the problem and an analytical example.

13When the optimization problem can be cast as an optimal control problem, the sufficiency
of the necessary conditions follow from the concavity of the agent’s Hamiltonian. This general
mathematical result is summarized in Theorem 3.5.2 of Yong and Zhou (1999), and has already
been used in principal-agent settings by Schättler and Sung (1993) and more recently by Williams
(2008). The concavity requirement derived in Williams (2008) tend to be violated by his principal-
agent problem. Corollary 2 below shows that this is not the case in our model because sufficiency
is not anymore an issue when parameter precision ht goes to infinity.
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are true for almost all t, where � is the predictable process defined uniquely by

E

�
�
Z T

0

e��ss
��2

hs
ds

����Fa
t

�
� E

�
�
Z T

0

e��ss
��2

hs
ds

����Fa
0

�
=

Z t

0

�s�dZs ; (17)

for all t 2 [0; T ] :

According to (15), the process �t is the random fluctuation in the discounted
sum of marginal utilities as evaluated from time 0. Proposition 2 imposes stronger
restrictions on �t than required so that a control might violate them and never-
theless be incentive compatible. Moreover, (16) and (17) are stated in terms of
(wt; t) which are endogenous, implying that they have to be verified ex-post for
any given contract. In some cases, however, one can translate (16) and (17) into
a requirement on the parameters of the model. Indeed, when the agent’s utility
function is exponential, as in (20), we shall show that the conditions of Proposi-
tion 2 are fulfilled if (26) holds.

Finally, observe that letting the horizon T go to infinity allows us to discard the
terminal condition (10) as long as the transversality condition limT!1 e

��tW
�
Y T

�
is satisfied. Then we can replace the Backward Stochastic Differential Equation14

(9) by a Stochastic Differential Equation (SDE hereafter) and express the law of
motion of the stochastic process p as follows.

Corollary 1 In the infinite horizon case, pt (defined in (15)) satisfies

dpt =

�
pt

�
�+

��2

ht

�
+ t

�
dt+ #t�dZt ; (18)

with
#t , e�t�2ht�t

and �t being defined in (17):

Some general results about local incentive constraints and their sufficiency
have been established in this section. We have derived qualitative results on the
interaction between quality uncertainty and incentive compatibility. It is diffi-
cult to make further progress without being more specific about the agent’s pref-
erences. This is why we hereafter restrict our attention to a particular class of
utility function.

14A Backward Stochastic Differential Equation is a Stochastic Differential Equation on which a
terminal condition has been imposed. In our case, we assumed that the agent’s value vt equals
W
�
Y t
�

at the end of the contracting horizon, i.e., when t = T .
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4 Optimal Contract under Exponential Utility

We now explain how one can solve for the principal’s problem and derive the
optimal contract in closed form when attention is restricted to commitment over
an infinite horizon and exponential utility functions. The main idea is to simplify
the optimization program by eliminating two states: The first one is a component
of the sufficient statistics for beliefs, �̂; and the second one is the value of private
information, p. We now describe how each of these is dealt with.

Eliminating �̂ from the list of states.— According to (5) the principal’s problem
has an infinite horizon, so that his objective reads

Jt , E

�Z 1

t

e��(s�t) (�̂(Ys � A�s; s) + as � ws) ds

����FY
t

�
=

�̂(Yt � A�t ; t)

�
+ E

�Z 1

t

e��s (as � ws) ds

����FY
t

�
:

The equality follows because the principal is risk neutral and beliefs are a mar-
tingale. This implies that the posterior mean �̂ can be dispensed with as a state,
leaving only precision as a belief state. Furthermore, since ht is deterministic, we
may index precision by t. The fact that the expected value of � is immaterial to
the principal’s objective shows that incentives are optimally designed to reward
effort and not ability.

4.1 Incentives providing contract

We first characterize contracts when the incentive constraint holds almost every-
where in the future. We prove below that this is indeed optimal if precision ex-
ceeds a given threshold. As explained before, we can omit the posterior mean �̂
and recast the principal’s optimization problem as15

jt , max
fa;w;;#g

E

�Z 1

t

e��(s�t) (as � ws) ds

����FY
t

�
;

subject to the two promise-keeping constraints (9) and (18) and to the incentive
constraint (14): Since the state variables v and p are Markovian, we are justified in
using a Hamilton-Jacobi-Bellman (HJB) equation to characterize the principal’s
value function.16 If we had to keep all three states (t; v; p), the HJB equation would

15Appendix B.2 shows that the HJB equations (19) defined below can be extended to include �̂
and would still be satisfied.

16We use a strong formulation for the principal’s problem even though we have used a weak for-
mulation to solve for the agent’s problem. This change of solution method is usual for principal-
agent models. Yet, as discussed in Cvitanic et al. (2009), it may lead to measurability issues if the
optimal action directly depends on the Brownian motion. In our case, however, a� turns out to
be constant over time so that measurability of the optimal control will not be problematic.
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read

�jt = max
fa;w;#g

(
a� w + @j

@t
+ @j

@v
(�v � U (w; a)) + @j

@p
(�p� Ua (w; a))

+�2

2

h
@2j
@v2
 (t; p; w; a)2 + @2j

@p2
#2 + 2 @

2j
@vp
 (t; p; w; a)#

i )
: (19)

Instead of solving this general HJB equations, we now impose a parametric as-
sumption on the utility function in order to reduce the dimensionality of the state
space.

Eliminating p from the list of states.— We restrict attention to the following
utility function17

U(w; a) = � exp(�� (w � �a)) ; with � 2 (0; 1) ; � > 0 ; (20)

and a 2 [0; 1] : Imposing � < 1 ensures that the first-best action is a = 1 because
the marginal utility of an additional unit of output exceeds the marginal cost of
effort regardless of �.18 The utility rules out agents with limited liability because it
is defined even for negative consumption, which occurs with positive probability
in equilibrium.

WhenU(a; w) is given by (20), the problem greatly simplifies becauseUa (w; a) =
��U (w; a). Then (8) and (15) imply that, whenever the incentive constraint binds
for almost all s � t, pt = ��vt. The proportionality of v and p means that keeping
track of one of the two states is sufficient. This further reduces the dimensionality
of the problem and allows us to rewrite the HJB equation (19) as

�jt = max
fa;wg

�
a� w +

@j

@t
+
@j

@v
(�v � U (w; a)) +

�
�2

2

�
@2j

@v2
 (t; v; w; a)2

�
: (21)

The first order conditions for a and w cannot be jointly satisfied. More precisely,
the one for wages is always tight while the one for effort remains constrained,
which leads to the following claim.

Claim 1 If the Incentive Constraint binds for almost all s � t; recommended effort
is set equal to its upper-bound a�t = 1.

Fixing the agent’s action to its first-best level allows us to solve for the value
function by guess-and-verify.

17Even though the full characterization of the contract will hold only for utilities of the form
(20), the optimality conditions derived in Section 3 are true independently of this parametric re-
striction. One of its implications is that there is no wealth effect on leisure becauseUw (�) =Ua (�) =
���1 is equal to a constant that does not depend on w.

18Accordingly, one could interpret our model as resulting from a situation where the agent is
able to divert cash flows 1 � a at the rate �. As in DeMarzo and Sannikov (2009), setting � be-
low one ensures that cash diversion entails linear losses. Our problems differ because DeMarzo
and Sannikov (2009) focus on risk neutral agents whereas we introduce risk aversion by taking a
concave transformation of the agent’s income net of his opportunity cost �a:
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Proposition 3 Assume that: (i)U (w; a) is as specified in (20); and (ii) the Incentive
Constraint (14) binds for almost all s � t. Then the recommended effort is set equal
to the first-best level a�t = 1 and the principal’s value function is of the form

�j (t; v) = f (t) +
ln (��v)

�
: (22)

The function f (t) is the unique solution of the first order ODE

f 0 (t) = �f (t)� �

�
1� �+

ln(�kt=�)
�

�
+
� (��)2

2

"�
��2

ht

�2
� k2t

#
; (23)

with boundary condition limt!1 f
0 (t) = 0 and kt being given by the negative root

of the quadratic equation

k2t (���)
2 � kt

"
1 +

(��)2

ht

#
� � = 0 : (24)

Let us compare the expression of j (t; v) to its counterpart if awas contractible.
Observing the action allows the principal to elicit full effort, a = 1, while perfectly
insuring the agent. The cost of delivering value v through a constant income
stream is equal to � ln (��v) =�. The principal must add � to the baseline remu-
neration so as to compensate the agent for the effort cost. Accordingly, first-best
wages readwFB (v) = �� ln (��v) =� and the principal’s value function is given by
�jFB (t; v) = 1 � � + ln (��v) =�: Comparing j (t; v) to jFB (t; v) it is apparent that
1 � � � f (t) measures the per-period loss due to both hidden effort and quality
uncertainty.19 The following corollary shows that this loss decreases over time as
quality uncertainty becomes less of a concern.

Corollary 2 The function f (t) is increasing over time and has a finite limit which
we denote F . The principal’s expected profit as a function of the value v promised
to the agent is therefore increasing in belief precision h.

19It can be shown that 1 � � � f(t) is always positive, as one should expect since the value
function cannot exceed its first best level. First one uses Corollary 3 to conclude that 1���f(t) <
1� �� F where F , limt!1 f(t). The expression of F immediately follows from (23)

F = 1� �+ ln(�K=�)
�

+
� (��K)

2

2�
; (25)

where K , limt!1 k(t). It is easily shown that ln(�K=�) < 0. One still has to establish that its
absolute value is higher than that of the fourth term on the RHS of (25). A Taylor approxima-
tion around 1 yields ln(�K=�) < � (�+K) =�: Reinserting this inequality into (25) and using the
definition ofK, one can finally prove that F is indeed less than 1� �.
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We still have to check whether the contract is incentive compatible. Apply-
ing the conditions in Proposition 2 to our particular model yields the following
requirement.

Corollary 3 First best effort is incentive compatible (i.e., meets conditions (11) and
(16)) when

��2 >
1

ht
+ 2 (��)2

1

h2t
: (26)

Since precision ht is increasing with time, the condition holds at all subsequent
dates s � t.

The sufficient condition (26) is more likely to hold when: Both parties are im-
patient, output noise is high, the marginal cost of effort � is low, the coefficient of
absolute risk aversion � is small, or parameter precision h0 is high. Indeed, (26)
always holds in the limit case, h0 = 1, where quality is know because multiple
deviations are not anymore relevant.

We shall henceforth assume that our parameters satisfy (26). The condition
is sufficient and not necessary, however, and our comparative statics results hold
independently of it, showing that they are robust over a wider region of the para-
meter space.

4.2 Optimal contract

The derivation of the value function j (t; v) was based on the premise that the
incentive constraint always binds. Obviously, the principal has the option to per-
fectly insure the agent while recommending zero effort. As explained in the dis-
cussion of first-best contracts following Proposition 3, implementing such a pol-
icy has a cost of � ln (��v) =�. By contrast, its return is 0 because the agent does
not exert any effort. This suggests that the principal would rather insure the agent
when f (t) is negative and offers him an incentives providing contract when f (t)
is positive. However, this conclusion is misleading because it is based on a com-
parison between contracts that recommend full effort or no effort at every point
in the future. It may instead be optimal to insure the agent for a certain length of
time and then to provide him with incentives to exert effort. In other words, the
principal has the valuable option to delay incentives provision.

Due to the absence of wealth effect, the option does not depend on the cur-
rent belief about � but is instead deterministic. The marginal gains from delay-
ing incentives are equal to f 0 (t) while the costs due to discounting are given by
��f (t). Hence, when  (t) , �f (t) � f 0 (t) < 0 the principal perfectly insures
the agent. Conversely, when  (t) � 0 he offers the incentives providing contract
described in the previous sub-section. Given that  (t) is increasing over time,20

20See proof of Proposition 4.
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Figure 1: RECOMMENDED EFFORT AS A FUNCTION OF PARAMETER PRECISION ht.

there is at most one precision level above which incentives provision is optimal,
as illustrated in Figure 1 for the parameter values in Table 1. If quality uncertainty
is high enough at the beginning of the relationship, the effort path starts at 0 and
switches to 1 exactly at the time where  (t) crosses the zero axis. Depending
on the parameter constellation, it may also happen that f (t), and consequently
 (t), remain negative at all t. in such cases, it is always optimal to perfectly insure
the agent, as stated in the following proposition.

Proposition 4 Let F denote limt!1 f (t) ; if: (i) F > 0, at is a step function: There
exists a unique precision ~h such that recommended effort is a�t = 0whenever h(t) <
~h, and a�t = 1 otherwise. The principal’s value function j� is given by

�j� (t; v) =

(
e��(��t)f (�) + ln(��v)

�
; when h(t) < h(�) = ~h

f (t) + ln(��v)
�
; when h(t) � ~h

;

(ii) F � 0 : Recommended effort a�t = 0 for all t and the principal’s value function
reads

�j� (v) =
ln (��v)

�
:

This proposition completes our description of the optimal contract. Its prop-
erties and implications for wage dynamics are explored in the next section.
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5 Characterization of the Optimal Contract

Wage dynamics.— Optimal wages under incentives provision are given by21

wt(v) = �
ln(ktv)

�
+ � : (27)

The variable kt and consequently the mapping associating wages to the continu-
ation value v are decreasing functions of time.22 As beliefs become more precise,
the agent’s ability to manipulate them weakens. The principal can extract more
effort with the same risk exposure and so trades lower wages in exchange of bet-
ter insurance.

Corollary 4 For any given promised value v, the optimal wage w�t (v) is a decreas-
ing function of beliefs precision and thus time.

Corollary 4 does not directly apply to income dynamics because the promised
value v evolves over time. To obtain its law of motion, we reinsert the optimal
volatility

t (v) = �tv , ��

�
kt �

��2

ht

�
v ; (28)

derived in the proof of Proposition 3 into the SDE (9) to obtain

dvt = vt [(�+ kt) dt+ �t�dZt] : (29)

The sign of the deterministic trend vt (�+ kt) is ambiguous. It indicates how
earnings are allocated over time: When it is positive, wages are back loaded so
that expected wages are above their current level. Conversely, when the trend is
negative, payments are front loaded. Given that kt decreases over time and vt is
negative, the principal resorts more intensively to back loading early in the rela-
tionship. Payments are deferred because incentives can be provided at a cheaper
cost in the future through higher income stabilization.

Williams (2011) proves qualitatively similar results in a reporting problem with
persistent income shocks: Efficiency losses due to private information increase
with the persistence of the endowment and, parallel to our result that the prin-
cipal back loads payments more when ht is lower, Williams also finds that per-
sistence of shocks leads to a tendency to back load payments that is absent in
reporting problems with i.i.d. shocks.

Deriving the law of motion of wages allows us to analytically identify the in-
come stabilization and back loading channels. According to equation (27), wages
satisfy the following SDE

dwt = �
�
1

�

���
1

kt

�
dkt + d ln(�vt)

�
: (30)

21See proof of Proposition 3.
22See the proof of Corollary 3.
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Figure 2: WAGE DYNAMICS AS A FUNCTION OF CONTRACT DURATION.

Reinserting (29) into (30) and applying Ito’s lemma to the logarithmic transfor-
mation of v yields the following “reduced form” for wage growth

dwt =
1

�

0BBB@�dkt=dtkt| {z }
Insurance

+
(��)2

2

�
��1

ht

�2
| {z }

Back Loading

�(���)
2

2
k2t| {z }

Immiserization

1CCCA dt+
�t
�
�dZt : (31)

The SDE neatly sums up the three mechanisms that drive income dynamics: (i)
For a constant promised value, wages decrease over time due to better insur-
ance; (ii) Back loading weakens over time, raising current income; (iii) Wages are
driven downwards by the agent’s immiserization. Of the three channels, only the
first two are due to learning. Immiserization, by contrast, remains relevant when
belief precision is infinite. It follows from the inverse Euler equation that can be
established in the infinite-precision limit using Ito’s lemma

dUw (wt; at)
�1 = ���

v
dZt ; when ��2=ht = 0 :

Under (20), Uw (wt; at)
�1 = exp (� [w � �]) =� is convex in w, hence the immiser-

ization. However, if we had solved the problem using preferences for which the
inverse marginal utility of income is concave,23 the inverse Euler equation would

23An example of such utility function could be U (w; a) = c(a)w1��= (1� �) with � < 1 and
c0(a) < 0:
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imply that wages exhibit a positive trend. Immiserization is therefore specific to
the exponential specification of the utility function.

The trend and volatility terms in (31) are both deterministic. We plot them
in the second and third panels of Figure 2. The assumed parameter values are
shown in Table 1. They are used as baseline numbers for all the simulations re-
ported in the paper. The value h0 = 4:81 is the smallest precision that satisfies the
second-order condition (26) given the assumed values of the other parameters.

� �2 � � h0
0.5 0.5 1 0.7 4.81
TABLE 1: BASELINE PARAMETERS

The middle panel of Figure 2 shows that the trend is increasing over time.
Hence, quality uncertainty reinforces the immiserization process because the
back loading channel is dominated by the income stabilization channel. This is
not always true: Other parameter constellations yield decreasing or even hump-
shaped profiles for the deterministic trend.

The top panel of Figure 2 plots the mean wage and the one-standard-deviation
bands for the parameter values in Table 1. The stochastic term �dZ is the out-
put surprise defined in (6), which means that the solution wt to the SDE (31) is
a normally distributed random variable. The distribution of wages at date t is
the frequency distribution of wages among age-tworkers with abilities randomly
drawn from � � N

�
0; h�10

�
. By normality, the bands are equidistant from the

mean, hence, symmetric. Furthermore kt has a strictly negative limit

lim
t!1

jktj = jKj =
1

2

 s�
1

(���)2

�2
+

4�

(���)2
� 1

(���)2

!
> 0 ;

implying that the volatility of the wage increments does not die off as�����t� �
���� = �������kt � ��2

ht

�����! �� jKj > 0 :

Since these increments are independent, the cross-sectional variance of wages
converges to infinity. We sum up our findings in the corollary below, whereas
Figure 2 illustrates them.

Corollary 5 The volatility of the wage increments is decreasing to a positive limit
so that the cross-sectional variance of wages grows without bound. Provided that
the sufficient condition (16) is satisfied, wages exhibit a negative trend.

Surplus as a function of prior precision.— Instead of focusing on wage dynam-
ics within a given match, we can use the model to compare the surplus associated
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Figure 3: AGENT’S VALUE AS A FUNCTION OF 1=h0 AND �:

to commitment across different environments. As stated in Corollary 2, the sur-
plus is higher when priors are more accurate. The intuition for this result directly
follows from Corollary 4: An increase in the precision with which the productivity
of the match is known enables the principal to further stabilize income. As con-
tracts get closer to the second best, the principal can deliver the promised value
v at a lower expected cost.

Figure 3 plots the agent’s value as a function of the prior variance 1=h0 and of
the marginal cost of effort parameter �, holding the principal’s value constant at
zero. The other parameters are as given in Table 1. We report on the horizontal
plane a line that separates the regions where recommended effort is zero or one.

We also include in Figure 3 a solid black line labeled “sufficient condition”
which identifies the maximal prior variance 1=h0 and � above which incentive
compatibility holds surely. In particular, (26) (which involves both � and h) holds
to the left of the line. For the parameter values used in the plot, (26) reads 1=4 >
h�10 + 2

�
�h�10

�2
; and so the maximal � as a function of h0 is given by

� =

s
h0
2

�
h0
4
� 1
�
: (32)

The RHS of this equation is positive only if h0 � 4: In other words, (26) can be met
only if h�10 < 25%, and then more easily if � is low enough. However, the RHS of
(32) exceeds unity once h�10 � 0:1830. Then (26) holds for all � 2 (0; 1).

As expected, the agent’s value is decreasing in the prior variance 1=h0. Figure
3 also illustrates how an increase in � lowers the surplus. This is what one should
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expect because the higher �, the more costly it is to provide effort. Hence an
increase in � intensifies the severity of the moral hazard problem, making it more
costly for the principal to deliver a given utility.

6 Commitment vs. Spot Market

We now wish to relate our model to the literature on reputations that typically
adopts the interpretation that � is general ability. We focus on the canonical
model of Holmström (1999; “H” hereafter) which assumes spot-market wages
that may reflect the worker’s history but cannot reflect current output.

In both ours and Holmström’s model, the principal is risk neutral. The agents’
utility functions, however, differ because Holmström assumes that agents are
risk-neutral. To make our analysis of commitment comparable to his analysis,
we shall derive the spot-market equilibria of H in our environment, i.e., for the
case where the agent has lifetime utility (4) and period utility (20).

Holmström imposes zero expected profits for the principal after every history
and at each date. In our model, the principal has full commitment and his profits
will not be zero at an arbitrary date. To compare our solution to H, it is natural
to impose zero expected lifetime profits on the principal at the outset. Thus we
shall assume that at date zero, the agent gets all the rents from the relationship.

We first show that the equilibrium behavior of spot-market wages and effort
under risk aversion is essentially the same as in H: Reputational concerns are
the only reason why the agent exerts any effort, and when information about �
accumulates and as these concerns disappear, his effort converges to zero, just as
in the risk-neutral case. Of itself this is not surprising. Rather, the result is useful
because it enables us to isolate the role that full commitment plays in generating
economic outcomes for the parties to the contract.

Employers cannot commit to paying wages that depend on performance, and
competition among employers bids wages up to expected output. Denoting as
before equilibrium actions by a star, expected productivity reads

wSt = �̂ (Yt � A�t ; t) + a�t ; (33)

where we have added an S superscript for spot wages.
Equilibrium action entails a deterministic sequence for a�t because the utility

function does not display any wealth effect. Effort is sustained by the market’s
imprecise knowledge of � and the agent’s attempts to raise the market’s expec-
tation. With our utility function and a spot market, the sequence at eventually
reaches zero and remains there.

Proposition 5 Assume that (i)U (w; a) is as specified in (20); and (ii)Wages are set
on the spot market, i.e. (33). Then
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Figure 4: EFFORT AS A FUNCTION OF PARAMETER PRECISION ht.

(a) The equilibrium effort path a�t is deterministic;
(b) There exists a precision �h such that a�t = 0whenever h(t) > �h.

Figure 4 reports the effort path as a function of ht when wages are set on the
spot market along with its counterpart in the commitment scenario. It illustrates
how uncertainty about general ability affects incentives in opposite directions.
Spot markets elicit higher effort when beliefs are less precise because reputations
have not yet been established. By contrast, under commitment, incentives are
more costly to provide when precision is low. This is why the two effort paths
are almost mirror images of each other: It switches from one to zero in the spot
market and from zero to one under commitment.24 Their profile are not smooth
because the marginal cost of effort is decreasing in consumption, full effort can
always be sustained through a less than proportional increase in wages whenever
interior effort, a� 2 (0; 1), is incentive compatible. Such a deviation is Pareto
optimal and so dominates any equilibrium path with intermediate action.

Figure 4 does not accurately represent the distribution of lifetime gains that
full commitment offers. That would be the distribution of the random variable
U0 defined in (4), which we report in Figure 5.25 While wages themselves are nor-
mally distributed, utilities are nonlinear and bounded above. This is why the

24Full effort in the spot market is incentive compatible for ht < �h since the functionRt defined
in the proof of Proposition 5 is decreasing in ht:

25The distribution of lifetime utilities is obtained through Monte Carlo simulations. We sim-
ulate 10000 sample paths and compute the resulting kernel densities. We verify the accuracy of
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Figure 5: DISTRIBUTION OF LIFETIME UTILITIES.

distributions of U0 are skewed to the left with their means, as represented by the
vertical lines, to the left of the modes. Figure 5 illustrates that commitment re-
sults in a noticeably higher expected lifetime utility E0 [U0]: Long-term contracts
raise the agent’s utility by 17:1%, a gain that is equivalent to a compensating vari-
ation of 26:4% in wages across first-best allocations.26 Even though utilities de-
rived from contracts exhibit more dispersion, they dominate from a stochastic
point of view. In other words, not only the average worker but most workers do
benefit from contracting.

� as a match-specific ability.— If, instead of denoting general ability, � were
match specific, then neither the optimal contract nor the Pareto frontier would
change under full commitment. By contrast, spot-markets would work poorly.
The agent now has no reputational concern; implying that effort would remain
constant at zero. The wage would equal Et [�] at all dates. The value of commit-
ment is then even larger than in the case where ability is transferable.

Participation constraints.— We have described two separate economies, each

the procedure by comparing the simulated and theoretical average utilities. The approximation
error turns out to be around 10�3 in relative difference.

26The welfare gain is obtained dividing the difference between the two expected utilitiesE0 [U0]
by the expected utility when wages are set on the spot market. To obtain the compensating vari-
ation, we first derive the wage such that U (w; 1) =r = E0 [U0] ; which yields wCom under com-
mitment and wSpot under spot market. The compensating variation follows taking the difference
between the two wages and dividing it by wSpot.
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with its own wage setting protocol. Our commitment solution is for a contract
that would yield the principal zero expected profit at the outset, but after some
histories his expected profit will fall below zero. Similarly, the agent’s continu-
ation value may fall below the spot market solution. An extension would add
participation constraints as Rudanko (2010) and Lustig et al. (2007) have done
for multi-agent environments without learning. In partial equilibrium settings
without learning there are more papers with limited commitment. Closely re-
lated to ours is the principal-agent model of Sannikov (2008) which, under some
adjustments to the parametric form of the utility function, is encompassed in our
framework as h0 ! 1, i.e., when posteriors have converged to the true value of
�. More precisely, Sannikov considers a utility function that is (i) defined over
the positive real line; (ii) bounded from below; and (iii) separable in income and
effort. By contrast, our utility function (20) is not bounded from below and, as a
result, we do not have a low retirement point. Observe, however, that our char-
acterization of the agent’s necessary condition (11) does not depend on the para-
metric assumption (20) and so coincides with Sannikov’s when ht =1.

7 Conclusion

We have solved a contracting problem with quality uncertainty and explained
why it worsens the incentive insurance trade-off. We developed an approach
that works for any utility function when the quality and noise are normally dis-
tributed. We found that the agent faces two opposite effects when considering
a downward deviation from recommended effort. On the one hand, he will be
punished by a lower promised value because of the decrease in observable out-
put. On the other hand, he will benefit from higher expectations than the prin-
cipal about the unknown productivity of the match. This second channel that
we label belief manipulation is specific to problems under quality uncertainty.
The extent to which it influences incentive provisions depends on the remaining
length of the relationship. This is why it is not relevant in markets based on spot
agreements.

Although the prospect of belief manipulation reduces the gains from com-
mitment, our simulation shows that it does not eliminate them altogether. We
found, in particular, that quality uncertainty makes it harder to reward effort un-
der full commitment, in direct contrast to its tendency to stimulate effort in spot
markets. Spot and full commitment settings are both highly stylized depictions
of how markets operate in reality. Thus a promising task would be to combine
both environments in a model with limited commitment so as to evaluate how
the two incentive channels interact.
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[4] Cvitanić Jakša, Wan, Xuhu and Jianfeng Zhang. “Optimal Compensation
with Hidden Action and Lump-Sum Payment in a Continuous-Time Model”.
Applied Mathematics and Optimization 59 (2009): 99-146.

[5] DeMarzo, Peter M. and Yuliy Sannikov. “Learning in Dynamic Incentive
Contracts.” Stanford University, Unpublished manuscript (2008).

[6] Dewatripont, Mathias, Ian Jewitt and Jean Tirole. “The Economics of Career
Concerns, Part I: Comparing Information Structures.” Review of Economic
Studies 66 (1999): 183-98

[7] Fernandes, Ana and Christopher Phelan. “A Recursive Formulation for Re-
peated Agency with History Dependence.” Journal of Economic Theory 91
(2000): 223-247.

[8] Fujisaki, Masatoshi, Kallianpur, Gopinath and Hiroshi Kunita. “Stochastic
Differential Equation for the Non Linear Filtering Problem.” Osaka Journal
of Mathematics 9 (1972):19-40.

[9] Giat, Yahel, Hackman, Steve and Ajay Subramanian. “Investment under Un-
certainty, Heterogeneous Beliefs, and Agency Conflicts.” Review of Financial
Studies 23(4) (2010): 1360-1404.

[10] Gibbons, Robert and Kevin J. Murphy. “Optimal Incentive Contracts in the
Presence of Career Concerns: Theory and Evidence.” Journal of Political
Economy 100(3) (1992): 468-505.

[11] Holmström, Bengt. “Managerial Incentive Problems: A Dynamic Perspec-
tive.” Review of Economic Studies 66 (1999): 169-182.

[12] Holmström, Bengt and Paul Milgrom. “Aggregation and Linearity in the Pro-
vision of Intertemporal Incentives.” Econometrica 55 (1987): 303-328.

25



Dynamic Contracts when Agent’s Quality is Unknown

[13] Hopenhayn, Hugo and Arantxa Jarque. “Moral Hazard and Persistence.” FRB
Richmond, Working Paper 07-07 (2007).

[14] Jarque, Arantxa. “Repeated Moral Hazard with Effort Persistence.” FRB Rich-
mond, Working Paper 08-04 (2008).

[15] Jovanovic, Boyan. “Job Matching and the Theory of Turnover.” Journal of Po-
litical Economy, 87(5) pt. 2 (1979): 972-90.

[16] Kallianpur, Gopinath. Stochastic Filtering Theory. Springer-Verlag, New
York, (1980).

[17] Kapicka, Marek. “Efficient Allocations in Dynamic Private Information
Economies with Persistent Shocks: A First-Order Approach.” University of
California, Santa Barbara, Unpublished manuscript (2006).

[18] Kocherlakota, Narayana. “Figuring out the Impact of Hidden Savings on Op-
timal Unemployment Insurance.” Review of Economic Dynamics 7(3) (2004):
541-554.

[19] Laffont, Jean-Jacques and Jean Tirole. “The Dynamics of Incentive Con-
tracts.” Econometrica 56, No. 5 (Sep., 1988): 1153-1175.

[20] Lustig, Hanno, Chad Syverson and Stijn Van Nieuwerburgh, “IT, Corporate
Payouts, and the Growing Inequality in Managerial Compensation.” Univer-
sity of Chicago, Unpublished manuscript (2007).

[21] Mirrlees, James. “Notes on Welfare Economics, Information and Uncer-
tainty.” In: M. Balch, D. McFadden and S.-Y. Wu, Editors, Essays on Economic
Behavior under Uncertainty. North-Holland, Amsterdam (1974).

[22] Pavan, Alessandro, Ilya Segal and Juuso Toikka. “Dynamic Mechanism De-
sign: Revenue Equivalence, Profit Maximization, and Information Disclo-
sure.” Stanford University, Unpublished manuscript (2010).

[23] Rogerson, William. “The First Order Approach to Principal- Agent Prob-
lems.” Econometrica, 53(6) (1985): 1357-1367.

[24] Rudanko, Leena. “Labor Market Dynamics under Long-Term Wage Con-
tracting.” Journal of Monetary Economics, 56(2) (2010): 170-183.

[25] Sannikov, Yuliy. “A Continuous-Time Version of the Principal-Agent Prob-
lem.” Review of Economic Studies, 75(3) (2008): 957-984.

[26] Schättler, Heinz and Jaeyoung Sung. “The First-Order Approach to the
Continous-Time Principal-Agent Problem with Exponential Utility.” Journal
of Economic Theory 61 (1993): 331-371.

26



Dynamic Contracts when Agent’s Quality is Unknown

[27] Werning, Iván. “Moral Hazard with Unobserved Endowments: A Recursive
Approach.” University of Chicago, Unpublished manuscript (2001).

[28] Williams, Noah. “On Dynamic Principal-Agent Models in Continuous
Time.” UW Madison, Unpublished manuscript (2008).

[29] Williams, Noah. “Persistent Private Information.” Econometrica 79 (2011):
1233-1274.

[30] Yong, Jiongmin and Xun Yu Zhou. Stochastic Controls. New York: Springer-
Verlag (1999).

27



Dynamic Contracts when Agent’s Quality is Unknown

Appendix A: Proofs of propositions and corollaries

Proof. Proposition 1: Consider the Brownian motion Z0 under some prob-

ability space with probability measure Q, and FZ0 ,
n
FZ0

t

o
0�t�T

the suitably

augmented filtration generated by Z0. Let

Yt =

Z t

0

�dZ0s ;

so that Yt is also a Brownian motion underQ. Given that expected output is linear
in cumulative output,27 the exponential local martingale

�at;� , exp
 Z �

t

�
�̂(Ys � As; s) + as

�

�
dZ0s �

1

2

Z �

t

���� �̂(Ys � As; s) + as
�

����2 ds
!
; t � � � T ;

is a martingale, i.e. Et
�
�at;T

�
= 1. Hence Girsanov theorem holds and ensures

that

Zat , Z0t �
Z t

0

�
�̂(Ys � As; s) + as

�

�
ds

is a Brownian motion under the new probability measure dP a=dP , �a0;T . Given
that both measures are equivalent, the triple (Y; Za; Qa) is a weak solution of the
SDE

Yt =

Z t

0

(�̂(Ys � As; s) + as) ds+

Z t

0

�dZas :

Adopting a weak formulation allows us to view the choice of control a as deter-
mining the probability measure Qa. In order to define the agent’s optimization
problem, let Ra (t) denote the reward from time t onwards so that

Ra (t) , e�t
�Z T

t

U
�
s; Y s; as

�
ds+W

�
T; Y T

��
;

where U
�
s; Y s; as

�
, e��sU

�
w
�
Y s

�
; as
�

and W
�
T; Y T

�
, e��TW

�
Y T

�
are utili-

ties at time t discounted from time 0. The agent’s objective is to find an admis-
sible control process that maximizes the expected reward Ea [Ra (0)] over all ad-
missible controls a 2 A. In other words, the agent solves the following problem

vt = sup
a2A

V a(t) , sup
a2A

Eat [R
a (t)] ; for all 0 � t � T :

27More formally, the martingale property holds true because

j�̂(Yt �At; t) + atj � K
�
1 +

Z0
t

�
; for all t 2 [0; T ] ;

withK = ��1

h0
+ 1 and

Z0
t
, max0�s�t

��Z0 (s)�� :
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The objective function can be recast as

V a(t) = Eat [R
a (t)] = Et

�
�at;TR

a (t)
�
; (34)

where the operator Ea [�] and E [�] are expectation under the probability measure
Qa and Q, respectively. One can see from (34) that varying a is indeed equivalent
to changing the probability measure. The key advantage of the weak formulation
is that, under the reference measure Q, the output process does not depend on
a. Hence, we can treat it as fixed which enables us to solve our problem in spite
of its non-Markovian structure.

Our derivation of the necessary conditions builds on the variational argument
in Cvitanić et al. (2009). Define the control perturbation

a" , a+ "�a ;

such that there exists an "0 > 0 for which any " 2 [0; "0) satisfy ja"j4 ;
��Ua"��4 ; ��Ua"a ��4 ; ���a"t;� ��4,�

Ua"t;�
�2

and
�
@aUa

"

t;�

�2
being uniformly integrable in L1 (Q)where

Uat;� ,
Z �

t

U
�
s; Y s; as

�
ds :

We introduce the following shorthand notations for “variations”

rUat;� ,
Z �

t

Ua
�
s; Y s; as

�
�asds ; (35)

rAt ,
Z t

0

�asds ; (36)

r�at;� , �at;�

�
1

�

��Z �

t

�
��

�2

hs
rAs +�as

�
dZ0s �

Z �

t

(�̂s + as)

�
��

�2

hs
rAs +�as

�
ds

�
= �at;�

�
1

�

�Z �

t

�
��

�2

hs
rAs +�as

�
dZas : (37)

Step 1: We first characterize the variations of the agent’s objective with respect
to "

V a"(t)� V a(t)

"
= E

�
�a

"

t;TR
a" (t)� �at;TRa (t)

�
= E

" 
�a

"

t;T � �at;T
"

!
Ra

"

(t) + �at;T

�
Ra

"
(t)�Ra (t)

"

�#

= E

�
r�a"t;TRa

"

(t) + �at;T

�
Ra

"
(t)�Ra (t)

"

��
:
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To obtain the limit of the first term as " goes to zero, observe that

r�a"t;TRa
"

(t)�r�at;TRa (t) =
�
r�a"t;T �r�t;T

�
Ra (t) +r�a"t;T

�
Ra

"

(t)�Ra (t)
�
:

As shown in Cvitanić et al. (2009), for any " 2 [0; "0), this expression is integrable
uniformly with respect to " and so

lim
"!0

E
�
r�a"t;TRa

"

(t)
�
= E

�
r�at;TRa (t)

�
:

The limit of the second term reads

lim
"!0

Ra
"
(t)�Ra (t)

"
= e�trUat;T :

Due to the uniform integrability of�at;T
�
Ra

"
(t)�Ra (t)

�
=", the expectation is also

well defined. Combining the two expressions above, we finally obtain

lim
"!0

V a"(t)� V a(t)

"
= E

�
r�at;TRa (t) + �at;T e�trUat;T

�
, rV a(t) : (38)

Step 2: We are now in a position to derive the necessary condition. Consider
total earnings as of date 0

Ia(t) , Eat

�Z T

0

U
�
s; Y s; as

�
ds+W

�
T; Y T

��
=

Z t

0

U
�
s; Y s; as

�
ds+ e��tV a(t) :

(39)
By definition, it is aQa�martingale. According to the extended Martingale Repre-
sentation Theorem28 of Fujisaki et al. (1972), all square integrableQa�martingales
are stochastic integrals of fZat g and there exists a unique process � inL2 (Qa) such
that

Ia(T ) = Ia(t) +

Z T

t

�s�dZ
a
s : (40)

This decomposition allows us to solve for rV a(t). Reinserting (35), (36) and (37)
into (38) yields29

rV a(t) = Et

�
�at;TR

a (t)��1
Z T

t

�
��

�2

hs
rAs+�as

�
dZas + �

a
t;T e

�t

�Z T

t

Ua�asds

��
= e�tEat

�
Ia(T )��1

Z T

t

�
��

�2

hs
rAs+�as

�
dZas+

Z T

t

Ua�asds

�
:

28We cannot directly apply the standard Martingale Representation theorem because we are
considering weak solutions, so that fZat g does not necessarily generate

�
FYt
	

.
29The additional expectation term vanishes because both

�
h"
hs

�
rAs and�as are bounded and

so �Z t

0

U
�
� ; Y � ; a�

�
d�

�
Eat

"Z T

t

�
�
�
h"
hs

�
rAs +�as

�
dZas

#
= 0 :
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where subscripts denote derivatives and arguments are omitted for brevity. Given
the law of motion (40), applying Ito’s rule to the first term yields

d

�
Ia(�)

Z �

t

�
��

�2

hs
rAs +�as

�
dZas

�
=

�
���

�
�
�
��2

h�

�
rA� +�a�

��
d�

+

�
���

Z �

t

�
��

�2

hs
rAs +�as

�
dZas + Iat (�)

�
�
�
��2

h�

�
rA� +�a�

��
dZa� :

HencerV a(t) can be represented as

e��trV a(t) = Eat

�Z T

t

�1sds+

Z T

t

�2sdZ
a
s

�
;

where

�1s , �s

�
��

�2

hs

Z s

0

�a�d� +�as

�
+ Ua

�
s; Y s; as

�
�as ;

�2s , �s

�Z s

t

�
��

�2

h�

Z �

0

�ardr +�a�

�
dZa�

�
+ Iat (s)

�
��

�2

hs

Z s

0

�a�d� +�as

�
:

Given that �2s is square integrable,30 we have

Eat

�Z T

t

�2sdZ
a
s

�
= 0 :

As for the deterministic term, collecting the effect of each perturbation�as yields

e��trV a(t) = Eat

�Z T

t

�
�
Z T

s

��

�
��2

h�

�
d� + �s + Ua

�
s; Y s; as

��
�asds

�
:

Finally, noticing that�as was arbitrary leads to�
Eat

�
�
Z T

t

�s
��2

hs
ds

�
+ �t + Ua

�
t; Y t; a

�
t

��
(at � a�t ) � 0 : (41)

Step 3: We now rewrite our solution as a function of the promised value vt.
Differentiating (39)with respect to time yields

e��tdvt � �e��tvt + U
�
t; Y t; at

�
= dIa(t) = �t�dZ

a
t ;

so that
dvt =

�
�vt � U

�
Y t; at

��
dt+ t�dZ

a
t ;

30Square integrability of �2s can be established for any " 2 [0; "0) following the same steps as in
Lemma 7.3 of Cvitanić et al. (2009).
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with t , �te
�t. Collecting the exponential terms in (41) leads to (11).

Proof. Proposition 2: The sufficient conditions are established comparing
the equilibrium path fa�tg

T
t=0 with an arbitrary effort path fatgTt=0. We define �t ,

at � a�t and �t ,
R t
0
�sds = At � A�t as the differences in current and cumulative

effort between the arbitrary and recommended paths. We also attach a star su-
perscript to denote the value of the FY�measurable stochastic processes along
the equilibrium path. The Brownian motions generated by the two effort policies
are related by

�dZa
�

t = �dZat + [�̂ (Yt � At; t) + at � �̂ (Yt � A�t ; t)� a�t ] dt

= �dZat +

�
�t �

��2

ht
�t

�
dt :

By definition, the total reward from the optimal policy reads

Ia
�
(T ) =

Z T

0

U
�
t; Y t; a

�
t

�
dt+W

�
Y T

�
= V a� (0) +

Z T

0

��t�dZ
a�

t

= V a� (0) +

Z T

0

��t

�
�t �

��2

ht
�t

�
dt+

Z T

0

��t�dZ
a
t :

Hence, the total reward from the arbitrary policy is given by

Ia (T ) =

Z T

0

�
U
�
t; Y t; at

�
� U

�
t; Y t; a

�
t

��
dt+ Ia

�
(T )

=

Z T

0

�
U
�
t; Y t; at

�
� U

�
t; Y t; a

�
t

��
dt+ V a� (0)

+

Z T

0

��t

�
�t �

��2

ht
�t

�
dt+

Z T

0

��t�dZ
a
t :

Let us focus on the third term on the right hand side

�
Z T

0

��t
��2

ht
�tdt = �

Z T

0

��t
��2

ht

�Z t

0

�sds

�
dt =

Z T

0

�t

�
�
Z T

t

��s
��2

hs
ds

�
dt

=

Z T

0

�t

�
e��t

��2

ht
p�t +

Z T

t

��s�dZ
a�

s

�
dt ;

where the last equality follows from the definition of p and �.31 Changing the

31Observe that this additional step is linked to the introduction of private information. Then
the volatility � of the continuation value will differ on and off the equilibrium path. To the con-
trary, in problems without private information, the volatility remains constant because it only
depends on observable output and not on past actions. This is why sufficiency holds without any
restriction in, e.g., Schättler and Sung (1993) or Sannikov (2008).
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Brownian motion and taking expectation yields

V a (0)� V a� (0) = Ea0 [I
a (T )]� V a� (0)

= Ea0

�Z T

0

�
U
�
t; Y t; at

�
� U

�
t; Y t; a

�
t

�
+ �t

�
��t + e��t

��2

ht
p�t

��
dt

�
+Ea0

�Z T

0

�Z T

t

��s

�
�s �

��2

hs
�s

�
ds

�
dt

�
= Ea0

�Z T

0

e��t
�
U (wt; at)� U (wt; a

�
t ) + �t

�
�t +

��2

ht
p�t

��
dt

�
+Ea0

�Z T

0

e�t��t�t

�
�t �

��2

ht
�t

�
dt

�
:

We know from the optimization property of a�t that the first expectation term is
at most equal to zero. On the other hand, the sign of the second expectation
term is ambiguous. In order to bound it, we introduce the predictable process32

��t , ��t � e�t��tA
�
t and define the function33

H (t; a; A;��; ��; p�) , U (w; a) +
�
�� + e�t��A

�
a� e�t��

��2

ht
A2 +

��2

ht
p�a :

Taking a linear approximation of H (�) around A� yields

Ht (at; At)�Ht (a
�
t ; A

�
t )�

@Ht (a
�
t ; A

�
t )

@A
�t

= U (wt; at)� U (wt; a
�
t ) + �t

0B@��t + e�t��tA
�
t| {z }

=��t

+
��2

ht
p�t

1CA+ e�t��t�t

�
�t �

��2

ht
�t

�
;

so that

V a (0)� V a� (0) = Ea0

�Z T

0

e��t
�
Ht (at; At)�Ht (a

�
t ; A

�
t )�

@Ht (a
�
t ; A

�
t )

@A
�t

�
dt

�
is negative when H (�) is jointly concave. Given that the agent seeks to maximize
expected returns, imposing concavity ensures that a� dominates any alternative
effort path. Concavity is established considering the Hessian matrix of H (�)

H (t; a; A) =
�
Uaa (wt; at) e�t�t

e�t�t �2e�t�t �
�2

ht

�
;

32�� is predictable since both �� andA� are FY�predictable.
33We useH (�) to denote the function because it is equivalent to the Hamiltonian of the optimal

control problem which can be derived following Williams’ (2008) method based on the stochastic
maximum principle.
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which is negative semi-definite when �2��2
ht
Uaa (wt; at) � e�t�t, as stated in (16).

Proof. Corollary 1: Let bt be defined as

bt , E

�
�
Z T

0

e��ss

�
h"
hs

�
ds

����Fa
t

�
= b0 +

Z t

0

�s�dZs; for all t 2 [0; T ] ;

where the second equality follows from (17). Then the definition of pt in (15)
implies that

pt = e�t�2ht

�
bt +

Z t

0

e��ss
��2

hs
ds

�
;

and so, as T goes to infinity, pt solves the SDE34

dpt =

�
�pt +

d (�2ht)

dt

��2

ht
pt + t

�
dt+e�t�2htdbt =

�
pt

�
�+

��2

ht

�
+ t

�
dt+#t�dZt ;

with #t , e�t�2ht�t.

Proof. Claim 1: The Incentive Constraint (14) allows us to express  as a func-
tion of the state and control variables ft; v; w; ag. Given that effort levels lie in a
compact set, its recommended value satisfies

e��t � @j

@v
Ua (w; a) + �2

@2j

@v2
 (t; v; w; a)

@ (t; v; w; a)

@a
� 0 ;

whereas wages take value over the real line and so fulfill the optimality condition

�e��t � @j

@v
Uw (w; a) + �2

@2j

@v2
 (t; v; w; a)

@ (t; v; w; a)

@w
= 0 :

Under our premise that the Incentive Constraint (14) holds with equality, we ob-
tain @=@w = ��@=@a > �@=@a, which implies in turn that, when the optimal-
ity condition for wages binds, the one for effort is slack. It follows that optimal
effort is constant and set equal to the upper-bound a�t = 1.

Proof. Proposition 3: Assume that

�j (v; t) = f (t) + j1 ln (��v) ;

w(t; v) = � ln(ktv)
�

+ �) U(w; 1) = �ktv :

34The change with respect to time of ��2=ht is given by

d
�
��2=ht

�
dt

=
d
�
��2

�
h0 + t�

�2��1�
dt

= ���4
�
h0 + t�

�2��2 = ����2
ht

�2
< 0 :
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Observe that our guess implies that

t (v; w; a) = �Ua (w (t; v) ; 1)�
��2

ht
��v = ���U (w (t; v) ; 1)��

�2

ht
��v = ��v

�
kt �

��2

ht

�
:

Hence, differentiating the Incentive Constraint yields

@t (v; w; a)

@w
= �Uaw (w; a) = ��t (v; w; a)�

��2

ht
��2vt :

Therefore, the FOC for wages is equivalent to

�1� @j

@v
�vkt � �2

@2j

@v2

"�
��v

�
kt �

��2

ht

��2
+ (��v)2

�
kt �

��2

ht

�
��2

ht

#
�

=
1
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��� j1�kt + �2j1

"�
kt �

��2

ht

�2
+

�
kt �

��2

ht

�
��2

ht

#
�2�3

!

=
1

�

�
��� j1�kt + �2j1

�
kt

�
kt �

��2

ht

��
�2�3

�
= 0 ;

implying the following quadratic equation for kt

��� kt

�
j1� + �2j1

��2

ht
�2�3

�
+ k2t

�
�2j1�

2�3
�
= 0 : (42)

The remaining step consists in checking that the HJB equation is indeed satisfied

�jt = 1� w +
@j

@t
+
@j

@v
(�v � U (w; 1)) +

�
�2

2

�
@2j

@v2
2

= 1 +
ln(�v)
�

+
ln(�kt)

�
� �� [f (t) + j1 ln (��v)] +

f 0 (t)

�

+
�+ kt
�

j1 �
�
�2

2

�
j1
�

�
��

�
kt �

��2

ht

��2
when j1 = ��1 and

f 0 (t)� �f (t) = ��
�
1� �+

ln(�kt=�)
�

�
� �+ kt

�
+
� (��)2

2

�
kt �

��2

ht

�2
: (43)

The quadratic equation (24) is obtained reinserting j1 = ��1 in (42)

��� kt

 
1 +

(��)2

ht

!
+ k2t (���)

2 = 0 :
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The relevant solution is unique and given by the negative root because wages are
not well defined when kt > 0. The ODE described in the Proposition is obtained
noticing that the quadratic equation above implies that

(���)2

2

�
kt �

��2

ht

�2
= �+ kt +

(���)2

2

 �
��2

ht

�2
� k2t

!
;

and reinserting this expression into (43).
As usual, the unique solution to the ODE is pinned down by its boundary con-

dition. The value function as t!1must converge to the solution of the problem
without quality uncertainty, i.e., when ht is infinite. It can be derived solving the
following HJB

�l (v) = max
fa;wg

�
a� w +

@l

@t
+
@l

@v
(�v � U (w; a)) +

�
�2

2

�
@2l

@v2
 (v; w; a)2

�
;

with
 (v; w; a) � �Ua (a; w) ; for all a > 0 :

The solution is of the form �l (v) = F + ln (��v) =� with

�F = �

�
1� �+

ln(�K=�)
�

�
+
� (��K)2

2
;

where K , limt!1 k (t) =

�
1�

q
1 + 4� (���)2

�
=
�
2 (���)2

�
. One can easily ver-

ify that the desired convergence of f (t) toF as t!1holds true when the bound-
ary condition limt!1 f

0 (t) = 0 is satisfied.

Proof. Corollary 2: Let the function  (t) be defined as

 (t) , �

�
(1� �) +

ln(�kt=�)
�

�
� (��)

2 �

2

"�
��2

ht

�2
� k2t

#
: (44)

Differentiating  (t)with respect to time yields35

 0 (t) =
��
�

� _kt
kt
� (��)2 �

�
��

�2

ht
� _ktkt

�
> 0 :

Observe that (t)has been defined so as to satisfy the differential equation f 0 (t) =
�f (t) �  (t) : In order to reach a contradiction, assume that �f (t) <  (t). Then
f 0 (t) < 0 and so �f (s) <  (t) <  (s) for all s � t. But this contradicts the bound-
ary condition lims!1 �f (s) = lims!1  (s) > 0. We can therefore conclude that
�f (t) >  (t)which implies in turn that f 0 (t) > 0.

35Remember that both _kt and kt are negative.
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Proof. Corollary 3: Given that Uaa (wt; a�t ) = �ktv (��)2 and #�t = ���t (v) =

(��)2 v
�
kt � ��2

ht

�
, the sufficient condition of Proposition 2 are satisfied when

2ktv � v

�
kt �

��2

ht

�
= v

�
kt +

��2

ht

�
> 0, �kt >

��2

ht
: (45)

Differentiating the explicit solution of the quadratic equation for kt yields

dk (t)

dt
=
1

2

26641� 1
(���)2

+ ��2

htr�
1

(���)2
+ ��2

ht

�2
+ 4�

(���)2

3775 d
�
��2h�1t

�
dt| {z }
<0

< 0 : (46)

Since ��2=ht is decreasing in t, condition (45) is satisfied for all t provided that
�k0 > ��2=h0, i.e.

� 1

(���)2
� 3

�
��2

h0

�
+

s�
1

(���)2
+

�
��2

h0

��2
+

4�

(���)2
> 0 ;

which, after some straightforward simplifications, leads to requirement (26).

Proof. Proposition 4: Consider an arbitrary strategy such that (14) does not
hold over some time interval [t; t+ "] with " > 0.36 The cheapest way for the
principal to provide any given value to the agent in this time frame is by setting
wages constant. Let w� (v) be defined as

w� (v) , ln (�� (v +�))
�

) U(w� (v) ; 0) = � (v +�) ;

so that the promise keeping constraint holds whenZ t+"

t

e��(t�s)U(w� (vt) ; 0)dt+ e��"vt+" = v ;

that is if
vt+" = e�"vt � (e�" � 1) (vt +�) = vt � (e�" � 1)� :

Now suppose that the principal expects the agent to provide full effort a = 1
at every point in time following t + ". Let i (�; "; t; v) denote the returns to the
principal of this strategy. It is equal to

i (�; "; t; v) =

Z t+"

t

e��(s�t)w� (v) ds+ e��"j (t+ "; v � (e�" � 1)�)

=
1

�

��
1� e��"

� ln (�� (v +�))
�

+e��"f (t+ ")+e��"
ln (�� (v � (e�" � 1)�))

�

�
:

36The proof easily extends to arbitrary strategies where the incentive constraint does not hold
over a finite number of time intervals [ti; ti + "i] with "i > 0; ti+1 > ti + "i and 0 < i � I < 1.
One simply has to consider the last interval [tI ; tI + "I ] and follow the logic of the proof to reach
a contradiction.
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Totally differentiating this expression with respect to� shows that it is concave in
� and that it reaches its maximum when � = 0. Then, differentiating i (0; "; t; v)
with respect to the length " of the interval where the worker is perfectly insured
yields

@i (0; "; t; v)

@"
=

@

@"

�
1

�

�
e��"f (t+ ") +

ln (��v)
�

��
=

1

�

�
e��" (f 0 (t+ ")� �f (t+ "))

�
= �e

��"

�
 (t+ ") ;

where  (t) is defined in (44). Let us now consider the cases identified in the
proposition.
(i) F > 0: The boundary condition limt!1 f

0 (t) = 0 implies that limh!1  (h) =
�F: Furthermore, it follows from limh!0 k(h) = 0 that limh!0  (h) = �1: Hence
 (h) must switch sign at least once when F is positive. However, there can only
be one precision such that  (h) = 0 since we have shown in the proof of Corol-
lary 2 that  0 (h) > 0. We can therefore conclude from the equation above that
@i (0; "; t; v) =@" > 0 when h(t) < ~h;, thus showing that it is optimal to insure
workers. Conversely, when h(t) > ~h; @i (0; "; t; v) =@" < 0, showing that it cannot
be optimal to insure workers within any time interval of positive finite measure.
We still have to consider cases where "!1 so that workers are perfectly insured
after a given date t. But this is clearly sub-optimal since f (t) >  (t) > 0 and so

�i (0;1; t; v) = ln (��v)
�

< f (t) +
ln (��v)

�
= �j(t; v) :

(ii) F � 0 : Then  (h) < limh!0  (h) = F � 0, implying that @i (0; "; t; v) =@" > 0
for all t. In other words, provision of full insurance always maximizes profits.

Proof. Corollary 4: The statement immediately follows from

1

2
>
dk(��2=ht)

d (��2=ht)
=

�
1

2

�26641� 1
(���)2

+ ��2

htr�
1

(���)2
+ ��2

ht

�2
+ 4�

(���)2

3775 > 0 ;
and the solution for wages w�t (v) = � ln(ktv)=� + � :

Proof. Corollary 5: Reinserting the law of motion (29) for v into (30) and ap-
plying Ito’s lemma yields37

dw�t = �
�
1

�

�" �
1

kt

�
dkt
dt
� (���)

2

2

 �
��2

ht

�2
� k2t

!!
dt+ ��

�
kt �

��2

ht

�
�dZt

#
:

37See the proof of Proposition 4 for the intermediate step linking the two equalities.
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The statement for the volatility term is established reinserting dk(��2=ht)=d (��2=ht)
into

�
d
�
k(t)� ��2

h(t)

�
dt

= �
�
dk(t)

dt
� d (��2=h (t))

dt

�
= �

0BBB@dk(��2=h (t))d (��2=h (t))| {z }
2(0;1=2)

� 1

1CCCA d (��2=h (t))

dt| {z }
<0

< 0 :

The sign of the deterministic trend is established remembering that the sufficient
condition (16) holds if and only if�kt > ��2=ht:Hence, (��2=ht)

2� k2t < 0, and so
the trend is negative.

Proof. Proposition 5: We prove each point in turn:
(a): We shall establish that

@U (t; �̂t)
@at

T 0() Rt T � exp (��(1� �)a�t ) ; (47)

where

Rt ,
Z 1

t

e��(s�t)
��2

hs
exp

�
�2

2

�
h�1t � h�1s

�
� �(1� �)a�s

�
ds :

By definition, U (t; �̂t)when evaluated at time t is given by

U (t; �̂t) =
Z +1

t

e��(s�t)Et [U (�̂s; a
�
s)] ds : (48)

In order to solve for it, we need to derive the expressions of the expectations
terms. Equilibrium beliefs �̂ satisfy the following law of motion d�̂t = (�

�1=ht) dZt:
Hence �̂s is normally distributed with mean �̂t and varianceV art (�̂s) = Et

�
(d�̂s)

2� =
h�1t � h�1s , which implies in turn that

Et [U (�̂s; a
�
s)] = �Et [exp(���̂s)] exp (��(1� �)a�s)

= � exp(���̂t) exp
�
�2

2

�
h�1t � h�1s

�
� �(1� �)a�s

�
:

Reinserting this expression into (48) yields

U (t; �̂t) = � exp(���̂t))
�Z 1

t

e��(s�t) exp

�
�2

2

�
h�1t � h�1s

�
� �(1� �)a�s

�
ds

�
:

(49)
Thus the FOC for current effort at reads

@U (t; �̂t)
@at

=
@U (�̂t; at)

@at
+

Z 1

t

e��(s�t)
@Et [U (�̂s; a

�
s)]

@at
ds :
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Given that �̂s = (h0m0 + ��2(Ys � A�s)) =hs, we have @�̂s=@at = (@�̂s=@Ys) (@Ys=@at) =
��2=hs. Replacing this expression in the derivatives above yields

@U (t; �̂t)
@at

=
@U

@at
(�̂t; at)�

Z 1

t

e��(s�t)
���2

ht
Et [U (�̂s; as)] ds

= � exp (���̂t))
"

�� exp (��(1� �)a�t )

�
R1
t
e��(s�t) ��

�2

hs
exp

�
�2

2

�
h�1t �h�1s

�
��(1� �)a�s

�
ds

#
:

The deterministic nature of effort follows because the sign of @U (t; �̂t) =@at is in-
dependent of the equilibrium belief �̂t. More precisely, marginal returns to effort
are positive whenever (47) is positive.

(b): We now prove that there exists a precision �h such that a�t = 0 if h(t) � �h.
Let R0t be defined as

R0t ,
Z 1

t

e��(s�t)
��2

hs
exp

�
�2

2

�
h�1t � h�1s

��
ds ;

so that

@U (t; �̂t)
@at

= �� exp (���̂t))
�
� exp (��(1� �)a�t )�R0t

�
if a�s = 0 for all s > t: (50)

We wish to establish that R0t is a decreasing function of time. Differentiating its
expression with respect to t yields

dR0t
dt

= R0t

"
�� 1

2

�
���1

ht

�2#
� ��2

ht
: (51)

When � < 1
2
(���1=ht)

2, the derivative is obviously negative. To show that this is
also true when � > 1

2
(���1=ht)

2, we observe that

R0t <
��2

ht

Z 1

t

e��(s�t) exp

�
�2

2

�
h�1t � h�1s

��
ds =

��2

ht

"
�� 1

2

�
���1

ht

�2#�1
;

whenever � � 1
2
(���1=ht)

2
> 0. Reinserting this inequality into (51) shows that

dR0t =dt < 0 with limt!1R
0
t = 0. Hence there exists a unique precision �h where

R0t S � exp (��(1� �)) if h (t) T �h. But then, the fact that Rt � R0t for all possible
equilibrium paths and (47) imply in turn that @U (t; �̂t) =@at < 0 for all t such that
h (t) > �h and at 2 [0; 1] : In other words, recommended effort is set equal to its
lower bound a�t = 0whenever h (t) � �h.
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Appendix B: Additional results

Derivation of (15): We first change variable and define ~pt , (��2=ht) pt. Then
~pt = �E

R T
t
e��(s�t)s

��2

hs
ds; so that differentiating with respect to time leads to

d~pt
dt
= �~pt +

��2

ht
t = �~pt �

��2

ht
(Ua (wt; at) + ~pt) ;

where the second equality follows after substitution of t = �Ua (wt; a)� ~pt: Inte-
grating this expression, we obtain

~pt = Ea

�Z T

t

e

h
��(s�t)+

R s
t
��2
h�

d�
i
��2

hs
Ua (ws; as) ds

�
:

To simplify the integral in the exponent, we observe that

��2

h�
=

��2

h0 + ���2
=
d lnht
d�

=) exp

�Z s

t

��2

h�
d�

�
= exp (lnhs � lnht) =

hs
ht
:

Therefore

~pt = Ea

�Z T

t

e��(s�t)
�
hs
ht

��
��2

hs

�
Ua (ws; as) ds

�
=
��2

ht
Ea

�Z T

t

e��(s�t)Ua (ws; as) ds

�
;

which, given the definition of ~pt, is equivalent to (15). Observe, however, that
when at = 0 for some t then (13) is not representable as (15).

Extending the HJB eq.(19) to include �̂: The HJB equations defined in (19)
and can be extended to include �̂ and would still be satisfied. To see this, de-
fine Xt , Yt � At and g (Xt; t) , e��t�̂(Xt; t)=�. This function satisfies the HJB
equations below because

e��t�̂(Xt; t)+
@g

@t
+�̂X(Xt; t)

@g

@Xt
+
�2t
2

@2g

@X2
t

= e��t

"
�̂(Xt; t)� �̂(Xt; t)

+1
� �̂t(Xt; t)+

1
� �̂Xt(Xt; t)�̂(Xt; t)

#

=

�
e��t

�

��
�̂t(Xt; t) + �̂Xt(Xt; t)�̂(Xt; t)

�
= 0 ;

where the last equality follows from (7).
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